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ABSTRACT

The Distribution of Lattice Points in Elliptic Annuli

by
Igor Wigman

Advisor: Zeév Rudnick

We study the distribution of the number of lattice points lying in thin elliptical

annuli. It has been conjectured by Bleher and Lebowitz that, if the width of the

annuli tend to zero while their area tends to infinity, then the value distribution of

this number, normalized to have zero mean and unit variance, is standard Gaussian.

This has been proved by Hughes and Rudnick for circular annuli whose width shrink

to zero sufficiently slowly.

Our work consists of two main parts. In the first part, we consider the 1-parameter

family of for ellipses, whose axes lie on the coordinate axes. We prove the conjecture

for a ”generic” class of ellipses, whose aspect ratio is transcendental and Diophantine

in a strong sense, also assuming the width shrinks slowly to zero.

In the second part, we generalize this result, establishing the central limit theorem

for a ”generic” ellipse within the 2-parameter family of all the ellipses. One of the

obstacles of applying the technique of Hughes-Rudnick in this case, is the existence

of so-called close pairs of lattice points. In order to overcome this difficulty, we

bound the rate of occurence of this phenomenon by extending some of the work of

Eskin-Margulis-Mozes on the quantitative Openheim conjecture. In the case of a



rectangular lattice, it is easy to bound, using properties of the divisor function.
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CHAPTER I

Introduction

Let B be an open convex domain in the plane containing the origin, with a

smooth boundary, and which is strictly convex (the curvature of the boundary never

vanishes). Let

NB(t) := #Z2 ∩ tB,

be the number of integral points in the t-dilate of B. As is well-known, as t → ∞,

NB(t) is approximated by the area of tB, that is

(1.1) NB(t) ∼ At2,

where A is the area of B.

A classical problem is to bound the size of the remainder

∆B(t) := NB(t)− At2.

A simple geometric argument gives

(1.2) ∆B(t) = O(t),

that is a bound in terms of the length of the boundary. It is known that ∆B is much

smaller than the classical bound, as Sierpinski [22] proved

∆B(t) = O(t2/3).

1



2

Since then, the exponent 2/3 in the last estimate has been improved due to the works

by many different researchers (see [14]). It is conjectured that one could replace the

exponent by 1/2 + ε for every ε > 0.

A different problem is to study the value distribution of the normalized error term,

namely, of

FB(t) :=
∆B(t)√

t
=

NB(t)− At2√
t

.

Heath-Brown [12] treats this problem for B = B(0, 1), the unit circle, and shows

that there exists a probability density p(x), such that for every bounded continuous

function g(x),

lim
T→∞

1

T

T∫

0

g(FB(0,1)(t))dt =

∞∫

−∞

g(x)p(x)dx.

Somewhat surprisingly, the p(t) is not a Gaussian: it decays as x → ∞ roughly as

exp(−x4), and it can be extended to an entire function on a complex plane. Bleher [4]

establishes an analogue to Heath-Brown’s theorem for general ovals.

Motivated in parts by questions coming from mathematical physics, we will con-

centrate on counting lattice points on annuli, namely, integer points in

(t + ρ)B \ tB,

that is, we study the remainder term of

NB(t, ρ) := NB(t + ρ)−NB(t),

where ρ = ρ(t) is the width of annulus, depending on the inner radius t. The

”expected” number of points is the area A(2tρ + ρ2) of the annulus. Thus the

corresponding normalized remainder term is:

SB(t, ρ) :=
NB(t + ρ)−NB(t)− A(2tρ + ρ2)√

t
.
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The statistics of SB(t, ρ) vary depending to the size of ρ(t). Of our particular

interest are the following regimes:

(1) The microscopic regime, ρt is constant. It was conjectured by Berry and Tabor [7]

that the statistics of NB(t, ρ) are Poissonian. Eskin, Margulis and Mozes [10] proved

that the pair correlation function (which is roughly equivalent to the variance of

NB(t, ρ)), is consistent with the Poisson-random model.

(2) The ”global”, or ”macroscopic”, regime, ρ(t) →∞ (but ρ = o(t)). In such a case,

Bleher and Lebowitz [5] showed that for a wide class of B’s, SB(t, ρ) has a limiting

distribution with tails which decay roughly as exp(−x4).

(3) The intermediate or ”mesoscopic”, regime, ρ → 0 (but ρt → ∞). If B is the

inside of a ”generic” ellipse

(1.3) Γ =

{
(x1, x2) : x2

1 + α2x2
2 = 1

}
,

with α is Diophantine, the variance of SB(t, ρ) was computed in [2] to be asymptotic

to

(1.4) σ2 :=
8π

α
· ρ

For the circle (α = 1), the value is 16ρ log 1
ρ
.

Bleher and Lebowitz [5] conjectured that SB(t, ρ)/σ has a standard Gaussian

distribution. In 2004, Hughes and Rudnick [13] established the Gaussian distribution

for the unit circle, provided that ρ(t) À t−δ for every δ > 0.

In chapter II of this thesis, we prove the Gaussian distribution for the normalized

remainder term of ”generic” elliptic annuli, whose axes are lying on the coordinate

axes. Equivalently to counting integral points inside such elliptic annuli, we will

count Λ-points inside B(0, 1)-annuli, where Λ = 〈1, iα〉 is a rectangular lattice (we

make the natural identification of i with (0, 1)).
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Given a lattice Λ as above, with determinant

d := det(Λ) = α,

we denote the corresponding counting function NΛ, that is,

NΛ = #{~n ∈ Λ : |~n| ≤ t}.

In addition, we define

(1.5) SΛ(t, ρ) =
NΛ(t + ρ)−NΛ(t)− π

d
(2tρ + ρ2)√

t
.

Obviously, we have

SΛ(t, ρ) = SB(t, ρ)

for an ellipse B, which is the inside of Γ as in (1.3).

We say that a real number α is strongly Diophantine, if for every n ≥ 1, there is

some K > 0, such that for integers aj with
n∑

j=0

ajα
j 6= 0,

∣∣∣∣
n∑

j=0

ajα
j

∣∣∣∣ Àn
1(

max
0≤j≤n

|aj|
)K

.

This holds for any algebraic α, for α = e, and almost every real α, see section 2.2.2.

We prove:

Theorem 1.1.1. Let Λ = 〈1, iα〉, with α transcendental and strongly Diophantine.

Assume that ρ = ρ(T ) → 0, but for every δ > 0, ρ À T−δ. Then for every interval

A,

(1.6) lim
T→∞

meas

{
t ∈ [T, 2T ] :

SΛ(t, ρ)

σ
∈ A

}
=

1√
2π

∫

A

e−
x2

2 dx,

where σ is given by (1.4).

This proves the conjecture of Bleher and Lebowitz in the case of a rectangular

lattice (this corresponds to an ellipse with axes lying on the coordinate axes).
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Remarks: 1. In the formulation of theorem 1.1.1, we assume for technical

reasons, that ρ is a function of T and independent of t ∈ [T, 2T ]. However one may

easily see that since ρ may not decay rapidly, one may refine the result for ρ = ρ(t).

2. We compute statistics of the remainder term when the radius is around T . A

natural choice is assuming that the radius is uniformly distributed in the interval

[T, 2T ].

Our case offers some marked differences from that of standard circular annuli

treated in [13]. To explain these, we note that there are two main steps in treating

these distribution problems: The first step is to compute the moments of a smoothed

version of SB, defined in section 2.1. We will show in section 2.2 that the moments

of the smooth counting function are Gaussian and that will suffice for establishing a

normal distribution for the smooth version of our problem. The second step (section

2.4) is to recover the distribution of the original counting function SB by estimating

the variance of the difference between SB and its smooth version. The proof of that

invokes a truncated Poisson summation formula for the number of points of a general

lattice which lie in a disk, stated and proved in section 2.3.

The passage from circular annuli to general elliptical annuli with axes lying on

the coordinate axes, gives rise to new problems in both steps. The reason is that to

study the counting functions one uses Poisson summation to express the counting

functions as a sum over a certain lattice, that is as a sum over closed geodesics of

the corresponding flat torus. Unlike the case of the circle, for a generic ellipse the

sum is over a lattice where the squared lengths of vectors are no longer integers but

of the form n2 + m2α−2, where n, m ∈ Z and α is the aspect ratio of the ellipse.

One new feature present in this case is that these lengths can cluster together,

or, more generally, one may approximate zero too well by the means of linear com-
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binations of lengths. This causes difficulties both in bounding the variance between

the original counting function and its smoothed version, especially in the truncated

summation formula of section 2.3, and in showing that the moments of the smooth

counting function are given by ”diagonal-like” contributions. This clustering can be

controlled when α is strongly Diophantine.

Another problem we have to face, in evaluating moments of the smooth counting

function, is the possibility of non-trivial correlations in the length spectrum. Their

possible existence (e.g. in the case of algebraic aspect ratio) obscures the nature of

the main term (the diagonal-like contribution) at this time. If α is transcendental

this problem can be overcome, see proposition 2.2.8.

Our next goal is to generalize the result for general elliptical annuli. This is

done in chapter III. By a rotation and dilation (which does not effect the counting

function), we may assume, with no loss of generality, that Λ admits a basis one of

whose elements is the vector (1, 0), that is Λ =
〈
1, α + iβ

〉
.

Some of the work done in chapter II, extends quite naturally for the 2-parameter

family of planar lattices
〈
1, α+iβ

〉
. That is, in this case we will require the algebraic

independence of α and β, as well as a strong Diophantine property of the pair (α, β)

(to be defined), rather than the transcendence and a strong Diophantine property of

the aspect ratio of the ellipse, as in theorem 1.1.1.

We say that a pair of numbers (α, β) is strongly Diophantine, if for every fixed

natural n, there exists a number K1 > 0, such that for every integral polynomial

p(x, y) =
∑

i+j≤n

ai, jx
iyj of degree ≤ n, we have

|p(α, β)| Àn
1

max
i+j≤n

|ai, j|K1
,

whenever p(α, β) 6= 0. This holds for almost all real pairs (α, β), see section 3.1.2.
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Theorem 1.1.2. Let Λ =
〈
1, α + iβ

〉
where (α, β) is algebraically independent and

strongly Diophantine pair of real numbers. Assume that ρ = ρ(T ) → 0, but for every

δ > 0, ρ À T−δ. Then for every interval A,

(1.7) lim
T→∞

1

T
meas

{
t ∈ [T, 2T ] :

SΛ(t, ρ)

σ
∈ A

}
=

1√
2π

∫

A

e−
x2

2 dx,

where the variance is given by

(1.8) σ2 :=
4π

β
· ρ.

Remark: Note that the variance σ2 is α-independent, since the determinant

det(Λ) = β.

One of the features of a rectangular lattice is that it is quite easy to show that the

number of so-called close pairs of lattice points or pairs of points lying within a narrow

annulus is bounded by essentially its average (see lemma 2.4.2). This particular

feature of the rectangular lattices was exploited while reducing the computation of

the moments to the ones of a smooth counting function (we call it ”unsmoothing”).

In order to prove an analogous bound for a general lattice, we extend a result from

Eskin, Margulis and Mozes [9] for our needs to obtain proposition 3.2.1. We believe

that this proposition is of independent interest.



CHAPTER II

The Rectangular Case

2.1 Smoothing

We apply the same smoothing as in [13]: let χ be the indicator function of the

unit disc and ψ a nonnegative, smooth, even function on the real line, of total mass

unity, whose Fourier transform, ψ̂ is smooth and has compact support 1. One should

notice that

(2.1) NΛ(t) =
∑

~n∈Λ

χ

(
~n

t

)
.

Introduce a rotationally symmetric function Ψ on R2 by setting Ψ̂(~y) = ψ̂(|~y|), where

| · | denotes the standard Euclidian norm. For ε > 0, set

Ψε(~x) =
1

ε2
Ψ

(
~x

ε

)
.

Define in analogy with (2.1) a smooth counting function

(2.2) ÑΛ,M(t) =
∑

~n∈Λ

χε(
~n

t
),

with ε = ε(M), χε = χ ∗Ψε, the convolution of χ with Ψε. In what will follow,

(2.3) ε =
1

t
√

M
,

1To construct such a function, just take a function φ with compact support and set ψ̂ = φ ∗ φ∗ where φ∗(y) :=

φ(−y). Then ψ = |φ̌|2 is nonnegative.

8
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where M = M(T ) is the smoothness parameter, which tends to infinity with t.

