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CLT for a Congruence Subgroups

Abstract

We consider hyperbolic Laplacian on a Riemann surfaces associ-
ated to congruence subgroups of the modular group. We establish the
Central Limit Theorem for the spectrum of the Laplacian on these
surfaces. In the case of the modular group it is done by Z. Rudnick
[20]. An important quantity in our work is a weighted multiplicities
function for closed geodesics of given length on a finite area Riemann
surface. These weighted multiplicities appear naturally in the Selberg
trace formula, and in particular their mean square plays an important
role in establishing the result.
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1 Introduction

Determining the motion of a particle in microworld differs from that
for the macroscopic case. The laws of classical mechanics no longer
apply for the atomic scale. There is still no way to describe explicitly
the motion or dislocation of a particle. Quantum mechanics offers to
measure the probability of the particle to be at the certain place in
a given time. In this way one loses the usual concepts of trajectory,
coordinates, momentum etc. What remains is a strong analogy with
the Hamiltonian formalism of classical mechanics. More precisely, a
particle is described at each time by a wave function ¢, such that

/ 2 (Z)dV = 1,
]RS

and for a measurable set B C R3
[t @av,
B

is the probability of finding the particle inside B at time t.

The wave function satisfies the Schrodinger equation
ihoypy = Hipy,

where H is the Schrédinger operator, obtained from the classical Hamil-
tonian of the system by a certain recipe. Hence, one of the natural
problems is to find the eigenvalues (energy levels) E,, (%) and the eigen-
functions " € L2(D) for this operator and some domain D. In general
it is very difficult problem, so one looks for any possible information
about these energy levels and eigenfunctions.

There is a strong relation between the energy levels E, (h) and
the eigenvalues of the Laplace operator defined on D. This relation
reduces the problem of determining the energy levels statistics for the
given quantum system to the studying the eigenvalue statistics of the
Laplacian defined on a given domain D. These statistics form one of
the intriguing parts of a comparatively young branch of the theoretical
physics - "quantum chaos". For more detailed explanation see [2].

In this work we establish the Central Limit Theorem (CLT) for the
spectrum of the hyperbolic Laplacian on the fundamental domain of
the congruence subgroup of the modular group. For the modular group
this was done by Z. Rudnick [20].
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We now explain what exactly is proven in this work. Let @) be an
odd squarefree integer. Define

To(Q) == {T € SLy(Z) | T = { Z Z ] = O(mon)}
be the congruence subgroup of level @ of the modular group. Let

['=To(Q)A{£I},

(L
0%x 0%y

be the hyperbolic Laplacian on the upper complex half plane H. It is

known [10], that the discrete spectrum

and let

M=0< A <A<

of the Laplacian on I'\H satisfies Weyl’s law

N(T):=#{0<r; <T} = T? + O(T'1nT), (1)

vol (T\H)
4
where \; = 1/4 + 7“]2-. We define a smooth version of the counting
function as follows. Let f be an even test function with compactly

supported smooth Fourier transform: f € C§5(R). Define

Ny(r) =Y f(L(rj = 7)) + f(L(=rj = 7).

Jj=0

If f = 1(_1/2,1/2) is a characteristic function then Ny(7) counts the
number of r; lying in the intervals +(7 — 1/2L, 7+ 1/2L). By (1) we
expect N (7) to be asymptotically equal to a multiple of 7/L. To study
the fluctuations around this expectation we consider 7 as a random
variable drawn from a certain distribution on the line. To do this we
choose an even weight function w > 0, with

oo

/w(m)da: =1,

— 00

such that & compactly supported, and consider an averaging operator:

(F)p = %/F(T)W(%)Ch’.
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In particular, for w = 11 9

is the standard arithmetic mean. We wish to study the moments of
Ny.

To get an idea what one wants to prove, it is desirable to have some
conjecture about the result. In the case of the eigenvalue statistics
problem one of the tools for making conjectures is Random Matrix
Theory (RMT). The background idea of RMT is simple: we change
the eigenvalues of the given operator by the eigenvalues of a random
n X n matrix, and study the statistical properties of eigenvalues of such
a matrices as n tends to infinity. Thus we obtain a model for eigenvalue
statistics of a "typical" operator.

In part I we introduce an example of such a calculation for a certain
random matrices ensemble, the Circular Unitary Ensemble (CUE) and
we state the CLT for smooth linear statistics, due to Diaconis and
Shahshahani [7]. This example will show what kind of CLT we may
expect to prove in our particular case, and the hopes, as we will see
below, are fully justified.

In part III we will prove that the limiting value distribution of
Ny(7) is Gaussian with mean

Ny = %7200li£\H) /f(x)dm

and variance

q

4"€Q /f TrLudu

where

(g —q—l(q+1)2
ko = Oy , C, = 1.328....
« g 9P +q>—q-3) '

Our main result is

Theorem 1.1 Let L — oo, as T — o0, such that L = o(InT). Then
the moments of Ny(T) are those of Gaussian random variable with
mean iy and variance o2 (L).

(2Kk)!

lim Ny —7ny " _ L2k K = 2k is even
T—o00 O'OO(L) ., =

0, K is odd
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Similar eigenvalue statistics may be also established for the arithmetic
surfaces derived from indefinite rational quaternion algebras [15].

The main part of the thesis is Part II, which is dedicated to the asymp-
totic behavior of a weighted multiplicities function Sg(n), connected
with the multiplicities of conjugacy classes of matrices of trace n in the
congruence group I'o(Q). This will play a vital role in the proof of the
main result. We explain briefly what is done in this part:

Let T be a congruence subgroup of PSLy(R). Put

h(r) = f(L(r = 7)) + f(L(=r = 7))
then we can use the Selberg Trace Formula to express Ny (7) as:
Ny(r) = Zh(rj) = {identity contribution}+
Jj=0

+ {hyperbolic contribution}+ (2)

+ {elliptic contribution}+

+ {parabolic and continuous spectrum contribution}
We say that the element T of I" is hyperbolic if [¢7T| > 2. Such an
A0
0 At
where A > 1 is real. For an element T', such that [¢rT| = t we define
the norm® of T to be

element is conjugate in PSLy(R) to a diagonal matrix

o [tH VP-4 ’
v - ()

For us the most important term in formula (2) is the hyperbolic con-
tribution term, which is defined explicitly as:

In NV (Ty
> Y At a ).

t>2{T} hyperbolic
[trT|=t

There are in general several conjugacy classes with [trT| = t. Define
the weighted multiplicity function SBr(¢) by:

- 1 IHN(T())
OS5 2 @ N

T:T(;C is hyperbolic
[trT|=t

! The number A2 is called also a multiplier of T
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where T} is a primitive hyperbolic element, that is T is not a power
of any other hyperbolic element. In this notation we can rewrite the
hyperbolic contribution term as follows

Zﬂ[‘ an\/ ))

so the information about the weighted multiplicities will be useful for
understanding the behavior of this term.

From the prime geodesic theorem it follows that the mean value of
Br(t) is unity:

The main result of this part is a computation of the mean square of
the weighted multiplicities for the case that I' = I'o(Q) is a congruence
subgroup of the modular group (Theorem 7.1). Namely, designating
Bg = Br for T =T'y(Q), we obtain

D O UG | et e R

342 o
N=oo N, L= Jo W@+ —a=3)
Here
) 1 1015 v p? p +p —p—3)
Cr = Jim N2§4;N61( )= 61 H 2(p+1) 328

which is the mean square of the weighted multiplicities for the modular
domain (@ = 1), proved by M. Peter [16], following a conjecture of
Bogomolny et al [3].

We now explain the method of proof. As a first step, we express the
weighted multiplicities in terms of Dirichlet’s L-functions. For I'o(Q)
the expression is

. 2, ¢ | D
Bo(t) = > —Lxp)]] AR - (3)
v 1+ 1D
D,vo>1 q1Q q
D is a discriminant
Dv?=t?>—4

This is proved in section 3 by connecting the weighted multiplicities
with class numbers and using Dirichlet’s class number formula.
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The principal tool in our approach, following Peter, is that the
formula (3) displays the weighted multiplicity S¢(¢) as a "limit periodic
function" in a suitable sense (see section 5 for background on these).
To show this, we approximate the L-functions by a finite Euler product
using a zero-density theorem, in a certain semi-norm coming from the
theory of limit periodic functions (section 6). For computing mean
squares, this suffices and allows us to use Parseval’s equality in this
setting to express the mean square as

. ]_ —~ /a 2
Jm = > o= > |R(3)| -
Y <N b>1  1<a<b
ged(a,b)=1

2

s s ()

p - prime c>1 1<a<p®
a#0(mod p)

where B are the Fourier coefficients of 3, defined in section 5.

We then carry out a length calculation of the Fourier coefficients
in section 7.2, finally ending up with rather complicated expressions
described in Theorem 7.3.

The result is that the mean square is an Euler product

1
kS s T e
2<n<N p - prime
with
Mpy(Q) =1+ Ag(r),

c>1

and Ag(p©) is given by (20), section 7.3. We evaluate the sum M, (Q)
over prime powers as a rational function of p and find that it depends
on divisibility of @ by p, in particular, for p{ Q, p # 2,

p*(p* +p* —p—3)

MP(Q) = MP(]') = (pg . 1)2(p+ 1)

This will prove Theorem 7.1.
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Part 1
A statistical model: The
Circular Unitary Ensemble

(CUE)

In this section we analyze one of the random matrices ensembles and
get some knowledge about its statistical behavior. We consider the
group U(n) of unitary n X n matrices, equipped with the unique Haar
probability measure dy. The eigenvalues of the unitary matrix U are

6191 , 6192 , 6193’ . 610"7

where 0; € [0,27m). All the eigenvalues thus lie on the unit circle,
justifying the ensemble’s name. Ordering the eigenphases

01 <0, <03<..<0,

we study their statistics. To get an averages, we recall Weyl’s integra-
tion formula

27 27

1 i0; 0y |2
/ g(U)dHU = m/.../g(el,eg,...,HTL) H |€ & k| d91

U(n) 0 0 1<j<k<n

(4)

where g is a function which depends only on eigenphases 61,65, ..., 0,.

Let now f be a real valued trigonometric polynomial, that is
FO) =" fre™.
k
Define a linear statistic of the unitary matrix U by

Ny(U) = Zf(%%

where 0; are eigenphases of U. We may rewrite this in the form

NpU) =D fue® =31y et =N fitr (UP).
Jj=1 k

=1 k k

..db,,
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The mean value of Ny is

(N4 (U)) = <katr(U’“>> = fi (tr(U")). (5)
k k

By the invariance of Haar measure under multiplication by a scalar
matrix AI we obtain

(tr(U*)) = (tr(AU)F)) = N* (¢ (U")) .
Choosing A not to be a k-th root of unity we conclude, that for k # 0
(tr(U*)) = 0.
Substituting into (5) we find
(Ny(U)) = nfo.
To obtain the variance of N;(U) we need to compute
Var(Ny) = (IN; = nfol*) = > fifi (tr (@) (@)
k,1#£0

Just as before, using the invariance of Haar measure we get, that for

k1
<tr(Uk)t7«(Tl)> = 0.
Thus )
Var(Ny) = 3 1l ([er@™)[").

k0
We will show that for —n <k <n, k#0

([er@™)[) = 1K,

and therefore obtain

Var(Ny) =Y |ful® k| =: oF.
k#0

Lemma 1.2 Let 1 < k <n, then <|tr(Uk)|2> = k.

Proof. By definition

([er@™)]") = / |tr(U")|* duU.

U(n)
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Denoting

1 . 12
dA, = - H e — e |” dg,...do,
n!(27) 1< <hen

and using formula (4) we have

<|tr Uk > / Zeme ZeﬂkeldA / zn:e““(ofel)dA

[0,2m)n I=1 [0,5m)n $:1=1
=n- / dA, +2- Z cosk (0; — 0,)dA, = I, + L.
[0,2m)™ [0,2m)m 1<j<i<n

The first integral is n, since

/ dA, =

[0,2m)™

For this see for example [6].

We stay with the integral I5. To handle it we use Gaudin’s lemma
(see [6]), which allows to restrict the number of integration variables to
the number of variables on which the integrand depends. More precise,
we have

I, =2 > cosk (0 —0) dA, =

[0,57)n 1<I<I<n

1 2 2
=2- W / COSk(el —92)(77, —Sn(91 —92))d9192,
[0,27)2
where in(nf)2
sin(ni
Sn(0) = sing/2

Changing variables and doing some arithmetic one gets

2m
1
I = fﬁ/cos ku - S?(u)du
0

S2(u) = 2n - F_y(u),

where F,,_1 is the (n — 1)-th Fejer’s kernel, we obtain

Remembering, that

27

I, = —E/cos ku-Fp_1(u)du =
s
0
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27

n—1 .
n 1 7 .
= —— 3 - 1—7 S = — —_ .
7T/Cosku 5 —I—Z( n) cos ju | du (n—k)
0

=1
It follows )
<\tr(U’“)\ >:I1 Y h=n—(n—Fk) =k

as desired. m

Diaconis and Shahshahni [7] went on to compute the higher moments
of Ny and established the CLT for this ensemble:

Theorem 1.3 Asn — oo, the moments of Ny converge to those of a
Gaussian random variable with mean

27
nfo= 5 [ £(0)a0
0

and variance

o = 1ful* Kl

k#£0
That is
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Part 11
The weighted multiplicities
function [5y(?)

Let T € SLy(Z), such that [t| = [tr(T)| > 2 . For such T the equation
det(T — M) = 0 has two different solutions: \; o = EY=4 V2t2*47 and so
T is diagonalizable. Such T is called hyperbolic. Define N'(T) := A2,

where |A\| > 1. Hence N (T') = w.

Define the weighted multiplicities function

1 IDN(T())
ﬁ t)=— T -
( ) 4{T}§2(Z) N(T)E *N(T)_E

[tr(T)|=t

In his work M. Peter [16] proved that

) 1 1015 v % (p® + p* — p — 3)

1 — =

s z 8641_[ (P> —1%(p+1) =01, (6)
2<n<N #2

and the numerical calculation gives C; = 1.328... .

We generalize this result for a congruence subgroups I'g(Q) of SLy(Z),
where @) is an odd squarefree integer. In the previous notation we de-
fine

1 IDN(TQ)
=3 D mionm T
{T}elo(Q)
[tr(T)]=t
hyperbolic, doesn’t
fiz cusp

where the sum is taken over conjugacy classes of I'o(Q).
In this part we will calculate (Theorem 7.1) the mean square of
weighted multiplicities Sg(n):

im = S gy =GR Dat DT g

3 2 _ g —
iy Jo W@ +¢—a=3)

This calculation will be done in a few steps. In the first step we
use Dirichlet’s class number formula to express weighted multiplici-
ties function Bg(n) in terms of Dirichlet’s L-function (Theorem 3.1).
After that, following M.Peter, we prove that Sg(n) is a "limit periodic
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function", in the sense that it may be approximated by periodic func-
tions in the suitable norm (Proposition 6.1). A finite Euler product
for L-functions is used for these purposes. All that allows us to use
Parseval’s equality to get a formula for the mean square of weighted
multiplicities Sg(n) in terms of Fourier coefficients (see Proposition
6.13) . Routine Fourier coefficient computation lead us to the final
result (7).

