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Replicability analysis for genome-wide association studies

Ruth Heller and Daniel Yekutieli1

Abstract. The paramount importance of replicating associations is well recognized in the genome-
wide associaton (GWA) research community, yet methods for assessing replicability of associations
are scarce. Published GWA studies often combine separately the results of primary studies and
of the follow-up studies. Informally, reporting the two separate meta-analyses, that of the primary
studies and follow-up studies, gives a sense of the replicability of the results. We suggest a formal
empirical Bayes approach for discovering whether results have been replicated across studies, in
which we estimate the optimal rejection region for discovering replicated results. We demonstrate,
using realistic simulations, that the average false discovery proportion of our method remains small.
We apply our method to six type two diabetes (T2D) GWA studies. Out of 803 SNPs discovered
to be associated with T2D using a typical meta-analysis, we discovered 219 SNPs with replicated
associations with T2D. We recommend complementing a meta-analysis with a replicability analysis
for GWA studies.

Keywords: Combined analysis; Empirical Bayes; False discovery rate; Meta-analysis; Replication;
Reproducibility; Type 2 diabetes.

1 Introduction

The aim of a genome-wide association (GWA) study is to identify genetic variants that are associated with a
given phenotype. An analysis that combines several GWA studies of the same phenotype may have increased
power to discover the genetic variants that are associated with the phenotype. Such a meta-analysis combines
all the data from all the studies to compute an overallp-value for each SNP. The overallp-values are used
to identify the loci that are associated with the disease. A seminal example of combining data to identify
association comes from the field of type 2 diabetes (T2D) GWAS. Voight et al. (2010) discover in a meta-
analysis single nucleotide polymorphisms (SNPs) associated with T2D that were not discovered in single
studies.

The paramount importance of replicating associations has been well-recognized in the GWAS literature (e.g.
McCarthy et al., 2008; NCI-NHGRI, 2007). Kraft et al. (2009)note that for common variants, the anticipated
effects are modest and very similar in magnitude to the subtle biases that may affect genetic association
studies - most notably population stratification bias. For this reason, they argue that it is important to see the
association in other studies conducted using a similar, butnot identical, study base. Ioannidis and Khoury
(2011) discuss multiple steps needed to validate “omics” findings, including “replication” which they define
as the step to answer the question“Do many different data sets and their combination (meta-analysis) get
consistent results?”.

Meta-analysis of several GWA studies aims to discover the associations that are present in at least one study,
not replicated associations. We definereplicability analysisas an analysis with the aim to discover replicated
associations, i.e. associations between SNP and phenotypethat are present in more than one of the studies.
Meta-analysis methods are not appropriate for discoveringreplicated associations. To see this, consider the
scenario where for testing the null hypothesis that a SNP is independent of the phenotype, thep-value is
extremely small in one study, but not small at all in the otherstudies. The meta-analysis will result in a
small combinedp-value, since there is evidence of association of this SNP with the phenotype, but there

1Address for correspondence:Department of Statistics and Operations Research, Tel-Aviv university, Tel-Aviv, Israel. E-mail:
ruheller@post.tau.ac.il. The work of Ruth Heller was supported by grant no. 2012896 from the Israel Science Foundation(ISF).

http://arxiv.org/abs/1209.2829v3


is no evidence that this association is replicated. Therefore, a smallp-value in a typical meta-analysis is
evidence towards association of the SNP with the phenotype in at least one study, but it is not evidence that
the association has been replicated in more than one study.

Many methods exist for meta-analysis, where follow-up studies simply serve to add power. See Hedges and Olkin
(1985), Benjamini and Yekutieli (2005), Skol et al. (2006),and Zeggini et al. (2007), among others. How-
ever, only a handful of methods have been suggested so far forreplicability analysis. Benjamini, Heller and
Yekutieli (2009; hereafter, BHY09) suggest applying the Benjamini-Hochbergprocedure (Benjamini and Hochberg,
1995), henceforth referred to as the BH procedure, on partial conjunction hypothesesp-values introduced in
Benjamini and Heller (2008). Bogomolov and Heller (2012) focus on replicability analysis for two studies,
and suggest an alternative false discovery rate (FDR) controlling procedure for this setting. Natarajan et al.
(2012) suggest a list-intersection test to compare the top-ranked gene lists from multiple studies in order to
discover a common significant set of genes. In this work, we suggest an empirical Bayes approach to repli-
cability analysis. This approach may be viewed as an extension of the empirical Bayes approach of Efron
(2008). We estimate the local Bayes FDRs under the various configurations of association status of SNP with
phenotype across studies, and then sum up the relevant probabilities in order to estimate the Bayes FDR.

The motivating example for this work came from the field of T2DGWA studies, and therefore we discuss
this work in the context of GWA studies. However, the proposed approach is a general approach for assessing
replicability in several studies when each study examines the same hypotheses. Section 2 describes the
motivating example, and defines formally our replicabilityanalysis aim. In Section 3 we present the empirical
Bayes method, and in Section 4 we apply the method to the motivating example. In Section 5 we use
simulations to evaluate the performance of our method. We show that in realistic simulations, the average
false discovery proportion (FDP) of our method remains small, while the power is much greater than the
power of the method of BHY09. A similar observation was made in Sun and Wei (2011), where the advantage
of using an empirical Bayes approach to testing sets of hypotheses over the method of Benjamini and Heller
(2008) was illustrated by an application to time-course microarray data. We conclude with a brief summary
in Section 6.

2 Motivating example and formulation of the replicability analysis
aims

Voight et al. (2010) conducted a meta-analysis of eight T2D GWA studies comprising 8130 T2D cases
and 38,987 controls of European descent. They combined the case-referent data from the Wellcome Trust
Case Control Consortium (WTCCC), the Diabetes Genetics Initiative (DGI), the Finland-US Investigation
of NIDDM genetics (FUSION) scans, deCode genetics (DECODE), the Diabetes gene Discovery Group,
the Cooperative Health Research in the Region of Augsburg group, the Rotterdam study (ERGO), and the
European Special Populatin Research Network (EUROSPAN). Based on a meta-analysis of these studies,
Voight et al. (2010) selected few dozen SNPs for follow-up, and reported the SNPs that had a smallp-value
in the follow-up study, saying that these SNPs showed, in their words, ”strong evidence for replication”.

We received permission to use thep-values for the following six studies used for meta-analysis in Voight et al.
(2010): EUROSPAN, DECODE, ERGO, DGI, FUSION, and WTCCC. Forthese six studies, our aim was to
discover the SNPs that show strong evidence for replicationof association with T2D within a formal statistical
analysis framework. Replication of association can be defined in several ways: with or without regard to the
direction of association; with at leastu out of the six studies showing association, whereu ∈ {2, . . . , 6} is
fixed in advance. Since direction consistency is typically sought between the primary and follow-up studies
in GWAS (e.g. Voight et al., 2010), our definition takes the directionality into account. For the six studies, we
consider a SNP as having a replicated association if there isenough evidence to establish that the association
of SNP with the phenotype is in the same direction in at least two studies.

In order to define the replicability aim formally, we use the following notation. Suppose there aren indepen-
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dent studies, and in each studyM SNPs are measured. For SNPj in studyi, defineHij as follows:

Hij =





1 if SNP j is positively associated with the phenotype in studyi,
0 if SNP j is not associated with the phenotype in studyi,

−1 if SNP j is negatively associated with the phenotype in studyi.

Let Tij be the test statistic of SNPj in studyi. Following Efron (2010), rather than computing thep-value,
we transform the test statistic into az-scoreZij = Φ−1(Fi0(Tij)), whereFi0 is the cumulative distribution
functions forTij whenHij = 0 andΦ−1 is the inverse of the standard normal cumulative distribution
function, respectively. The conditional density ofZij givenHij is

f(z|Hij) =





fi,1(z) if Hij = 1,
f0(z) if Hij = 0,

fi,−1(z) if Hij = −1,

wheref0(z) is the standard normal density.

Let H = {~h = (h1, . . . , hn) : hi ∈ {−1, 0, 1}} be the set of3n possible configurations of the vector of
association status (of SNP with phenotype) in then studies. We are interested in examining null hypotheses
for then studies that are defined by subsets ofH denoted byH0. In particular, we shall examine theno
association null hypothesisH0

NA that the SNP is not associated with the phenotype in any of thestudies,

H0
NA : {(0, 0, · · · , 0)},

as well as theno replicability null hypothesisH0
NR that the SNP is positively and negatively associated with

the phenotype in at most one study,

H0
NR : {~h :

n∑

i=1

I(hi = −1) ≤ 1 ∩

n∑

i=1

I(hi = 1) ≤ 1},

whereI(·) is the indicator function.

Our primary goal in this work is to discover as many SNPs as possible with falseH0
NR. This goal is distinct

from the meta-analysis goal, of discovering as many SNPs as possible with falseH0
NA. For example, for

n = 2 studies,H contains32 = 9 configurations,

H0
NA = {(0, 0)},

H0
NR = {(0, 0), (1, 0), (0, 1), (−1, 0), (0,−1), (1,−1), (−1, 1)},

and we aim to discover as many SNPs from the index set{j : ~Hj ∈ H/H0
NR}, whereH/H0

NR =
{(1, 1), (−1,−1)}. Had we defined replicability without taking directionality into account, the null hy-
pothesis of interest would have beenH0 = {(0, 0), (1, 0), (−1, 0), (0, 1), (0,−1)}, which aims to discover as
many SNPs as possible from the index set{j : ~Hj ∈ {(1, 1), (−1,−1), (−1, 1), (1,−1)}}. This aim could
be pursued just as easily as the aim that follows from our definition of replicability, with the analysis method
of the next Section 3, but we do not examine it here.

3 The empirical Bayes approach to replicability analysis

3.1 The empirical Bayes approach to multiple testing

The two group model provides a simple Bayesian framework formultiple testing, see e.g. Chapter 2 in Efron
(2010). Each SNP in studyi has marginal probabilityπ0(i) of not being associated with the phenotype,
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i.e. Pr(Hij = 0) = π0(i). Conditional onHij = 0, the SNP has a standard normal density,f0(z).
Unconditionally, the continuous marginal (mixture) density is fi(z). For a subsetZ of ℜ, let P0(Z) =∫
Z
f0(z)dz andPi(Z) =

∫
Z
fi(z)dz.

Suppose we observezij ∈ Z and wish to testHij = 0. A direct application of Bayes’ theorem yields

Fdri(Z) = Pr(Hij = 0|zij ∈ Z) = π0(i)P0(Z)/Pi(Z).