We are interested in the distribution of

(2.4) S̃Λ, M, L(t) =
ÑΛ, M(t + 1

L
)− ÑΛ, M(t)− π

d
(2t

L
+ 1

L2 )√
t

,

which is the smooth version of SΛ(t, ρ). We assume that for every δ > 0, L =

L(T ) = O(T δ), which corresponds to the assumption of theorem 1.1.1 regarding

ρ := 1
L
. However, we will work with a smooth probability space rather than just the

Lebesgue measure. For this purpose, introduce ω ≥ 0, a smooth function of total

mass unity, such that both ω and ω̂ are rapidly decaying, namely

|ω(t)| ¿ 1

(1 + |t|)A
, |ω̂(t)| ¿ 1

(1 + |t|)A
,

for every A > 0.

Define the averaging operator

〈f〉T =
1

T

∞∫

−∞

f(t)ω(
t

T
)dt,

and let Pω, T be the associated probability measure:

Pω, T (f ∈ A) =
1

T

∞∫

−∞

1A(f(t))ω(
t

T
)dt,

We will prove the following theorem in section 2.2.

Theorem 2.1.1. Suppose that M(T ) and L(T ) are increasing to infinity with T ,

such that M = O(T δ) for all δ > 0, and L/
√

M → 0. Then if α is transcendental

and strongly Diophantine, we have for Λ =< 1, iα >,

lim
T→∞

Pω, T

{
S̃Λ, M, L

σ
∈ A

}
=

1√
2π

∫

A

e−
x2

2 d

for any interval A, where σ2 := 8π
dL

.
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2.2 The distribution of S̃Λ, M, L

We start from a well-known definition.

Definition: A number µ is called Diophantine, if ∃K > 0, such that for a rational

p/q,

(2.5)

∣∣∣∣µ−
p

q

∣∣∣∣ Àµ
1

qK
,

where the constant involved in the ” À ”-notation depends only on µ. Khintchine

proved that almost all real numbers are Diophantine (see, e.g. [18], pages 60-63).

It is obvious from the definition, that µ is Diophantine iff 1
µ

is such. For the rest

of this section, we will assume that Λ∗ =
〈
1, iβ

〉
with a Diophantine κ := β2, which

satisfies (2.5) with

(2.6) K = K0,

where Λ∗ is the dual lattice, that is β := 1
α
. We may assume that κ is Diophantine,

since theorem 1.1.1 (and theorem 2.1.1) assume α’s being strongly Diophantine (see

the definition later in this section), which implies, in particular, that α, β and κ are

Diophantine.

We will need a generalization of lemma 3.1 in [13] to a general lattice Λ rather

than Z2.

Lemma 2.2.1. As t →∞,

(2.7) ÑΛ,M(t) =
πt2

d
−
√

t

dπ

∑

~k∈Λ∗\{0}

cos
(
2πt|~k|+ π

4

)

|~k| 32
· ψ̂

( |~k|√
M

)
+ O

(
1√
t

)
,

where, again Λ∗ is the dual lattice.
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Proof. The proof is essentially the same as the one which obtains the original lemma

(see [13], page 642). Using Poisson summation formula on (2.2) and estimating

χ̂(t~k) by the well-known asymptotics of the Bessel J1 function, we get:

ÑΛ,M(t) =
πt2

d
−
√

t

dπ

∑

~k∈Λ∗\{0}

{
cos

(
2πt|~k|+ π

4

)

|~k| 32
· ψ̂

(
εt|~k|

)
+ O

(
ψ̂(εt|~k|)
t|~k| 52

)}
,

where we get the main term for ~k = 0. Finally, we obtain (2.7) using (2.3). The

contribution of the error term is obtained due to the convergence of
∑

~k∈Λ∗\{0}

1

|~k| 52
as

well as the fact that ψ̂(x) ¿ 1.

Unlike the standard lattice, if Λ = 〈1, iα〉 with an irrational α2, then clearly there

are no nontrivial multiplicities, that is

Lemma 2.2.2. Let ~ai = (ni, mi · α) ∈ Λ, i = 1, 2, with an irrational α2. If

|~a1| = |~a2|, then n1 = ±n2 and m1 = ±m2.

By the definition of S̃Λ, M, L in (2.4) and appropriately manipulating the sum in

(2.7) we obtain the following

Corollary 2.2.3.

S̃Λ, M, L(t) =
2

dπ

∑

~k∈Λ∗\{0}

sin

(
π|~k|
L

)

|~k| 32
sin

(
2π

(
t +

1

2L

)|~k|+ π

4

)
ψ̂

( |~k|√
M

)

+ O

(
1√
t

)
,

(2.8)

We used

(2.9)

√
t +

1

L
=
√

t + O(
1√
tL

)

in order to change
√

t + 1
L

multiplying the sum in (2.7) for NΛ(t + 1
L
) by

√
t. We

use a smooth analogue of the simplest bound (1.2) in order to bound the cost of this

change to the error term.
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One should note that ψ̂’s being compactly supported means that the sum essen-

tially truncates at |~k| ≈ √
M .

Proof of theorem 2.1.1. We will show that the moments of S̃Λ, M, L corresponding

to the smooth probability space (i.e. 〈S̃m
Λ, M, L〉T , see section 2.1) converge to the

moments of the normal distribution with zero mean and variance which is given by

theorem 2.1.1. This allows us to deduce that the distribution of S̃Λ, M, L converges to

the normal distribution as T approaches infinity, precisely in the sense of theorem

2.1.1.

First, we show that the mean is O( 1√
T
), unconditionally on the Diophantine prop-

erties of α. Since ω is real,

∣∣∣∣∣

〈
sin

(
2π

(
t +

1

2L

)|~k|+ π

4

)〉

T

∣∣∣∣∣ =

∣∣∣∣=m

{
ω̂
(− T |~k|)eiπ(

|~k|
L

+ 1
4

}∣∣∣∣ ¿
1

TA|~k|A

for any A > 0, where we have used the rapid decay of ω̂. Thus

∣∣∣∣
〈

S̃Λ, M, L

〉

T

∣∣∣∣ ¿
∑

~k∈Λ∗\{0}

1

TA|~k|A+3/2
+ O

(
1√
T

)
¿ O

(
1√
T

)
,

due to the convergence of
∑

~k∈Λ∗\{0}

1

|~k|A+3/2
, for A > 1

2

Now define

(2.10) MΛ, m :=

〈(
2

dπ

∑

~k∈Λ∗\{0}

sin

(
π|~k|
L

)

|~k| 32
sin

(
2π

(
t +

1

2L

)|~k|+ π

4

)
ψ̂

( |~k|√
M

))m
〉

T

Then from (2.8), the binomial formula and the Cauchy-Schwartz inequality,

〈(
S̃Λ, M, L

)m
〉

T

= MΛ, m + O

( m∑
j=1

(
m

j

)√M2m−2j

T j/2

)

Proposition 2.2.4 together with proposition 2.2.7 allow us to deduce the result

of theorem 2.1.1 for a transcendental strongly Diophantine β2. Clearly, α’s being

transcendental strongly Diophantine is sufficient.
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2.2.1 The variance

The variance was first computed by Bleher and Lebowitz [2] and we will give

a version suitable for our purpose. This will help the reader to understand our

computation of higher moments.

Proposition 2.2.4. Let α be Diophantine and Λ = 〈1, iα〉. Then if for some fixed

δ > 0, M = O
(
T

1
K0+1/2+δ

)
as T →∞, then

〈(
S̃Λ, M, L

)2
〉

T

∼ σ2 :=
2

d2π2

∑

~k∈Λ∗\{0}
r(~k)

sin2

(
π|~k|
L

)

|~k|3
ψ̂2

( |~k|√
M

)
,

where

(2.11) r(~n) =





1, ~n = (0, 0)

2, ~n = (x, 0) or (0, y)

4, otherwise

,

is the ”multiplicity” of |~n|. Moreover, if L →∞, but L/
√

M → 0, then

(2.12) σ2 ∼ 8π

dL

Proof. Expanding out (2.10), we have

MΛ, 2 :=
4

d2π2

∑

~k,~l∈Λ∗\{0}

sin

(
π|~k|
L

)
sin

(
π|~l|
L

)
ψ̂

( |~k|√
M

)
ψ̂

( |~l|√
M

)

|~k| 32 |~l| 32

×
〈

sin

(
2π

(
t +

1

2L

)
|~k|+ π

4

)
sin

(
2π

(
t +

1

2L

)
|~l|+ π

4

)〉

T

(2.13)

Now, it is easy to check that the average of the second line of the previous equation
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is:

1

4

[
ω̂
(
T (|~k| − |~l|))eiπ(1/L)(|~l|−|~k|)+

ω̂
(
T (|~l| − |~k|))eiπ(1/L)(|~k|−|~l|)+

ω̂
(
T (|~k|+ |~l|))e−iπ(1/2+(1/L)(|~k|+|~l|))−

ω̂
(− T (|~k|+ |~l|))eiπ(1/2+(1/L)(|~k|+|~l|))

]

(2.14)

Recall that the support condition on ψ̂ means that ~k and ~l are both constrained to

be of length O(
√

M), and so the off-diagonal contribution (that is for |~k| 6= |~l| ) of

the first two lines of (2.14) is

¿
∑

~k,~l∈Λ∗\{0}
|~k|, |~k′|≤√M

MA(K0+1/2)

TA
¿ MA(K0+1/2)+2

TA
¿ T−B,

for every B > 0, using lemma 2.2.5, the fact that |~k|, |~l| À 1,
∣∣ψ̂∣∣ ¿ 1, and the

assumption regarding M . We may use lemma 2.2.5 since we have assumed in the

beginning of this section that κ is Diophantine.

Obviously, the contribution to (2.13) of the two last lines of (2.14) is negligible

both in the diagonal and off-diagonal cases, and so we are to evaluate the diagonal

approximation of (2.13), changing the second line of (2.13) by 1/2, since the first

two lines of (2.14) are 2. That proves the first statement of the proposition. To find

the asymptotics, we take a large parameter Y = Y (T ) > 0 (which is to be chosen

later), and write:

∑

~k, ~k′∈Λ∗\{0}
|~k|=|~k′|

sin2

(
π|~k|
L

)

|~k|3
ψ̂2

( |~k|√
M

)
=

∑

~k∈Λ∗\{0}
r(~k)

sin2

(
π|~k|
L

)

|~k|3
ψ̂2

( |~k|√
M

)

=
∑

~k∈Λ∗\{0}
|~k|2≤Y

+
∑

~k∈Λ∗\{0}
|~k|2>Y

:= I1 + I2,
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Now for Y = o(M), ψ̂2
( |~k|√

M

) ∼ 1 within the constraints of I1, and so

I1 ∼
∑

~k∈Λ∗\{0}
|~k|2≤Y

r(~k)

sin2

(
π|~k|
L

)

|~k|3
.

Here we may substitute r(~k) = 4, since the contribution of vectors of the form (x, 0)

and (0, y) is O( 1
L2 ): representing their contribution as a 1-dimensional Riemann sum.

The sum in

4
∑

~k∈Λ∗\{0}
|~k|2≤Y

sin2

(
π|~k|
L

)

|~k|3
=

4

L

∑

~k∈Λ∗\{0}
|~k|2≤Y

sin2

(
π|~k|
L

)

( |~k|
L

)3

1

L2
.

is a 2-dimensional Riemann sum of the integral

∫∫

1/L2¿x2+κy2≤Y/L2

sin2
(
π
√

x2 + κy2
)

|x2 + κy2|3/2
dxdy ∼ 2π

β

√
Y

L∫

1
L

sin2(πr)

r2
dr → dπ3,

provided that Y/L2 →∞, since
∞∫
0

sin2(πr)
r2 dr = π2

2
. We have changed the coordinates

to the usual elliptic ones. And so,

I1 ∼ 4dπ3

L

Next we will bound I2. Since ψ̂ ¿ 1, we may use the same change of variables to

obtain:

I2 ¿ 1

L

∫∫

x2+κy2≥Y/L2

sin2
(
π
√

x2 + κy2
)

|x2 + κy2|3/2
dxdy ¿ 1

L

∞∫

√
Y /L

dr

r2
= o

(
1

L

)
.

This concludes the proposition, provided we have managed to choose Y with L2 =

o(Y ) and Y = o(M). Such a choice is possible by the assumption of the proposition

regarding L.
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Lemma 2.2.5. Suppose that ~k, ~k′ ∈ Λ∗ with |~k|, |~k′| ≤ √
M . Then if |~k| 6= |~k′|,

∣∣|~k| − |~k′|
∣∣ À M−(K0+1/2)

Proof.

∣∣|~k| − |~k′|
∣∣ =

∣∣|~k|2 − |~k′|2
∣∣

|~k|+ |~k′|
À M−K0

√
M

= M−(K0+1/2),

by (2.5) and (2.6).