2 Preliminaries on orders in quaternion al-
gebras

In this section we remind algebraic definitions and results, which we
are going to use along this part.

First of all we recall that a ring B with unity is called an algebra
of dimension n over a field F, if the following three conditions are
satisfied:

1° BD Fand 1 = 1p;
2° any element of F' commutes with all elements of B;
3° B is a vector space over F' of dimension n.

Definition 2.1 Let B be a finite dimensional algebra over Q with
identity element 1g. A subset R C B is called an order in B if the
following conditions are satisfied:

1° R is a finitely generated Z-module;

2° R contains basis of B over Q;

3° R is a subring of B and 1 € R.

For any finite dimensional algebra B over Q and for each place v of Q
(i.e. v =00 or v = p a prime) we define B, := B ®g Q,. B, is an
algebra over Q,, of dimension dimg B. For v = p a prime, orders in B,
defined as in the previous definition, replacing Q and Z by Q, and Z,,.
If R is an order of B, we get an order in B, by the definition

R, := R ®z Z, = [the closure of R in B,].

We also recall the definition of adele ring B4 [19, pp. 197-198] and
[23, p. 62]. As a set this is

Ba={(b) € HB“ | b, € R, for almost all primes p},

v
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where R is any order in B.

Definition 2.2 A nonzero integer d is called a fundamental discrim-

d
inant if d = 1(mod4),d square free, d # 1; or d = 0(mod4), 1 #

d
1(mod 4), 1 squarefree.

Consider now a quadratic extension of QQ arising as the splitting field
over Q of a polynomial P(X) = X2 —tX + 1, t € Z. Notice that P(X)
is irreducible iff v/#2 —4 ¢ Q. In this case we can write t> — 4 = [%d,
| € Z*, d is a fundamental discriminant. The splitting field of P(X)
is Q(v/d) and the zeros of P(X) are

t Vd t  Vd
n=g iy =gy
For each fixed fundamental discriminant d we let for each f € ZT
d+Vd

t[f] := Z+ fwZ, where w=

2

Then orders in Q(v/d) are precisely t[f], f = 1,2,3,... [5, pp. 48-49),
and in particular t[1] is the unique maximal order.[8, pp. 146-147].
The index [t[1] : t[f]] = f, and we call t[f] the order of index f in
Q(V/d). Note that t[f1] C t[fo] iff fol f1.

For P(X) as above, the roots x1,xo of P(X) satisfy

Zvw7 = T+asZ =[] (1* — 4 = [2d).
Let K = Q(v/d), d as above, then

Km:@w®®@R:{R@R J>0},

C ,d <0

Q, ©Qp (%) =1

K, = Q(Vd) ®¢ Q= Q,(Vd) 7(%) -1

The distinct orders in K, are
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as above.

d
o[p"] :== Zp+p"wZy,n=0,1,2,... and w = +
‘We have

o[1] D o[p] D o[p?] D ... and [o[1] : o[p"]] = p".

Combining the definitions of order in K and in K, we get

(v[f]), = o[p"], where n = ord,f.
For any order t in K = Q(v/d) we define

Too = Ko

ta ::Htv C Kx
v

vl ={re Kl |N(z)>0}

= {(aw) €t | N(as) >0} =17 . th; Crty
p

Here N denotes the extension of the norm N : K — Q to the regular
norm in the algebra K, over Q. = R. [23, p.53].

The subgroup ¢y, - K* has finite index in K, and we set

h(v) == [K} : (v, - K7)],

the class number of t.

For K = Q(+/d) as above one can also show [4, Chapter 5.2] that h(t[f])
is equal to the number of inequivalent primitive (and if d < 0, positive)
quadratic forms ax? + bxy + cy?® with discriminant % — 4ac = df2. In
other words h(t[f]) = h(df?), where the right-hand side is as in [13,
vol I, pp. 127-].

3 Expression of weighted multiplicities func-
tion in the terms of Dirichlet’s L-functions

In this section we express ¢ (¢) in the terms of Dirichlet’s L-functions.
It is a necessary step, which allows to analyze the behavior of Bg(t).
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The result is stated in Theorem 3.1, proof of which takes the rest
of the section. In the proof we rely extensively on the exposition of
Strombergsson [22].

Theorem 3.1 ForteZ,

1 2, | D
. D21 qlQ q
D is a discriminant
Dv?=t?—4

ifVi2—4¢ Q, t2—4> 0, and Bo(t) = 0, otherwise. Here (—) s a
Legendre’s symbol and xp s a quadratic character.

We start from noting that
FU(Q) = |_| Htv
teZ

where
H,={T € Ty(Q) | tr(T) =t}.

So we can write ( the change from 1/4 to 1/2 comes from not collecting
together t and —t )

TeH://To(Q)

hyperbolic, doesn’t
fixz cusp

Here H;//To(Q) is the set of T'y(Q)-conjugacy classes of Hy.

Lemma 3.2 For a hyperbolic element T € Hy; (i.e. > —4 > 0) no
fized point of T is a cusp of To(Q).

Proof. Note, that the cusps of I'g(Q) are exactly the points in

{icc} UQ, by [19, cor. 1.5.5, th. 4.1.3(2)]. Assume T = { CCL Z }

First, ¢ # 0, since we will get T' parabolic. So, the fixpoints of T are
axr +b a—d Vt2-—4 .
=x < 1r=——=+ ——— which
+d 2c 2]c]
are both irrational, since vVt2 —4 ¢ Q. m

the two real solutions to

Now we want to know when in the sum (8), H; is not the empty set.
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Lemma 3.3 Let t € Z, such that Vt2 —4 ¢ Q , and write t? — 4 =
12d, | € ZT, d is a fundamental discriminant. Then H, is not empty

iff for all primes q divide Q we have q |l or (Z) # —1.

a b
Qc t—a
1. Hence H; # 0 iff there is some a € Z, such that a(t — a) =
1(mod Q) < (2a — t)? = t2 — 4(mod Q) < (2a — t)? = ?d(mod Q).
Since @ is odd squarefree, the last congruence is solvable iff (2a —1)? =
I2d(mod q) for all primes ¢ | Q. Or equivalently: the last congruence is

solvable iff ¢ | [ or <Z> #—1,forallg| Q. m

Proof. H; # 0 iff there some a, b, ¢ € Z, such that det

—_
Il

[t] + VitZ — 4 2 B
2 [t| + VvVt —4

Note, that for T € Hy, N(T)2—N(T)" 2 =

2 — 4.

So, for fixed t € Z, such that vt —4 ¢ Q, t> — 4 > 0, H; # () we can
write (8) in the form

1 IHN(T())
Bo(t) =5 —— (9)
¢ 2 Ter,/z/:Fo(Q) -4

We will enumerate the T'o(Q)-conjugacy classes in Hy, and for each
conjugacy class will get the number N (Tp).

Fix some T; € H;, and take the polynomial P(X) = X? —tX +1,
i.e. the characteristic polynomial of T3, and so P(T;) = 0. P(X) is
irreducible, since v/#2 — 4 ¢ Q. Hence Q [T}] = Q(v/d), where t* — 4 =
I%d.

Define the set C(T}) := {67367 | § € GL2(Q)}. Then H; = RNC(Ty),
where R = {{ i Z } e Mx(Z)| Q] c} is an order in M(Q). For
any 0 € GL2(Q), (Q[T;]NdRS™!) is an order in Q[T3], by the fact, that
if A" is a subalgebra of A, and O is an order in A, then A’NQO is an order
in A’. For any order v in Q[T}] define C(T},t) := {§T307! | § € GL1(Q),
Q[Ty]N6~1RS = t}. Following Strombergsson [22], Miyake [19] we have
a
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Lemma 3.4

C(Ty) = || C(Ti, ¢,
f=1

H; = |_|C(Tt7t[f])7
fll

and each C(Ty,x[f]) is closed under T'o(Q)-conjugation.?

Proof. Clearly, C(T;) = |J C(T%,t[f]), since there are no other or-
f=1

ders than t[1], t[2], ... in Q[T}]. To prove disjointedness, we must show
that if 6, 7,07 * = 027305 (61,02 € GLo(Q)), then 67 RSy, and 65 ' Ré,
have the same intersection with Q[73]. From (51Tt(5f1 = 62Tt6;1 we get
67165 € Q[T], since if an element of My(Q) commutes with T}, it is in
Q[T3], by [19, Lemma 5.2.2(3)], and thus

QIT¥]Nd5 ' Réy = (57 '62) (Q[T3] N 65 ' Rd2) (67 '62) " = Q[Ty)NSy ' Roy.

This prove the first relation.

Next, for any order v in Q[T}] and any § € GL2(Q), such that 67,6~ €
C(Ti, ), we have :

Ticre T c QTN 'R Ty € 0 'R < 6Ti6 ' € Re 6Ty ! € H;.

In other words :
if Tt S then C(Tt,t) - th
if Tt ¢ T, then C(Tt,t) N Ht = @

Note that T} € t[l], where t? — 4 = [?d, | € Z*.So the orders of t in
Q[T3] that contain T} are exactly t[f], such that t[f] D ¢[l], that is, such
that f | I. By definition H; C C(T}), and so from the first relation the
second relation follows.

Finally, y~!Ry = R, for any v € R*. So we get that each C(T},t) is
closed under R*-conjugation, and in particular under I'g(Q)-conjugation.
]

%t[f] := Z+fwZ, is an all orders in Q(v/d), where f € ZT, w = ‘HT\/E. Since

Q(v/d) = Q[T3] we use the symbol r[f] for the corresponding order in Q[T}] .
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Let ¢4 = Ly\/a be the proper fundamental unit in Q(v/d T,y
2

is the positive integer solution to 22 — dy? = 4, for which y > 0 is
minimal). Define

ol f]" = {aerf] | N(a) =1},
the units of the order t[f]. Since

1! = {£ek | ke Z},

1, 1 k
] {i (Egm e[ f] }) ke Z}.
2fe[1]*x[f)']

Lemma 3.5 If T is hyperbolic, i.e. d >0, then N'(Tp) = ¢, )

we have

Proof. Choose some § € GL2(Q), such that T = §T;6~ !, and
Q[T)N6RG~" =rt. Then Zp,(q)(T), the centralizer of T in T'o(Q) is

Zry@)(T) = QT NTo(Q) = §(Q[T] N To(Q)3)6 " = de[f]o~"

by [19, lemma 5.2.2(3)].Since

t[f]l _ {:I: (E([it[l]l;t[f]l}>k ‘ Lo Z}7

1, 1
for d > 0 we can take for T the image of 55[1] 1] under the

composite of the two isomorphisms Q [T};] = Q(v/d) and Q[T}] > S —
§S6~t€ Q[T]. Then

trany ) (To) = tr (Ec[ltm e[f) ]) '

If we will denote 4;[1] U] o+ Bvd € Q(\/d), note, that a, 8 > 0,

and N(a + 8vd) = a® — dB? = 1. We have tr(a + fvd) = t, and so

2 2 2 2
N(Ty) = (|t\+\/i -4 (2|a|+\/44a -4 _

(2lol + VATTE 1) _ (2lal +2151 va)
4 - 4
= (|Oé| —+ |ﬂ‘ \/g)2 = (a +ﬁ\/g>2 _ €Z[t[1]1:t[f]1}.

2
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Now we can rewrite (9) in the form
1, 1
lngt[;m w[f1']

Ba(t) = Z |C(T3, <[f])/ /To(Q)] T E—a

flt

)

where we write t2 — 4 = dI? with d a fundamental discriminant and
[>1.

We calculate now the quantity |C(T,t[f])//To(Q)|, in particular we
will prove

Proposition 3.6 Let N be squarefree and h(df?) the narrow class
number of Q(v/d). Then

) 2, f
S B R R A }1}{ 1+ (1) o }

Let B be an indefinite quaternion algebra over Q and R an order of
Boflevel N, ie. R, is a maximal order of B, if p{ N, and if N =[] p®

then R, is conjugate to an order { [ p‘jc Z } € My(Z,) | a,b,c,d € Zp}.

In the case of B = M3(Q) we have
Ry = My(Zyp), it ptN,

and
R, ~ S lHQ(Z ) | a,b,c,d € Z if P | N
P pec d a B P> )

Define the subgroups I'g and Ug of B} by

ILr:={y€B*|N(y) =1}

U = GL{ (R) x [[ B}
p

For instance, in the case of modular groups, B = M>(Q),
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R=1l% b em@) | cenz
o c d 2 ¢ ’
a b
Rp:{{ c d} eMg(Zp)|ceNZp}.
Therefore

I'r =UrNB* =Tu(N).
Now, for a € T'g, put

C(a) ={hah™" |h € B*},

Cla,t) = {hah_l | h € B*,Q[a]NhRh™* = t},

Ca(a)={hah ' |h e B},

Ca(a,v) ={hah™" | h € B},Qala] NhRsh™" =14},

Cyo(a,t) = {hah™ | h € BY,Qu[a] NhR,h™ =1, },
where v = 0o or v = p is prime.

Lemma 3.7 Let o be an element of T'r, then

ICla,v)//Trl=hr) ]  |Culesv)//RY].

v=00,2,3,5,...
Proof. Consider the natural mapping

0:C(a)//T — Ca(a)//U
0:77'Cla)y— v Cala)y

(hereI'=Tg and U = Ug,y € T — U).

Let g = hah™!, (h € B}) be an element of C4(«). Since B} = B*-U
by [19, Th. 5.2.11, a consequence of the approximation theorem| we
may write h = up3, where 8 € B* and ug € U. So

Cul(g) == {ugu™" |u e U} = {uuoBaf'ug'u™" |[ue U} = Cy(BaB™).
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Thus 6 is surjective.

For an element £ € B*, we see that

Cy(éat™) = Cy(g) <= £ € UhQala]* N B*.
And for two elements 7, £ € B*

Cr(éat™) = Cr(nan™!) <= T€Q[a)* = I'Q|al*,
since

¢eQla)* & & =vna (v eT,a € Qa]*) & Cr(éa&™) = Cr(nan™).

We have
BQAla]B7" = Qa[BaB™],

hence

07" (Cu(9))| = [P\URQala)* N B* /Qla]*| = [P\UBQa[e]* N B*/Qo]*| =

= [P\UQua[Bap ™1 N B*/Q[Bas ™|,
where the last equality holds by the following reason:

Let
¢ : UBQa[a]* N B* — UBQa[a]*B~ N B* = UQa[BaB™]* N B>
@ uBt — uftp, ue Ut € Qala]
Let x,y € UBQa[a]* N B*, then
y =z(modQ[a]*) &y =za (a € Qa]*) &
Syt =waft Sy =27 (Baf) &

& yp~! =2 (mod fQ[a)* 1) & yB~! = w7 (mod Q[Bas]X).

Now, since B} = B*-U it follows that for any commutative subgroup
E of BY, for any t € E, there is a u € U, such that ut € UE N B*.
Let t1,t2 € F and uy,us € U. Assume uqty, usts € UE N B* then

Tuity (E N B*) =Tugte(E N B*) <= tit, ' € (ENU)(ENB*),
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since I' = U N B*. Thus
|F\UEQBX/EQBX| = |E/(EOU)(EQBX)|.