Adopting the terminology in Efron (2010), we callFdri(Z) theBayes FDRfor Z: if we reportzij ∈ Z as
non-null, i.e. if we reportHij 6= 0, thenFdri(Z) is the chance that we have made a false discovery, i.e that
Hij = 0.

Theorem 1 of Storey (2003) shows that for the two group model for independent test statistics,Fdri(Z) is
closely connected to the FDR introduced in Benjamini and Hochberg (1995). LetHi = (Hi1, . . . , HiM ),Zi =

(Zi1, . . . , ZiM ), Q(Z,Hi) =
∑M

j=1 I(zij ∈ Z, Hij = 0)/max(Ri, 1), whereRi =
∑M

j=1 I(zij ∈ Z) is
the number ofz-scores in the rejection region. The FDR isFDR(Z,Hi) = EZi|Hi

Q(Z,Hi). Taking
expectation over the randomHi,

EHi
[FDR(Z,Hi)] = Pr(Ri > 0)EZi,Hi

[Q|Ri > 0] = Pr(Ri > 0)Fdri(Z).

If Z is a single pointz0, then thelocal Bayes FDRis

fdri(z0) = Pr(Hij = 0|zij = z0) = π0(i)f0(z0)/fi(z0).

Fdri(Z) is the conditional expectation offdri(z) givenz ∈ Z (Efron and Tibshirani, 2002),

Fdri(Z) = Efi(fdri(z)|z ∈ Z). (1)

The Bayes false negative rate isFnri(Z) = Pr(Hij 6= 0|zij /∈ Z) (Efron, 2010). Similar to Storey (2007)
and Sun and Cai (2007), we observe that among all possible rejection regionsZ constrained to satisfy that
Fdr(Z) ≤ q, the region with maximal probability, and with minimal Bayes false negative rate, will be of the
form

ZOR = {z : fdri(z) ≤ t(q)}. (2)

The result is stated formally in the following proposition.

Proposition 3.1. Assume the two group model holds for thez-scores in studyi. Let t(q) in expression (2) be
such thatFdri(ZOR) = q. For anyZ satisfyingFdri(Z) ≤ q,

1. Pi(Z) ≤ Pi(ZOR).

2. Fnri(ZOR) ≤ Fnri(Z).

See the proof in Section 1 of the Supplementary Material.

In the two group model,π0(i) andfi are needed in order to compute the local Bayes FDR. These quantities
are estimated in the R packagelocfdr, available on CRAN. Poisson regression is used to estimate the marginal
density of thez-scores,f̂i. The assumption thatz-scores that fall in the range of the central 50% of the null

distribution are null is used to estimate the fraction of null hypotheses:̂π0(i) =
|{j:zij∈[Φ−1(0.25),Φ−1(0.75)]}|

M×0.5 .
Other estimation methods are suggested in Strimmer (2008),Muralidharan (2010), Storey and Tibshirani
(2003), Benjamini et al. (2006) , and Jin and Cai (2007).

For a rejection regionZ, equation (1) shows thatFdri(Z) may be estimated by

F̂ dri(Z) =

∑
j:zij∈Z f̂dr(zij)

|{j : zij ∈ Z}|
,
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wheref̂dri(zij) = π̂0(i)f0(zij)/f̂i(zij) is the estimated local Bayes FDR ofz-scorezij , and|{j : zij ∈ Z}|

is the number ofz-scores inZ. The estimated optimal rejection region isZ = {zij : f̂dri(zij) ≤ t(q)},

wheret(q) is the largest threshold so that̂Fdri(Z) is at mostq.

3.2 Generalization of the two group model

Each SNP has probabilityπ(~h) of having association configuration~h, i.e. Pr( ~Hj = ~h) = π(~h). We assume
thez-scores are independent across studies conditional on the association status~Hj = ~h, so the vector ofn
z-scores~zj = (z1j , . . . , znj) has densityf(~zj |~h) =

∏n
i=1 f(zij |hi). Note thatπ0(i) is equal to the sum of

the probabilitiesπ(~h) over all3n−1 configurations~h ∈ H with hi = 0.

Suppose we observe~zj for SNPj and wish to test~Hj ∈ H0. A direct application of Bayes’ theorem yields
the local Bayes FDR

fdrH0(~zj) = Pr( ~Hj ∈ H0|~zj) =
∑

~h∈H0

π(~h)f(~zj |~h)/f(~zj), (3)

wheref(~zj) =
∑

~h∈H π(
~h)f(~zj|~h) is the mixture density. The local Bayes FDR for SNPj for null hypoth-

esisH0
NA andH0

NR, respectively, is

fdrH0
NA

(~zj) = Pr( ~Hj ∈ H0
NA|~zj) and fdrH0

NR
(~zj) = Pr( ~Hj ∈ H0

NR|~zj).

For a subsetZ of ℜn, if we report for~zj ∈ Z that ~Hj /∈ H0, then the Bayes FDR is, as in equation (1),

FdrH0(Z) = Pr( ~Hj ∈ H0|~zj ∈ Z) = Ef (fdrH0(~zj)|~zj ∈ Z). (4)

The optimal rejection region to discover SNPs that are non-null, i.e. ~Hj /∈ H0, follows from the same
optimality argument of Proposition 3.1. The rejection region with maximal probability and minimal Bayes
false negative rate among all possible rejection regions that are constrained to have a Bayes FDR of at most
levelq, is

ZOR,H0 = {~z : fdrH0(~z) ≤ t(q)}, (5)

wheret(q) is such thatFdrH0(ZOR,H0) = q. Section 2 of the Supplementary Material shows numerical
examples that demonstrate the different optimal rejectionregions for no replicability null hypotheses and for
no association null hypotheses, as well as the loss in power that occurs when the rejection region is chosen
sub-optimally based onp-values.

To test whether~Hj ∈ H0 on then studies, we need to first estimate the local Bayes FDR for the observed

z-scores,{f̂drH0(~zk) : k = 1, . . . ,M}. We use these estimates to estimate the Bayes FDR (4) for every
z-score~zj (j = 1, . . . ,M):

F̂ drH0(Zj) =

∑
k:~zk∈Zj

f̂drH0(~zk)

|{k : ~zk ∈ Zj}|
, (6)

whereZj = {~zk : f̂drH0
(~zk) ≤ f̂drH0

(~zj), k = 1, . . . ,M}. Let t̂(q) be the largest estimated local Bayes

FDR satisfyingF̂ dr(Zj) ≤ q. Then, our estimate of the optimal rejection region (5) is{~zk : f̂drH0
(~zk) ≤

t̂(q), k = 1, . . . ,M}. We conclude that SNPk is non-null, i.e. ~Hk /∈ H0, if f̂drH0
(~zk) ≤ t̂(q), or equiva-

lently, if F̂ dr(Zk) ≤ q.

To computef(~zj) it is necessary to specify the conditional distributions for the three states of nature for
association for each SNP in each study:Hij ∈ {−1, 0, 1}. This is a key difference from the analysis
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of single studies, where estimation of the marginal densityof the z-scores does not require estimation of
the conditional distributions. In Section 3 of the Supplementary Material we demonstrate the necessity of
estimating the conditional distributions for the statesHij = −1 andHij = 1 in order to get a good estimate
of f(~zj) at the tails, for~Hj with dependent components.

Next, we show how to estimateπ(~h) and the conditionalz-score densities that are necessary for estimating
the local Bayes FDR.

3.3 Estimating π(~h) and the conditional z-score densities

The likelihood for the z-scores for SNPj is

L(~π;~zj , f) = Pr(~zj |~π) =
∑

~h∈H

f(~zj| ~h)π(~h), (7)

where~π = {π(~h) : ~h ∈ H,
∑

~h∈H π(~h) = 1} is the set of3n − 1 probabilities of the multi-group model we
want to estimate.

The full likelihood requires both the joint distribution of( ~H1 · · · ~HM ) and, for each studyi (i = 1, . . . , n),
the joint distribution of(Zi1, . . . , ZiM ) given(Hi1, . . . , HiM ). Since the joint distribution is unknown, we
consider instead the composite likelihood, which is the product of the marginal likelihoods for theM SNPs,

LCL(~π;~z, f) = ΠM
j=1L(~π;~zj, f).

Although the composite likelihood is different than the full likelihood, in large problems with local depen-
dency the maximum likelihood estimates of the composite likelihood and the full likelihood are very similar
(Cox and Reid, 2004). For GWAS the assumption of local dependency seems reasonable, since the depen-
dency across SNPs diminishes as the distance between the SNPs increases. In Section 5 we verified that the
composite likelihood was indeed appropriate using simulated data with GWA dependency.

Assuming that the probabilities in~π were known, the composite likelihood could be computed if the probabil-
ity distributions ofzij givenHij ∈ {−1, 0, 1}, i = 1, . . . , n, were known, sincef(~zj | ~Hj) =

∏n
i=1 fi,Hij

(zij).
Conditional onHij = 0, the density ofzij , denoted byf0(·), is indeed known to be standard normal (in Sec-
tion 6 we discuss what can be done whenf0(·) is unknown). Mixture model density estimation methods can
be used to estimatefi,1 andfi,−1 (McLachlan, 2000). First, the methods discussed in Section3.1 can be used
to estimate the marginal density of thez-scores for each study,fi, and the fraction of SNPs with no associ-
ation with the phenotype,π0(i). Denoting the estimates bŷfi andπ̂0(i), the bimodal alternative density is

f̂i,A(z) =
f̂i(z)−π̂0(i)f0(z)

1−π̂0(i)
. Next, the expectation maximization (EM) algorithm, detailed in Section 4 of the

Supplementary Material, is used to find~π that maximizes the composite likelihood.

4 Replicability analysis of T2D GWA studies

Our first step in this analysis is to estimate the fraction of null hypotheses for each of the six studies, using the
locfdr package. In two of the studies, the estimated fraction of null hypotheses is 1. Since a stable estimate
of the conditional distribution under the alternative could not be extracted for these two studies, we excluded
them from the empirical Bayes analysis. Studies DECODE, DGI, FUSION, and WTCCC had estimated frac-
tions of null hypotheses of 0.89, 0.98, 0.98, and 0.96, respectively. Figure 1 of the Supplementary Material
shows the histogram of z-scores, as well as the estimated conditional densities, for each of the six studies, as
outputted from thelocfdr package.
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Binning of z-scores In the locfdr package, thez-scores are binned before the densities are estimated.
Binning is practical in our application since in the estimation of the local Bayes FDRs for several studies,
estimated conditional densities are multiplied. The accuracy of multiplied estimates may be far less stable
without binning. Therefore, we first divide thez-scores{zij : j = 1, . . . ,M} into B bins of equal width.
For this application, we tried bothB = 50 andB = 120 and received similar results. Letxi,1 · · ·xi,B be
the centers of these bins. We assign each z-scorezij into the bin that it is in, denoted bỹzij ∈ {1, . . . , B}.
For SNPj, the probability of the vector ofn binnedz-scores̃zj = (z̃1j , . . . , z̃nj) given configuration~Hj

is f̃(z̃j | ~Hj) =
∏n

i=1 f̃i,Hij
(z̃ij), wheref̃i,Hij

(b) =
fHij

(xi,b)
∑

B
l=1 fHij

(xi,l)
. ForHij = 0, f0(xi,b) is the standard

normal density at pointxi,b. ForHij ∈ {−1, 1},

fi,1(xi,b) =

{
0 if xi,b ≤ 0,

f̂A(xi,b) if xi,b > 0.
and fi,−1(xi,b) =

{
0 if xi,b ≥ 0,

f̂A(xi,b) if xi,b < 0.