2.2.2 The higher moments

In order to compute the higher moments we will prove that the main contribution

comes from the so-called diagonal terms (to be explained later). In order to be able to

bound the contribution of the off-diagonal terms, we restrain ourselves to ”generic”

numbers, which are given in the following definition:

Definition: We call a number η strongly Diophantine, if it satisfies the following

property: for any fixed n, there exists K1 ∈ N such that for an integral polynomial

P (x) =
n∑

i=0

aix
i ∈ Z[x], with P (η) 6= 0 we have

∣∣P (η)
∣∣ Àη, n h(P )−K1 ,

where h(P ) = max
0≤i≤n

|ai| is the height of P .

The fact that the strongly Diophantine numbers are ”generic” follows from various

classical papers, e.g. [17].

Obviously, the strong Diophantine property implies the Diophantine property.

Just as in the case of Diophantine numbers η is strongly Diophantine, iff 1
η

is such.

Moreover, if η is strongly Diophantine, then so is η2. As a concrete example of

a transcendental strongly Diophantine number, the inequality proven by Baker [1]

implies that for any rational r 6= 0, η = er satisfies the desired property.
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We would like to make some brief comments concerning the number K1, which

appears in the definition of a strongly Diophantine number, although the form pre-

sented is sufficient for all our purposes.

Let η be a real number. One defines θk(η) to be 1
k

times the supremum of the real

numbers ω, such that |P (η)| < h(P )−ω for infinitely many polynomials P of degree

k. Clearly,

θk(η) =
1

k
inf{ω : |P (η)| Àω, k h−ω, deg P = k}.

It is well known [23], that θk(η) ≥ 1 for all transcendental η. In 1932, Mahler [17]

proved that θk(η) ≤ 4 for almost all real η, and that allows us to take any K1 > 4n.

He conjectured that

θk(η) ≤ 1

which was proved in 1964 by Sprindẑuk [20], [21], making it legitimate to choose any

K1 > n.

Sprindẑuk’s result is analogous to Khintchin’s theorem which states that almost

no k-tuple in Rk is very well approximable (see e.g. [18], theorem 3A), for submanifold

M ⊂ Rk, defined by

M = {(x, x2, . . . , xk) : x ∈ R}.

The proof of this conjecture has eventually let to development of a new branch

in approximation theory, usually referred to as ”Diophantine approximation with

dependent quantities” or ”Diophantine approximation on manifolds”. A number of

quite general results were proved for a manifold M , see e.g. [15].

We prove the following simple lemma which will eventually allow us to exploit the

strong Diophantine property of the aspect ratio of the ellipse.

Lemma 2.2.6. If η > 0 is strongly Diophantine, then it satisfies the following prop-
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erty: for any fixed natural m, there exists K ∈ N, such that if zj = a2
j + ηb2

j ¿ M ,

and εj = ±1 for j = 1, . . . , m, with integral aj, bj and if
m∑

j=1

εj
√

zj 6= 0, then

(2.15)
∣∣

m∑
j=1

εj
√

zj

∣∣ Àη, m M−K .

Proof. Let m be given. We prove that every number η that satisfies the property

of the definition of a strongly Diophantine number with n = 2m−1, satisfies the

inequality (2.15) for some K, which will depend on K1.

Let us {√zj}m
j=1 be given. Suppose first, that there is no {δj}m

j=1 ∈ {±1}m with
m∑

j=1

δj
√

zj = 0. Let us consider

Q = Q(z1, . . . , zm) :=
∏

{δj}m
j=1∈{±1}m

m∑
j=1

δj
√

zj 6= 0.

Now Q = R
(√

z1, . . . ,
√

zm

)
, where

R
(
x1, . . . , xm

)
:=

∏

{δj}m
j=1∈{±1}m

m∑
j=1

δjxj.

Obviously, R is a polynomial with integral coefficients of degree 2m such that for

each vector δ = (δj) = (±1), R(δ1x1, . . . , δmxm) = R(x1, . . . , xm), and thus,

Q(z1, . . . , zm) is an integral polynomial in z1, . . . , zm of degree 2m−1. Therefore,

Q = P (η), where P is a polynomial of degree 2m−1, P =
2m−1∑
j=0

cix
i, with ci ∈ Z, such

that ci = Pi(a1, . . . , am, b1, . . . , bm), where Pi are polynomials. Thus there exists

K2, such that ci ¿ MK2 , and so, by the definition of strongly Diophantine numbers,

Q Àη, m M−K2K1 . We conclude the proof of lemma 2.2.6 in this case by

∣∣
m∑

j=1

εj
√

zj

∣∣ =

∣∣Q
∣∣

∣∣∣∣
∏

{δj}m
j=1 6={εj}m

j=1

m∑
j=1

δj
√

zj

∣∣∣∣
Àη, m M−(K2K1+(2m−1)/2),

and so, setting K := K2K1 + (2m−1)
2

, we obtain the result of the current lemma in

this case.
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Next, suppose that

(2.16)
m∑

i=1

δj
√

zj = 0

for some (given) {δi}m
j=1 ∈ {±1}m. Denote S := {j : εj = δj}, S ′ = {1, . . . , m} \ S.

One should notice that

(2.17) ∅ $ S, S ′ $ {1, . . . , m}.

Writing (2.16) in the new notations, we obtain:

∑
j∈S

εj

√
zi −

∑

j∈S′
εj

√
zi = 0,

Finally,

0 6= ∣∣
m∑

j=1

εj
√

zj

∣∣ = 2
∣∣ ∑

j∈S′
εj
√

zj

∣∣ Àη, m M−K

for some K by induction, due to (2.17).

Proposition 2.2.7. Let m ∈ N be given. Suppose that α2 is transcendental and

strongly Diophantine which satisfy the property of lemma 2.2.6 for the given m, with

K = Km. Denote Λ = 〈1, iα〉. Then if M = O
(
T

1−δ
Km

)
for some δ > 0, and if

L →∞ such that L/
√

M → 0, the following holds:

MΛ, m

σm
=





m!

2m/2
(

m
2

)
!
+ O

(
log L

L

)
, m is even

O
(

log L
L

)
, m is odd

Proof. Expanding out (2.10), we have

MΛ, m =
2m

dmπm

∑

~k1,..., ~km∈Λ∗\{0}

m∏
j=1

sin

(
π| ~kj |

L

)
ψ̂

( | ~kj |√
M

)

|~kj| 32

×
〈 m∏

j=1

sin

(
2π

(
t +

1

2L

)|~k1|+ π

4

)〉

T

(2.18)
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Now,
〈 m∏

j=1

sin

(
2π

(
t +

1

2L

)|~k1|+ π

4

)〉

T

=
∑

εj=±1

m∏
j=1

εj

2mim
ω̂

(
− T

m∑
j=1

εj|~kj|
)

e
πi

mP
j=1

εj

(
(1/L)| ~kj |+1/4

)

We call a term of the summation in (2.18) with
m∑

j=1

εj|~kj| = 0 diagonal, and off-

diagonal otherwise. Due to lemma 2.2.6, the contribution of the off-diagonal terms

is:

¿
∑

~k1,..., ~km∈Λ∗\{0}

(
T

MKm

)−A

¿ MmT−Aδ,

for every A > 0, by the rapid decay of ω̂ and our assumption regarding M .

Since m is constant, this allows us to reduce the sum to the diagonal terms. The

following definition and corollary 2.2.9 will allow us to actually sum over the diagonal

terms, making use of α’s being transcendental.

Definition: We say that a term corresponding to {~k1, . . . , ~km} ∈
(

Λ∗ \ {0}
)m

and {εj} ∈ {±1}m is a principal diagonal term if there is a partition {1, . . . , m} =
l⊔

i=1

Si, such that for each 1 ≤ i ≤ l there exists a primitive ~ni ∈ Λ∗ \ {0}, with non-

negative coordinates, that satisfies the following property: for every j ∈ Si, there

exist fj ∈ Z with |~kj| = fj|~ni|. Moreover, for each 1 ≤ i ≤ l,
∑
j∈Si

εjfj = 0.

Obviously, the principal diagonal is contained within the diagonal. However, if

α is transcendental, the converse is also true. It is easily seen, given the following

proposition.

Proposition 2.2.8. Suppose that η ∈ R is a transcendental number. Let

zj = a2
j + ηb2

j
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such that (aj, bj) ∈ Z2
+ are all different primitive vectors, for 1 ≤ j ≤ m. Then

{√zj}m
j=1 are linearly independent over Q.

The last proposition is an analogue of a well-known theorem due to Besicovitch [6]

about incommensurability of square roots of integers. A proof of a much more general

statement may be found e.g. in [3] (see lemma 2.3 and the appendix).

Thus we have

Corollary 2.2.9. Every diagonal term is a principle diagonal term whenether α is

transcendendal.

By corollary 2.2.9, summing over diagonal terms is the same as summing over

principal diagonal terms. Thus:

MΛ, m

σm
∼

m∑

l=1

∑

{1,..., m}=
lF

i=1
Si

(
1

σ|S1|
∑

~n1∈Λ∗\{0}

′D~n1(S1)

)

×
(

1

σ|S2|
∑

Λ∗\{0}3~n2 6=~n1

′D(~n2)(S2)

)
. . .

(
1

σ|Sl|
∑

Λ∗\{0}3~nl 6=~n2,..., ~nl−1

′D~nl
(Sl)

)
,

(2.19)

where the inner summations are over primitive 1st-quadrant vectors of Λ∗ \ {0}, and

D~n(S) =
r(~n)

|~n|3|S|/2

∑

fj≥1
εj=±1P

j∈S
εjfj=0

∏
j∈S

−iεj

dπf
3/2
j

sin

(
π

L
fj|~n|

)
ψ̂

( |~n|√
M

)
eiπεj/4,

with r(~n) given by (2.11).

Lemma 2.2.10 allows us to deduce that the contribution to (2.19) of a partition

is O( log(L)
L

), unless |Si| = 2 for every i = 1, . . . , l. In the latter case the contribution

is 1 by the 2nd case of the same lemma. This is impossible for an odd m, and so,

it finishes the proof of the current proposition in that case. Otherwise, suppose m

is even. Then the number of partitions {1, . . . , m} =
l⊔

i=1

Si with |Si| = 2 for every
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1 ≤ i ≤ l is

1(
m
2

)
!

(
m

2

)(
m− 2

2

)
· . . . ·

(
2

2

)
=

1(
m
2

)
!

m!

2! (m− 2)!

(m− 2)!

2! (m− 4)!
· . . . · 2!

2!

=
m!

2m/2
(

m
2

)
!

That concludes the proof of proposition 2.2.7.

Lemma 2.2.10. If L →∞ such that L/
√

M → 0, then

1

σm

∣∣∣∣
∑

~n∈Λ∗\{0}

′D~n(S)

∣∣∣∣ =





0, |S| = 1

1, |S| = 2

O
(

log L
L

), |S| ≥ 3

where the ’ in the summation means that it is over primitive vectors (a, b).

Proof. Without loss of generality, we may assume that S = {1, 2, . . . , |S|}, and we

assume that k := |S| ≥ 3. Now,

(2.20)

∣∣∣∣
∑

~n∈Λ∗\{0}

′D~n(S)

∣∣∣∣ ¿
∑

~n∈Λ∗\{0}

1

|~n|3k/2
Q(|~n|),

where

Q(z) :=
∑

{εj}∈{±1}k

∑

fj≥1
kP

j=1
εjfj=0

k∏
j=1

| sin( π
L
fjz)|

f
3/2
j

.

Note that Q(z) ¿ 1 for all z. We would like to establish a sharper result for z ¿ L.

In order to have
k∑

j=1

εjfj = 0, at least two of the εj must have different signs, and so,

with no loss of generality, we may assume, εk = −1 and εk−1 = +1. We notice that
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the last sum is, in fact, a Riemann sum, and so

Q(z) ¿ Lk−1

L3k/2

∞∫

1/L

· · ·
∞∫

1/L

dx1 · · · dxk−2

∑

{εj}k−2
j=1∈{±1}k−2

∞∫

1
L

+max(0,−
k−2P
j=1

εjfj)

dxk−1

×
( k−1∏

j=1

∣∣ sin(πxjz)
∣∣

x
3/2
j

)
∣∣∣∣ sin

(
πz · (xk−1 +

k−2∑
j=1

εjxj

))∣∣∣∣
(

xk−1 +
k−1∑
j=1

εjxj

)3/2

By changing variables yi = z · xi of the last integral, we obtain:

Q(z) ¿ zk/2+1

Lk/2+1

∞∫

1/L

· · ·
∞∫

1/L

dy1 · · · dyk−2

∑

{εj}k−2
j=1∈{±1}k−2

∞∫

z
L

+max(0,−
k−2P
j=1

εjfj)

dyk−1

×
( k−1∏

j=1

∣∣ sin(πyj)
∣∣

y
3/2
j

)
∣∣∣∣ sin

(
π · (yk−1 +

k−2∑
j=1

εjyj

))∣∣∣∣
(

yk−1 +
k−1∑
j=1

εjyj

)3/2
,

and since the last multiple integral is bounded, we may conclude that

Q(z) ¿





zk/2+1

Lk/2+1 , z < L

1, z ≥ L

Thus, by (2.20),

∣∣∣∣
∑

~n∈Λ∗\{0}

′D~n(S)

∣∣∣∣ ¿
∑

~n∈Λ∗\{0}
|~n|≤L

1

|~n|3k/2
· |~n|

k/2+1

Lk/2+1
+

∑

~n∈Λ∗\{0}
|~n|>L

1

|~n|3k/2
=: S1 + S2.