Since Q4 [BaB71]* N B* = Q[BaB~1]* we can apply the last result for
E = Qu[BaB™t*. So we get

6-1 (Culg))| = {QAﬂaﬂ 1/ (@a[BaB™] N )@maﬂ‘llx}
= [Qala]*/(Qala] N p7LUB) - Qla]*|.

Since U = GL3 (R) x [] R we have for g € Ca(ar)
P

Qala]NB~UB = Qa[a]nh~'Uh = Q4[a]nh " <GL+ <11 Rx> _ o,

Therefore
07" (Cu(9))] = [Qala]* /e}s - Qla)™| = h(v).
(see the definitions of the Section 2). Thus we have
|Cla,e)//T] = h(x) |Cala,¥)//U].
Write
U=GLy®R)x[[ry= ] RX
P

v=00,2,3,5,...

and we will get the claim of the lemma:

Clan)//T=h) [ |Culae)//RY|.

v=00,2,3,5,...

Now we calculate each of the factors |Cy(a,t)//RY|.

Let v = o0.

Lemma 3.8 |C..(a,t)//RS| = { L «a is hyperbolic }

2, « is parabolic or elliptic
Proof. Since Cw(a,t) = Coo () and RX = GLF (R) we have

Coola,v)//RY = {zaz | z € GLy(R)}//GLE (R).
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Let g € GL3 (R), then

1

yay ' =g N(zax g = a=y g 'zaz gy

—=algye Z(a) <=y cg 'aZ(a).
It follows
y € GL (R)zZ(a).

From the other hand, if y € GLj(R)zZ(a), then there are z €
Z(a),g € GL (R) such that y = grz and

1 1 1

yay~! = grzalgrz) ™' = grzaz a7 g = g(xaxT g,

and yay ! is GLJ (R)-conjugate to xaz~!. Thus we have
{zaz™" |z € GLy(R)}//GL (R)| = |GLT (R)\GL2(R)/Z(cv)] .

If « is a hyperbolic element, then there is matrix B € GLy(R), such

that o = B! 6\ )\91 }B. The centralizer Z of [ 8\ )\91 } in

GL3(R) is the set of all invertible diagonal matrices with real entries.
Since [ (1) (1) , _01 (1) ] € Z, we see that |GL3 (R)\GL2(R)/Z| =
1. But Z(a) = B~ ZB, therefore we also have

|GL3 (R)\GL2(R)/Z(a)| = 1.
For a be elliptic or parabolic one shows in a similar manner that

|GL; (R)\GL2(R)/Z(a)| = 2.

Finally,

«|_ ] 2, «ais parabolic or elliptic
|O°°(a’t)//R°°| o { 1, « is hyperbolic '

Now let v = p. We want to know what elements of M(Q,) are in
Cp(a,t), where « is a non-scalar element of

R, = H “! } € My(Z,) | c = O(modp")}.

(if pt N then v =0 and R, = M(Z,,) ).
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Let
faX) = X2 —tX +1, (t € Zp),

be the minimal polynomial of «, and let v, be an order of Q,[a] in-
cluding an order Z,[a]. We put

[t : Zpla]] =p", (p20).
Since all orders of M2(Q,) are of the form

_d+Vd

P —4=dP
5 ),

Zp+p"wZ, (w

it follows that v, is uniquely determined by p.

Lemma 3.9 Let R, be an order of M2(Z,) as above, a be a non-
scalar element of R,,, and t, an order of Qpla], such that v, D Zy|a],
and [t, : Zyla]] = p°, (p > 0). For an element g € Cy(cx) the following
statements are equivalent:

(1) g€ Cpla,r);
(2) g€Zy+p°Ry, and g & Zy "‘perlRp;

(3) ifg= [ Z Z } then b = a—d = 0(mod p”), ¢ = 0(mod p”*"),
and any one of the following three conditions is satisfied:

(i) b# 0(modp*t);

(ii) ¢+ 0(modprt+l);

(iii) a — d # 0(mod pP*1).

Proof. (1) < (2):

Put g = hah™! with h € GLy(Q,). Then

g € Cpla,v) <= Qpla]nh ' Ryh =1, <= Q,[g]NR, = ht,h ™ <

<~ [Qplg] N R, : Zy[g]] = p°, since [Qp[a] Nh='R,h: Zp[aﬂ =
PP

But
[Qulg] N Ry : Zy[g]] = p* <= Zplg] = Zp + Qp[9] N P" Ry,
since all orders in Q,[g] are of the form Z, + p"wZ,, for suitable w.

This implies the equivalence of (1) and (2).
(2) <= (3): It follows from the definition of R,. m
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After this lemma we ask ourselves what elements of R, are in C) (v, t).
We see that first of all this elements have trace ¢t and determinant 1,
and so them of the form

£ kp?
c t—¢& |’
where
(i) t—2¢£ =0(mod pP);
(i) ke Z);
(144) ¢ (modpp"”’)
(1v) (t — &) —ckp? = 1.
From (iv) we have ¢ = —k™1p~" f,(£), and since (i7) and (4i7) must be

satisfied it follows that
fa(€) = 0(mod p+).
We take &k = 1 and put

g = 3 P°
¢ *pipfa(ﬁ) t—¢

€ R,

where
£ € Qa,ty) = {{ €Ly | ful€) = 0(modp* 1), t — 26 = 0(mod p”) } .
Therefore by definition we have g¢ € Cp(a,t).

Lemma 3.10 On the conditions of the previous lemma, for g € Cp(c)
we have that g € Cp(a,t) iff g is N(R,)-conjugate to g¢ for some
€ € Qa,tvp). Here

Q Ry ifv=20

0 1 . ,
] SRy ifr>0

Y= g )

the normalizer of the R, ( see [19, Lemma 6.6.2] ).

Proof. Let g is N(R),)-conjugate to g¢ for some & € (e, t,). That
is g = zgex~! for x € N(R,). The direct calculations show that g
satisfies condition (3) of the previous lemma, and so g € Cp(a, v).

b

d | € Cp(a,t), then g satisfies condition (3). Let

Suppose g = [ LCL

(i) is fulfilled. Put
b=kp’,k € L)
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Since g € Cp(a), it follows that g is similar to a and

In particular,
t=a+d, and ad —bc =1,

so that
fala) = a*—(a+d)at+ad—bc = —bc = 0(mod p** ) and t—2a = 0(mod p*).

Thus a € Q(«, vp). Moreover we see

g =u"'geu, for u-{(l] E]ER;.

Let now (i) is fulfilled. We have [ pOV : ] € N(R,). Put

-~ |0 1 0 1 71_ d cp”
g = py O g pu O - pu a .

Since ¢ = 0(mod p”), we get
epV =cep”tp TV =cp” (e € 7)).
So we have
cp™” = 0(mod p”) and cp~” # O(mod p” 1),

that is g satisfies (i). Therefore g is R, -conjugate to g4 as before, and
thus ¢ is N(R,)-conjugate to gg4.

Lastly assume condition (#7¢). We may suppose that

b= 0(modp’™') and ¢ = 0(modp”™rH1).

1 1
Letu:[o 1}ERIf.Then
wou-l— | @T¢ —a+d+b—c
g o c —c+d ’

we see that —a +d + b — ¢ # 0(mod p?*1), and so ugu~! satisfies (7).
We finish as in the previous cases. m
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1

0 } € N(Rp). Then for £ € Q(a,tp),

For v > 1, we put w = {p?,

wgew ™! = [ ;,;f —fa(ggp—ﬁ—” ] € Cp(a, ).

And so we have

_ {g¢ 1 € € Qo vp)} [/ R, v=0
Cp(OQ'C)—{ {gg,wgg’w_l \§€Q(a,tp)}//R;, v>1 }

Now we will conclude some results about R-conjugation in Q(a,t,).

Lemma 3.11 Let &,n be two elements of Q(a,tp).
(1) ge and g, are R -conjugate iff £ = n(mod p*);
2) Suppose v > 1. Then g¢¢ and wg,w™" are RX-conjugate i
3 n P
and n satisfy the following two conditions:
(i) t? —4 # 0(mod p*™1) or f,(n) # 0(mod p?PT¥+1);
(it) € =t — n(mod p?tV).

Proof. (1) Suppose ¢ = n(mod p”*™). Then for

we have ugeu™! = g,,.

Conversely assume g, = uggu_1 with u € R). We have

ge — &= { _p_pofa(f) . i?p% } = 0(mod p”),
hence
pip(gf - 5) S Rp7

so that
p gy — &) =up P(ge —u"' € R,

e, -9=| 71790 7.

*

We calculate

a b

In other hand for u = € R*
cp” d p

- IR 2 a b 0 pP d —=b|
up”? (ge=E)u l—ad_bcpu{cp” dH—P’Jfa(E) t—2£H—Cp” a }‘



V. Lukianov

_ 1 —bdp=2P f, (€) — cap” — cbp” P (t — 2£) *
~ ad — bep? * *

So we see that
p " (n—§) = 0(modp”),
and thus
¢ = n(mod p*).

(2) We will show first that g = Z Z ] € Cp(a,t) is R-conjugate
to ge for some £ € Q(a, ) iff
b # 0(modp”™) or a — d # 0(modp”™1).
The if-part was proved in the previous lemma. Assume
b=a—d=0(modp"t),
and

1 a’ v X
ugu =g (u= J & | € R}, € € Qa,ty)).

By previous lemma ¢ = 0(mod p”™) and so

T (—a¥(a—d)+a?b)/(dd — b
ge = ugu” = = [ . .

} (modp”*"),

but
—a'V (a — d) + ab = 0(mod p* 1),

and this contradicts the definition of ge.

By definition we have

—n —pV
wg,w " = t=n —p . fa(m) € Cp(a,x)

pPrtv
and so

—p~ """ fo(n) # 0(mod p”*1) or 2 —t # O(mod p*).
Equivalently:

fa(n) # 0(mod p* 1) or 2n — ¢ # 0(mod p” ),
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and since

n(t —n) = L(mod p" ),

we see that

(21 — )% = 4n* —dnt + 2 =12 — 4n(t — n) = t* — 4(mod p*2°).

Thus we see that

2n — t # 0(mod p*T1) <= t? — 4 # 0(mod p* ™),

and we have condition (i).

Condition (ii) we get by argument similar to part

(1) of the lemma. m

Now assume Q(«,t,) # 0 and let € € Q(a, tvp). Then

t?2 — 4 = (t — 26)*(mod p* 1),

and by definition of Q(a, t,) we have ¢* — 4 = 0(mod p**).

Conversely, suppose that a such that t* — 4 = 0(mod p??). If € € Z,

satisfies
fa(€) = 0(mod p**),
then
§(t — &) = 1(mod p**”) = 1(mod p**),
and

(t—26)2 =2 — 4£(t — &) = t* — 4(mod p*’) = 0(mod p**).

Thus
t —2¢ = 0(mod p°).

Therefore

Qa,tp) = { {5 €Zy| fal§) = O(modprJ,-y)}’

We also put

Ql(a,tp) _ { {§ € Zy | fa(f) = 0(m0dp2p+”+1)} , 12 4= O(modp2p+1),y >1

0,

Combining we have

2 — 4 = 0(mod p?*) }

otherwise

otherwise

b
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Proposition 3.12 Assume v > 1. Let a be a non-scalar element of
R, and fo(X) = X2 —tX + 1 the minimal polynomial of . For any
order v, of Qpla] including Z,|o] such that [v, : Zp[a]] = p?, (p > 0),
we can take as a complete set of representatives of Cp(a,v)//R) the
set

{g¢ | €€ QpP™} U {wgew™ | €€ Q' /pPTV},

where Q/p?t" (resp. Q' /pPTV) is a complete set of representatives of
Q(a, v,) mod p? (resp. ' (a,t,) modptY).

Now we can return to our case, i.e.
R, =My(Z,) if ptN,

and

R {[i Z} GMg(Zp)|c_0(modp”)} if p| N and ord,N = v.

Lemma 3.13 If R, = Ms(Z,) then ‘C’p(a,t)//R;’ =1

Proof. Since any order v, of Q,la] is a Z,-free module we can

write
v, = Z,[8] with 8 € Q,lal.
Put
B =a+ b (a,b € Qy).
Then Cy(a,t)//R) corresponds bijectively to Cy(8,t)//R, through
the correspondence g — a + bg. Since [r, : Z,y[8] | = 1 we see that

p =0, and Q(B8,t,) = Z,. Then by previous lemma we have
’C’p(am)//R;‘ = ’Cp(ﬂat)//Rm =1

Now we are left with p | N. Since N is squarefree we see that v = 1.
We will show

Lemma 3.14 Let N be squarefree. For prime number p, such that
p| N we have

2, f
e ={ o1k
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Proof. We proved that
Cpla,v)/ /Ry | = |Q/p 0]+ |Q /pt 7]
Let

tp = (t[f])p = Zp + fWZp (w= d+f

— 4 =1d).

In other hand (¢[f]), = o[p"], where n = ordpf. Since

we see that

We have
={¢€Z,| & —t&+1=0(modp* )},
the condition 2 —4 = 0(mod p*#) is fulfilled, since t>—4 = dI? = df?p?*.

g [ €€, € —t6+1=0@modp*2)}, 12— 4= 1% = 0(mod p+!)
0, otherwise

Assume p # 2. For £ € Z,, we find
€2 —t& +1 = 0(mod p* ™) «= (2¢ — t)? = I*d(mod p** )
= (26 — t)? = df*p?* (mod p* ).

If p| f then

€2 —t6E+1=0(modp**) = ¢ = %(modppﬂ).
(Note that £ € Z,, since p # 2). If p | d then

€2 —t6E+1=0(modp*t!) = ¢ = %(modppﬂ).
If pt f,p 1 d then the congruence &2 — t£ + 1 = 0(mod p**!) has

two incongruent solutions mod pf*! if (%) = 1, and no solutions if

(%) = —1. So we have

QLS

ptfi(%)=

pff?(%) -1
d

; pfﬁ( )=

/"] =

= O N =

b
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In the similar way

€2 — & + 1 = 0(mod p**?) <= (2¢ — t)* = I?d(mod p**2)
= (26 — 1) = df*p* (mod p**T2).

If pt f and d = ps, where p f s. We have that the congruence
€2 — t€ + 1 = 0(mod p?>?*2) is equivalent to the congruence

(26 —t)? = sf2p** T (mod p*T2),
but thus we see that
(2¢ = t)* = 0(mod p**1) and so (26 — )* = O(mod p* ).

The last congruence is impossible, since p{ f and p{ s. Hence ' = §.
If pt f and ptd we have that p?’*! {12d and so ' = 0.

If p | f then [2d = 0(mod p?’*2) and
t
€ —t6+1=0(modp?1?) = ¢ = i(modppﬂ).

We get
1

Q/ 1+p — { , P | f } .
/] 0, ptf
Combining together we have that for p{ N

x| —
’Cp(a7t)//Rp‘ - 0, pr, (%) ——
For p = 2 we consider two cases:

t
(i) 2| f. In this case we have that 5 € Za, since t? —4 = dI?, and f | I.