The EM algorithm was used to find~π that maximizes the composite likelihood on the binnedz-scores,∏M
j=1

∑
~h∈H f̃(z̃j |

~h)π(~h).

For n = 4 studies, the setsH andH0
NR contain, respectively 81 and 21 configurations, andH0

NA contains
only the configuration(0, 0, 0, 0). The empirical Bayes analysis at levelq = 0.05 discovered 803 SNPs asso-
ciated with T2D and 219 SNPs with replicated association with T2D. A list of the 219 SNPs with replicated
associations discovered by the empirical Bayes analysis, sorted by positions on the chromosome, is given in
Section 5 of the Supplementary Material. SNPs with replicated association included 16 distinct genes. We
extracted the SNP with smallest estimated local Bayes FDR among all SNPs within each of these 16 genes,
as well as among all SNPs in non-coding areas. In Table 1 we list these 17 SNPs, along with the estimated
Bayes FDR for replicability analysis (column 5) and for the analysis to discover association in (column 6).
As expected, the estimated Bayes FDR is larger for replicability analysis than for an analysis to discover
associations, and the ranking for replicability is different than for discovering associations. For example, the
empirical Bayes analysis for KIF11 ranks it7th for evidence of replicability but5th for evidence of associa-
tion; KCNJ11 is ranked5th for evidence of replicability but8th for evidence of association. The SNP which
has by far the strongest evidence of association, and replicated association, is in TCF7L2. This association
has been well established in previous studies (Voight et al., 2010). The very small estimated Bayes FDRs for
this SNP are a result of compounding the strong evidence against the null from four studies.

As a comparison procedure, we considered the replicabilityanalysis suggested in BHY09, which was to
apply the BH procedure on theM no replicability null hypothesesp-values, computed as suggested in
Benjamini and Heller (2008). We applied the analysis suggested in BHY09 on then = 4 studies with
estimated fraction of null hypotheses below one, as well as on all then = 6 studies available. Briefly, the
recipe for computingp-values for the no replicability null hypotheses was as follows. First, for every sub-
set ofn − 1 studies, a meta-analysisp-value was computed. Then, thep-value for the no replicability null
hypothesis was set to be the maximum of then meta-analysisp-values. Since we considered in this work
a concordant version of replicability, where the association was considered replicated only if it was present
in at least two studies in the same direction, thep-value was taken to be twice the smaller of the left- and
right-sided combinedp-values using the method of Fisher, as suggested in Owen (2009).

The replicability analysis of BHY09 at levelq = 0.05 based on the four studies, discovered 447 SNPs associ-
ated with T2D and 83 SNPs with replicated association with T2D, and based on the six studies discovered 466
SNPs associated with T2D and 113 SNPs with replicated association with T2D. Table 1 shows the adjusted
p-values based on all six available studies in columns seven and eight, respectively. While the meta-analysis
of BHY09 indicates that there is evidence of association in almost all these regions, evidence of replicated
association is inferred only for five regions.

The empirical Bayes approach provides for each SNP a measureof belief in each possible configuration
~h conditional on its vector ofz-scores. For example, the vector ofz-scores for SNPrs7903146 in gene
TCF7L2 was~z = (−8.8,−4.5,−4.4,−7.5) in studies DECODE, DGI, FUSION, and WTCCC, respectively.
The estimated posterior probability was 0.98 that the configuration was~h = (−1,−1,−1,−1), conditional
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on the binnedz-score vector. The vector ofz-scores for SNPrs10923931 in gene NOTCH2 was~z =
(−3.4,−4.9,−0.12,−2.8)with estimated posterior probability 0.92 for configuration~h = (−1,−1, 0,−1).
Table 2 shows the estimated posterior probability distributions for these two SNPs.

Table 1: For the SNPs with strongest evidence towards replicability in 17 distinct regions discovered by the
empirical Bayes replicability analysis: the estimated Bayes FDR for replicability and for association (column
5-6); the adjustedp-values from the analysis of BHY09 for replicability and forassociation (column 7-8).

Empirical Bayes Fdr BHY09 adjustedp-values
chr pos gene Replicability Association Replicability Association

rs7903146 10 114758349 TCF7L2 2.40e-11 4.61e-22 0.00e+00 0.00e+00
rs10440833 6 20688121 CDKAL1 1.60e-05 8.06e-08 9.06e-09 0.00e+00
rs5015480 10 94465559 non-coding 1.10e-03 7.74e-05 8.78e-04 1.12e-07
rs4402960 3 185511687 IGF2BP2 3.14e-03 6.87e-04 0.0205 3.51e-05

rs5215 11 17408630 KCNJ11 8.91e-03 4.50e-03 1.00e+00 0.0236
rs757110 11 17418477 ABCC8 9.98e-03 6.16e-03 1.00e+00 0.0267

rs4933734 10 94414567 KIF11 0.0111 2.96e-04 1.00e+00 1.55e-05
rs10923931 1 120517959 NOTCH2 0.0134 2.70e-03 1.00e+00 3.45e-04
rs11187033 10 94262359 IDE 0.0189 2.07e-03 0.0186 7.07e-06

rs319602 5 134222164 TXNDC15 0.0202 7.07e-03 1.00e+00 0.0364
rs849134 7 28196222 JAZF1 0.0210 7.80e-03 9.84e-01 1.16e-03

rs6883047 5 134272055 PCBD2 0.0235 8.55e-03 1.00e+00 0.0471
rs10832778 11 17394073 B7H6 0.0282 0.0164 1.00e+00 1.53e-01
rs13070993 3 12217797 SYN2 0.0370 0.0235 1.00e+00 0.0369
rs10433537 3 12198485 TIMP4 0.0360 0.0233 1.00e+00 0.0386
rs10113282 8 96038252 C8orf38 0.0387 0.0102 1.00e+00 0.0408
rs1554522 17 25913172 KSR1 0.0436 0.0145 1.00e+00 2.13e-01

Table 2: The estimated posterior probabilities for different configurations~h, conditional on the binnedz-score
of ~z, for two examplez-scores:rs7903146 in gene TCF7L2 (column 2), andrs10923931 in gene NOTCH2
(column 3).

~h ~z = (−8.8,−4.5,−4.4,−7.5) ~z = (−3.4,−4.9,−0.12,−2.8)
( -1, -1, -1 , -1) 0.980 0.000
( -1 , -1 , 0 , -1) 0.012 0.924
( -1 , -1 , 0 , 0 ) 0.000 0.047
( -1 , 0 , -1 , -1) 0.008 0.000
( -1 , 0 , 0 , -1) 0.000 0.004

(0, -1, 0, -1) 0.000 0.024
( 0 , -1, 0, 0) 0.000 0.001

5 Simulation studies

If all parameters were known, the optimal rejection region could be calculated. In Section 2 of the Sup-
plementary Material , we present two simple examples that demonstrate the difference between the optimal
rejection region for a replicability analysis and that for an analysis to discover associations, and show that
the optimal region can be much larger than that based onp-values. Since the optimal rejection region has to
be estimated in practice, we examine here the empirical Bayes approach, that estimates the optimal rejection
region for inference. Specifically, the goal of the simulations was twofold. First, to investigate the effect of
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the number of SNPsM , and the dependence across SNPs, on the empirical Bayes procedure. Second, to
compare the empirical Bayes procedure to the replicabilityanalysis of BHY09 at the same levelq. In the
empirical Bayes analysis, thez-scores were first binned, usingB = 50 bins, and SNPs were considered dis-
covered if the estimated Bayes FDR in equation (6) was belowq = 0.05. In addition to the empirical Bayes
procedure that estimates~π via the EM algorithm, we also considered the oracle Bayes procedure that knows
the association statusHij of each SNP. The oracle Bayes procedure estimates the conditional probabilities of
the binnedz-scores in each study by the relative frequency of each bin conditional on the association status,
and uses the true vector~π for computing the local Bayes FDRs.

5.1 Independence within each study

We consideredn = 3 studies, with 2000 cases and 2000 referents andM ∈ {103, 104, 105} SNPs in each
study. Although there were3n = 27 possible configurations of the vector of associations status, our data
generation process had positive probability only for the 15configurations that do not have a positive and
negative association for the same SNP: configuration(0, 0, 0) for 90% of the SNPs; the six configurations with
exactly one true association, i.e.~Hj s.t.

∑3
i=1 |Hij | = 1, each for 1% of the SNPs; the eight configurations

with at least two true associations in the same direction, i.e. ~Hj s.t. |
∑3

i=1Hij | ≥ 2, each for 0.5% of the
SNPs. Following Wakefield (2007), we simulated data for every SNP independently with disease risk,pij ,
given by the logistic regression modellogit(pij) = α+uθij , whereu = 0, 0.5, and 1 corresponds to 0,1 and
2 copies of the mutant allele, respectively. We sampleθij givenHij as follows:

θij |Hij ∼





U(0.25, 0.5) if Hij = 1,
0 if Hij = 0,

U(−0.5,−0.25) if Hij = −1.

whereU(a, b) denotes the uniform distribution betweena andb. Moreover, the minor allele frequency (MAF)
for each SNPj in studyi, was sampled fromU(0.05, 0.50), and we setα = −6, soeα = 0.0025 was the
prior odds of a disease due to a SNP withu = 0.