Now, considering S1 and S2 as Riemann sums, and computing the corresponding

integrals in the usual elliptic coordinates we get:

S1 ¿ 1

Lk/2+1

∑

~n∈Λ∗\{0}
|~n|≤L

1

|~n|k−1
¿ 1

Lk/2+1

L∫

1

dr

rk−2
¿ log L

Lk/2+1
,

since k ≥ 3.
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Similarly,

S2 ¿
∞∫

L

dr

r3k/2−1
¿ 1

L3k/2−2
¿ 1

Lk/2+(k−2)
¿ 1

Lk/2+1
,

again since k ≥ 3.

And so, returning to the original statement of the lemma, if k = |S| ≥ 3,

1

σm

∣∣∣∣
∑

~n∈Λ∗\{0}

′D~n(S)

∣∣∣∣ ¿ Lk/2

(
log L

Lk/2+1

)
¿ log L

L
,

by (2.12).

In the case |S| = 2, by the definition of D~n and σ2, we see that

∑

~n∈Λ∗\{0}

′D~n(S) = σ2.

This completes the proof of the lemma.

2.3 An asymptotical formula for NΛ

We need an asymptotical formula for the sharp counting function NΛ. Unlike the

case of the standard lattice, Z2, in order to have a good control over the error terms

we should use some Diophantine properties of the lattice we are working with. We

adapt the following notations:

Let Λ be a lattice and t > 0 a real variable. Denote the set of squared norms of

Λ by

SNΛ = {|~n|2 : n ∈ Λ}.

Suppose we have a function δΛ : SNΛ → R, such that given ~k ∈ Λ, there are no

vectors ~n ∈ Λ with 0 < ||~n|2 − |~k|2| < δΛ(|~k|2). That is,

Λ ∩ {~n ∈ Λ : |~k|2 − δΛ(|~k|2) < |~n|2 < |~k|2 + δΛ(|~k|2)} = A|~k|,
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where

Ay := {~n ∈ Λ : |~n| = y}.

Extend δΛ to R by defining δΛ(x) := δΛ(|~k|2), where ~k ∈ Λ minimizes |x − |~k|2| (in

the case there is any ambiguity, that is if x = | ~n1|2+| ~n2|2
2

for vectors ~n1, ~n2 ∈ Λ with

consecutive increasing norms, choose ~k := ~n1). We have the following lemma:

Lemma 2.3.1. For every a > 0, c > 1,

NΛ(t) =
π

d
t2 −

√
t

dπ

∑

~k∈Λ∗\{0}
|~k|≤√N

cos
(
2πt|~k|+ π

4

)

|~k| 32
+ O(Na)

+ O

(
t2c−1

√
N

)
+ O

(
t√
N
· ( log t + log(δΛ(t2)

))

+ O

(
log N + log(δΛ∗(t

2))

)

As a typical example of such a function, δΛ, for Λ = 〈1, iα〉, with a Diophantine

γ := α2, we may choose δΛ(y) = c
yK0

, where c is a constant. In this example, if

Λ 3 ~k = (a, b), then by lemma 2.2.2, A|~k| = (±a, ±b), provided that γ is irrational.

Our ultimate goal in this section is to prove lemma 2.3.1. However, it would be

more convenient to work with x = t2, and by abuse of notations we will call the

counting function NΛ. Moreover, we will redefine

NΛ(x) :=





#{~k : |~k|2 ≤ x}, x 6= |~k|2 for every ~k ∈ Λ

#{~k : |~k|2 < x}+ 2, otherwise

(recall that every norm of a Λ-vector is of multiplicity 4). We are repeating the argu-

ment of Titchmarsh [24] that establishes the corresponding result for the remainder

of the arithmetic function, which counts the number of different ways to write m as

a multiplication of a fixed number of natural numbers.

Let Λ =
〈
1, iα

〉
. For γ := α2, introduce a function Zγ(s) (this is a special value

of an Eisenstein series) where s = σ + it is a complex variable. For σ > 1, Zγ(s) is
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defined by the following converging series:

(2.21) Zγ(s) :=
1

4

∑

~k∈Λ\0

1

|~k|2s
.

Then Zγ has an analytic continuation to the whole complex plane, except for a

single pole at s = 1, defined by the formula

Γ(s)π−sZγ(s) =

∞∫

1

xs−1ψγ(x)dx +
1√
γ

∞∫

1

x−sψ1/γ(x)dx− s−√γ(s− 1)

4
√

γs(1− s)
,

where

ψγ(x) :=
1

4

∑

~k∈Λ\0
e−π|~k|2x.

This enables us to compute the residue of Zγ at s = 1:

Res(Zγ, 1) =
π

4
√

γ
.

Moreover, Zγ satisfies the following functional equation:

(2.22) Zγ(s) =
1√
γ
χ(s)Z1/γ(1− s),

with

(2.23) χ(s) = π2s−1 Γ(1− s)

Γ(s)
.

We will adapt the notation

χγ(s) :=
1√
γ
χ(s).

The connection between NΛ and Zγ is given in the following formula, which is

satisfied for every c > 1:

1

4
NΛ(x) =

1

2πi

c+i∞∫

c−i∞

Zγ(s)
xs

s
ds,
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To prove it, just write Zγ explicitly as the converging series, and use

1

2πi

c+i∞∫

c−i∞

ys

s
ds = ν(y),

where

ν(y) :=





1, y > 1

1
2

y = 1

0; 0 < y < 1

,

see [8], lemma on page 105, for example. One should bear in mind that the infinite

integral above is not converging, and so we consider it in the symmetrical sense (that

is, lim
T→∞

c+iT∫
c−iT

).

The following lemma will convert the infinite vertical integral in the last equation

into a finite one, accumulating the corresponding error term. It will make use of the

Diophantine properties of γ.

Lemma 2.3.2. In the notations of lemma 2.3.1, for any constant c > 1,

(2.24)
1

4
NΛ(x) =

1

2πi

c+iT∫

c−iT

Zγ(s)
xs

s
ds + O

(
xc

T

)
+ O

(
x

T

(
log x + log δΛ(x)

))

as x, T →∞.

Proof. Lemma on page 105 of [8] asserts moreover that for y 6= 1

(2.25)
1

2πi

c+iT∫

c−iT

ys

s
ds = ν(y) + O

(
yc min

(
1,

1

T | log y|
))

,

whereas for y = 1,

(2.26)
1

2πi

c+iT∫

c−iT

ds

s
=

1

2
+ O

(
1

T

)
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Suppose first that x 6= |~k|2 for every ~k ∈ Λ. Summing (2.25) for y = x

|~k|2 , where

~k ∈ Λ \ {0} gives (dividing both sides by 4):

1

2πi

c+iT∫

c−iT

Zγ(s)
xs

s
ds =

1

4
NΛ(x) + O

(
xc

∑

~k∈Λ\{0}

min

(
1, 1

T log x

|~k|2

)

|~k|2c

)
.

The contribution to the error term of the right hand side of the last equality of

~k ∈ Λ with |~k|2 > 2x or |~k|2 < 1
2
x is

¿ xc

T

∑

|~k|≥2x or |~k|≤ 1
2
x

1

|~k|2c
≤ xc

T
Zγ(c) ¿ xc

T
.

For vectors ~k0 ∈ Λ, which minimize
∣∣|~k|2− x

∣∣ (in the case of ambiguity we choose

~k0 the same way we did in lemma 2.3.1 while extending δΛ), the corresponding

contribution is

xc

|~k|2c
¿ xc

xc
= 1.

Finally, we bound the contribution of vectors ~k ∈ Λ \ {0} with |~k0|2 < |~k|2 < 2x,

and similarly, of vectors with 1
2
x < |~k|2 < |~k0|2. Now, by the definition of δΛ, every

such ~k satisfies:

|~k|2 ≥ |~k0|2 + δΛ(x) ≥ x +
1

2
δΛ(x).

Moreover, log |~k|2
x
À |~k|2−| ~k0|2

x
, and so the contribution is:

¿ xc

xcT
x

∑

x+ 1
2
δΛ(x)≤|~k|2<2x

1

|~k|2 − |~k0|2
¿ x

T

√
2x∫

√
| ~k0|2+δΛ(x)

r

r2 − |~k0|2
dr

=
x

2T

2x∫

| ~k0|2+δΛ(x)

du

u− |~k0|2
¿ x

T
log

(
u− |~k0|2

)∣∣∣∣
2x

| ~k0|2+δΛ(x)

¿ x

T

(
log x + log δΛ(x)

)

If x = |~k0|2 for some ~k0 ∈ Λ, the proof is the same except that we should invoke

(2.26) rather than (2.25) for |~k| = |~k0|.
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That concludes the proof of lemma 2.3.2.

Proof of lemma 2.3.1. We use lemma 2.3.2 and would like to move the contour of

the integral in (2.24) from σ = c, −T ≤ t ≤ T left to σ = −a for some a > 0. Now,

for σ ≥ c,

∣∣Zγ(s)
∣∣ = O

(
1
)
,

and by the functional equation (2.22) and the Stirling approximation formula,

∣∣Zγ(s)
∣∣ ¿ t1+2a

for σ = −a. Thus by the Phragmén-Lindelöf argument

∣∣Zγ(s)
∣∣ ¿ t(1+2a)(c−σ)/(a+c)

in the rectangle −a− iT , c− iT , c + iT , −a + iT . Using this bound, we obtain

∣∣∣∣
c+iT∫

−a+iT

Zγ(s)
xs

s
ds

∣∣∣∣ ¿
T 2a

xa
+

xc

T
,

and so is
∣∣ c−iT∫
−a−iT

∣∣. Collecting the residues at s = 1 with residue being the main term

of the asymptotics,

Res
(
Zγ(s)

xs

s
, 1

)
=

π

4
√

γ
x

and at s = 0 with

Res
(
Zγ(s)

xs

s
, 0

)
= Zγ(0) = O

(
1
)
,

we get:

∆Λ(x) :=
1

4
NΛ(x)− π

4
√

γ
x =

1

2πi

−a+iT∫

−a−iT

Zγ(s)
xs

s
ds

+ O

(
xc

T

)
+ O

(
x

T

(
log x + log δΛ(x)

))
+ O(1) + O

(T 2a

xa

)
.
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Denote the integral in the last equality by I and let κ := 1
γ
. Using the functional

equation of Zγ (2.22) again, and using the definition of Zκ for σ > 1, (2.21), we get:

(2.27) I =
1

2πi

−a+iT∫

−a−iT

χγ(s)Zκ(1− s)
xs

s
ds =

1

2πi

∑

~k∈Λ∗

′
−a+iT∫

−a−iT

χγ(s)

|~k|2−2s

xs

s
ds,

where the ′ means that the summation is over vectors in the 1st quadrant. Put

(2.28)
T 2

π2x
:= N +

1

2
δΛ∗(N),

where N = |~k0|2 for some ~k0 ∈ Λ∗ and consider separately vectors ~k ∈ Λ∗ with

|~k|2 > N and ones with |~k|2 ≤ N .

First we bound the contribution of vectors ~k ∈ Λ∗ with |~k|2 > N . Write the

integral in (2.27) as
−a+iT∫
−a−iT

=
−a−i∫
−a−iT

+
−a+i∫
−a−i

+
−a+iT∫
−a+i

. Then

∣∣∣∣
∑

~k∈Λ∗

′
−a+i∫

−a−i

χγ(s)

|~k|2−2s

xs

s
ds

∣∣∣∣ ¿ x−a
∑

~k∈Λ∗
|~k|2>N

′ 1

|~k|2+2a
≤ x−aZκ(1 + a) ¿ x−a.