We also have that for the set 2
€2 —t€ +1=0(mod 2*’1) = (2¢ — t)? = I2d(mod 2%/ ?)
— (26 —t)? = df?2% (mod 2%13) —=
> (26 —1)? = df?*2°7 T (mod 2°17).
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If d = 1(mod 8) the last congruence have two incongruent solutions for
2¢ — t modulo 22°3, which imply only one solution & modulo 2771,

If d = 5(mod 8) then d = 1(mod4) and
(26 —1)? = f?222(2%d + 1) (mod 2°°7%) = f22°772(mod 2%/1?),

and there are two solutions for 2¢ — ¢ modulo 22713, which imply only
one solution & modulo 2°F1.

If d = 0(mod 4) there is one solution ¢ = £(mod 2°+1).

t
2
For the set ' we have that

€2 —t& +1 =0(mod 22°1?) <= (2¢ — t)? = df'?2* T2 (mod 2% T4),

and by the same arguments we have exactly the same results.

(ii) 21 f. For the set Q'
€2 —t& + 1 = 0(mod 2%7?) <= (2¢ — t)? = I?d(mod 2%°T4)
— (26 — t)? = df?2% (mod 2%,

If d = 1,5(mod 8) we have ' = (), since 22°F1  dI?.

If d = 0(mod 8) then (2£ — ¢)? = 0(mod 22/%3), and then (2¢ — t)? =
0(mod 22/+4)  that contradicts either the definition of the fundamental
discriminant or the assumption 21 f.

If d = 4(mod8) we have that d = —4(mod 16) or d = 4(mod 16).
If d = —4(mod 16), then has no solution, since —1 is not a square
mod 2214,

d
If d = 4(mod 16) we have 1= 1(mod 4), that contradicts the definition

of the fundamental discriminant.
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For the set €, if 21 f, we consider two cases: p # 0 and p = 0.

t
Let p # 0, we still have 3 € Zo, since 4 | t?2 — 4 = dI*.
€2 — & + 1 = 0(mod 2%°T) <= (2¢ — t)? = 1?d(mod 227 13)
= (26 — t)® = df?*2?°(mod 2%°13).

If d = 1(mod 8) we have two incongruent solution for 2¢ — ¢ modulo
2213 which imply two incongruent solutions ¢ modulo 2°+T.

5
If d = 5(mod 8) there is no solution, since (2) = -1

If d = 0(mod 8) we have one solution ¢ modulo 271,

If d = 4(mod 8) we have two solutions for 2 — ¢ modulo 2273, which
imply only one solution ¢ modulo 2711,

In the case of p = 0 we want to be sure that if d = 1(mod 8) we still
have two incongruent solutions & modulo 271!, Indeed

(2¢ —t)? = df?(mod 2%) <= 2¢ =t £ f(mod 2%),

t+
but Tf € Zs, since 21 f and 21 ¢, and we have the desired. ®

This finishes the proof of the Proposition 3.6.

Now we can apply the above results for a = T; and N = @) be an odd
squarefree number. So we find:

Lemma 3.15
, 1ns£;[”l”ml] Q,d qlf
5Q(t):lelh(df )mg 14 <q> atf [

where we write t? — 4 = dI? with d a fundamental discriminant
andl > 1.
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Proof. Immediately from proposition 3.6. =

We can continue the process

Zh(dfz)lnggum[f]ﬂ H Q,d qlf
1 V=4 1+<q) ats
h(df?) In e gz 2 alf

S I ()
£l Wd qlQ bt q ats
2, qlf

h(D)lHED

-2 e I ()

(D{gf?) Z'Q qlQ bt q s

Now using Dirichlet’s class number formula h(D)Inep = vVDL(1, xp),

we get
f 2, qlf
Bot)= > LLxp)s [] D
! 1+ atf
£l q|Q q
(D=df?)
1 2, qlf
= Z ;L(LXD)'H 14 D) atf
Dv>1 qlQ q
Dv*=t“—4
1 2, ¢*| D
= 2 )]l 1+<D) #1D (-
D,v>1 alQ q
Dv?=t?—4

and the theorem 3.1 follows.

Remark 3.16 Here D is a discriminant, i.e. D = 0,1(mod4). We
assume it from now on.
4 Factorization of weighted multiplicities

Here we factorize (lemma 4.1) the weighted multiplicities function as
a finite products of a local terms, defined below.
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We have
1 2, ¢*| D
_ 1 . D
D,w>1 qQ q
Dv?=n?%—4

We use now the Euler product formula for L(1, xp). Forn >3, P > Q,

define
- 2 ¢* | D
1 xo(@)) ™ /
prom = > | I (1- 11 DY o
v P 1+ a1
D,v>1 p<P q|Q q
Dv?=n2%—-4
plv=p<P
Note, that
ClID=@ |- =g |0 -4 [[p
p<P
plv
2 2
q ‘TZ*4 7bq:0 2 2 —2ordgv
< < —4 v,
{q2 (02 — 0)g~2, b, £ 0 ¢’ | (n® —4)q
Hence
1 xo(@)\ ™
Bro(n) = Z EH 1- X
Dow>1 p<P p
Dv?=n%-4
plv=p<P
2 ; q2 | (n2 _ 4)q—2m’dqv
2 _ 4 —2ordqv
XH 1+ ((n )q ) , q2 ,i, (n2 _ 4)q—20rdqv
q|Q q

where
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= { o 7T 22t

, else

)

1 ,n?=4(mod 2%) | (n?—4)27% is a discriminant
Lo (n) := ;
0 , else

and for ¢ | @

Lemma 4.1 For Q odd squarefree and P > @ we have

Beom) = 1] Bwa) (™ - T Bue ™.

p<P q1Q
ptQ
Proof.
1 1 -t
Hﬁ(p,Q)(n)'Hﬁ(q,Q)(”)ZH Zfb L — =X (n2—a)p-2+(P) L (n) | x
p<P alQ p<p \bz0” P
pIQ PR
-1
1 1
H 27 (1—X(n24)q2b(Q)) Lo (n)
g \p=01 a4

After opening the brackets, we will get the sum of terms of the form:

1 1 - 1 1 -
by <1 - EX(R2_4)p1—251 (p1)) ]Iplil (n)@ (1 - ];X("2_4)p2_2b2 (pg)) I[pgz (n) .

1 1 -t 1 1 -t
by (1 - pikX(n274)p;25k (pk)) ]IPZk (n)q}?l (1 - ax(n2—4)q;2b41 (ql)) ]Iqll’ﬂ (n) s

1 1 -1
qfqz <1 B ax(nz—@q;%ql’ (ql)> Hflfql (n)

Therefore, since P > @ we have

I 50.0 @ - [[Buo® =

p<P q|Q
ptQ
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1 1 !
Z H "y 1-— *X(n274)p—2b (p) X
b>0 p<P p p

n?=4(mod p2*)

(n?—4)2720 is

a discriminant

) , q2 | <n2 _ 4)q—20’rdqv

X n2 —4 —2ordgqv
H 1+ <()q> , q2 1, (n2 _ 4)q7207‘dqv

q|Q

D,v>1 p<P
Dv?=n%-4
plv=-p<P
, 9 . ; q2 | (n2 _ 4)q7207‘dqv
% n2 — 4)g—20rdqv / — n
g 1+ <( )qq ) ’ qQJ((nZ _4)q—2ordqu ﬂPQ( )

5 Limit periodic functions and Fourier analy-
sis
Let s > 1. For f: N—C, define the seminorm
1/s
. 1 s
[£1l, = | limsup - > 1)l € [0,00).

e 1<n<N

A function f is called s-limit periodic if for every € > 0 there is a
periodic function h with || f — k||, < €. The set D* of all s-limit periodic
functions becomes a Banach space with norm ||-||, if functions f1, fo
with ||fi — f2||, = 0 are identified. If 1< s; < s5 < oo, we have
D! D D%t D D% as sets (but they are endowed with different norms).
For all f € D', the mean value

exists. The space D? is a Hilbert space with inner product

(f,h) == M(fh),  f,heD?.
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For u € R, define e,(n) := e*™™" n € N. In D?, we have canonical
orthonormal base {ea/b}, where 1 < a < b and ged(a, b) = 1.

For all f € D!, the Fourier coefficients f(u) = M(fe_y), u € R, exist.

Lemma 5.1 For f € D', u ¢ Q, we have f(u) =

Proof. Let f € D'. For any € > 0 there is a linear combina-

tion Y ;. <y €v(n), such that Hf — Y i<p<v o] < & where v € Q.
SUs SUS 1

So|f(n) — Z1gvgvev(n>‘ < g, for all 1 <n < N. Therefore we have

f(u—hmﬁz Zey n)e_,(n)| =

N—oo
1<n<N1<v<V

b S et =i S e

1<n<N1<v<V 1<n<N1<v<V
' 1 1— eQTr'L'N('U—u) ) 1 2
=|lim — E — | < lim — E =0,
N—ooo N 1 — e2mi(v—u) N—ooo N const
1<v<V 1<o<V

and the lemma follows. =

6 Limit periodicity of weighted multiplic-
ities
In this section we will prove that the weighted multiplicities function

Bo(n) is limit periodic (prop. 6.1), and as consequence, we will obtain
the formula (17) for calculating its mean square (end of the section).
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Proposition 6.1 The functions Bg(n) € D' and
for1<s<2, lim |8g—Bpoll, =0 holds.

Write Sg(n) — Bp,o(n) = Ag)(n) + Ag) (n), where

(1) 1 y CIo
prim= o (B) e 0w

Dw>1;Dv?=n%-4 4q|Q
plv for some p>P

and

2, ¢’ | D

afw= 3 S ae(2) o L) - I (1-

Dw>1;Dv?=n?-4 q|Q q
plv=p<P

Lemma 6.2 For P > () we have

oY aPm)

2<n<zx v>P

2 1
’ <<Zv2'

Proof. Note that

INUOEIEEDY

D,w>1;Dv?=n?—4
plv for some p>P

w(Q)

—L(Lxp) (10)

where w(Q) is the number of prime divisors of @). Cauchy’s inequality

gives
1/2
2w(Q)
1 2 2
INYOIE > — S L)
D,v>1;Dv?’=n?-4 D,w>1;Dv?’=n%—4
plv for some p>P plv for some p>P
For x > 1, this gives
2 22w(Q)
1
PORISHOINES e > L)
2<n<x v>P 2<n<x

D7v21;Dv2:n274
M.Peter shows [16],[17] that the last sum is
Z L(1,xp)* ~ const - z,

2<n<x
D,le;Dv2:n274

p<P

1/2
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as £ — 00. Therefore we have the claim of the lemma. m

In order to estimate Ag) (n) we must compare L(1, xp) with a partial
product of its Euler products. This is done by comparing both terms
with a smoothed version of the Dirichlet series for L(1, xp). Let N > 1.
Then

AP () = AT () + A5 () + AT (),

where

2
PN \TV) = Z UH 1+<) 1D (L xp —Z .

D,le;Dv2:n274 q|lQ
plv=p<P

2, | D

(2,2) - 1 xp(l) —I/N
AP,J\/(n)~— Zg ] ;H 1+<D> 1D Z 7 © )
Dw>1;Dv?=n%-4 q|Q I>1:p|l for some p>P

plv=p<P

2, | D

23),\._ 1 xp() ¢ _yn ,
o= S I () e S )
D,w>1;Dv?=n?*-4 4q|Q I>1:p|l=p<P
plv=>p<P

Lemma 6.3 (Sarnak [21])

Z 1~ const - x

2<n<x
d,v>1
dv?=n2?-4

Proof. Z 1=N(z):=

2<n<zx
d,v>1
dvi=n?—4

=# {(n,v,d) In<z n?>—4=dv* nv>0,disa discriminant}
(11)
First, we notice that in counting solutions to (11) we may include
the case of d being a perfect square without altering the behavior of
N(z). So for these purposes we may think of d as being positive integer
congruent to 0 or 1(mod4).
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Let S(v) denote the number of solutions of (11) in the variables n and
d, for fixed v.

t

Nty =Y Sw) = Y Sw+ > S =N +N,.

v=1 ’L)Stl/2 tl/QS’USt

We prove first that
Ny = O(t*/F9).

To see this, let
S*(v) :==#{(nk) |0 <n<t, n®—4="ko?}

so that
Na< ) S*(w).
t1/2<v<t
Let T*(v) is the number of residue class solutions of n? = 4(mod v?).T*

is multiplicative and one easily checks that T*(v) = O(v®) for any
e >0.

For t'/2 < v,
S*(v) < T*(v).
Now
Na< ) S+ > ST =0+ Y SH).
t1/2<y<t2/3 t2/3 <<t t2/3 <v<t

The latter term is the number of solutions of
n? — kv? = 4, n<tt?<v<t (12)

or
kv? = (n —2)(n + 2), n<t,t*3 <v<t.

So we may write

v=yz with v? | (n+2), 22| (n—2),
or
v =2yz ith 2 | (n+2), 22| (n—2),
- " v | (n+2), 227 [(n-2), [

In any case, one y or z > t1/3/2. Thus the n’s which are solutions of
(12) are among those n’s satisfying

n = +2(modm?),  where 3 <m <t'/2
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Given such n and m, there are clearly at most 7(m =+ 2) solutions of
(12) in v and k. Now 7(I) = O(I¢) for any & > 0. Therefore the number
of solutions of (12) is at most

t
= > #{n<t|n=E2modm?)} =1 > {m2+0(1)}—
t1/3<m<t1/2 tl/3gmgt1/2

tl-i-E
Ve

+ O(t1/2+5) — O(t2/3+6).

So we get that Np = O(t*/31¢) as we desired.

Now we discuss the term Ny = > S(v). To calculate S(v), let S1(v)
be the number of solutions of e

n? — 4kv® =4, E>1,n<t, (13)
and Sz(v) be the number of solutions of

n? — (4k + 1)v? = 4, k>1,n<t. (14)

So that S(v) = S1(v) + S2(v). A solution (n, k,v) of (13) must have n
even, n = 2n/, and so we are looking at

()’ — kv =1, n' <t/2.

Let T3 (v) be the number of residue class solutions of (n/)* = 1(mod v2).
Clearly, for any € > 0

tTl (U) t T1 (’U)
Si(0) = oyt + 0T () = £+ 0(v7).
Let Ty(v) be the number of residue class solutions of n? = (v? +

4)(mod 4v?). Then from (14), for any ¢ > 0

S2(v) = ﬂfv(:)

+O0(Tx(v) =

Therefore,

M= Y (tTl(v) N tTy(v) +O(va)> _ ti <T1(v) N Tz(v)>+0(t1/2+5).