Results The simulation results were based on 50 repetitions forM = 105, and on 100 repetitions for
M = 104 andM = 1000. Figure 2 in the Supplementary Material shows the FDP in an analysis to discover
associations and in a replicability analysis. The variation in FDP decreases withM , and is very small for
M = 105. Table 3 presents the average FDP, and number of rejections,R. Although the average FDP of the
empirical Bayes analysis was below 0.05 forM ≥ 104, the average FDP whenM = 1000 was 0.071, with
a standard error (SE) of 0.006. The empirical Bayes analysismakes only few more discoveries than the the
analysis of BHY09 when the aim is to discover associations, but three-fold more discoveries when the aim is
to discover replicated associations. For example, forM = 105 SNPs the empirical Bayes analysis discovers
on average 2040 SNPs with replicated associations, while the analysis of BHY09 discovers only an average
of 684 SNPs. A comparison of columns 6 and 8 shows that the oracle Bayes analysis produces only few
more discoveries than the empirical Bayes analysis, suggesting that the loss of power in the estimation of the
parameters is small.

Remark 5.1. Table 3 shows that the average FDP for the analysis of BHY09 when the aim is to discover
associations was lower thanπ(0, 0, 0) × 0.05 = 0.045. For example, forM = 105 the average FDP was
0.039. This is due to the discreteness of the distribution ofthep-values, that were computed from contingency
tables. Indeed, when the sample size was tripled, thep-values from true no association null hypotheses were
closer to uniform and therefore the average FDP was closer tothe nominal level (not shown). However, the
over-conservativeness of the replicability analysis remained severe when the sample size was tripled.
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Table 3: The average FDP and number of rejectionsR, in an empirical Bayes analysis (columns 3 and 6), in
the analysis of BHY09 (columns 4 and 7), and in an oracle Bayesanalysis (columns 5 and 8), for different
values ofM=number of hypotheses.

FDP (SE × 1000) R (SE)
Analysis Empirical Oracle Empirical Oracle

type M Bayes BHY09 Bayes Bayes BHY09 Bayes
Replicability 105 0.049 (1) 0.001 (0) 0.050 (1) 2040.6 (6.3) 684.1 (3.4) 2091.6(4.8)

104 0.049 (2) 0.000 (0) 0.049 (1) 203.6 (1.4) 68 ( 0.9) 211.2 (1.1)
103 0.071 (6) 0.000 ( 0) 0.044 (4) 20.5 (0.4) 7.1 (0.3) 22.7 (0.3)

Association 105 0.046 (0) 0.039 (0) 0.050 (0) 5911.3 (8.7) 5495.8 (7.8) 6047.0 (9.3)
104 0.047 (1) 0.038 (1) 0.050 (1) 591.3 (1.7) 549.7 (1.8) 610.6 (1.8)
103 0.051 (2) 0.040 (3) 0.045 (2) 58.7 (0.6) 54.9 (0.6) 66.6 (0.5)

5.2 GWA dependency within each study

We simulated three GWA studies from the simulator HAPGEN2 (Su et al., 2011). The three studies where
generated from three samples of the HapMap project (The International HapMap Consortium, 2003): a sam-
ple of 87 individuals with African ancestry in Southwest USA(ASW), a sample of 165 Utah residents with
Northern and Western European ancestry (CEU), and a sample of 109 Chinese in Metropolitan Denver, Col-
orado (CHD). We limited ourselves to chromosomes 1-4, that containedM = 415, 154 SNPs. In these
populations, the number of causal SNPs was 26 for ASW, 22 for CEU and 27 for CHD. Since the effects
are typically small for GWA studies, we consider for each population four sub-populations, and within each
sub-population about 1/4 of the causal SNPs had an increasedmultiplicative relative risk of 1.5. Overall,
there were 48 different causal SNPs in the four chromosomes,out of which 22 SNPs were causal in more
than one population. Specifically, the three populations had five causal SNPs in common, and in addition,
the number of causal SNPs in common in exactly two of the threepopulations was: four for ASW and CEU,
seven for ASW and CHD, and six for CEU and CHD. Each study contained 8000 cases and 8000 referents
from each population. The simulator HAPGEN2 uses an estimate of the fine-scale recombination rate map
to simulate haplotypes conditional on the reference haplotype data from the HapMap project. The simula-
tor assumes a hidden Markov model and treats the recombination rates and mutation rates as transition and
emission probabilities, respectively. The resulting simulated data has the same linkage disequilibrium (LD)
patterns as each reference data from the HapMap project.

Due to LD, the number of SNPs associated with the phenotype inevery study was larger than the number
of causal SNPs. Since it is not known from the data generationprocess which SNPs are associated with
the phenotype in each study, then for a non-causal SNPj we do not know whetherH0 ∈ {H0

NA ,H0
NR}

is false, since non-causal SNPs may have falseH0 due to LD patterns in the different populations. Since a
major goal in the simulations was to assess whether the FDP isinflated, it was necessary to establish a ground
truth. We wanted to estimate a conservative ground truth that with very high probability estimates a SNP
as having a trueH0 if indeed it is fromH0, at the possible expense of estimating a SNP as having a true
H0 even ifH0 was false. The estimation of the ground truth was as follows.The simulation studies were
repeated 20 times, resulting in 20p-values per population for every SNP. The 20p-values were first combined
with Fisher’s combining method, and the analysis of BHY09 was applied to the combinedp-values from the
three populations, to form for each SNP a combinedp-value forH0 ∈ {H0

NA ,H0
NR} that is based on 20

studies per population.H0 was considered to be false for a SNP if thep-value for testingH0 was below
the severe Bonferroni threshold for FWER control at level 0.05. The resulting ground truth contains 2126
SNPs associated with the phenotype, i.e. with falseH0

NA, and 695 SNPs with replicated association with the
phenotype, i.e. with falseH0

NR. The ground truth based on 20 repetitions was very similar toa ground truth
that was established based on only 19 of the 20 repetitions, and therefore for an analysis of one repetition, the
resulting FDP using the ground truth based on 20 repetitionswas very similar to the FDP using the ground
truth that results from the 19 repetitions excluding the repetition being analyzed.
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Results Table 4 shows the analysis results for the 20 repetitions of the three studies. Although the average
number of rejections was only slightly larger with the empirical Bayes analysis than with the analysis of
BHY09 for testing associations, it was more than 20 times larger when testing for replicated associations.
The average FDP for the empirical Bayes analysis was slightly above the nominal level of 0.05, possibly
because either “ground truth” was too conservative (“falserejections” are not really “false”) or the empirical
Bayes analysis is indeed slightly anti-conservative for the type of dependency that occurs in GWA studies.
Nevertheless, this simulation demonstrates the large gainin using an empirical Bayes analysis over the anal-
ysis of BHY09 for discovering replicated associations. This large gain comes at a small risk, slightly inflated
FDP.

Table 4: The average FDP, and number of rejectionsR, in an empirical Bayes analysis (columns 2 and 4),
and in the analysis of BHY09 (columns 3 and 5), for the simulated data with GWA dependency within each
study.

FDP (SE × 1000) R (SE)
Analysis type Empirical Bayes BHY09 Empirical Bayes BHY09
Replicability 0.065 (9) 0.000 (0) 154.1 (8.5) 6.4 (1.2)
Association 0.072 (9) 0.053 (5) 274.9 (12.4) 242.7 (10.4)

6 Summary

In our analysis, we assumed for each study that if the null hypothesis was true for a SNP, thep-values was
uniformly distributed, i.e. thez-score had a standard normal density. Efron (2008) lists several reasons why
the empirical null may be preferred over the theoretical null distribution of thez-scores. The R packagelocfdr
fits the empirical null by truncated maximum likelihood or byfitting a quadratic tolog fi near the center. If in
doubt about the theoretical null, the theoretical null may be replaced with the empirical null in the empirical
Bayes analysis. In our analysis we estimated the conditional density ofZij givenHij ∈ {−1, 0, 1} in order
to discover replicated positive and negative associations. In future work we intend to examine a more general
parametrization of the associations.

The accuracy of the empirical Bayes analysis relies on the ability to estimate well the unknown parame-
ters. We demonstrated in simulations that the variability of the FDP decreased as the number of hypotheses
increased. In a simulation of realistic GWA studies we demonstrated that the empirical Bayes analysis pro-
duced inferences with a small FDP, despite the dependency among thep-values within each study. A full
Bayesian approach to the problem of GWA studies replicability is not possible, since we do not know the true
likelihood. To estimate the probabilities of each of the3n configurations of null and non-null hypotheses, we
used the product of the marginal SNP likelihoods. In applications were the exact likelihood is known, it is
possible to use a full Bayesian approach, so that the suggested framework for replicability analysis can be
extended to account for the uncertainty of the Bayes FDR estimates.

From a comparison of an empirical Bayes analysis with the analysis of BHY09, we see that they may give
similar inferences when the analysis is aimed at discovering associations. However, for replicability the
empirical Bayes analysis discovers many more replicated associations than the analysis of BHY09. In our
analysis of the T2D studies, we removed the two studies with an estimated fraction of null hypotheses of
one from the empirical Bayes analysis, since the alternative distribution could not be reliably estimated for
these two studies using the R packagelocfdr. However, these studies are useful, as indicated by the factthat
the analysis of BHY09 detected more associations using all 6studies than using only the 4 studies with an
estimated fraction of null hypotheses below one. How to bestincorporate these two studies into the empirical
Bayes analysis is an open question.
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Supplementary Material for Replicability analysis for Genome-
wide Association studies

S7 Proof of Proposition 3.1

Proof. Since the result is for a single studyi, for notational convenience we omit the subscripti in the
following proof. LetψOR(z) be the indicator of whetherz ∈ ZOR, and letψ(z) be the indicator of whether
z ∈ Z for another rejection region that satisfiesFdr(Z) ≤ q. Straightforward calculus shows for everyz

ψ(z)(1− fdr(z)/t(q)) ≤ ψOR(z)(1− fdr(z)/t(q)) (8)

Taking expectations on both sides of equation (8),
∫
[ψ(z)(1− fdr(z)/t(q))]f(z)dz ≤

∫
[ψOR(z)(1− fdr(z)/t(q))]f(z)dz,

we receive the following expression:

P (Z)(1 − Fdr(Z)/t(q)) ≤ P (ZOR)(1 − Fdr(ZOR)/t(q)) (9)

SinceFdr(ZOR) is the expectation offdr(z) for fdr(z) ≤ t(q), andq < t(q), it follows thatFdr(ZOR) <
t(q). Moreover, sinceFdr(Z) ≤ Fdr(ZOR), it follows that(1−Fdr(Z)/t(q)) ≥ (1−Fdr(ZOR)/t(q)) >
0. Therefore, the right hand side of expression (9) is smallerthanP (ZOR)(1 − Fdr(Z)/t(q)) and item 1
follows.