Now,

|J | =
∣∣∣∣
−a+iT∫

−a+i

χγ(s)

|~k|2−2s

xs

s
ds

∣∣∣∣ =
x−aπ−2a−1

√
γ|~k|2+2a

∣∣∣∣
T∫

1

i
Γ(1− s)

Γ(s)

(|~k|2x)ti

ti
π2tidt

∣∣∣∣

¿ x−a

|~k|2+2a

∣∣∣∣
T∫

1

eiF (t)

(
t2a + O

(
t2a−1

))
dt

∣∣∣∣,

with

F (t) = 2t
(− log t + log π + 1

)
+ t log

(|~k|2x)
= t log

π2e2|~k|2x
t2

,

due to the Stirling approximation formula.

One should notice that the contribution of the error term in the last bound is

¿ T 2a

xa

∑

~k∈Λ∗

′ 1

|~k|2+2a
=

T 2a

xa
Zκ(1 + a) ¿ Na.
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We would like to invoke lemma 4.3 of [24] in order to bound the integral above.

For this purpose we compute the derivative:

F ′(t) = log

( |~k|2xπ2

t2

)
≥ log

( |~k|2
N + 1

2
δΛ∗(N)

)
,

by the definition of N , (2.28). Thus in the notations of lemma 4.3 of [24],

F ′(t)
G(t)

=

log

(
|~k|2xπ2

t2

)

t2a
≥

log

(
|~k|2

N+ 1
2
δΛ∗ (N)

)

T 2a
.

We would also like to check that G(t)
F ′(t) is monotonic. Differentiating that function

and leaving only the numerator, we get:

−t2a−1
(
2a log

|~k|2xπ2

t2
+ 2

)
< −2a · t2a−1 log

|~k|2
N + 1

2
δΛ∗(N)

< 0,

since |~k2| > N . Thus

|J | ¿ x−a

|~k|2+2a

T 2a

log |~k|2
N+ 1

2
δΛ∗ (N)

,

getting the same bound for
∣∣ −a−i∫
−a−iT

∣∣, and therefore we are estimating

∑

~k∈Λ∗

′ T 2a

log |~k|2
N+ 1

2
δΛ∗ (N)

.

For |~k|2 ≥ 2N , the contribution of the sum in (2.27) is:

¿ T 2a

xa

∑

~k∈Λ∗
|~k|2≥2N

1

|~k|2+2a
≤ T 2a

xa
Zκ(1 + a) ¿ Na

As for vectors ~k ∈ Λ∗ with N + δκ(N) ≤ |~k|2 < 2N ,

log
|~k|2

N + 1
2
δκ(N)

À |~k|2 −N

N
,

which implies that the corresponding contribution to the sum in (2.27) is:

¿ T 2a

xaN1+a

∑

~k∈Λ∗
N+δκ(N)≤|~k|2<2N

′ N

|~k|2 −N
¿

√
2N∫

√
N+δκ(N)

r

r2 −N − 1
2
δκ(N)

¿ log
(
δκ(N)

)
+ log N
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The main term of I comes from |~k|2 ≤ N . For such a ~k, we write

(2.29)

−a+iT∫

−a−iT

=

i∞∫

−i∞

−
( i∞∫

iT

+

−iT∫

−i∞

+

−a−iT∫

−iT

+

iT∫

−a+iT

)
,

that is, we are moving the contour of the integration to the imaginary axis.

Consider the first integral in the brackets. It is a constant multiple of

∞∫

T

eiF (t)dt ¿ 1

log

(
N+ 1

2
δκ(N)

|~k|2

) ,

and so the contribution of the corresponding sum is

¿
∑

~k∈Λ∗
|~k|2≤N

1

|~k|2 log

(
N+ 1

2
δκ(N)

|~k|2

) ¿ N

√
N∫

1

dr

r
(
N + 1

2
δκ(N)− r2

)

¿ log N + log δκ(N),

by lemma 4.2 of [24], and similarly for the second integral in the brackets in (2.29).

The last two give

¿
∑

~k∈Λ∗
|~k|2≤N

1

|~k|2

0∫

−a

( |~k|2x
T 2

)σ

dσ ¿
∑

~k∈Λ∗
|~k|2≤N

1

|~k|2
(

T 2

|~k|2x

)a

¿ T 2a

xa

√
N∫

1

dr

r2a+1
¿ Na.

Altogether we have now proved:

∆Λ(x) =
1

2π2di

∑

~k∈Λ∗
|~k|2≤N

′ 1

|~k|2

i∞∫

−i∞

π2s Γ(1− s)

Γ(s)

(|~k|2x)s

s
ds + O(Na)

+ O

(
xc−1/2

√
N

)
+ O

( √
x√
N
· ( log x + log(δΛ(x))

))

+ O
(
log N + log(δΛ∗(x))

)

(2.30)
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Recall the integral
i∞∫
−i∞

Γ(1−s)
Γ(s)

ys

s
ds is a principal value, that is lim

T→∞

∫ iT

−iT
. We have

lim
T→∞

∫ iT

−iT

Γ(1− s)

Γ(s)

ys

s
ds = −√yJ−1(2

√
y)

as can be seen by shifting contours. Note that the analogous Barnes-Mellin formula

Jν(x) =
1

2πi

i∞∫

−i∞

Γ(−s)[Γ(ν + s + 1)]−1(x/2)ν+2sds

valid for Re(ν) > 0 (see [11], (36), page 83), which deals with convergent integrals,

is proved in this manner.

The well-known asymptotics of the bessel J-function,

J−1(y) =

√
2

πy
cos

(
y +

π

4

)
+ O(y−3/2)

as y → ∞, allow us to estimate the integral involved in (2.30) in terms of x and

~k. Collecting all the constants and the error terms, we obtain the result of lemma

2.3.1.

2.4 Unsmoothing

Proposition 2.4.1. Let a lattice Λ =
〈
1, iα

〉
with a Diophantine γ := α2 be given.

Suppose that L → ∞ as T → ∞ and choose M , such that L/
√

M → 0, but M =

O
(
T δ

)
for every δ > 0 as T →∞. Suppose furthermore, that M = O(Ls0) for some

(fixed) s0 > 0. Then

〈∣∣∣∣SΛ(t, ρ)− S̃Λ, M, L(t)

∣∣∣∣
2
〉

T

¿ 1√
M

Proof. Since γ is Diophantine, we may invoke lemma 2.3.1 with δΛ(y) = c1
yK0

and

δΛ∗(y) = c2
yK0

, where c1, c2 are constants. Choosing a = δ′ and c = 1+ δ′/2 for δ′ > 0

arbitrarily small and using essentially the same manipulation we used in order to
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obtain (2.8), and using (2.9) again, we get the following asymptotical formula:

(2.31) SΛ(t, ρ) =
2

dπ

∑

~k∈Λ∗\{0}

sin

(
π|~k|
L

)

|~k| 32
sin

(
2π

(
t +

1

2L

)
|~k|+ π

4

)
+ RΛ(N, t),

where

|RΛ(N, t)| ¿ N δ′

√
|t| +

|t|1/2+δ′

√
N

+
1

|t|1/2−δ′ .

Set N = T 3. Since M is small, the infinite sum in (2.8) is truncated before n = T 3.

Thus (2.8) together with (2.31) implies:

SΛ(t, ρ)− S̃Λ, M, L(t) =

2

dπ

∑

~k∈Λ∗\{0}
|~k|≤T 3/2

sin

(
π|~k|
L

)

|~k| 32
sin

(
2π

(
t +

1

2L

)
|~k|+ π

4

)(
1− ψ̂

( |~k|√
M

))

+ RΛ(T 3, t).

(2.32)

Let PΛ(N, t) denote the sum in (2.32). Then the Cauchy-Schwartz inequality

gives:

〈∣∣∣∣SΛ(t, ρ)− S̃Λ, M, L(t)

∣∣∣∣
2
〉

T

=
〈
P 2

Λ

〉
T

+
〈
RΛ(N, t)2

〉
T
+

O

(√〈
P 2

Λ

〉
T

√〈
RΛ(N, t)2

〉
T

)
.

(2.33)

Observe that for the chosen N ,

〈
RΛ(N, t)2

〉
T

= O
(
T−1+δ′)

for arbitrary small δ′ > 0, since the above equality is satisfied pointwise.

Next we would like to bound
〈
P 2

Λ

〉
T
. Just as we did while computing the variance

of the smoothed variable, S̃Λ, M, L, we divide all the terms of the expanded sum into
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the diagonal terms and the off-diagonal ones (see section 2.2.1). Namely,

〈
P 2

Λ

〉
T

=
2

d2π2

∑

~k∈Λ∗\{0}
|~k|≤T 3/2

sin2

(
π|~k|
L

)

|~k|3
(

1− ψ̂
( |~k|√

M

))2

+ O

( ∑

~k,~l∈Λ∗\{0}
|~k|6=|~l|≤T 3/2

1

|~k|3/2|~l|3/2
ω̂

(
T

(|~k| − |~l|)
))(2.34)

We will evaluate the diagonal contribution now. For |~k| ≤ √
M ,

ψ̂

( |~k|√
M

)
= 1 + O

( |~k|√
M

)
,

and so the diagonal contribution is:

1

M

∑

~k∈Λ∗\{0}
1¿|~k|≤√M

1

|~k|
+

∑

~k∈Λ∗\{0}√
M≤|~k|≤T 3/2

1

|~k|3
¿ 1√

M
,

converting the sums into corresponding integrals and evaluating these integrals in

the elliptic variables.

Finally, we are evaluating the off-diagonal contribution to (2.34) (that is, the

second sum in the right-hand side of (2.34)). Set 0 < δ0 < 1. With no loss of

generality, we may assume that |~k| < |~l|. Evaluating the contribution of pairs ~k, ~l

with

|~l|2 − |~k|2 ≥ |~k|
T 1−δ0

gives:

¿
∑

~k,~l∈Λ∗\{0}
|~k|<|~l|≤T 3/2

1

|~k|3/2|~l|3/2
ω̂

(
T

(|~k| − |~l|)
)
¿ T−Aδ0+6

for every A > 0, since

T
(|~l| − |~k|) = T

|~l|2 − |~k|2
|~k|+ |~l|

À T δ0
|~k|

|~k|+ |~l|
≥ T δ0

|~k|
|~k|+ 2|~k|

À T δ0 ,
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as otherwise,

T
(|~l| − |~k|) ≥ T

(|~k|) À T À T δ0 .

Thus the contribution of such terms is negligible.

In order to bound the contribution of pairs of Λ∗-vectors with

|~l|2 − |~k|2 ≤ |~k|
T 1−δ0

we use the Diophantine assumption on β again. Recall that we chose δΛ∗(y) = c2
yK0

with a constant c2 in the beginning of the current proof. Choose a constant R0 > 0

and assume that |~l|2 ≤ cLR0 , for a constant c. Then

|~l|2 − |~k|2 ≥ δΛ∗(L
R0) À 1

LK0R0
À 1

MK0R0/2
À |~k|

T 1−δ0
.

Therefore, for an appropriate choice of c, there are no such pairs. Denote

Sn :=

{
(~k, ~l) ∈ (Λ∗)2 : 2n ≤ |~k|2 ≤ 2n+1, |~k|2 ≤ |~l|2 ≤ |~k|2 +

2n/2

T 1−δ0

}

Thus, by dyadic partition, the contribution is:

¿
d3 log T e∑

n=bR0 log Lc

∑

2n≤|~k|2≤2n+1

|~k|2≤|~l|2≤|~k|2+ 2n/2

T1−δ0

1

|~k|3/2|~l|3/2
ω̂

(
T

(|~k| − |~l|)
)

¿
d3 log T e∑

n=bR0 log Lc

#Sn

23n/2
,

using |ω̂| ¿ 1 everywhere. In order to bound the size of Sn, we use the follow-

ing lemma, which is just a restatement of lemma 3.1 from [2]. We will prove it

immediately after we finish proving proposition 2.4.1.

Lemma 2.4.2. Let Λ =
〈
1, iη

〉
be a rectangular lattice. Denote

A(R, δ) := {(~k, ~l) ∈ Λ : R ≤ |~k|2 ≤ 2R, |~k|2 ≤ |~l|2 ≤ |~k|2 + δ}.
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Then if δ > 1, we have for every ε > 0,

#A(R, δ) ¿ε Rε ·Rδ

Thus, lemma 2.4.2 implies

#Sn ¿ 2n+ε(n/2) max

(
1,

2n/2

T 1−δ0

)
,

for every ε > 0. Thus the contribution is:

¿
C log T+1∑

n=R0 log L−1

1

23n/2
· 2n+εn/2 · 1 +

3 log T+1∑

n=C log T−1

1

23n/2
· 2n+εn/2 · 2n/2

T 1−δ0

¿ L−R0(1−ε)/2 +
log T

T 1−δ1
¿ L−R0(1−ε)/2,

since L is much smaller than T . Since R0 is arbitrary, and we have assumed M =

O(Ls0), that implies

〈
P 2

Λ

〉
T
¿ 1√

M
.