202 402 202 402
U§t1/2
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P.Sarnak [21] proves that

= Ty(v) 11 = To(v) 13
; 5 = o and ;Tz =T

Finally, we have

11 13 35
Ni=t|—+ = t1/2+ey — 294 $1/2+e
1=t 35) + o = Tt o),

and so 2
N(t) = Jet+ O(t?/3+¢),

proving the lemma. =

Lemma 6.4 For P> (Q and x, N > 1, we have
2

1 (2,3) 2 —1/2 1
— VAN ’ N~V + -
- E ’ PN (n)] < E I

2<n<x 1>V N:p|ll=p<P

Proof. Since |[e™* — 1] < u for 0 < u < 1, we see that for n > 2
the inner sum in Ag’i’,) (n) is

<L T glrele ¥ e X W

I>1:p|l=p<P I>VN:p|ll=p<P 1<I<V/N:p|l=p<P

1
< > 7+N—1/2 —: ¢;(P,N).
I>VN:p|ll=p<P

Cauchy’s inequality and (10) give

2

2.3) 2 2w(Q) )
Slegpef« o[ % ) amare
2<n<x 2<n<z \D,v>1;Dv2=n2—4

) 22w(Q)
<a(P,N)? Y > = > 1] <

2<n<x \ D,v>1;Dv2=n2—4 D, w>1;Dv2=n2—4

< ¢1(P,N)? > 1.
2<n<x
D,v>1;Dv?=n%-4

By using the previous lemma the result follows. m
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Lemma 6.5 ( Peter [12]) Forl,v € N and > 3, we have

< €
Y o)< OB l,

2<n<x
d>1
dv?=n?—4

where K (1) is the squarefree kernel of | and € > 0 is arbitrary.

0, j=1

Proof. Let dj:{ 1 j=2

} . Write

)

Z xa(l) = Z Z Xa(l)-

2<n<zx Jj=1d=d;(mod 4)
d>1 2<n<zx
dv?=n?—4 dv?=n®—4

Let s;(v) be the number of the solution of the congruence m? = d;v*+
4(mod 4v?), and let m;;(v),1 < i < s;(v) be all it’s solutions. Divide
the interval of the summation to intervals of the length 4v2. We get
that our expression is equal to

Z Z Z Xpiju(t) (l)a

=1 i=1 tez:
mij(v)+dv*t<a

where

mgi(v) + 403%t)% — 4 mgi(v)2 —4
Dijo(t) = (me; (v) — ) = 16@2t2+8mij(v)t+j(1}7)2 € Z[t).

Divide the interval of the summation on t to intervals of the length 41.
We get

55 (v) s (v)

2 > Xpijuu)(l)i 16@2 > (p“; )+0() =

j=1 i=1 tel: j=1 i=1 t(mod 41)
mj(v)+dvit<z

j=1 i=

2 s;(v)
,7,,(t)
16v2z .. Z p v) +52(v)) 1) =
1 t(mod 4l)
o(l

T

= 16020 e, )+

where

s(v) :=81(v) + s2(v), c(v,l) :=c1(v,1) + ca(v,1),



V. Lukianov 48

and
sj(v)

Z Z (pm(t))

i=1 t(mod 4l)

l l
Calculation shows that c¢(v,l) < ZU(U)K—(Z) < wEK(l)

2v(") < v, where v(v) is the number of distinct prime factors of v.
Therefore we have

, and s(v) <

€ €
Z Xd(l)<<m+v L

2<n<x
d>1
dv?=n?—4

as claimed in the lemma. m
Lemma 6.6 For P> (@ and x, N > 1, we have
1 (22) L e
Ez <‘A n‘<<ZlK 1/35N
<n<xz

where 7(1) is the number of positive divisors of l.

1
Proof. Let o > 5 We write

2 21D
222 = Y M oy L v X0y
P,N v 1+ () 1D l
D,w>1 qlQ q 1>1:p|l for
Dv2=n2%_4 some p>P
v<n®

1 ) _
2 Gl 1+<§) 21D [ 2 XDT()‘E =

2 1>1:p|l for
Dv2=n2-4 some p>P

:A(zzn( )+A(222)( )

A trivial estimate gives

w(Q) 1 1
2,2,2 2 XD _ _
AZ22 () < > > N =) Te N «
’ v
Dyw>1 1>1:p|l for D,v>1 1>1:p|l for
Dv?=n?*—4 some p>P Dv?=n?—4 some p>P
v>n® v>n®

1 1
log N Z ~ < logN - -— (n —4) < log N -
v
D,w>1
Dv?=n%-4
v>n

-
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. 1
Thus , since a > 5 we have

2 1
‘A‘”Q) n)‘ < (logN)*+ ) g < (log N)*.  (15)
2<n<x 2<n§xn

By Cauchy’s inequality

2w(Q) l
‘Aﬁff,’l)(n)‘ < ¥ Z XDl( ) ~UN <
’ v
D,w>1 1>1:p|l for some p>P
Duv?=n?—4
v<n®
1
20(Q) | 7
Z 2 Z Z xp (1) —I/N
2 ' ¢
v
D,w>1;Dv?2=n2—-4 D,w>1;Dv2=n2—4;v<n® \I1>1:p|l for some p>P

Thus for z > 1,

‘A221(n)‘2<< Z Z Z XDT(Z)e*l/N

2<n<x 2<n<zD,w>1;Dv2=n2—4;v<z> \I1>1:p|l for some p>P

= Z 1112 em (/N Z Z xp(hlz).

l1,l2:p;|l; 1<w<z> 2<n<z
for some p; >P D>1
Dv?=n?—-4

Applying Peter’s lemma 6.5 to the innermost sum gives the estimate

221, ]2 1 L B Ry
‘A (n)‘ < ZTT(Z) Z 2K (1) aK Z 1112 e Z v*

2<n<zx >P2 1<v<z> l1,l2>1 1<v<z>
(1) (14¢)
<Lz T .
2 IKQ)
>P?

Thus together with (15), for a = 2/3 > 1/2 we have

1 (272) 2 T(Z) 1 2 1 2
; Z ‘AP,N(TL)‘ < W—i—;(logN) +1’1/3ng .

2<n<z I>Pp2

(NI
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In order to estimate Ag}y (n) we must show that the error

I(D,N) := L(1,xp) ZXD eUN,
>1

which comes from smoothing Dirichlet series expansion of L(1, xp), is
small for large N.

Lemma 6.7 For 1/2 < oo < 1 define the rectangle
R, :={s € C| oy < Re(s) <1, [Im(s)| < log®z}.

(a) If L(s,xp) has no zeros in R, and D < x2, then for
1 2
Re(s) = s, im(s)] < 152
holds
I(D,N) < 2*N"=b;
(b) If L(s,xp) has zeros in Ry, then

#{(n’U’D) | 2< n§x7D7v Z 1an2—D’U2 :47
L(s,xp) has zeros in R} < zhte

where p = 8(1 —09)/og < 1, 09 < k < 1.
Proof. See [16, Lemma 3.6]. m

Lemma 6.8 There are 0 < K, < 1 such that for P > Q,z, N > 1
and € > 0 we have

1 2
= > |pEV | <@t N a1 log (22N))2

€T
2<n<zx

Proof. Note that a trivial estimation gives I(D, N) < log(DN).
Cauchy’s inequality, previous lemma and (10) give

22w(Q)

3 ‘A(Ql)n‘ > S = S (D, N))? | <

2<n<z 2<n<z \ D, v>1;Dv2=n2—4 D,v>1;Dv?=n2—4

< 3 (fo“*U)er 3 log?(DN) <

2<n<z;D,w>1:Dv?=n?—4 2<n<z;D,w>1:Dv?=n%—4
L(s,xp) has no zeros in R, L(s,xp) has a zero in R,
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2
<Lw (:EEN(”*I)) + 2 (log(2? N))?,

which proves the lemma. m

Now the results are collected.

Lemma 6.9 For P > (), we have

1\ (1) v
18 — Brell, < (Z 1,2) + (Z lK(U) '

v>P 1>P2

Proof. For z > 1 choose N := z!/%. Then previous lemmas show
that

2
1 2 1 z
DY ]Aﬁ%)\ S EE D DR B l§(3)+

2<n<zx I>z1/16:p|l=p<P >P2

+ x(nfl)/4+5 + £”71+E(10g 1,)2.

1 2
+;(log z)” + pl/12—¢

Since the series
Z -
l
I>1:p|l=>p<P

converges, we have for P > @ fixed

ol < 3 20

Together with Lemma 6.2 this proves the claim. m

Corollary 6.10 The functions Bg(n) € D' and for 1 < s < 2,
Jim (|8 = Brell, =0 holds.

Proof. By previous lemma we have

1 1/2 ) 1/2
1Bq — Brall, < (Z 02> n <Z lK(l)) ;

v>P I>P2

here
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as P — oo, since the series Zwlv% converges. Furthermore,

=, lK

as P — oo, since

ORE b2
2L IK(1) ~ 2 b2a <Xz Zf«”

a,b>1:a squarefree a>1 b>1

Thus Plim 8o — Broll, = 0. For f: N — C arbitrary and 1 < s < 2
we have || f||, < || ]|, by Holder’s inequality. Thus Plim 6o — Brall,
0, for all 1 < s <2 and, in particular F}im 1Bq — Broll, =0.

Since the b-th summand of 3, g) is p**™!-periodic for p  Q, 220+3-
2b+2

periodic in case p = 2, and p -periodic in case p | @, and the
series representing 3, q) is uniformly convergent, the function S, )
is uniformly limit periodic, i.e. B, o) € D*; here D" is the set of
all functions which can be approximated to an arbitrary accuracy by
periodic functions with respect to the supremum norm. Since D" is
closed under multiplication it follows from Lemma 4.1, that 8p g € D*
for all P > . This gives fg € D forall 1 <s<2. m

So we have now

Bal0) = M(Bq) i= Jim + 3" faln
1<n<N

One can prove the

Lemma 6.11 Forb e N, a € Z, ged(a,b) = 1, choose a, € Z for all
p | b such that Y a,p~°"%" = ab=!(mod 1). Then
plb

HBPQ ord b) (16)

plb

Proof. Word by word the proof of the same fact in [16, Lemma
43] =

Corollary 6.12
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Proposition 6.13

2

. 1 —— [ a
Jim o > Bem= I |1+ X ‘5(17,@) <)
2<n<N p -prime c>1 1<a<p® p
a#0(mod p)

(17)

Proof. By Parseval’s equality and by previous lemma and corollary

e - g © =% 5[5 -

<n<N b>1 1<a<b

ged(a,b)=
-1 [+ X oo (5)
p - prime c>1 1<a<p®
a#0(mod p)
Here the term 1 in a brackets is a contribution of ¢ = 0, that is

Fo ©f . =

7 Calculating the mean square of weighted
multiplicities 5g(n)

In this section we will prove

Theorem 7.1  Let Q be an odd squarefree number. Then the mean
square of weighted multiplicities function is

1 (¢° —q—1)( q+1)2
ZJEHOON Z BQ 1H AP+ —q-3) "

where C; = 1.328..., is defined in (6).

Define a functions

1 -1
Bw.aup(n) = (1 - ;X(n274)p*2b (p)) I (n),

and calculate the Fourier coefficients of the 3, g)(n) by the Fourier
coefficients of the B, g4 (n).
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— 1 —
Boa () =D 5Bwan() (18)
b0 P
In [16] was proved that for all p{ @,
Br)(0) =1 (19)

We will prove that B/(q;)(O) = 1 holds as well, for all ¢ | Q.

7.1 Calculation of the period of the 5,0 (n)

Let us calculate now the minimal period of the function defined above:

1 -1
Ba.Qu(n) = (1 - qX(n2_4)q2b(q)) I (n)

Lemma 7.2 For q | Q the minimal period of the By qp)(n) is g?t2.

Proof. a) we will find a period of a y. We will look for a minimal
k ,such that x(n + k) = x(n) for all n. That is

<W> (0= 1) ( (n? —4) % + (2nk + 4?) q2b>

q

q

and it’s true for k = ¢?*+1.

b) we will find a period of the I,»(n). We will look for a minimal &
,such that I (n + k) = I (n) for all n.
n? —4 = 0(mod ¢**) < (n+ k)* — 4 = 0(mod ¢*) <

n? — 44 2nk + k* = 0(mod ¢*°) <= 2nk + k* = 0(mod ¢**),

and it’s true for k = ¢2.
(n® —4) ¢ ** = 0(mod ¢*) <> ((n + k) - 4) ¢ % = 0(mod ¢°) —

(n2 - 4) q72b+(2nk‘ + k2) ¢~ % = 0(mod ¢?) <= (2nk + kz) ¢~ = 0(mod ¢?),

and it’s true for k = ¢?**+2.

So the minimal period of the B, ) (1) is ¢***2 that is Big..b)(n +

*"2) = Big.op(n) for all n. m
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7.2 Calculation of the Fourier coefficients m(r)
and f,,q)(r)

a

Theorem 7.3 For any prime q | Q the Fourier coefficients 6@) (—)
are: q
c=0 b=0, fuoo0) =1——2
’ ’ (¢,Q,0) qQ(q _ 1)
T 2(¢* +q+1)
c= 0, b # 0, B(q,Q,b)(O) = W
— a 2 4dma
~1
—— ,a 1 1 3
5(q,Q,b)(E) = o ((1 - q) q2€qX
c=2b+1, b#0, y e_4ﬂi%(_—a)+e4ﬂi%(g) _ 2 cos
q q q—1
where €4 = { i g=3(mod4)
——— ,a 2 dma |, ,
¢ < 2b, b#0, /B(q,Q,b)(E) = gz | e (¢*+q+1)
—— a 2 4da
Ba.q. Z—cos( )+
@eo(y) TPy p
Cc = 1, b= O7 ) ) A
+ — Z <n - ) —27min—
q n(mod q) q
—— a 2 4dma
c=2 b=0, Bueolz)= o ( 2 )

First we calculate the Bm) (0).

Remark 7.4 In all of the sums below we want to be sure that the
function B4 q.p)(n) is defined at n, that is n is a trace of some element
of To(Q). The necessary and sufficient condition for n to be a trace

of some element of To(Q) is the condition that (%) % —1 for all

q| Q. We will easily see that those n, for which ("2;4 # —1 do not

contribute to the sum. That is why we can sum over all n of the given
range without any restriction.




V. Lukianov

56

¢* |n® -4
2y

. 1 24\ ! 2,
6((1’@’0)(0):(]72,” ZQ (]__q(n p )) { (712—4)_’_1, qQJf'I’L

2 _ -1 _ n?—4\ _
Ly (1_1<n 4)) _{2, n=+2, or (‘g)_l}
q n(mod ¢) q q 1, n#+2 qln®—4
1 0t
(2 2+2- #{n(modq)|( >—1}<1—> +
q q
1 3 1!
#{n # £2(mod ¢*) | ¢ | n* —4}) = ?(2 2+QT 1—5 +2(g—1)
1 <4+ ( 3)—+2 1>
alq - q q—l)
b) b# 0,
— 1 1/ (n%—4)g2\\ "
Ba.0.(0) = ¢2o+2 Z <1 q <q x
n(mod ¢2**2)
2 ,n? =4(mod ¢*) , ¢*|(n® —4)g"*
2_4 —2b
« 1+ ((n q)q ) ,712 _ 4(m0d q2b) 7 qQJ[(TLQ _4>q—2b
0 , else

- m (2-2+2(1—;)_1#{n<modq%+2> | { (M>

# {n # £2(mod ¢**?) | { "sz:ﬁ(ﬂ%dqib) }}) -

q
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Lemma 7.5 The cardinality of the set

n? = 4(mod ¢*)
n(mod ¢2*+2) | ((n2 B 4)q—2b> . is q(q — 1),
q

and the cardinality of the set

n? = 4(mod ¢% .
{n # +2(mod ¢**+2) | { q2b+1(\ n? :]4) }} is 2 — 2.