In order to prove item 2, lettdr(z) = 1− fdr(z) be the true discovery rate. Straightforward calculus shows
for everyz

[1− ψ(z)][1− tdr(z)/(1− t(q))] ≤ [1− ψOR(z)][1− tdr(z)/(1− t(q))] (10)

Taking expectations on both sides of equation (10),
∫
[1− ψ(z)][1− tdr(z)/(1 − t(q))]f(z)dz ≤

∫
[1− ψOR(z)][1− tdr(z)/(1 − t(q))]f(z)dz,

we receive the following expression:

[1− P (Z)][1− Fnr(Z)/(1 − t(q))] ≤ [1− P (ZOR)][1 − Fnr(ZOR)/(1− t(q))] (11)

Sincefdr(z) > t(q) for z /∈ ZOR, it follows that1 − tdr(z)/(1 − t(q)) > 0 for z /∈ ZOR, and therefore
that1−Fnr(ZOR)/(1− t(q)) > 0. Combining this observations with the fact from item 1 that1−P (Z) ≥
1 − P (ZOR), the RHS of equation (11) can be bounded above by[1 − P (Z)][1 − Fnr(ZOR)/(1 − t(q))].
It thus follows that1− Fnr(Z)/(1− t(q)) ≤ 1− Fnr(ZOR)/(1− t(q)), proving item 2.

S8 Testing normal means

In this section we give simple examples that demonstrate that the rejection region for replicability analysis is
very different than for an analysis to discover associations, and also that the optimal rejection regions may
be far larger than a rejection region based onp-values. In this section only, for simplicity, we assume that
each hypothesis has only two states: the null state with zeroexpectation, and the non-null state with positive
expectation.
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S8.1 Comparison of Bayes FDR for optimal and p-value based Bayesian analysis

Example S8.1. For n = 2 studies, suppose the marginal z-score density in the two studies isN(0, 1) under
the no-association null hypothesis, and under the alternative positive association hypotheses the z-score
density isN(µ1, 1) in the first study andN(µ2, 1) in the second study. Thus the joint z-score density is

f(z1, z2) = π(0, 0)φ(z1)φ(z2) + π(0, 1)φ(z1)φ(z2 − µ2)

+ π(1, 0)φ(z1 − µ1)φ(z2) + π(1, 1)φ(z1 − µ1)φ(z2 − µ2),

for φ(z) the standard Normal density. For~h ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, the conditional probability that
~H = (h1, h2) given(z1, z2) is

Pr( ~H = ~h| (z1, z1)) =
π(~h)φ(z1 − I(h1 = 1)µ1)φ(z2 − I(h2 = 1)µ2)

f(z1, z2)
.

The local Bayes fdr for testingH0
NA andH0

NR, respectively, isfdrNA(z1, z2) = Pr( ~H = (0, 0)| (z1, z1))
and

fdrNR(z1, z2) = Pr( ~H = (0, 0)| (z1, z2)) + Pr( ~H = (0, 1)| (z1, z2)) + Pr( ~H = (1, 0)| (z1, z2)).

We compared the optimal rejection region and the rejection region based onp-values for the Bayesian anal-
ysis. Thep-values forH0

NA andH0
NR were, respectively, thep-values of the Fisher combined (right-sided)

p-values,and the maximum of the two studiesp-values. Specifically, for~Z = (Z1, Z2), letP1 = 1 − Φ(Z1)
andP2 = 1−Φ(Z2). The p-value for testing no-association wasPNA = 1− Fχ2

4
(−2(log(P1) + log(P2)),

and the p-value for testing no-replication wasPNR = max(P1, P2).

For µ1 = µ2 = 3, let π(0, 0) = 0.80, π(0, 1) = π(1, 0) = 0.08, andπ(1, 1) = 0.04. Figure S1 shows
the rejection region boundaries for the optimal rejection region (solid) and thep-values based rejection
region (dashed) for testingH0

NA (top) andH0
NR (middle). Clearly, the rejection regions are much larger for

detecting associations than for detecting replicability.

For π(0, 0) = 0.88, π(0, 1) = 0.12, Figure S1 (bottom) shows the rejection regions when testingH0
NA. The

hypothesisH0
NR is not tested, since the local Bayes FDR of no replicability is one, and there does not exist a

region with Bayes FDR at mostq < 1. The difference between the optimal rejection region and the rejection
region based onp-values is much larger in this configuration than in the previous configuration. Specifically,
the optimal rejection region is only determined by thez-score of the second study,Z2.

Table S5 shows the probability of the rejection regions for the no association and no replicability null hy-
potheses. The probabilities of the rejection regions to discover replicability are much smaller than for dis-
covering associations. Moreover, the probabilities of theoptimal rejection regions are larger than for the
p-value based region, and the differences between the probabilities of the regions are larger for configuration
π(0, 0) = 0.88, π(0, 1) = 0.12 than forπ(0, 0) = 0.80, π(0, 1) = π(1, 0) = 0.08, andπ(1, 1) = 0.04.

The following example illustrates the large loss of power due to a non-optimal choice of rejection region that
can occur when more than two studies are available.

Example S8.2. For n = 6 studies, letπ((0, 0, 0, 0, 0, 0)) = 0.90 andπ((0, 0, 0, 0, 0, 1)) = 0.10. Thus the
first fivez-scoresZ1 · · ·Z5 areN(0, 1). The sixthz-scoreZ6 is N(0, 1) with probability0.9 andN(3, 1)
with probability0.1. Similar to the setting(µ1, µ2) = (0, 3) in Example S8.1, thep-value based rejection
region for testingH0

NA is very different than the optimal rejection region, which is only based onZ6. For a
Bayes FDR ofq = 0.05, the probability of the optimal rejection region was0.066, and the probability of the
p-value based rejection region was0.012.
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Figure S1: Optimal (solid curves), p-value based (dashed curves) rejection regions boundaries for bayes
FDR levelsq ∈ {0.20, 0.05}, as well as the rejection region for the analysis of Benjamini et al. (2009)
(dotted curves) for FDR levelsq ∈ {0.20, 0.05}, in configurationπ((0, 0)) = 0.80, π((0, 1)) = π((1, 0)) =
0.08,, andπ((1, 1)) = 0.04 of the test ofH0

NA (top) andH0
NR (middle) , and in configurationπ((0, 0)) =

0.88, π((0, 1)) = 0.12 for the test ofH0
NA (bottom). The further the boundary is from (0,0) the smallerthe

value ofq.

Table S5: The probability of the optimal and of thep-value based rejection regions, for various Bayes FDR
levelsq and two configurations ofπ = (π(0, 0), π(0, 1), π(1, 0), π(1, 1)).

Null π(0, 0), π(0, 1), π(1, 0), π(1, 1) Rejection region q = 0.05 q = 0.20
H0

NR (0.80, 0.08, 0.08, 0.04) ZOR 0.0234 0.0417
p-value: Bayes 0.0230 0.0410

BHY09 0.0028 0.0145
H0

NA (0.80, 0.08, 0.08, 0.04) ZOR 0.1498 0.2230
p-value: Bayes 0.1417 0.2182

BHY09 0.1334 0.2007
H0

NA (0.88, 0.12, 0.00, 0.00) ZOR 0.0855 0.1355
p-value: Bayes 0.0621 0.1178

BHY09 0.0563 0.1050
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S8.2 Comparison of Bayes FDR for p-value based Bayesian analysis and for the BH

procedure

In Example S8.1, the dotted curve in Figure S1 shows the rejection region using the BH procedure, as sug-
gested in BHY09. While the rejection region is only slightlysmaller than that of thep-value based Bayesian
rejection region for testing for no association (top and bottom), it is much smaller for testing for no replica-
bility (middle figure). We shall explain why these differences arise.

In the two group model, when the rejection region is based on the tails of thez-scoresZ = {z : z ≤ t(q)}
which are equivalent to one-sidedp-values, there is a strong connection between empirical Bayes estimation
of the Bayes FDR and the frequentist BH procedure for FDR control, as noted by Efron and Tibshirani (2002)
and Storey (2002). If thejth p-value in studyi is pij = Φ(zij), then the BH rule rejects all hypotheses with
z-scores that satisfy the following inequality:

F̂ dri,BH(zi(j)) = max
l≥j

Φ(zi(l))/(l/M) ≤ q, (12)

wherezi(j) is thejth largestz-score in studyi. Sincej/M is the empirical distribution ofZ for the rejection
regionZj = {z : z ≤ zi(j)}, then if we setπ0(i) conservatively to be one, the BH procedure coincides with
the procedure that chooses the largestZj so that the estimatedFdri(Zj) is at mostq. Specifics follow. The

rejection region of the BH procedure isZp̂i,BH
= {~z : Pij ≤ p̂BH}, wherep̂i,BH = sup{p : F̂ dri,BH(p) ≤

q} and

F̂ dri,BH(p) =
p

|{j : pij ≤ p }|/M
. (13)

The Bayes FDR ofZp = {zij : Pij ≤ p} is

Fdri(Zp) = Pr(Hij = 0| Pij ∈ Zp) =
π0(i) Pr(Pij ≤ p|Hij = 0)

Pr(Pij ∈ Zp)
(14)

Comparing (13) with (14), as the denominator of (13) is the empirical distribution of the event in the de-
nominator of (14), ifPij is U [0, 1] under the null hypothesis, the Fdr estimator in (13) is too large by a
factor of 1/π0(i). If Pij is stochastically greater thanU [0, 1], the Fdr estimator in (13) may be greatly
over-conservative.

Similarly, for the null hypothesisH0
NA, the conservative factor is1/π(~0), since the rejection region of the

BH procedure isZp̂NA
BH

= {~zj : p
NA
j ≤ p̂NA

BH}, wherep̂NA
BH = sup{p : F̂ dr

NA

BH(p) ≤ q} and

F̂ dr
NA

BH(p) =
p

|{~zj : pNA
j ≤ p }|/M

, (15)

and the Bayes FDR ofZp = {~z : pNA
j ≤ p} is

FdrNA(Zp) = Pr(H0
NA|

~Pj ∈ Zp) =
π(~0)Pr(PNA ≤ p| ~H = ~0)

Pr(~zj ∈ Zp)
(16)

However,H0
NR is a composite null hypothesis and therefore the conservativeness of the BH procedure is far

greater. The rejection region of the BH procedure isZp̂NR
BH

= {~zj : pNR
j ≤ p̂NR

BH}, wherep̂NR
BH = sup{p :

F̂ dr
NR

BH(p) ≤ q} and

F̂ dr
NR

BH(p) =
p

|{~zj : pNR
j ≤ p }|/M

. (17)

The Bayes FDR ofZp = {~z : pNR
j ≤ p} is

FdrNR(Zp) = Pr(H0
NR| ~zj ∈ Zp) =

∑
~h∈H0

NR

π(~h) Pr(PNR ≤ p| ~H = ~h)

Pr(~zj ∈ Zp)
(18)
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Figure S2: The Bayes FDR valueq (solid line),F̂ drBH for the test ofH0
NA (bottom dash-dot line) and for

the test ofH0
NR (top dash-dot line). The horizontal dashed line is at level 0.05, and it intersects the bottom

and top dash-dot lines at(Fdr, F̂ drBH) values (0.05,0.05) and (0.0022, 0.05), respectively.