Collecting all our results, and using them on (2.33) we obtain

〈∣∣∣∣SΛ(t, ρ)− S̃Λ, M, L(t)

∣∣∣∣
2
〉
¿ 1√

M
+

1

T 1−δ′ +

√
log M

M1/4T 1/2−δ′/2
¿ 1√

M
,

again, since M is much smaller than T .

Proof of lemma 2.4.2. Let ~k = (k1, iηk2) and ~l = (l1, iηl2). Denote µ := η2, n :=

l21 − k2
1 and m := k2

2 − l22. The number of 4-tuples (k1, k2, l1, l2) with m 6= 0 is

#A(δ, T ) ¿
∑

0≤n−µm≤δ
1≤m≤4R

d(n)d(m) ¿ δ
∑

1≤m≤4R

d(m)2 ¿ R1+εδ

Next, we bound the number of 4-tuples with m = 0, n 6= 0:

√
2R∑

k2=0

∑

0<n<δ

d(n) ¿ R1/2+εδ,

and similarly we bound the number of 4-tuples with n = 0, m 6= 0.
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All in all, we have proved that

#A(δ, T ) ¿ R1+εδ

¿From now on we will assume that Λ =
〈
1, iα

〉
with a Diophantine γ := α2, and

so the use of proposition 2.4.1 is justified.

Lemma 2.4.3. Under the conditions of proposition 2.4.1, for all fixed ξ > 0,

Pω, T

{∣∣∣∣
SΛ(t, ρ)

σ
− S̃Λ, M, L(t)

σ

∣∣∣∣ > ξ

}
→ 0,

as T →∞, where σ2 = 8π
dL

.

Proof. Use Chebychev’s inequality and proposition 2.4.1.

Corollary 2.4.4. For a number α ∈ R, suppose that α2 is strongly Diophantine and

denote Λ =
〈
1, α

〉
. Then if L → ∞, but L = O

(
T δ

)
for all δ > 0 as T → ∞, then

for any interval A,

Pω, T

{
SΛ(t, ρ)

σ
∈ A

}
→ 1√

2π

∫

A

e−
x2

2 dx,

where σ2 = 8π
dL

.

Proof. Set M = L3, then, obviously, L, M satisfy the conditions of lemma 2.4.3 and

theorem 2.1.1. Denote X(t) := SΛ(t, ρ)
σ

and Y (t) :=
S̃Λ, M (t)

σ
. In the new notations

lemma 2.4.3 states that for any ξ > 0,

(2.35) Pω, T

{|X(t)− Y (t)| > ξ
} → 0,

as T →∞. Now, for every ε > 0,

{
a ≤ X ≤ b

} ⊆ {
a− ε ≤ Y ≤ b + ε

} ∪ {|X − Y | > ε
}
,
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and so, taking lim sup
T→∞

Pω, T of both of the sides, we obtain:

lim sup
T→∞

Pω, T

{
a ≤ X ≤ b

} ≤ lim
T→∞

Pω, T

{
a− ε ≤ Y ≤ b + ε

}

=
1√
2π

b+ε∫

a−ε

e−
x2

2 dx,

due to (2.35) and theorem 2.1.1. Starting from

{
a + ε ≤ Y ≤ b− ε

} ⊆ {
a ≤ X ≤ b

} ∪ {|X − Y | > ε
}
,

and doing the same manipulations as before, we get the converse inequality, and thus

this implies the result of the present corollary.

We are now in a position to prove our main result, namely, theorem 1.1.1. It

states that the result of corollary 2.4.4 holds for ω = 1[1, 2], the indicator function.

We are unable to substitute it directly because of the rapid decay assumption on

ω̂. Nonetheless, we are able to prove the validity of the result by the means of

approximating the indicator function with functions which will obey the rapid decay

assumption. The proof is essentially the same as of theorem 1.1 in [13], pages 655-656,

and we repeat it in this paper for the sake of the completeness.

Proof of theorem 1.1.1. Fix ε > 0 and approximate the indicator function 1[1, 2] above

and below by smooth functions χ± ≥ 0 so that χ− ≤ 1[1, 2] ≤ χ+, where both χ±

and their Fourier transforms are smooth and of rapid decay, and so that their total

masses are within ε of unity
∣∣ ∫

χ±(x)dx − 1
∣∣ < ε. Now, set ω± := χ±/

∫
χ±. Then

ω± are ”admissible”, and for all t,

(2.36) (1− ε)ω−(t) ≤ 1[1, 2](t) ≤ (1 + ε)ω+(t).
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Now,

meas

{
t ∈ [T, 2T ] :

SΛ(t, ρ)

σ
∈ A

}
=

∞∫

−∞

1A

(
SΛ(t, ρ)

σ

)
1[1, 2]

( t

T

)
dt,

and since (2.36) holds, we find that

(1− ε)Pω−, T

{
SΛ, M, L

σ
∈ A

}
≤ 1

T
meas

{
t ∈ [T, 2T ] :

SΛ(t, ρ)

σ
∈ A

}

≤ (1 + ε)Pω+, T

{
SΛ, M, L

σ
∈ A

}
.

As it was mentioned immediately after the definition of the strong Diophantine prop-

erty, α’s being strongly Diophantine implies the same for α2, making a use of corollary

2.4.4 legitimate. Now by corollary 2.4.4, the two extreme sides of the last inequality

have a limit, as T →∞, of

(1± ε)
1√
2π

∫

A

e−
x2

2 dx,

and so we get that

(1− ε)

∫

A

e−
x2

2 dx ≤ lim inf
T→∞

1

T
meas

{
t ∈ [T, 2T ] :

SΛ(t, ρ)

σ
∈ A

}

with a similar statement for lim sup; since ε > 0 is arbitrary, this shows that the

limit exists and equals

lim
T→∞

1

T
meas

{
t ∈ [T, 2T ] :

SΛ(t, ρ)

σ
∈ A

}
=

1√
2π

∫

A

e−
x2

2 dx,

which is the Gaussian law.



CHAPTER III

The General Case

3.1 The distribution of S̃Λ, M, L

We apply the same smoothing as in chapter II (see section 2.1). That is, we

consider

(3.1) S̃Λ, M, L(t) =
ÑΛ, M(t + 1

L
)− ÑΛ, M(t)− π

d
(2t

L
+ 1

L2 )√
t

,

where ÑΛ, M is given by (2.2), under the same notations for χ and χε as in that

chapter.

Recall that we assume that for every δ > 0, L = L(T ) = O(T δ), which corresponds

to the assumption of theorem 1.1.2 regarding ρ := 1
L
. Moreover, rather than drawing

t at random from [T, 2T ] with a uniform distribution, we prefer to work with a

smooth sample space, defined by ω. The function ω and its Fourier transform, ω̂,

are rapidly decaying at infinity.

The analogue of theorem 2.1.1 in the case of general lattice, is:

Theorem 3.1.1. Suppose that M(T ) and L(T ) are increasing to infinity with T , such

that M = O(T δ) for all δ > 0, and L/
√

M → 0. Then if (α, β) is an algebraically

independent strongly Diophantine pair, we have for Λ =
〈
1, α + iβ

〉
,

lim
T→∞

Pω, T

{
S̃Λ, M, L

σ
∈ A

}
=

1√
2π

∫

A

e−
x2

2 dx,

41



42

for any interval A, where

(3.2) σ2 :=
4π

βL
.

We generalize the Diophantine property (see section 2.2) to a tuple of real num-

bers:

Definition: A tuple of real numbers (α1, . . . , αn) ∈ Rn is called Diophantine, if

there exists a number K > 0, such that for every integer tuple {ai}n
i=0,

(3.3)

∣∣∣∣a0 +
n∑

i=1

aiαi

∣∣∣∣ À
1

qK
,

with q = max
0≤i≤n

|ai|, whenever the LHS of the inequality doesn’t vanish. Khintchine

proved that almost all tuples in Rn are Diophantine (see, e.g. [18], pages 60-63,99).

Denote the dual lattice

Λ∗ =
〈
1, γ + iδ

〉

with γ = −α
β

and δ = 1
β
. In the rest of the current section, we assume, that,

unless specified otherwise, the set of the squared lengths of vectors in Λ∗ satisfy the

Diophantine property. That means, that (α2, αβ, β2) is a Diophantine triple of real

numbers. We may assume (α2, αβ, β2) being Diophantine, since theorem 1.1.2 (and

theorem 3.1.1) assume (α, β) is strongly Diophantine, which is, obviously, a stronger

assumption.

The analogue of corollary 2.2.3 is:

Lemma 3.1.2.

S̃Λ, M, L(t) =
2

βπ

∑

~k∈Λ∗\{0}

sin

(
π|~k|
L

)

|~k| 32
sin

(
2π

(
t +

1

2L

)|~k|+ π

4

)
ψ̂

( |~k|√
M

)

+ O

(
1√
t

)
.

(3.4)
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The proof is literally the same as the one of corollary 2.2.3.

Recall that ψ̂ being compactly supported means that the sum in (3.4) essentially

truncates at |~k| ≈ √
M .

In the current case, there are even less multiplicities than in case of rectangular

lattice (compare with lemma 2.2.2):

Lemma 3.1.3. Let ~aj = mj + nj(α + iβ) ∈ Λ, j = 1, 2, with an irrational α such

that β /∈ Q(α). Then if |~a1| = |~a2|, either n1 = n2 and m1 = m2 or n1 = −n2 and

n2 = −m2.

Proof of theorem 3.1.1. We will show that the moments of S̃Λ, M, L corresponding to

the smooth probability space converge to the moments of the normal distribution

with zero mean and variance which is given by theorem 3.1.1. This allows us to

deduce that the distribution of S̃Λ, M, L converges to the normal distribution as T →

∞, precisely in the sense of theorem 3.1.1.

First, we show that the mean is O( 1√
T
). Since ω is real,

∣∣∣∣∣

〈
sin

(
2π

(
t +

1

2L

)|~k|+ π

4

)〉∣∣∣∣∣ =

∣∣∣∣=m

{
ω̂
(− T |~k|)eiπ(

|~k|
L

+ 1
4

}∣∣∣∣ ¿
1

TA|~k|A

for any A > 0, where we have used the rapid decay of ω̂. Thus

∣∣∣∣
〈

S̃Λ, M, L

〉∣∣∣∣ ¿
∑

~k∈Λ∗\{0}

1

TA|~k|A+3/2
+ O

(
1√
T

)
¿ O

(
1√
T

)
,

due to the convergence of
∑

~k∈Λ∗\{0}

1

|~k|A+3/2
, for A > 1

2

Now define

(3.5) MΛ, m :=

〈(
2

βπ

∑

~k∈Λ∗\{0}

sin

(
π|~k|
L

)

|~k| 32
sin

(
2π

(
t +

1

2L

)|~k|+ π

4

)
ψ̂

( |~k|√
M

))m
〉

Then from (3.4), the binomial formula and the Cauchy-Schwartz inequality,

〈(
S̃Λ, M, L

)m
〉

= MΛ, m + O

( m∑
j=1

(
m

j

)√M2m−2j

T j/2

)
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Proposition 3.1.4 together with proposition 3.1.7 allow us to deduce the result

of theorem 3.1.1 for an algebraically independent strongly Diophantine (ξ, η) :=

(−α
β
, 1

β
). Clearly, (α, β) being algebraically independent and strongly Diophantine

is sufficient.

3.1.1 The variance

The computation of the variance is done in two steps. First, we reduce the main

contribution to the diagonal terms, using the assumption on the pair (α, β) (i.e.

(α2, αβ, β2) is Diophantine). Then we compute the contribution of the diagonal

terms. Both these steps are very close to the corresponding ones in chapter II.

Suppose that the triple (α2, αβ, β2) satisfies (3.3).

Proposition 3.1.4. If M = O
(
T 1/(K+1/2+δ)

)
for fixed δ > 0, then the variance of

S̃Λ, M, L is asymptotic to

σ2 :=
4

β2π2

∑

~k∈Λ∗\{0}

sin2

(
π|~k|
L

)

|~k|3
ψ̂2

( |~k|√
M

)

If L →∞, but L/
√

M → 0, then

(3.6) σ2 ∼ 4π

βL

Remark: In the formulation of proposition 3.1.4, K is implicitly given by (3.3).