Proof.

a) There are 2¢2 numbers n modulo ¢%°*2 such that n2—4 = 0(mod ¢**).
They are of the form kq?*, where k = +1,42,...,4¢>.So it’s need to
check how many of the k’s are squares modulo g. There are (¢ — 1)/2
squares modulo ¢, hence there are 2¢(q — 1)/2 = g(¢ — 1) numbers in
the first set.

b) The number of n # +2 modulo ¢?**2 such that n? = 4 modulo
Ptlis2¢—2. m

So

—— 1 q 2(¢* +q+1)
Ba.q.)(0) = g2o+2 (4 + 2q _ 1q(q —1)+2¢- 2) = g2 +2

From the relation (18) it follows that

2 12(¢*+q+1)
B (0 Z 5<q on(0) =1— 55—+ £ o
b>0

2 2(q2+Q+1)ZL:1— 2 +2(q2+q+1) 1

1— +
*(q—1) q?

Now we will compute the Fourier coefficients 6(q)Q)b)(ﬁ).

a)b#0,c=2b+2.
We will need a lemmas before we will start .
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Lemma 7.6 If q1a, then

2

I k —27ik %
> () me o

k=1
for q prime.

Proof. Note that

(- (=3

for [ € Z. Now we can write

q qg q—1
Z <k’) o2k Z (m + lq) o 2mi(mta) & _
q

k=1 m=1 (=0 q
5 <m> —2mim-y  _2mile (M omimy S —2mile
>3 (%) =3 () e e
m=1 [=0 q m=1 q =0
But
q—1
e—2mile _
1=0
and hence

as desired. m

Lemma 7.7 Forc=2b+2

S () e ()

n#+2(mod ¢2°1+2)
L
¢ |n?—4

Proof.

n#+2(mod ¢2°+2)
@2t %4
¢ n?—4
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atk
, -l 1\ ! . 1 1\ ! ba
6_47”% Z 9 <1 1 —27rzk(T2+ 477qu 9 (1 N ) —27r1kq—2
- q ~ q
k=1,(%)=1 k=1,(5)=1

q k=1
atk
. N\ o . TR S
—emi (12 0) % (Bt (10 1) S ey
q k=1 q q k=1
qtk qtk

1\ VS B o 1\ S i
4ri % — —2mik % 474 —2mik %
e |1 —— — Je a® e " 1—) e a
( (J> Z ( q ) ( q Z

k=1
atk atk

By the previous lemma and the fact that

k=1
atk

the expression we want to compute is equal to 0. m

Now it will be much easier to compute what we want to compute:

aan 1 1 2 _ p)g—2b\\ *
Saan() = 2 (1_<<n>q>> .

n(mod ¢2**2) 4 4

2 ;n? =4(mod ¢*) , ¢* | (n? = 4)q*
2 _ 4 —2b —omind
x4 1+ ((n s > (2 =d(mod ¢®) , ¢*f (n? —4)g~P pee T

0 , else
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n(mod ¢?**2)
n?=4(mod ¢?°)
a*H(n®~4)q~ %

1

n=2
n:72+q2b+2

_ W Z 26_27”.”% + Z

n#+2(mod ¢2°+2)
2 n? -4

e—271'mqc +

) (o (20

n#+2(mod ¢2°+2)
q2b+1fn2 _4
qu\n2—4
-1
1 . a dma . 2b—ct1
—2min-% —2mikaq
7q2b+2 E 2e a® 4+ 2cos —qc e +0
n=2 k=1
n=—24¢2b+2
by the previous lemma. Note that
q—1
o 2b—c+1
e 2mikaq —
k=1

when ¢ = 2b + 2. Therefore

s - a 1 —4mi-%
B(Q,Q,b)(ic) = — <2€ 4 q€ +

q q2b+2

1 4ra 2 4ma
———cos| — ) (4—2) = —— cos
q2b+2 ( qc ) q2b+2 < c

b) b#£0, c=2b+ 1.

a
T

q
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Lemma 7.8

q2
Y\ —orike _ 3. —a _ 1, ¢=1(mod4)
Z <Q) ‘ - (7)6(1’ where ¢ = { i, q=3(mod4) [~

k=1

Proof.

kN _onike L <m + ZQ> —2mi(m+lg) 2
— e q q
()= x

k=1 m=1

The equality holds by using of property of the Gaussian sum. The
value of the last sum is €4./q, where ¢, defined as above. For this see,
for example,[11, chapter 6]. Hence

[N

q

o

(‘;) e = () Deai = aH( ey

k=1
and we have the claim of the lemma. m
Lemma 7.9 Forc=2b+1, and ¢, defined as before

S () ()

n#+2(mod ¢?**2)
2 n?—4

¢®|n?—4

(1 1)1 2 [ —47\'1'%(_0’) + 47ri‘1r(a):| 2 <1 1>1 <47T(L>
— — — qZe e ¢ (—— e “(—)|—2q _ = COS .
q ! q q q q°

Proof.

n#+2(mod ¢2°*2)
@’ 4

¢ n?—4
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ath
g —1 -1
k 1 k . 2b—
@) (4R e
e + 1 e {c =2b+1}
— q a\q
atk
?-1 1\ !
_ 6—4771% Z 2 <1 o ) —QWzkﬂ_’_
k=1,(%)=1 1
q
-1 L .
647”7 9 (1 _ ) —2mik e _
e(F)a
N, . k
s (1) TS e (1 ()
q 2 k=1
atk
—1 -1
i a (12 1) LS e (14 (2)) -
q k=1
atk
—1 1 —1 —1
_ tmis <1 _ 1) E <k) 2wk | —dmide (1 _ 1) qz —orike
q 1 4 q k=1
qtk qtk
1\ ! °-1 k ! ®—1
dri- ( _ ) Z <> —omike | Ami% < - > Z —2rike
e e (1 e a+e e (1 e a,
q = N4 1 k=1
atk qtk

By the previous lemma and the fact that

we can write that our expression is equal to

N\ dmia  —Q dmia @ ! 4da
(1 - ) q2€, |:6_ T (—)+e ch()] —2q <1 — ) cos < ) ,
q q q q q°

proving the claim. m
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By using the same arguments as in the case a) we will get

5 (¢ 1 —omin-% o4
ﬁ(q,Q,b)(E) = W Z e~ 2minge 4 Z e 2minge |
n;é:I:Q(modqu+2)

n:22b+2
n=—2+gq 2t n?—4

n#+2(mod ¢2°+2)
@’ 4
@2t |n?—4

1

1 —2min % dma — —2mik
:q2b+2 Z 2¢7 7T + 2 cos © Ze Tt

n=2 k=1
n=-—2+q

1\ s dmia  —Q dmia @ 1\ ! 4ra
(1 — ) q2e, [e_ e (—)+e ’”qC()} —2q (1 — ) cos < ) .
q q q q q°

by using previous lemma. Note that

2b+42

SO

—— ,a 1 4dma 4dta
6(q,Q7b)(¥) = W <4 cos (qc> +2(q — 1) cos < - > +
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c)b#0,2b>c.

By doing the same steps as before we can write
Lemma 7.10 For 2b > c,

S () ()

n#+2(mod ¢2°+2)
2?4
@ n%—4

Proof.

n#+2(mod ¢2*12)
2 —4
q**|n?—4

_ -1 1\ L _ -1 !
=e M Y 2(1—) + etmiE 2(1—) =

And gathering all together we have
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q—1

5 (@ 1 —omin-% 4ra o o
B(me)(E) =2 Z 2e~ 2" 5 4 2 cos (qc) e~ 2mikag® T
=1

=

n=2
n=—2+¢20+2

n#+2(mod ¢2**2)
@+ n2—4
q2b|n274

1 4dma 4dma 4dma
=—— |4cos| — | +2(¢—1 cos(>+2q2005<)>:
g2 ( < q° ) (2=1) q° q°

1 4ma 2 4ma
— 7(]2“2 cos( - ) [4+2(qg—1)+2¢%] = pes cos( - ) (@ +q+1).

d)b=0,c=1.
As always we need two lemmas:

Lemma 7.11

Proof.
n24> orin e I q_l((m+lq)24> o o
—2min% —2mwi(m+lq) % __
€ 7 = —_— ] e q =
> (5 2 ("
n(mod ¢2) m=1 =0
q g-—1 2 q 2
m-—4 Tim< m* —4 —2mim<
S (e ey () e -
m=1 [=0 q m=1 q
n2 —4 —2ming
—q Z < ; 2min 2
n(mod q)
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Lemma 7.12

n#+2(mod ¢?)

ain®—4
1\ ! 4 24 e
() () (5
q q q
n(mod q)
Proof.
1(n2—4\\ ' [ (n®—4 i
X L (5) () e
n#+2(mod ¢?) 4 4 4
qtn?—4
2 -1 2 _ .
= 2 () () )
n(mod ¢?) 1 q 7
n#=+2(mod q)

2';(1;)1 > (<n q4> +1> e2ming

n(mod ¢?)
n#=£2(mod q)

2
n- — 4> —2min% _
e q

|z ez

n(mod ¢?) n(mod ¢?)
n#+2(mod q) n#+2(mod q)

() m ()

> (E)er oy (e
q

n(mod ¢2) q n(mod ¢?)
n==2(mod q)

-1
1 4 24 ing
= (1 — ) —2q cos <M> + Z (n ) e~y 0| =
q q ( ) q

n(mod g2
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1 4 -4 ina
= (1 — ) _2qCOS (m) + q (n ) 6727.{1”5
q q n(z N

mod g

by previous lemma, and that’s it. m

Now we can gather the results

— 1 1/n2—4\\ "'
s 5 (-E)
2

q (mod ¢2
) q2 | 7?,2 -4
2 _ L ,2ming
’ (n )‘Ll’ ¢fn?—a (107
q
1 ina ia
_ qu Z 26—277an + Z 6_27””54»
n=2 5 n#i?(modqz)
n=—2-+q q|n274
2 -1 2
X (= (=) ((5) )
n#+2(mod ¢?) q 4 q
qin?-4

1 4 4
= (4cos (wa) +2(qg—1)cos (wa) +
q q q
1 2
1 dma n®—4\ _orine
q 1—) —2cos(>+ ( >e q
(-4 )t 2

n(mod q)
2 4 1 24 ;a
= 7ﬂ COS (m>+1 Z (n > e—Qﬂ'ZTLE.
q-\q q q n(mod q) q
e)b=0,c=2.
Lemma 7.13

—omin-a 4dma
Z e " = —2cos <2> .
n#+2(mod ¢?) q
q|n?-4
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Proof. Rewrite the condition { n # +2(mod ¢?), q | n? — 4} in the
form { n=42+kq, k=1,...,¢— 1}. Thus

q—1
Z e—?ﬂ'znq—2 _ Z e—271'z(:|:2+kq)q—2 _
k=1

n#+2(mod ¢?)
qln®—4
dra 2 dma
= 2cos (2> 267277219; = —2cos (2) R
k=1
and we are done. m
Lemma 7.14
1 /n?—4\\ " 2y Comina
> (=05) (%))
n#+2(mod ¢?) d 4 d
qin®—4
Proof.
1 2 4 -t 2 4 —27min-%
> (=) (7))
n#+2(mod ¢?) q 4 q

afn®—4

1 2 — 4 - 2 4 —2min-%
- X () ()
n(mod ¢?) 9 1 9
n#+2(mod q)

n#+2(mod q)

2

— (1 _ 1>_1 Z o2 Z <n - 4) e
a q

n(mod ¢?) n(mod ¢?)
n#+2(mod q) n#+2(mod q)

The first sum in the brackets is 0, and so we need to compute an

expression
(), (e
q q

n(mod ¢?)
n#+2(mod q)
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n(mod ¢?)
— -1 2
1> &S ((m+lq) 4> —2mi(m+1q)
(1) E () s
-1 g q-1
= (]_ — 1) Z (m2 — 4> 6727rim{;% . e—27'ril% _
q m=11=0 q
-1 q 2 o q—1 )
= <1 — 1> Z (m 4) _27”'7an2 6—27ml% —
q q

since the last sum is 0. =

_ % Z 26727”'77,‘%2 + Z 6727rinq%+
d n=2 n#+2(mod ¢?)
qln®—4

() () ) |-

n#+2(mod ¢?)
gin?—4

1 dma dma 2 dma
= ?(4 COS <q2> —2 COSs <q2)+0) = qﬁCOS <q2> .

Now we can compute the @(r) Summarize the above results:

Q

S 2
c=0, b=0, 0)=1- 55—
ﬂ(qu,O)( ) 2(g—1)

a
2
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— 2(¢° +q+1)
c=0, b0, Big.0.5)(0) = T
— a 2 dra
c=2b+2,b+#0, B(q,Q,b)(E) = 4(121"*‘2 cos <qc)
—— a 1 ! 3
c=2b+1,b#£0, 5(q,Q,b)(7)=T+2 1—- g2€qx
q q q
—4mig  —Q aris O 2 (47m
X |e “(—)F+e (=) — Ccos
( q ) (q)} q—1 q°
— a 2 4ma
c<2b, b#O, Bl (=) = —z555 cos ( c ) (¢°+q+1
q q q
— a 2 4ra
c=1, b=0, Bio.0. _—cos(>+
@e0 Q) = =@ q
1 2_4 4
Z (n ) 6—27THLE
qg—1 q
n(mod q)
— a 2 dma
c=2, b=0, 5(q,Q,0)(q7) = qu cos <q2>

And the theorem is completely proved.

Now we can to compute the @(T) .

Theorem 7.15 The Fourier coefficients ﬁ/(q—;)(%) are:
—— (a 1 n?—4\ _oiine

L0xe) () =— > ( )6 o

q q—1 q
n(mod q)
5 < 2 (47m>
=—cos| —
(2,Q) alg—1) PE

a
7
—— (a 2 4dma 1
=)= —— > 2
Ba.Q) (qc) - 1COS( - ) o=y for ¢ > 2 ¢ even
;)
qC

1 1 ; _a _1 ; _a
= -1 €q (a) {647”46() + '™ | | for ¢ > 2,¢ odd
q
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Proof. By using (18) we get

a) for c=1,

() g ()-

2 dra 1 n? — 4) 9 (a>
= — —— COS _|_7 - 7TZTL + /8
(g —1) ( q > g1 2 ( q > g\ g

n(mod q) b>1

2 471'(1 ]. 712 — 4) —2mind
——5———< COS + — e a
?*(g—1) ( q ) qg—1 2 ( q

n(mod q)

1 2 4dma
e ()@ rary)

b>1

2 4dma 1 n? — 4> _omina
=—————cos| — |+ — e q
*(g—1) ( q ) q—1 2 ( q

n(mod q)

4 1
+ 2 cos <M) (@ +a+1) 55—
q a-\q

1 7124) —2mwin
= e q .,
.2, (5

n(mod q)

b) for ¢ =2,

— (a 1 —— [(a 2 4dma a
oo () = Zoan () = o (F ) ptoan () -

b>0 b1

2 dma 1 2 4
q2cos<q7;> +quq%+2ms< 7ra> (P+q+1)=

b>1 ¢
2 (47ra>+2 (471'@)( 24 11) 1 2 <47Ta)
= —cos| — cos | — | (¢°+q - = cos | — | -
q? q? q? ?@—-1) qlg—1) q?

c) for ¢ > 2,
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1 2 dma

b>§

For ¢ even we have

1 1
7(1 7 q—1
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1 2 <47ra> N 1 2 (47ra)
——7——cos | — ——-7——cos|— | =
¢ g1 q° ¢ g1 q°

1 1 | W
gz (§) [T ]
- 2

7.3 Calculating the mean square of weighted mul-
tiplicities function

In this subsection we will calculate the mean-square of the weighted
multiplicities Sg(n).