Comparing (17) with (18), as the denominator of (17) is the empirical distribution of the event in the de-
nominator of (18), the conservatism of the BH procedure follows from the differences in the numerators of
these two expressions. The BH procedure is conservative sincePNR

j is stochastically greater thanU [0, 1] for
~H ∈ H0, especially for~H = ~0. Therefore, the numerator in (17) is much larger than the numerator in (18)
whenπ(~0) is large.

For Example S8.1, Table S5 shows the probability of the BH rejection regions for(µ1, µ2) = (3, 3). Figure

S2 showsF̂ dr
NA

BH(p) versusFdrNA(Zp) and F̂ dr
NR

BH(p) versusFdrNR(Zp). For testingH0
NA, F̂ drBH

was overly conservative by a factor of1.25. Therefore the rejection region witĥFdrBH = 0.05 actually had
Fdr = 0.04, and a rejection probability of0.133, while the rejection probability was0.1417 for the p-value
based rejection region withFdr = 0.05. For testingH0

NR, the rejection region witĥFdrBH = 0.05 actually
hadFdr = 0.0022, and the rejection probability was only0.0028. For comparison, the rejection probability
was0.0230 for the p-value based rejection region withFdr = 0.05.

S9 Computation of f(~z)

The locfdr package estimatesf(zij | Hij = 0) andPr(Hij = 0) in addition tof(zij), and then derives
f(zij | Hij 6= 0) through the relation

f(zij) = f(zij | Hij = 0) · Pr(Hij = 0) + f(zij | Hij 6= 0) · {1− Pr(Hij = 0)}.
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In replicability analysis, that considers

Pr( ~Hj = ~h| ~zj) =
f(~zj , ~Hj = ~h)

f(~zj)

=
{Πn

i=1f(zij | Hij = hi)} · Pr( ~Hj = ~h)

f(~zj)
(19)

for ~h 6= ~0, it is also necessary to specifyf(zij | Hij = −1) andf(zij | Hij = 1).

If Hij are independent then the components of~zj are also independent and thus the locfdr estimates of the
marginalz-score densities are sufficient for computing

Pr( ~Hj = ~0| ~zj) =
Πn

i=1{f(zij| Hij = 0) · Pr(Hij = 0)}

Πn
i=1f(zij)

.

However, if the components of~Hj are dependent then specifyingf(zij| Hij = −1) andf(zij| Hij = 1) is
necessary for computingPr( ~Hj = ~0| ~zj), as illustrated in the example below.

Example S9.1. Assume that either~Hj = ~0 or ~Hj ∈ H1, for H1 = {−1, 1}n, and letPr( ~Hj = ~0) = π0.
Therefore,f(~zj, ~Hj = ~0) = {Πn

i=1f(zij | Hij = 0)} · π0. Sincef(~zj) = f(~zj, ~Hj = ~0) + f(~zj, ~Hj ∈ H1),
to computePr( ~Hj = ~0| ~zj) we needf(~zj , ~Hj ∈ H1). In general,

f(~zj, ~Hj ∈ H1) =
∑

~h∈H1

f(~zj, ~Hj = ~h)

=
∑

~h∈H1

f(~zj | ~Hj = ~h) · Pr( ~Hj = ~h)

=
∑

~h∈H1

{Πn
i=1f(zij | Hij = hi)} · Pr( ~Hj = ~h). (20)

If the components of~Hj were independent conditional on~Hj ∈ H1, then

f(~zj , ~Hj ∈ H1) = f(~zj | ~Hj ∈ H1) · Pr( ~Hj ∈ H1)

= {Πn
i=1f(zij | Hij 6= 0)} · (1 − π0). (21)

Note that to compute (20) it is necessary to estimatef(zij | Hij = −1) and f(zij | Hij = 1) and that if
Hij are independent conditional on~Hj ∈ H1 then expressions (20) and (21) are the same, but for largen

and highly dependentHij they may be very different. To see this, we further assumePr( ~Hj = (1, . . . , 1)) =

(1 − π0)/2 and Pr( ~Hj = (−1, . . . ,−1)) = (1 − π0)/2, and consider~z = (z1j · · · znj) with 0 < zij
for which f(zij | Hij = −1) << f(zij | Hij = 1) and f(zij | Hij = 0) << f(zij | Hij = 1). Since
f(zij | Hij = −1) << f(zij | Hij = 1), expression (20) can be approximated as follows:

∑

~h∈H1

{Πn
i=1f(zij | Hij = hi)} · Pr( ~Hj = ~h)

≈ {Πn
i=1f(zij | Hij = 1)} · (1− π0)/2. (22)

Furthermore sincePr(Hij = 1| Hij 6= 0) = 1/2 and

f(zij | Hij 6= 0) = f(zij | Hij = −1) · Pr(Hij = −1|Hij 6= 0)

+ f(zij | Hij = 1) · Pr(Hij = 1| Hij 6= 0),

thenf(zij| Hij = 1)/f(zij | Hij 6= 0) ≈ 2. Thus expression (22) is2(n−1) larger than expression (21).
Sincef(zij | Hij = 0) << f(zij | Hij = 1), it follows thatf(~zj) ≈ f(~zj , ~Hj ∈ H1). As the denominator of
Pr( ~Hj = ~0| ~zj) is approximatelyf(~zj, ~Hj ∈ H1) then in this casePr( ~Hj = ~0| ~zj) is 2(n−1) smaller then it
would have been ifHij were independent conditional on~Hj ∈ H1.
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S10 The EM algorithm

The observed data are z-scores~z1, . . . , ~zM and the missing values are~H1, . . . , ~HM . The complete likelihood
for SNPj is

Lc(~π;~zj, ~f , ~Hj) = f(~zj| ~Hj)π( ~Hj).

The composite complete likelihood for all the SNPs is

ΠM
j=1Lc(~π;~zj, f̂ , ~Hj) = ΠM

j=1f(~zj|
~Hj)π( ~Hj).

E step In the E step we calculate the expected value of the log composite likelihood function, with respect
to the conditional distribution ofH given~z under the current estimate of the parameters,~π(t):

Q(~π| ~π(t)) = EH|~z,~π(t) [log{ΠM
j=1f(~zj |

~Hj) · π( ~Hj)}]

=
M∑

j=1

∑

~h∈H

Pr( ~Hj = ~h|~zj, ~π
(t))[log f(~zj | ~Hj = ~h) + log{π(~h)}]

=

M∑

j=1

∑

~h∈H

Pr( ~Hj = ~h|~zj, ~π
(t))logf(~zj| ~Hj = ~h)

+

M∑

j=1

∑

~h∈H

Pr( ~Hj = ~h|~zj, ~π
(t)) log{π(~h)} (23)

where

Pr( ~Hj = ~h|~zj, ~π
(t)) =

f(~zj|~h)π
(t)(~h)

∑
~h′∈H f(~zj |

~h′, )π(t)(~h′)

M step Find~π(t+1) that maximizesQ(~π| ~π(t)). Since the second sum in equation (23) has the same form
as the log-likelihood for the multinomial distribution, itfollows that

π(t+1)(~h) =

∑M
j=1 Pr(

~Hj = ~h|~zj , ~π
(t))

∑
~h′∈H

∑M
j=1 Pr(

~Hj = ~h′|~zj , ~π
(t))

.

The updated parameters are~π(t+1) = {π(t+1)(~h) : ~h ∈ H}.

starting value π(0) As starting values, we recommend using values constrained to satisfyπ̂0(i) =
∑

{~h∈H}∩{hi=0} π
(0)(~h).

Such a starting position will provide a good initial estimate of the non-null densities in the E step. Specifically,
given estimateŝπ0(i), i = 1, . . . , n, we suggest as starting values

π(0)(~h) = Πn
i=1π̂hi

(i),

whereπ̂1(i) = π̂−1(i) = (1 − π̂0(i))/2.
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Updating of f(~zj |~h) After the EM converged to a new estimate, the estimated fraction of null hypotheses

in each study can be extracted:π̂(T )
0 (i) =

∑
{~h∈H}∩{hi=0} π

(T )(~h), whereT is the number of steps till
convergence of the EM. A modified estimate offi,1 andfi,−1 can then be computed using the new estimates

π̂
(T )
0 (i), i = 1, . . . , n, if these estimates are different than the starting valuesπ̂0(i), i = 1, . . . , n. These

modified estimated can now be used to recomputef(~zj |~h). Next, the EM can be repeated with the new

estimated conditional densities. This iterative process should end when the new estimates ofπ̂
(T )
0 (i), i =

1, . . . , n, are almost the same as the starting values of the EM.

S11 Replicability analysis of T2D GWA studies

Figure S3 shows the empirical z-scores, as well as the estimated conditional densities, for each of the six
studies, as outputted from the locfdr package.

The table below gives the list of the 219 SNPs with replicatedassociations, as discovered by the empirical
Bayes analysis, sorted by positions on the chromosome. The positions were found by NCBI build GRCh37.p5
reference assembly, and they were mapped to nearby genes by dbSNP
(http://www.ncbi.nlm.nih.gov/projects/SNP/dbSNP.cgi?list=rslist). The table shows
the estimated Bayes FDR for replicability analysis as well as for the analysis to discover association, and the
adjustedp-values from the corresponding analysis of BHY09 based on all six available studies.