Proof. Expanding out (3.5), we have

MΛ, 2 =
4

β2π2

∑

~k,~l∈Λ∗\{0}

sin

(
π|~k|
L

)
sin

(
π|~l|
L

)
ψ̂

( |~k|√
M

)
ψ̂

( |~l|√
M

)

|~k| 32 |~l| 32

×
〈

sin

(
2π

(
t +

1

2L

)
|~k|+ π

4

)
sin

(
2π

(
t +

1

2L

)
|~l|+ π

4

)〉
(3.7)
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It is easy to check that the average of the second line of the previous equation is:

1

4

[
ω̂
(
T (|~k| − |~l|))eiπ(1/L)(|~l|−|~k|)+

ω̂
(
T (|~l| − |~k|))eiπ(1/L)(|~k|−|~l|)+

ω̂
(
T (|~k|+ |~l|))e−iπ(1/2+(1/L)(|~k|+|~l|))−

ω̂
(− T (|~k|+ |~l|))eiπ(1/2+(1/L)(|~k|+|~l|))

]

(3.8)

Recall that the support condition on ψ̂ means that ~k and ~l are both constrained to

be of length O(
√

M). Thus the off-diagonal contribution (that is for |~k| 6= |~l| ) of

the first two lines of (3.8) is

¿
∑

~k,~l∈Λ∗\{0}
|~k|, |~k′|≤√M

MA(K+1/2)

TA
¿ MA(K+1/2)+2

TA
¿ T−B,

for every B > 0, since (α, αβ, β2) is Diophantine.

Obviously, the contribution to (3.7) of the two last lines of (3.8) is negligible both

in the diagonal and off-diagonal cases, justifying the diagonal approximation of (3.7)

in the first statement of the proposition. The computation of the asymptotics is done

literally the same way as in chapter II (see proposition 2.2.4).

3.1.2 The higher moments

In order to compute the higher moments we will prove that the main contribution

comes from the so-called diagonal terms (to be explained later). Our bound for the

contribution of the off-diagonal terms holds for a strongly Diophantine pair of real

numbers, which is defined below. In order to show that the strongly Diophantine

pairs are ”generic”, we use theorem 3.1.5 below, which is a consequence of the work

of Kleinbock and Margulis [15]. The contribution of the diagonal terms is computed

exactly in the same manner it was done in chapter II, and so we will omit it here.
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Definition: We call the pair (ξ, η) strongly Diophantine, if for all natural n there

exists a number K1 = K1(ξ, η, n) ∈ N such that for every integral polynomial of 2

variables p(x, y) =
∑

i+j≤n

ai, jx
iyj of degree ≤ n, we have

(3.9)
∣∣p(ξ, η)

∣∣ À h−K1 ,

where h = max
i+j≤n

|ai, j| is the height of p. The constant involved in the ” À ” notation

may depend only on ξ, η, n and K1.

Theorem 3.1.5. Let an integer n be given. Then almost all pairs of real numbers

(ξ, η) ∈ R2 satisfy the following property: there exists a number K1 = K1(n) ∈ N

such that for every integer polynomial of 2 variables p(x, y) =
∑

i+j≤n

ai, jx
iyj of degree

≤ n, (3.9) is satisfied.

Theorem 3.1.5 states that almost all real pairs of numbers are strongly Diophan-

tine.

Remark: Theorem A in [15] is much more general than the result we are using.

As a matter of fact, we have the inequality

∣∣b0 + b1f1(x) + . . . + bnfn(x)
∣∣ Àε

1

hn+ε

with bi ∈ Z and

h := max
0≤i≤n

|bi|.

The inequality above holds for every ε > 0 for a wide class of functions fi : U → R,

for almost all x ∈ U , where U ⊂ Rm is an open subset. Here we use this inequality

for the monomials.

Remark: Simon Kristensen [16] has recently shown, that the set of all pairs

(ξ, η) ∈ R2 which fail to be strongly Diophantine has Hausdorff dimension 1.
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Obviously, if (ξ, η) is strongly Diophantine, then any n-tuple of real numbers,

which consists of a set of monomials in ξ and η, is Diophantine. Moreover, (ξ, η) is

strongly Diophantine iff (− ξ
η
, 1

η
) is such.

We have the following analogue of lemma 2.2.6, which will eventually allow us to

exploit the strong Diophantine assumption of (α, β).

Lemma 3.1.6. If (ξ, η) is strongly Diophantine, then it satisfies the following prop-

erty: for any fixed natural m, there exists K ∈ N, such that if

zj = a2
j + b2

jξ
2 + 2ajbjξ + b2

jη
2 ¿ M,

and εj = ±1 for j = 1, . . . , m, with integral aj, bj and if
m∑

j=1

εj
√

zj 6= 0, then

(3.10)
∣∣

m∑
j=1

εj
√

zj

∣∣ À M−K ,

where the constant involved in the ” À ” notation depends only on η and m.

The proof is essentially the same as the one of lemma 2.2.6, considering the

product Q of numbers of the form
m∑

j=1

δj
√

zj over all possible signs δj. Here we use

the Diophantine condition of the real tuple (ξ, η) rather than of a single real number.

Proposition 3.1.7. Let m ∈ N be given. Suppose that Λ = 〈1, α + iβ〉, such

that the pair (ξ, η) := (−α
β
, 1

β
) is algebraically independent strongly Diophantine,

which satisfy the property of lemma 3.1.6 for the given m, with K = Km. Then if

M = O
(
T

1−δ
Km

)
for some δ > 0, and if L → ∞ such that L/

√
M → 0, the following

holds:

MΛ, m

σm
=





m!

2m/2
(

m
2

)
!
+ O

(
log L

L

)
, m is even

O
(

log L
L

)
, m is odd
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Proof. Expanding out (3.5), we have

MΛ, m =
2m

βmπm

∑

~k1,..., ~km∈Λ∗\{0}

m∏
j=1

sin

(
π| ~kj |

L

)
ψ̂

( | ~kj |√
M

)

|~kj| 32

×
〈 m∏

j=1

sin

(
2π

(
t +

1

2L

)|~k1|+ π

4

)〉(3.11)

Now,
〈 m∏

j=1

sin

(
2π

(
t +

1

2L

)|~k1|+ π

4

)〉

=
∑

εj=±1

m∏
j=1

εj

2mim
ω̂

(
− T

m∑
j=1

εj|~kj|
)

e
πi

mP
j=1

εj

(
(1/L)| ~kj |+1/4

)

We call a term of the summation in (3.11) with
m∑

j=1

εj|~kj| = 0 diagonal, and off-

diagonal otherwise. Due to lemma 3.1.6, the contribution of the off-diagonal terms

is:

¿
∑

~k1,..., ~km∈Λ∗\{0}
| ~k1|, ..., | ~km|≤

√
M

(
T

MKm

)−A

¿ MmT−Aδ,

for every A > 0, by the rapid decay of ω̂ and our assumption regarding M .

Since m is constant, this allows us to reduce the sum to the diagonal terms. The

analogue of Besicovich’s theorem holds in this case too:

Proposition 3.1.8. Suppose that ξ and η are algebraically independent, and

(3.12) zj = a2
j + 2ajbjξ + b2

j(ξ
2 + η),

such that (aj, bj) ∈ Z2
+ are all different primitive vectors, for 1 ≤ j ≤ m. Then

{√zj}m
j=1 are linearly independent over Q.

The last proposition is an immediate consequence of a theorem proved in the

appendix of [3].
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Recall the definition of the principal diagonal terms in section 2.2.2. The analogue

of corollary 2.2.9 in this case is:

Corollary 3.1.9. Every diagonal term is a principle diagonal term whenether ξ and

η are algebraically independent.

Having corollary 3.1.9 in our hands, the computation of the contribution of the

principal diagonal terms is done literally the same way it was done in chapter II,

proposition 2.2.7

3.2 Bounding the number of close pairs of lattice points

Roughly speaking, we say that a pair of lattice points, n and n′ is close, if
∣∣|n|−|n′|

∣∣

is small. We would like to show that this phenomenon is rare. This is closely related

to the Oppenheim conjecture, as |n|2 − |n′|2 is a quadratic form on the coefficients

of n and n′.

In order to establish a quantative result, we use a technique developed in a paper

by Eskin, Margulis and Mozes [9]. Note that the proof is unconditional on any

Diophantine assumptions.

3.2.1 Statement of the results

The ultimate goal of this section is to establish the following

Proposition 3.2.1. Let Λ be a lattice and denote

(3.13) A(R, δ) := {(~k, ~l) ∈ Λ× Λ : R ≤ |~k|2 ≤ 2R, |~k|2 ≤ |~l|2 ≤ |~k|2 + δ}.

Then if δ > 1, such that δ = o(R), we have

#A(R, δ) ¿ Rδ · log R
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In order to prove this result, we note that evaluating the size of A(R, δ) is equiv-

alent to counting integer points ~v ∈ R4 with T ≤ ‖~v‖ ≤ 2T such that

0 ≤ Q1(v) ≤ δ,

where Q1 is a quadratic form of signature (2, 2), given explicitly by

(3.14) Q1(~v) = (v1 + v2α)2 + (v2β)2 − (v3 + v4α)2 − (v4β)2.

For a fixed δ > 0 and a large R, this situation was considered extensively by Eskin,

Margulis and Mozes [9]. The authors give an asymptotical upper bound in this

situation. We will examine how the constants involved in their bound depend on δ,

and find out that there is a linear dependency, which is what we essentially need.

The author wishes to thank Alex Eskin for his assistance with this matter.

Remarks: 1. In a more recent paper, Eskin Margulis and Mozes [10] prove that

for ”generic” lattice Λ, there is a constant c > 0, such that for any fixed δ > 0, as

R →∞, #A(R, δ) is asymptotic to cδR.

2. For our purposes we need a weaker result:

#A(R, δ) ¿ε Rδ ·Rε,

for every ε > 0, just as in the case of a rectangular lattice (see lemma 2.4.2).

Theorem 2.3 in [9] considers a more general setting than proposition 3.2.1. We

state here theorem 2.3 from [9] (see theorem 3.2.2). It follows from theorem 3.3

from [9], which will be stated as well (see theorem 3.2.3). Then we give an outline

of the proof of theorem 2.3 of [9], and inspect the dependency on δ of the constants

involved.
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3.2.2 Theorems 2.3 and 3.3 from [9]

Let ∆ be a lattice in Rn. We say that a subspace L ⊂ Rn is ∆-rational, if L ∩∆

is a lattice in L. We need the following definitions:

Definitions:

αi(∆) := sup

{
1

d∆(L)

∣∣∣∣ L is a ∆− rational subspace of dimension i

}
,

where

d∆(L) := vol(L/(L ∩∆)).

Also

α(∆) := max
0≤i≤n

αi(∆).

Since the space of unimodular lattices is canonically isomorphic to

SL(n, R)/SL(n, Z), the notation α(g) makes sense for g ∈ G := SL(n, R).

For a bounded function f : Rn → R, with |f | ≤ M , which vanishes outside a ball

B(0, R), define f̃ : SL(n, R) → R by the following formula:

f̃(g) :=
∑

v∈Zn

f(gv).

Lemma 3.1 in [19] implies that

(3.15) f̃(g) < cα(g),

where c = c(f) is an explicit constant constant

c(f) = c0M max(1, Rn),

for some constant c0 = c0(n), independent on f. In section 3.2.4 we prove a stronger

result, assuming some additional information about the support of f .
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Let Q0 be a quadratic form defined by

Q0(~v) = 2v1vn +

p∑
i=2

v2
i −

n−1∑
i=p+1

v2
i .

Since

v1vn =
(v1 + vn)2 − (v1 − vn)2

2
,

Q0 is of signature p, q. Obviously, G := SL(n,R) acts on the space of quadratic

forms of signature (p, q), and discriminant ±1, O = O(p, q) by:

Qg(v) := Q(gv).

Moreover, by the well known classification of quadratic forms, O is the orbit of Q0

under this action.

In our case the signature is (p, q) = (2, 2) and n = 4. We fix an element h1 ∈ G

with Qh1 = Q1, where Q1 is given by (3.14). There exists a constant τ > 0, such

that for every v ∈ R4,

(3.16) τ−1‖v‖ ≤ ‖h1v‖ ≤ τ‖v‖.

We may assume, with no loss of generality that τ ≥ 1.

Let H := StabQ0(G). Then the natural mophism H\G → O(p, q) is a homeomor-

phism. Define a 1-parameter family at ∈ G by:

atei =





e−te1, i = 1

ei, i = 2, . . . , n− 1

eten, i = n

.

Clearly, at ∈ H. Furthermore, let K̂ be the subgroup of G consisting of orthogonal

matrices, and denote K := H ∩ K̂.
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Let (a, b) ∈ R2 be given and let Q : Rn → R be any quadratic form. The object

of our interest is:

V(a, b)(Z) = V Q
(a, b)(Z) = {x ∈ Zn : a < Q(x) < b}.

Theorem 2.3 states, in our case:

Theorem 3.2.2 (Theorem 2.3 from [9]). Let Ω = {v ∈ R4| ‖v‖ < ν(v/‖v‖)}, where

ν is a nonnegative continuous function on S3. Then we have:

#V Q1

(a, b)(Z) ∩ TΩ < cT 2 log T,

where the constant c depends only on (a, b).