To calculate the limit

we will use (17). Let us define the function

2
: —— a
Ao = > |Brao(=) (20)
1<a<p® b
pla
So we have that
: 1 2 c
A}EHOON Z Bo(n) = H 1+ZAQ(P)
2<n<N p - prime c>1
The values of the Ag(p®) for p { @ were calculate by M.Peter [16].
They are:
2
pP—2p—1 2(p—1)
2 i A = V=
P#2,p1Q; Agp) TEEEyER Q(®°) 1)
1 1
pP=2; AQ(Q):ga AQ(4):T8’
Ao(8) =0 Ag(16) = ——
@ @Y T 916
A Ag(2¢ 1
Q(Sz)zo’ Q(2 ): 9.220_57626~

We just need to complete his work by adding the case ¢ | Q.
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2

- Qa 1 TL2*4 —2min&
Aola)= D BuaQ)| = 2 |-=3 > (=)™
1<a<gq q 1<a<q q n(mod q) q
qta ata

1 n%_4 n%_4 27i(n1—ng)2
Y X (M) (e o

1<a<q ni,n2(mod q)
qla

1

1 ’I’L% — 4> (’I’L% _ 4> < 2mi(n1—ng) %
= E E e qa.
(q—1) ( q q

n1,n2(mod q) a=1

The sum
q—1
omi(m—na)e | ¢—1, my=ny=mn(modgq)
e a =
-1, else
a=1
Note that
Z (’I’L2 — 4) q — 3 q — 1 N 1
T2 2 T 7
n(mod q) q
hence
1 n? —4\>
Aq(q) = q—1 < ) —~
2 (¢—1)? @=1 2 q

n(mod q)

22, ) )

n1(mod q) na#n1 (mod q)

o (evemn- {8 () () - (4

n1(modq) \nz(modq)

:(qjl)z (-D@-2)-[(1- Y )(n%_4)2 )

n1(mod ¢
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_ 1 9 _ @ —-2¢-1
b) ¢ = 2;
9 —a |’ 2 ara\ |?
AQ(q ) = Z B(Q,Q)(?) = Z (q — 1) COS q2 =
1<a<q® 1<a<q®
qta qta

cl) ¢ > 2, c even;

2
c — a 2 4ma 1
AQ(q ) = Z ﬁ(q,Q)(T) = Z 1 COS < c ) 3c—4 =
1<azq® 4 1<azqe 1 T/ a
qta qfa

()
(o)) qc =




V. Lukianov 76

2¢°" (¢ —1) 2

g -1 (g 1)

c2) ¢ > 2, ¢ odd;

c — Qa
A0(¢) = D> Baa ()| =
1<a<q” q
qfa

1 1 —4mi% -1 42 —4mi% -1 4%
- €q |e7 I (=) et | gy eI (=) 4 T
(q _ 1)2 q3('—4 Z 4q [ q ] [ q
1<a<q”
qta
1 1 ( (—1) Qi _8ria
— - 2_|_ - |:€ 7”qc+e 71'2ch| _
(=12 g% S;qc q
qfa
2¢°'(g - 1) 2

g -1 ¢ (g 1)

And we can see that for ¢ > 2, Ag(q®) does not depend on parity of c.
Now we have by [16]

2
. _p=2p-1 c _M
P#2,01Q; Ag(p) = (P2 —1)2 Aq(p) = (p? — 1)2p2e—3
—2 Ag(2) = 1 Ag) =
p=2 CASVA AT X
Ao(8) =0 Ag(16) = ——
Q= G T 916
Ao(32) = 0 Ag(2) = —2— ¢>6
Q =0, Q T 9.9205¢="

and what we have find, for ¢ | Q,

_q2—2q—1

AQ(‘]) W,

Ag(g?) = Pk Ag(q°) =
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Now we can calculate

B h  gen= I (1400 ] -
2<71<N p - prime c>1
1 1
= 1—’—g)—i_7—~_ +Z 22c5
@ —2¢—1 p 2 )
xH(l—l— + +Z X
—1)2 1 2c=3(g — 1
da (¢—1) a(q—1) S 3e—1)
p—1 2(p—1)
<IT(1 D Dl R e
s 1) S 0 =1)%
rQ
_ 1015 1 2q(¢® — g — 1) Hp (p® +p -p—3)
864 o (g+1)(q 1)2 2(p+1)
That is
. 1 1015 2q(¢> —q—1) p?(p® +p?—p— 3)
NN > ~ 864 H(q+1 2H p—l (p+1)
2<n<N adQ p£2
piQ
_ 105 rp 20(¢? —q—1) (¢*—1D*(g+1) Hp P’ +p*P—p-3) _
864 )(g—1 —q— —12%(p+1
gg @t De-12¢ (@ +¢* —q=3) 5 (P -1 +1)
_ 101577 2(g+1)*(¢> —g— 1) pr+p —p—3)
864 (> +q¢*>—q—3) (P2 —1)2(p+1)

q|Q

2(¢> —q—1)(q+

p#£2

1)2

2(¢> —q—1)(g+1)?

II

q|Q

9@ +q>—q-3)

b

1.328...=C4 H

WP +q¢*—q—3)

proving the result pointed out at the beglnmng of this part.
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Part 111
Central Limit Theorem for
the spectrum of the Laplacian

8 The Selberg Trace Formula for I'y(Q)

Let g € C§5(R) be a smooth even function with compact support, and
let

oo

h(r) = /g(u)ei"'“du

— 00

so that

oo

g(u) = %/h(r)e‘"“dr.

— 00

Then the Selberg Trace Formula for I'o(Q) is the identity

> h(rj) =

Jj=0
= {central term (identity contribution)}+
{hyperbolic contribution} + {elliptic contribution}+

{parabolic and continuous spectrum contribution}.

For @) squarefree, the terms are:

1. The central term is

%ﬂvﬂ)/h(ﬂrtanh(ﬂr}dr.

2. The hyperbolic term can be written as

In MV(To)
) =2> Bot)g(InN(T)).
DZQ{T} h%rbolzc'/v( )2 = N(T)~ 1729 t>22
|trT|=t

3. The elliptic term is

1 T o—20(E)r
h(r)dr.
2 1M sin 0(E) / T ez

{E} elliptic oo
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Here 6(F) is the unique angle 8 € (0,7), such that F is SLs(R) -
cosf —sind
sind  cos6
trE = 2cosf. Also Mg = |ZFO(Q)(E)’ = {2,3} is the order of the
centralizer of E in T'y(Q).

conjugate to { } . It is clear that O(E) = {Z, Z}, since

273

4. The contribution of the parabolic terms and continuous spectrum
is (see[9])

17 r 1o 1
w(Q) | _ = - e A . _
2 9(0)In2 2W/h(r)<r(1+zr) 5 @(2—#21")) dr

— 2@ g(0)InQ — ZZ g(2lnn).

p|lQn=p"

Here 2¢(9) is the number of inequivalent cusps of T'y(Q) for Q square-

oo, A = { P 120 ] ) = M A(9) = 7T,

9 Applying the Selberg Trace Formula for
the Counting Function

Let us set
h(r) = f(L(r — 7)) + f(L(—r — 7)),

where f is even function, such that f € C§5(R).

Lemma 9.1 In above conditions on f and g, it follows that

o0 = 5 (5r7) (7 + 7).

Proof. We have

(oo} oo

g(u) = % / h(r)e*irudr = % [f(L(r— 7))+ f(L(=r — 7))] e~ dr

— 00 — 00

/f T—T —Wud,r_"_i/f T—T —irud,r.

Put in the second integral p = —r and get

1
27T/f r—r) ""dr—l—g/f “’“dp
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= % / F(L(r —1)(e"™ + e~ ™) dr.

Write L(r — 7) = t, we obtain

17 et b ] dt
g(u) _ /f(t) |:ezu(L+‘r) +ezu(L+‘r):| f

o
= Lo [pwemimtra s Lo [ e
2L 2L

Since f is an even function we can write

1

= — (e T f(t 2™ .
2nL ( ) ®)

— o0

g(u)

And finally

proving the lemma. m

Now we can rewrite Ny by the new terms:

Ny(r) =Y hlrj) = Y [f(Llrj =) + f(L(=rj = 7))]

j>0 §>0
_ %FW\H) / (LG — 7))+ F(L(—r — 7))] r tanh(xr)dr
1 >(IN@) [ iran) it
+227rLt>ZfQ(t)f( 5] ) (e N @) 4 g=irl ())
1 ® o—20(E)r
’ {E} ih‘%liptic 4Mp sin Q(E)_Zo 14 e—27r [F(L(r = 7)) + F(L(=r —7))] dr

—2°@g(0)(In2 + Q) — 22 @3N @g@ Inn)

p|lQn=p"

2

,Qw(Q)i/ {f(L(r7—))+f(L(7‘T))}{1;/(1+i7‘);S;I(;Jrﬁ)}dr.

Now we will try to estimate the contribution of each term above.
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9.1 The Identity Term Contribution

Here we estimate the identity term, in particular we will prove
Lemma 9.2 As 7 — oo we have

w / F(L(r — 7)) + f(L(=r — 7))] r tanh(xr)dr

— 00

_ 2%7”01(;\11{) / f(@)dz + O(re),

Proof. Since f is an even function we get

oo

/ [f(L(r = 7)) + f(L(—r — 7))] r tanh(zr)dr

— 00

:2/f(L(?"fT))rtanh(7rr)dT: l z=L(r—r1) r=Lr

dx = Ldr
L
—Z/f )tah( Tt 7-)ala:
L
2 7 x4+ Lt 7 r+ Lt
- i dx.
I /f(x)xtanh(w T Ydx + 7 /f ) tanh (7 7 )
Now we can write
L 2
tanh(7rglj i 7-) =1l-——%—,
e271'(z+7‘) +1
and so the contribution of the identity term is
2 2 4
/f x_i wa/f Vo— T ﬂi@dm.
27T(L+T) +1 L L e27r(z+7') +1

The first integral is equal to 0, since = f(x) is an odd continuous func-
tion. The second and the fourth integrals are correspondingly O(e=277)
and O(7e™2™) as 7 — oo.
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Finally we have

w / [f(L(r — 7)) + f(L(=7 — 7))] r tanh(zr)dr

— 00

= 2%700“41;\]}]1) /f(a?)dx +O(1e™?™),

as 7 — o0, proving the claim of the lemma. m

9.2 The Elliptic Terms Contribution

Now we estimate the contribution of the elliptic terms. We consider
two cases, namely 0(E) = g and 6(F) = g

Lemma 9.3 As 7 — oo the elliptic terms contribution is

o—20(E)r
2 AM g Silng(E) / 1+ e-2mr [f(L(r = 7)) + f(L(=r —7))]dr

{E} is elliptic

— 00

Proof.

a) Let (F) = g, then the integral within the sum is

o

/ T F(L— 1) + [ — )] dr

14+ 6727”'

o0

/f r—1T) 1+ dr—l—/f —r—7) 1er 27Wdr

ZQ/f(L(T_T))%dr: [ z=Llr—7) r=T7+r

I+e dx = Ldr
N I
B P Y R
L_oo 1 _~_672W(Z+T) LiA 1_'_6727r(f+‘r)

since the function f has a compact support. By changing variables in
the last integral, namely by setting

t = e""(%‘“’)
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we get
A 677((77%)
2 2 dt
- dr = .
L / T / 1+ 2
T ()

The last integral is positive and equal to

— (arctan e_ﬂ(T_%) — arctan e—ﬂ(~r+%))

™
<2 (=) - mnrr )
T
2 P = 4 A -
= ;6_7”— (eAT - e_AT) = e T smh% = O(eL )s
as T — 00

b) Consider now the case of §(F) = %, and transform the integral
within the sum

o0

[ 5 U = )+ = )

- R
:/f(L(r—T d?“—l—/f —r—7) 1—|—e 27”,d

By changing r with —r in the second integral we will get

7 . o= 3mr p2mr .
/f( (T o T)) 1 +e—27r'r' + 1+ e2nr r

T e"5mr e5mT x=L(r ) T m+
= — T = — T
_ dr —
/f r T))<]_+6 27rr+1+e 27‘!’7‘) r= [ dr = Ldr L

/f 6 %w(%+7) +67%ﬂ(%+‘r)d 1 /146§7T(E+T) +€7%ﬂ'(%+7‘)
= X

1 + B_QW(%+T) L_A 1 4 B_QW(%+T)

dx,

since f compactly supported. Changing variables by substituting
t=e 3L+
we obtain

o= 3T+ 4) -2

3 / t+t21dt_3 / dt
o 1+t 2x 12 —t41

o 2n(r—4) e 3T+
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Thus we see that the elliptic terms contribution is O( e‘z” ), as desired.

9.3 Contribution of the Parabolic Terms and of the
Continuous Spectrum.

In this subsection we will prove the

Theorem 9.4 Contribution of the parabolic terms and of the contin-
uous spectrum is

o (B

as T — oo.
L >7

We start from the estimation of the integral

oo

/ h(r)r%(l + dr)dr.

We will prove the following lemma:

Lemma 9.5 As 7 — oo we have

_7h<r>§<1+ir>drzo(w;ﬂ).
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Proof. We will use here a certain form of Stirling’s formula. By [1,
358-360] for s being not on the negative real axis there is an absolute
constant A, such that

To— 1
InT(s) = (51> lnss+A/x[x]+2dz.
2 T+s
0

Integrating by parts the integral here we obtain

730 _x[j—]: %dx = 7%(1&

where

and, in fact,

By the mean-value theorem we get

Oox—[x]—l—% T 1
———=fdx = ——duz, f < =
/ prai. x M/(m+s)2 x, for some |m_2

0 0

Thus, one can conclude that

v / 1 1
?(s) = (InT(s)) =Ilns— % +0 <2> .

|s]

Rewrite now the source integral as follows:

o0

fh(r)l;/(l—i—ir)dr - /h(r) [ln(l +ir) — ﬁ +0 (lezﬂ dr,

— 00 — 00
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and consider each term independently. Designate this terms Iy, I, I3
correspondingly.

o0 oo

L= /h(r) In(1 + ér)dr = / (f(L(r—=7)) 4+ f(L(=r — 7)) In(1 + ér)dr

o0

/f r—r) ln1+zrdr+/f —r — 7)) In(1 + ir)dr

o0

_ /f(L(r — ) In(1+ ir)dr + /f(L(r — ) In(1 — ir)dr

o 1

= /f(L(r — 7)) In(1 +7?)dr =

= i_/oof(x)ln {1 +(7 +T)2} dzx =0 (hl(lL”)) , 88 T — 00.

The last equality we obtain, for example, after integration by parts
and estimation of the each term.