Empirical Bayes Fdr BHY09 adjusted p-values
chr pos gene Repl. Assoc. Repl. Assoc.

rs10923931 1 120517959 NOTCH2 1.34e-02 2.70e-03 1.00e+00 3.45e-04
rs6442307 3 12143355 SYN2 4.43e-02 2.74e-02 1.00e+00 4.89e-02
rs11715886 3 12147236 SYN2 4.40e-02 2.73e-02 1.00e+00 4.89e-02
rs4488811 3 12182028 SYN2 3.74e-02 2.36e-02 1.00e+00 4.21e-02
rs11721223 3 12185160 SYN2 3.67e-02 2.35e-02 1.00e+00 4.11e-02
rs11708978 3 12188495 SYN2 3.64e-02 2.34e-02 1.00e+00 4.06e-02
rs6792867 3 12189900 SYN2 3.77e-02 2.37e-02 1.00e+00 4.02e-02
rs7629805 3 12192394 SYN2 4.79e-02 3.15e-02 1.00e+00 5.10e-02
rs10433537 3 12198485 SYN2,TIMP4 3.60e-02 2.33e-02 1.00e+00 3.86e-02
rs13070993 3 12217797 SYN2 3.70e-02 2.35e-02 1.00e+00 3.69e-02
rs11720578 3 12267084 non-coding 4.33e-02 2.68e-02 1.00e+00 4.81e-02
rs13071168 3 12275447 non-coding 1.39e-02 1.24e-02 1.00e+00 1.53e-02
rs11709119 3 12276493 non-coding 4.14e-02 2.97e-02 1.00e+00 1.56e-02
rs17036101 3 12277845 non-coding 1.47e-02 1.26e-02 1.00e+00 1.56e-02
rs1562040 3 12285405 non-coding 1.43e-02 1.25e-02 1.00e+00 1.78e-02
rs17036130 3 12288288 non-coding 1.51e-02 1.27e-02 1.00e+00 1.73e-02
rs13081389 3 12289800 non-coding 4.17e-02 2.98e-02 1.00e+00 1.73e-02
rs1596417 3 12290898 non-coding 4.20e-02 2.99e-02 1.00e+00 1.75e-02
rs13089415 3 12301360 non-coding 2.27e-02 1.62e-02 1.00e+00 1.88e-02
rs6771792 3 12301472 non-coding 2.31e-02 1.63e-02 1.00e+00 1.82e-02
rs4376068 3 185497635 IGF2BP2 7.82e-03 2.16e-03 1.07e-01 1.88e-04
rs6801848 3 185499057 IGF2BP2 1.19e-02 3.81e-03 3.10e-01 9.60e-04
rs4481184 3 185505787 IGF2BP2 3.92e-03 1.12e-03 3.00e-02 5.22e-05
rs11705729 3 185507299 IGF2BP2 3.29e-03 8.83e-04 2.44e-02 4.23e-05
rs11929397 3 185510190 IGF2BP2 5.88e-03 1.22e-03 2.44e-02 4.23e-05
rs7633675 3 185510613 IGF2BP2 6.22e-03 1.28e-03 2.44e-02 4.23e-05
rs16860234 3 185510884 IGF2BP2 1.98e-02 6.43e-03 1.00e+001.83e-02
rs4402960 3 185511687 IGF2BP2 3.14e-03 6.87e-04 2.05e-02 3.51e-05
rs16860235 3 185512361 IGF2BP2 3.12e-02 1.33e-02 1.00e+004.10e-02
rs7640539 3 185513296 IGF2BP2 4.56e-03 1.07e-03 2.44e-02 4.23e-05
rs7651090 3 185513392 IGF2BP2 5.35e-03 9.58e-04 2.19e-02 3.83e-05
rs6444081 3 185514393 IGF2BP2 4.25e-03 1.01e-03 2.44e-02 4.23e-05
rs7646518 3 185514931 IGF2BP2 4.71e-03 1.09e-03 2.44e-02 4.23e-05
rs7637773 3 185515635 IGF2BP2 4.41e-03 1.04e-03 3.00e-02 6.90e-05
rs4686696 3 185516520 IGF2BP2 4.09e-03 9.86e-04 2.44e-02 4.23e-05
rs6767484 3 185520578 IGF2BP2 3.45e-03 9.03e-04 2.44e-02 4.23e-05
rs7640744 3 185522447 IGF2BP2 2.14e-02 8.37e-03 1.00e+00 1.52e-02
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rs11711477 3 185526690 IGF2BP2 5.70e-03 1.18e-03 2.74e-02 5.02e-05
rs1470579 3 185529080 IGF2BP2 5.19e-03 9.31e-04 2.98e-02 5.16e-05
rs6769511 3 185530290 IGF2BP2 6.05e-03 1.25e-03 2.99e-02 5.41e-05
rs9859406 3 185534482 IGF2BP2 6.39e-03 1.31e-03 3.16e-02 5.65e-05
rs2548966 5 134215127 TXNDC15 3.01e-02 1.06e-02 1.00e+00 3.97e-02
rs319602 5 134222164 TXNDC15 2.02e-02 7.07e-03 1.00e+00 3.64e-02
rs319598 5 134240235 PCBD2 3.05e-02 1.08e-02 1.00e+00 4.02e-02
rs319592 5 134252619 PCBD2 3.94e-02 1.21e-02 1.00e+00 4.77e-02
rs319589 5 134255333 PCBD2 2.39e-02 9.74e-03 1.00e+00 3.63e-02
rs6883047 5 134272055 PCBD2 2.35e-02 8.55e-03 1.00e+00 4.71e-02
rs7728823 5 134282777 PCBD2 2.43e-02 9.84e-03 1.00e+00 4.02e-02
rs12658264 5 141764189 non-coding 3.84e-02 6.98e-03 1.00e+00 1.35e-01
rs9348440 6 20641336 CDKAL1 3.19e-02 3.36e-03 1.00e+00 1.79e-03
rs6456364 6 20649254 CDKAL1 4.56e-02 4.08e-03 1.00e+00 1.36e-03
rs9295474 6 20652717 CDKAL1 2.56e-03 2.53e-04 6.90e-04 1.85e-07
rs2328545 6 20653550 CDKAL1 2.93e-02 2.50e-03 1.00e+00 7.99e-04
rs9368216 6 20655110 CDKAL1 4.59e-02 4.15e-03 1.00e+00 8.10e-04
rs4712522 6 20656800 CDKAL1 2.32e-03 2.28e-04 6.11e-04 1.79e-07
rs4712523 6 20657564 CDKAL1 2.40e-03 2.36e-04 7.28e-04 3.31e-07
rs4710940 6 20658012 CDKAL1 5.02e-03 8.62e-04 7.01e-03 4.89e-06
rs6906327 6 20659459 CDKAL1 3.76e-03 3.99e-04 6.65e-03 2.12e-06
rs6456367 6 20659587 CDKAL1 1.48e-03 1.31e-04 5.93e-04 1.73e-07
rs6456368 6 20659806 CDKAL1 1.05e-03 5.92e-05 4.31e-04 1.18e-07
rs6456369 6 20660365 CDKAL1 3.60e-03 3.80e-04 6.52e-03 4.56e-06
rs10946398 6 20661034 CDKAL1 2.02e-03 1.13e-04 8.02e-04 2.40e-07
rs7774594 6 20661143 CDKAL1 1.82e-03 1.70e-04 5.91e-04 1.72e-07
rs7754840 6 20661250 CDKAL1 2.09e-03 2.11e-04 1.23e-03 3.70e-07
rs9460544 6 20661529 CDKAL1 2.63e-03 2.60e-04 5.91e-04 1.73e-07
rs9460545 6 20661550 CDKAL1 1.89e-03 1.78e-04 5.91e-04 1.73e-07
rs4712525 6 20662966 CDKAL1 2.48e-03 2.45e-04 6.04e-04 1.74e-07
rs4712526 6 20663035 CDKAL1 1.40e-03 1.22e-04 6.09e-04 1.74e-07
rs9460546 6 20663632 CDKAL1 2.17e-03 2.19e-04 1.23e-03 3.69e-07
rs742642 6 20665081 CDKAL1 2.97e-02 2.55e-03 1.00e+00 7.52e-04
rs7748382 6 20665549 CDKAL1 1.55e-03 1.39e-04 5.91e-04 1.72e-07
rs7772603 6 20665946 CDKAL1 1.76e-03 1.63e-04 5.53e-04 1.58e-07
rs7752780 6 20666022 CDKAL1 1.62e-03 1.47e-04 5.21e-04 1.48e-07
rs7752906 6 20666055 CDKAL1 1.69e-03 1.55e-04 5.13e-04 1.46e-07
rs9358356 6 20667382 CDKAL1 7.29e-04 3.94e-05 4.74e-04 1.32e-07
rs9356743 6 20667688 CDKAL1 1.69e-02 1.99e-03 6.57e-01 2.24e-04
rs9368219 6 20674691 CDKAL1 1.95e-03 4.83e-05 5.23e-05 1.05e-09
rs1012635 6 20675295 CDKAL1 4.27e-02 4.65e-03 8.35e-01 1.98e-03
rs1569699 6 20679310 CDKAL1 4.99e-04 1.55e-05 3.32e-07 1.36e-11
rs7756992 6 20679709 CDKAL1 1.14e-04 4.37e-07 1.05e-08 0.00e+00
rs9350271 6 20683164 CDKAL1 5.42e-04 1.77e-05 7.74e-07 2.58e-11
rs9356744 6 20685486 CDKAL1 5.83e-04 1.98e-05 7.44e-07 2.58e-11
rs7766070 6 20686573 CDKAL1 2.83e-05 1.43e-07 9.06e-09 0.00e+00
rs9368222 6 20686996 CDKAL1 3.81e-05 2.02e-07 9.06e-09 0.00e+00
rs10440833 6 20688121 CDKAL1 1.60e-05 8.06e-08 9.06e-09 0.00e+00
rs2206734 6 20694884 CDKAL1 8.97e-04 3.05e-05 2.44e-05 7.56e-10
rs6931514 6 20703952 CDKAL1 9.05e-05 3.12e-07 9.06e-09 0.00e+00
rs11753081 6 20705590 CDKAL1 6.76e-04 2.20e-05 1.90e-05 4.95e-10
rs1040558 6 20713706 CDKAL1 7.88e-04 2.49e-05 1.66e-05 4.32e-10
rs9295478 6 20716253 CDKAL1 6.95e-03 6.19e-04 1.29e-03 3.00e-07
rs2328548 6 20716958 CDKAL1 6.28e-04 1.32e-05 1.42e-05 3.78e-10
rs6935599 6 20717095 CDKAL1 9.48e-04 3.31e-05 1.42e-05 3.75e-10
rs9465871 6 20717255 CDKAL1 2.63e-04 1.74e-06 6.30e-06 1.25e-10
rs10946403 6 20717404 CDKAL1 8.44e-04 2.78e-05 1.32e-05 3.42e-10
rs2328549 6 20718240 CDKAL1 3.42e-02 2.81e-03 2.02e-01 8.60e-05
rs9358357 6 20719145 CDKAL1 9.98e-04 3.56e-05 1.42e-05 3.73e-10
rs9368224 6 20719232 CDKAL1 3.12e-04 4.08e-06 1.42e-05 3.73e-10
rs9358358 6 20719393 CDKAL1 1.73e-02 2.03e-03 1.23e-01 5.35e-05