The proof of theorem 3.2.2 relies on theorem 3.3 from [9], and we give here a

particular case of this theorem

Theorem 3.2.3 (Theorem 3.3 from [9]). For any (fixed) lattice ∆ in R4,

sup
t>1

1

t

∫

K

α(atk∆)dm(k) < ∞,

where the upper bound is universal.

3.2.3 Outline of the proof of theorem 3.2.2:

Step 1: Define

(3.17) Jf (r, ζ) =
1

r2

∫

R2

f(r, x2, x3, x4)dx2dx3,

where

x4 =
ζ − x2

2 + x2
3

2r

Lemma 3.6 in [9] states that Jf is approximable by means of an integral over the

compact subgroup K. More precisely, there is some constant C > 0, such that for
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every ε > 0,

(3.18)

∣∣∣∣C · e2t

∫

K

f(atkv)ν(k−1e1)dm(k)− Jf

(‖v‖e−t, Q0(v)
)
ν(

v

‖v‖)

∣∣∣∣ < ε

with et, ‖v‖ > T0 for some T0 > 0.

Step 2: Choose a continuous nonnegative function f on R4
+ = {x1 > 0} which

vanishes outside a compact set so that

Jf (r, ζ) ≥ 1 + ε

on [τ−1, 2τ ]× [a, b]. We will show later, how one can choose f .

Step 3: Denote T = et, and suppose that T ≤ ‖v‖ ≤ 2T and a ≤ Q0(h1v) ≤ b.

Then by (3.16), Jf

(‖h1v‖T−1, Q0(h1v)
) ≥ 1+ε, and by (3.18), for a sufficiently large

t,

(3.19) C · T 2

∫

K

f(atkh1v)dm(k) ≥ 1,

for T ≤ ‖v‖ ≤ 2T and

(3.20) a ≤ Qx
0(v) ≤ b.

Step 4: Summing (3.19) over all v ∈ Z4 with (3.20) and T ≤ ‖v‖ ≤ 2T , we

obtain:

#V(a, b)(Z) ∩ [T, 2T ]S3 ≤
∑

v∈Zn

C · T 2

∫

K

f(atkh1v)dm(k)

= C · T 2

∫

K

f̃(atkh1)dm(k)

(3.21)

using the nonnegativity of f .
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Step 5: By (3.15), (3.21) is

≤ C · c(f) · T 2

∫

K

α(atkh1)dm(k).

Step 6: The result of theorem 2.3 is obtained by using theorem 3.2.3 on the last

expression.

3.2.4 δ-dependency:

In this section we assume that (a, b) = (0, δ), which suits the definition of the set

A(R, δ), (3.13). One should notice that there only 3 δ-dependent steps:

• Choosing f in step 2, such that Jf ≥ 1+ε on [τ−1, 2τ ]× [0, δ]. We will construct

a family of functions fδ with an universal bound |fδ| ≤ M , such that fδ vanishes

outside of a compact set which is only slightly larger than

(3.22) V (δ) = [τ−1, 2τ ]× [−1, −1]2 × [0,
δτ

2
].

This is done in section 3.2.4.

• The dependency of T0 of step 3, so that the usage of lemma 3.6 in [9] is legitimate.

For this purpose we will have to examine the proof of this lemma. This is done in

section 3.2.4.

• The constant c in (3.15). We would like to establish a linear dependency on δ.

This is straightforward, once we are able to control the number of integral points in

a domain defined by (3.22). This is done in section 3.2.4.

Choosing fδ:

Notation: For a set U ⊂ Rn, and ε > 0, denote

Uε := {x ∈ Rn : max
1≤i≤n

|xi − yi| ≤ ε, for some y ∈ U}.
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Choose a nonnegative continuous function f0, on R4
+, which vanishes outside a

compact set, such that its support, Ef0 , slightly exceeds the set V (1). More precisely,

V (1) ⊂ Ef0 ⊂ V (1)δ0 for some δ0 > 0. By the uniform continuity of f , there

are ε0, δ0 > 0, such that if max
1≤i≤4

|xi − x0
i | ≤ δ0, then f(x) > ε0, for every x0 =

(x0
1, 0, 0, x0

4) ∈ V (1).

Thus for (r, ζ) ∈ [τ−1, 2τ ] × [0, δ], the contribution of [−δ0, δ0]
2 to Jf0 is ≥

ε0 · (2δ0)
2. Multiplying f0 by a suitable factor, and by the linearity of Jf0 , we may

assume that this contribution is at least 1 + ε.

Now define fδ(x1, . . . , x4) := f0(x1, x2, x3,
x4

δ
). We have for δ ≥ 1

ζ − x2
2 + x2

3

2rδ
=

ζ/2r

δ
− (x2/

√
δ)2

2r
+

(x3/
√

δ)2

2r
.

Thus for δ ≥ 1, if (r, ζ) ∈ [τ−1, 2τ ]× [0, δ] and for i = 2, 3, |xi| < δ0, fδ satisfies:

fδ(r, x2, x3, x4) > ε0,

and therefore the contribution of this domain to Jfδ
is

≥ ε0(2δ)
2 ≥ 1 + ε

by our assumption.

By the construction, the family {fδ} has a universal upper bound M which is the

one of f0.

How large is T0

The proof of lemma 3.6 from [9] works well along the same lines, as long as

(3.23) f(atx) 6= 0

implies that for t →∞, x/‖x‖ converges to e1 = (1, 0, 0, 0). Now, since at preserves

x1x4, (3.23) implies for the particular choice of f = fδ in section 3.2.4:

|x1x4| = O(δ); x1 À T.
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Thus

‖x‖ = x1 + O

(
δ

T

)
+ O(1),

and so, as long as δ = O(T ), x/‖x‖ indeed converges to e1.

Bounding integral points in Vδ:

Lemma 3.2.4. Let V (δ) defined by

(3.24) V (δ) = [τ−1, 2τ ]× [−1, −1]n−2 × [0,
δβ

2
].

for some constant τ and n ≥ 3. Let g ∈ SL(n, R) and denote

N(g, δ) := #V (δ) ∩ gZn.

Then for δ ≥ 1,

∣∣∣∣N(g, δ)− 2n−2(2τ − τ−1)δ

det g

∣∣∣∣ ≤ c5δ

n−1∑
i=1

1

vol(Li/(gZn ∩ Li)

for some g-rational subspaces Li of R4 of dimension i, where c5 = c5(n) depends only

on n.

A direct consequence of lemma 3.2.4 is the following

Corollary 3.2.5. Let f : Rn → R be a nonnegative function which vanishes outside

a compact set E. Suppose that E ⊂ Vε(δ) for some ε > 0. Then for δ ≥ 1, (3.15) is

satisfied with

c(f) = c3 ·Mδ,

where the constant c3 depends on n only.

In order to prove lemma 3.2.4, we shall need the following:
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Lemma 3.2.6. Let Λ ⊂ Rn be a m-dimensional lattice, and let

(3.25) At =




1

1

. . .

t




an n-dimensional linear transformation. Then for t > 0 we have

(3.26) det AtΛ ≤ t det Λ.

Proof. We may assume that m < n, since if m = n, we obviously have an equality.

Let v1, . . . , vm the basis of Λ and denote for every i, ui ∈ Rn−1 the vector, which

consists of first n− 1 coordinates of vi. Also, let xi ∈ R be the last coordinate of vi.

By switching vectors, if necessary, we may assume x1 6= 0. We consider the function

f(t) := (det AtΛ)2,

as a function of t ∈ R.

Obviously,

f(t) = det
(〈ui, uj〉+ xixjt

2
)
1≤i, j≤m

.

Substracting xi

x1
times the first row from any other, we obtain:

f(t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈u1, uj〉+ x1xjt
2

〈u2, uj〉 − x2

x1
〈u1, uj〉

...

〈um, uj〉 − xm

x1
〈u1, uj〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

and by the multilinearity property of the determinant, f is a linear function of t2.

Write

f(t) = a(t2 − 1) + bt2.
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Thus

b = f(1); a = −f(0),

and so b = det Λ, and a = − det
(〈ui, uj〉

) ≤ 0, being minus the determinant of a

Gram matrix. Therefore,

(det AtΛ)2 − t2 det Λ = a(t2 − 1) ≤ 0

for t ≥ 1, implying (3.25).

Proof of lemma 3.2.4. We will prove the lemma, assuming β = 2. However, it implies

the result of the lemma for any β, affecting only c5. Let δ > 0. Trivially,

N(g, δ) = N(g0, 1),

where g0 = A−1
δ g with Aδ given by (3.25). Let λ1 ≤ λ2 ≤ . . . ≤ λn be the successive

minima of g0, and pick linearly independent lattice points v1, . . . , vn with ‖vi‖ = λi.

Denote Mi the linear space spanned by v1, . . . , vi and the lattice Λi = g0Zn ∩Mi.

First, assume that λn ≤
√

τ 2 + (n− 1) =: r. Now, by Gauss’ argument,

∣∣∣∣N(g0, 1)− 2n−1(2τ − τ−1)δ

det g

∣∣∣∣ ≤
1

det g0

vol(Σ),

where

Σ := {x : dist(x, ∂V (1)) ≤ nλn}.

Now, for λn ≤ r,

vol(Σ) ¿ λn,

where the constant implied in the “ ¿ “-notation depends on n only (this is obvious

for λn ≤ 1
2n

, and trivial otherwise, since for λn ≤ r, vol(Σ) = O(1)). Thus,
∣∣∣∣N(g0, 1)− 2n−1(2τ − τ−1)δ

det g

∣∣∣∣ ¿
λn

det g0

¿ 1

det Λn−1

=
1

vol(Mn−1/Mn−1 ∩ g0Zn)
≤ δ

vol(AδMn−1/AδMn−1 ∩ gZn)
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Next, suppose that λn > r. Then,

V (δ) ∩ g0Zn ⊂ V (δ) ∩ Λn−1.

Thus, by the induction hypothesis, the number of such points is:

≤c4

k−1∑
i=0

1

det(Λi)
=

k−1∑
i=0

1

vol(Mi/Mi ∩ g0Zn)

≤ δ

k−1∑
i=0

1

vol(AδMi/AδMi ∩ gZn)
.

Since λn > r, we have

1

det g
=

1

λn

1

det g/λn

¿ 1

det g/λn

¿ 1

λ1 · . . . · λn−1

,

and we’re done by defining Li := AδMi.

3.3 Unsmoothing

We have the following analogue of lemma 2.3.1:

Lemma 3.3.1. Under the notations of lemma 2.3.1, for every a > 0, c > 1 we have

NΛ(t) =
π

β
t2 −

√
t

βπ

∑

~k∈Λ∗\{0}
|~k|≤√N

cos
(
2πt|~k|+ π

4

)

|~k| 32
+ O(Na)

+ O

(
t2c−1

√
N

)
+ O

(
t√
N
· ( log t + log(δΛ(t2)

))

+ O

(
log N + log(δΛ∗(t

2))

)

As in section 2.3, a typical example of the function δΛ for Λ = 〈1, α + iβ〉, with

a Diophantine (α, α2, β2), we may choose δΛ(y) = c
yK , where c is a constant. In

this case, if Λ 3 ~k = (a, b), then A|~k| = ±(a, b), due to lemma 3.1.3, provided that

β /∈ Q(α).
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Sketch of proof. The proof of this lemma is literally the same as the one of lemma

2.3.1, starting from

ZΛ(s) :=
1

2

∑

~k∈Λ\0

1

|~k|2s
=

∑

(m, n)∈Z2
+\0

1(
(m + nα)2 + (βn)2

)s ,

where the series is convergent for <s > 1.

Proposition 3.3.2. Let a lattice Λ = 〈1, α+iβ〉 with a Diophantine triple of numbers

(α2, αβ, β2) be given. Suppose that L → ∞ as T → ∞ and choose M , such that

L/
√

M → 0, but M = O
(
T δ

)
for every δ > 0 as T →∞. Suppose furthermore, that

M = O(Ls0) for some (fixed) s0 > 0. Then

〈∣∣∣∣SΛ(t, ρ)− S̃Λ, M, L(t)

∣∣∣∣
2
〉
¿ 1√

M

The proof of proposition 3.3.2 proceeds along the same lines as the one of proposi-

tion 2.4.1, using again an asymptotic formula for the sharp counting function, given

by lemma 3.3.1. The only difference is that here we use proposition 3.2.1 rather than

lemma 2.4.2.

Once we have proposition 3.3.2 in our hands, the proof of our main result, namely,

theorem 1.1.2 proceeds along the same lines as the one of theorem 1.1.1.
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