L= /h 1+zrd B /f L 1+fi(7*[5(_r—T))dT
/fﬁﬁﬁf Ik =

[ fEr=7) x=L(r—r)
/f r=r) 1—|— d / 1+ 72 dr ldr:ll;dm

M T o M e )

And thus
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Finally,
L=0 /1hir /f (r—r 1+J;g (_T_T))dr
B f(L f(L(=r—71) f(L(r—7)
=0 / 1+2 d+/ 1+7r2 / 1+7r2

exactly as in the previous case.
Now one can see that we proved the lemma. =

For the following estimation of the parabolic terms and continuous
spectrum contribution, note that after certain number of steps, one
obtain

oo

1
/h % —+ir)d 27T/h —|—m“ Ydr— 22—)g (2Ilnn)—Inmg(0).

By the same argument as in the lemma we conclude that

]oh( )FFI(; +ir)dr =0 <1n(1;—7)) , a8 T — 00.

— 00

and the sum in the right-hand side is finite, since g has a compact
support. Thus

/h —Hr)d —O<ln(1L+T)),asr—>oo.

Since the non-integral part of the parabolic terms and continuous spec-
trum contribution is a constant for the fixed () we have the desired
claim of the theorem.

9.4 Estimation of the counting function

Applying the above estimations we obtain

vol (T'\H) 7 T In(1 +7)
Nf(T)_2T /f(x)dccz = S¢(1)+0 <L) ,as T — 00,
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where Sy is the hyperbolic terms contribution, that is

_ 2725 <1I1N( )) (eiTlnN(t) +€—iTlnN(t)) ) (21)

10 The mean and variance of Sy

10.1 The expected value of S;

To calculate the mean value of Sy we consider a following averaging
operator. Choose an even weight function w > 0, with

oo

/w(x)dx =1,

— 00

and @ compactly supported, and define an operator:

= }7F(T>w<7

For example, (Ny(7)), is the expectation of that all of N (7T'7) eigen-
values are in the "window" of the length T'.

Lemma 10.1 The mean value of S¢(7) is zero, for T >> 1.

Proof. By the above definition

(8 = / Lol F(M

ICe
In NV (t) T T it In N (t) —iT In N (t)
=7 27rLZﬂQ ( ol )/w(T) (e +e )dr

ei‘rln/\f t) _|_677L'rlnN(t)) w(%)dT

oo

- () [ (et i)
o g ()2 ().

Since @ has a compact support, it follows that

(S5 (1)) =0,

for T sufficiently large. m
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10.2 The variance of 5;

Proposition 10.2 If L = o(InT), then for sufficiently large T

<SJ2”(T)>T = 0%7
2 \° In N (n)
2 _of 2 22 ( ——=2).
L (27TL) ;BQ(H)JE ( 2nL )
Proof. Handle <S’J% (’7’)>T by the following way:

i =1 [ (52) 3 satmsem (M) 7 ()

m,n>2

where

« (eiTlllN(m) +e—i7’lnN(m)) (eiTlllN(n) _|_e—i7'lnN(n)) W(%)dT

_ (;L)z >~ Bo(m)Bo(n)f (1n;\7fr(£n)) d (m‘ﬁn)) "

m,n>2
s . . , d
% / (ez‘rln./\f(m) _’_efzrlnN(m)) (ez‘rln./\/(n) _'_eszInN(n)) w(%)%
2
(2 ~(InN(m)\ =~/ InN(n)
- <27rL> 2. ﬁQ(m)ﬁQ(")f( orL )f( ol )~
m,n>2
[T
X Z w ((51 In N (m) + €2 ln./\/(n))> .
2r
e1,e0==%1
Consider two cases: €1 = g5 and €1 = —es.

8) Let &1 = &3 , then
o (;(gl A (m) + 5 ln/\/(n))> —5 ((ln/\/'(m) + lnN(n))) ,

vanishes, since @ has compact support.

b) Let €1 = —ea.
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(i) Let first m # n. We will show that these term do not contribute to
the sum. To do this we estimate the difference

In AN (m) — InN(n)|.
Remember that

2
N(n) = <|n|+\/2n 4> ’

and thus

2
n|+\/n2—4> _2ln<|n|+\/n2—4>
2 B 2

4 4
L+ y1-— L+ 1=

5 =2In|n|+21In 5

InN(n)=1n (

=2In|n|
For n > 2 we have |n| = n, and using Taylor’s expansion we obtain
1
InN(n)=2lnn+ O )
Thus for m > n we have
1
InN(m) —InN(n) = 2l 40 <2) .
n n

Since 41 1 1 1
In m > In i

n n >>ﬁ_ﬁ>>/\f(n)7

we conclude that for any m #n

[In A (m) — In A (n)] > max {@ N(lm)} . (22)

To get a non-zero contribution to the sum we need
InN(m),InN(n) < Lor In(N(m)N(n)) < L, (23)
Sincef has compact support, and
In (N(m)N(n)) > InT, (24)

by (22) and since & has compact support. The estimations (24), (23)
contradict L = o(InT'), and thus the terms, for which m # n do not
contribute.
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(ii) We stay with the case m = n.

CHOIE (;L)Q;ﬁzm)fz (B) ¥ so

g1=—eo=%1
2 1
—2(52) SamP (M) =t

proving the proposition. m

10.3 The asymptotics of o,
We can evaluate the asymptotics of o7, as L — oo, using the formula

.1 (¢® —q—1(¢g+1)°
lim — E BQ C’H =:! KQ,
N—oo N, o o 9@ +q¢*>—q—3)

which proved earlier. (Here C; = k1 = 1.328... was analytically calcu-
lated by Manfred Peter.)

Using the partial summation formula for o7 one obtains
2 \? T 4K 7
02 ~o? =2 <27TL> RQWL/F(u)e”L“du = Tl? J?Q(u)e”L“du.
0

Define the "spectral radius" p of f by
pi=sup{|¢| : F(&) # 0},

Then the sum (21) contains only terms with In NV (¢) < 2wpL. From
(25) it follows now, that as L — oo

wpL/2

>
gr, I

11 Background from Diophantine approx-
imation theory
In order to compute higher moments, we need to recall some basic facts

about Diophantine approximation, specifically the basic machinery of
heights and Liouville’s theorem.



V. Lukianov 92

Let K be a finite extension of Q. Denote by Mg the set of all
proper absolute values on K. The height of a number x € K is defined

Hi(z):= [] max{1 ||z} (26)
vEMK

If f(T) = asT?+ ag—1T " + ... + 1T + ap € Z[T) is the minimal
polynomial of @ € K, that is a; coprime integers, ag > 0, f(a) = 0,
then one has (see [14]?)

d
Hi(a) := adH max{1, |o;l}, (27)

J=1

where || is the complex absolute value, and aj, as, ..., aq are the dis-
tinct Galois conjugates of a.
We define the height of the above polynomial f to be

H(f) == max{la;] : 0 < j < dJ,

and the length of f to be

d

L(f)=L(a) =Y _|a;]. (28)

Jj=0

It is clear that
L(a) < (d+1)H(f).

Here we recall some basic properties of heights.

1. If z # 0, then
HK(Z‘) = HK(:Eil).

Indeed, since for = # 0 we have [ [, ¢, llz][, = 1 and Hx_1||v = H.’L‘H;l
we obtain
1= 11 l=ll,="TI Il TI Il =
vEMp vilz|[,>1 vi|z|l, <1
1
= H Izl ]___[ W7
villa][,>1 viflz =], >1 ©
and thus
_ _ -1y _ -1
He(@) = [ l=l,= TI l=7', = Hx(a™).
v:lz|,>1 vz, >1

3The definitions in [14] quite more general. For our purposes we need no generalization.
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2. For any z,y € K

Hg(zy) < Hx (z)Hk (y).

This is a straightforward conclusion from the definitions of height and
absolute value.

3. If L D K is a finite extension of K of index [L : K], then
Hi(z) = Hg ()],

The proof one can find in [14, page 51].

From the third property we see that the height defined above depends
on a field extension. Define the absolute height of x by taking any
number field K containing = and setting

1

H(z) := Hg (z) K0 (29)

which is well defined.

Example 11.1 We compute the height of N'(n) = 5

Taking K = Q(N(n)) and noting that N'(n) is an algebraic integer
we get [|[N(n)l, <1 for all non-archimedean absolute value v on K.
Since the Galois conjugate of N'(n) is N'(n)~! we have

2
n—|—\/n2—4)

[N

H(N(n)) = Hx(N(n))? = (max{1,N(n)} - max{1,N'(n)~})

4. If f € Z|T] is the minimal polynomial of « of degree d, then
H(f) <29 H(a)".

For proof we recall that the coefficients of f(z) = aq(x — a1)(z — ag) -
.- (x — ayg) is the symmetric functions of a1, aw, ..., ag up to the factor

1
2

=N(n)>.
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aq, and that the maximum of the number of factors in such a functions

1S
2%
d =2k
()

2k — 1
=2k—1
( h ) d— 2k

Since
2k _ (k+1)-...-(2k) <9k <2d_17
k k! -~
and
2k —1 :(k—l—l)-...~(2k—1)<2,€_1<2d_1
k (k—1)! - -
we have

H(f) <29 'Hg(a) =27 H(a)™
Finally, we recall Liouville’s theorem on the approximation of algebraic

integers by rationals.

Theorem 11.2 (Liouville) Let « be a real algebraic number of degree

d. Then for any rational b # o we have
q

a—p’>

q

1 1
(L+a)®T-dL(a) ¢V

where L(a) defined as in (28).
12 Higher moments

In this section we will show that S¢(7) has a Gaussian distribution:

Theorem 12.1 For K > 3 the K-th moment of Sy/or converges to
that of a normal Gaussian provided that T, L — oo, such that L =
o(InT):

B e
<<SJ‘(T)>K> _ W+O(0L ), K =2k is even
gy, )
’ O(op,7*9), K is odd

for any e > 0.
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By (21) the K-th moment of Sy is given by

s = (52) X Toae7 (M) o)

ny,n2,...,ngj=1
A S
x Z o Zm‘ In N (n;)
ni= Jj=1
We will show that for 7' >> 1 the only contribution to (30) is for terms
satisfying:

K
> i N (ny) =

j=1
To do this we need a following lemma:

Lemma 12.2 Suppose that

K
> n N (ng) #0
j=1
Then
_gK-1
Zn] InN(n;)| > C(K HN nj) ,
Jj=1
where 1
C(K) = .
( ) (5/2)2K—1 . 22K+k—1(2K + 1)
Proof. Let
K
a=[[Nm)"
j=1

1
Ifla—1| < 3 then

K
an InN(n;)| =|lnal > |a—1|.

j=1
By Liouville’s theorem (11.2) for P — 1 we have
q

1

—1|>
o= 1= T e Taz ()
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where d is degree of @ and L(«) defined in preliminaries. Since « lies
in the compositum of the quadratic fields Q(N(n;)) we have

d <2
. 1 .
Assuming that |ao — 1| < 3 and using the facts

L(a) < (d+ D H(f) and H(f) < 2% H(a)"

we obtain
a1/ : (31
a— .
~(5/2)25 1. 2K (2K 1) - 225 -1 H ()2"
Estimate now the absolute height of a:
K K
H(a) < [[H W(ny)™) = [TH (N(ny)),
j=1 j=1
and using the example (11.1) we find that
K 1
H(a) < HN(nj)§.
j=1
By substituting this into (31) we derive
_oK-1
K 1 K
i N (nj)| > = - N(n;) 7
j_; J ) (5/2)2K 1. 22K+k 1(2K + 1) Jl;[l J

as desired. m

To contribute to (30) it must be satisfied

S 1
an InN(nj)| < =,
; T
j=1
since w has compact support. By the above lemma
_ok-1

> nimNmy)| >k | [[N(n) ;

j=1 j=1
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which implies
_gK-1
1 K
T >K HN(TLJ)

j=1
Taking logarithm and using In N (n;) < L we obtain
InT < K251 4+ Ok (1),

which contradicts the assumption L = o(InT).

So, we stay only with the terms, such that

K
an InN(n;) =0,

j=1

that is

(SK(r), = (2 “ Z 3 ﬁﬁ () F (2N ()
! £ 2L 117 2L
Nn1,M2,..., UK nj==+1: j=1
Ef(:ﬂj ln.’\/’(nj)=0
(32)
We start to handle the sum (32) from understanding the relation

K
an InN(n;) =0.

Jj=1

Rewrite this condition in the form
K
[[Vm)» =1,
j=1

and partition the set {1,2,..., K} into disjoint union of the sets S,
that is

(1,2,... K} =1IS;.
J

such that

[TV @)™ =1. (33)

iGSj
We assume here that for any proper subset S of S;

i€S
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Under this condition it is possible to prove that all the numbers N'(n;),
i € S; lie in the same real quadratic field Q(4/d;).

Consider now two cases:

(i) In the sum (32) there is at least one index j, such that n; # n, for
any ¢ # j. We call this case an off-diagonal case. In this case there is
at least one subset .S;, which contains at least 3 elements. Then the
number 7 of subsets must satisfy

K-1
K>2(r—1)+3, thatis r < .

For each subset S; we denote by d; the square-free kernel of n? — 4,
i € S; and write
n}—4=d;f},i€S;

Let £(d;) be the fundamental unit of the quadratic field Q(,/d;). We
can write thus

N(nz) = E(dj)2k1", 1€ Sj.
We saw before that In NV'(n;) < L, which implies

From (33) we have

> miki =Y +ki =0,

i€S; €S

and thus for In N (n;) < L there are at most O <(L/ Ine(d ))'S il= 1)

solutions of (33) for each subset S;. Taking to account that we have
a non-zero contribution for In A (n;) < 2wpL, where p is the spectral
radius of f, and using fgo(n;) < In*(n;) and 2Inn; ~ In N'(n;) < L
we obtain that the off-diagonal contribution to the sum is

In N (n; L 1S;]—1
ST ("5 <21 % (iiay)
j=1ieS; Jj=le(d;)<emLr

< LF (# {d is the fundamental discriminant | e(d) < e“LP})T ,
where r < (k- 1)/2.
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Using Sarnak’s lemma (6.3) we have
# {d is the fundamental discriminant |e(d) < ™} < €™,

and thus we obtain that the contribution of the off-diagonal terms is

bounded by
LKeﬂLpr < LKeﬂLp%

e‘n’Lp/Z

Since o1, ><K
O(oE=179), for any > 0.

, it follows that the off-diagonal contribution is

(ii) Consider now the diagonal terms contribution, that is the case in
which all of S; consist of two elements, i.e. K = 2k. We can write
S;={j,k+ ]} for j =1,..., k, for example. We may assume now that

there is the same number of "+" signs and "-" signs, and thus there
are (Qk]f) such choices of signs. Take for convenience the first k signs to
be "+" and the last k to be "-". It follows that we have to evaluate
the sum

2k
2 In N (n;)
(%L) Z Hﬁ@nﬂ ( omL )
1 N(nj)= J k+1 (7".7)‘7 1
There are k! ways to build the correspondence between the first k

numbers and the last & numbers, such as n; = ngy;. For each such
correspondence we obtain the term

k
2 ZB mANm\) _ (o3\"
oL Q\ 2L 2 )
For the overlapping of such a correspondences we calculated the con-

tribution in the off-diagonal case. Thus the total contribution of the
diagonal terms is

for any € > 0, proving the theorem.
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