rs9460550 6 20719561 CDKAL1 3.59e-04 6.28e-06 1.42e-05 3.73e-10
rs9356746 6 20720279 CDKAL1 1.22e-02 1.84e-03 1.08e-01 4.81e-05
rs9368226 6 20723057 CDKAL1 4.54e-04 1.08e-05 5.48e-05 1.07e-09
rs12111351 6 20724558 CDKAL1 6.75e-03 6.03e-04 3.17e-03 7.70e-07
rs9356747 6 20725007 CDKAL1 7.14e-03 6.36e-04 3.18e-03 7.72e-07
rs9356748 6 20725097 CDKAL1 1.26e-02 1.88e-03 9.40e-02 4.37e-05
rs7767391 6 20725240 CDKAL1 4.07e-04 8.58e-06 6.90e-05 1.39e-09
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rs7747752 6 20725423 CDKAL1 5.52e-03 3.43e-04 2.24e-03 5.65e-07
rs9270986 6 32574060 non-coding 3.16e-02 4.82e-03 1.00e+00 2.29e-03
rs9492055 6 129048640 non-coding 4.73e-02 1.51e-02 1.00e+00 4.80e-02
rs11154899 6 137293890 non-coding 4.89e-02 1.11e-02 1.00e+00 1.09e-01
rs10872465 6 137294656 non-coding 4.86e-02 1.10e-02 1.00e+00 1.09e-01
rs2876354 6 137295352 non-coding 4.96e-02 1.13e-02 1.00e+00 1.09e-01
rs11154900 6 137296161 non-coding 4.93e-02 1.12e-02 1.00e+00 1.10e-01
rs6906007 6 137296300 non-coding 3.31e-02 8.27e-03 1.00e+00 8.99e-02
rs10457653 6 137296895 non-coding 4.83e-02 1.09e-02 1.00e+00 1.09e-01
rs10872466 6 137297967 non-coding 3.91e-02 7.35e-03 1.00e+00 9.89e-02
rs4407733 6 137299152 non-coding 4.99e-02 1.14e-02 1.00e+00 1.09e-01
rs947733 6 137304427 non-coding 3.08e-02 8.46e-03 1.00e+00 6.22e-02
rs849133 7 28192280 JAZF1 4.24e-02 1.58e-02 1.00e+00 1.26e-03
rs849134 7 28196222 JAZF1 2.10e-02 7.80e-03 9.84e-01 1.16e-03
rs849135 7 28196413 JAZF1 3.23e-02 1.16e-02 9.75e-01 1.14e-03
rs10281305 7 54890409 non-coding 4.04e-02 1.18e-02 1.00e+00 1.09e-01
rs4493865 7 54898402 non-coding 4.63e-02 1.52e-02 1.00e+00 1.14e-01
rs2442982 8 20590386 non-coding 3.46e-02 2.29e-02 1.00e+00 1.34e-01
rs4734295 8 96000919 non-coding 9.25e-03 3.49e-03 1.00e+00 2.34e-02
rs10113282 8 96038252 C8orf38 3.87e-02 1.02e-02 1.00e+00 4.08e-02
rs1892012 9 19979945 non-coding 4.46e-02 9.54e-03 1.00e+00 6.54e-02
rs10117648 9 19981497 non-coding 4.49e-02 1.03e-02 1.00e+00 6.93e-02
rs7868773 9 19985150 non-coding 4.53e-02 1.04e-02 1.00e+00 7.03e-02
rs10122799 9 19987293 non-coding 4.11e-02 9.64e-03 1.00e+00 9.47e-02
rs10964378 9 19994736 non-coding 4.69e-02 1.37e-02 1.00e+00 1.09e-01
rs10964380 9 19999413 non-coding 4.66e-02 1.72e-02 1.00e+00 1.09e-01
rs7020996 9 22129579 non-coding 1.25e-03 2.02e-04 1.60e-02 3.66e-06
rs2383208 9 22132076 non-coding 2.24e-03 8.61e-05 3.29e-02 3.61e-06
rs10965250 9 22133284 non-coding 1.32e-03 7.13e-05 5.86e-03 7.57e-07
rs10811661 9 22134094 non-coding 1.17e-03 6.51e-05 8.83e-03 7.70e-07
rs1333051 9 22136489 non-coding 2.71e-03 2.70e-04 7.52e-02 3.98e-05
rs2798253 10 94202905 non-coding 1.60e-02 3.19e-03 9.38e-03 9.56e-06
rs6583813 10 94209939 non-coding 3.57e-02 3.13e-03 1.73e-02 1.22e-05
rs11187007 10 94214580 IDE 2.78e-02 2.75e-03 1.26e-02 4.84e-06
rs2149632 10 94232247 IDE 1.94e-02 2.12e-03 1.80e-02 7.72e-06
rs11187033 10 94262359 IDE 1.89e-02 2.07e-03 1.86e-02 7.07e-06
rs10509645 10 94277866 IDE 3.97e-02 3.02e-03 2.55e-02 1.06e-05
rs2421941 10 94345909 non-coding 4.30e-02 1.38e-03 1.00e+00 9.64e-05
rs10786050 10 94367230 KIF11 3.35e-02 7.05e-04 1.00e+00 1.05e-04
rs10882091 10 94374377 KIF11 3.38e-02 7.22e-04 1.00e+00 9.01e-05
rs10882094 10 94387676 KIF11 2.51e-02 6.69e-04 1.00e+00 8.52e-05
rs10882095 10 94394402 KIF11 4.01e-02 3.08e-03 3.16e-02 1.22e-05
rs10736069 10 94395393 KIF11 2.47e-02 6.52e-04 1.00e+00 7.55e-05
rs7900689 10 94395748 KIF11 2.23e-02 4.37e-04 1.00e+00 7.55e-05
rs6583830 10 94398118 KIF11 2.19e-02 4.18e-04 1.00e+00 7.32e-05
rs10882096 10 94401386 KIF11 3.49e-02 3.25e-03 2.74e-02 1.02e-05
rs11187114 10 94406237 KIF11 3.53e-02 3.30e-03 2.44e-02 8.93e-06
rs4933734 10 94414567 KIF11 1.11e-02 2.96e-04 1.00e+00 1.55e-05
rs7911264 10 94436851 non-coding 1.15e-02 3.11e-04 8.34e-02 4.18e-07
rs2488087 10 94446041 non-coding 1.07e-02 1.04e-04 8.34e-02 4.18e-07
rs10882100 10 94460687 non-coding 1.04e-02 9.52e-05 8.65e-02 4.28e-07
rs1111875 10 94462882 non-coding 3.02e-03 3.61e-04 1.24e-03 4.82e-07
rs12778642 10 94464307 non-coding 2.90e-03 2.82e-04 9.05e-04 4.49e-07
rs5015480 10 94465559 non-coding 1.10e-03 7.74e-05 8.78e-04 1.12e-07
rs10882102 10 94466495 non-coding 2.80e-03 3.25e-04 1.30e-03 4.77e-07
rs11187144 10 94469980 non-coding 8.09e-03 1.70e-03 1.03e-02 8.93e-06
rs7087591 10 94473629 non-coding 8.35e-03 1.73e-03 9.41e-03 6.14e-06
rs10748582 10 94477219 non-coding 7.35e-03 1.35e-03 6.65e-03 3.33e-06
rs7923837 10 94481917 non-coding 8.61e-03 1.77e-03 8.97e-03 4.89e-06
rs7923866 10 94482076 non-coding 7.56e-03 1.44e-03 8.37e-03 4.89e-06
rs7917983 10 114732882 TCF7L2 6.55e-03 4.35e-05 1.78e-01 5.65e-07
rs7901275 10 114732906 TCF7L2 4.86e-03 5.33e-05 1.63e-01 3.70e-07
rs4074720 10 114748497 TCF7L2 1.98e-04 9.75e-09 7.42e-09 0.00e+00
rs4074718 10 114748617 TCF7L2 7.27e-05 5.26e-10 6.32e-09 0.00e+00
rs17747324 10 114752503 TCF7L2 6.05e-08 4.00e-13 0.00e+000.00e+00
rs7901695 10 114754088 TCF7L2 5.21e-09 8.64e-15 0.00e+00 0.00e+00
rs4506565 10 114756041 TCF7L2 1.07e-10 4.28e-20 0.00e+00 0.00e+00
rs7903146 10 114758349 TCF7L2 2.40e-11 4.61e-22 0.00e+00 0.00e+00
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rs10885402 10 114761697 TCF7L2 4.88e-05 3.72e-10 7.42e-09 0.00e+00
rs6585198 10 114762237 TCF7L2 7.86e-05 6.60e-10 7.42e-09 0.00e+00
rs4132670 10 114767771 TCF7L2 3.25e-09 5.32e-15 0.00e+00 0.00e+00
rs6585200 10 114768609 TCF7L2 9.65e-05 9.05e-10 8.10e-09 0.00e+00
rs6585201 10 114768783 TCF7L2 8.37e-05 7.78e-10 8.10e-09 0.00e+00
rs7904519 10 114773927 TCF7L2 1.89e-04 1.68e-09 9.06e-09 0.00e+00
rs10885405 10 114777670 TCF7L2 1.26e-04 1.31e-09 9.06e-09 0.00e+00
rs10885406 10 114777724 TCF7L2 1.32e-04 1.43e-09 9.06e-09 0.00e+00
rs10787472 10 114781297 TCF7L2 1.20e-04 1.18e-09 1.00e-08 0.00e+00
rs7924080 10 114787012 TCF7L2 1.08e-04 1.04e-09 9.06e-09 0.00e+00
rs12243326 10 114788815 TCF7L2 9.89e-09 4.46e-14 0.00e+000.00e+00
rs7077039 10 114789077 TCF7L2 1.02e-04 1.19e-10 8.32e-09 0.00e+00
rs7900150 10 114793823 TCF7L2 6.60e-05 8.16e-11 7.42e-09 0.00e+00
rs7100927 10 114796048 TCF7L2 1.79e-04 2.12e-10 7.42e-09 0.00e+00
rs7895340 10 114801525 TCF7L2 5.81e-05 4.77e-11 7.42e-09 0.00e+00
rs11196200 10 114801938 TCF7L2 1.41e-04 1.62e-10 7.42e-09 0.00e+00
rs11196205 10 114807047 TCF7L2 2.08e-04 8.02e-09 7.00e-08 0.00e+00
rs12255372 10 114808902 TCF7L2 2.25e-07 4.11e-12 0.00e+000.00e+00
rs12265291 10 114810240 TCF7L2 1.60e-04 4.87e-09 6.65e-08 0.00e+00
rs11196208 10 114811316 TCF7L2 1.51e-04 3.35e-09 6.65e-08 0.00e+00
rs7077247 10 114812071 TCF7L2 1.69e-04 6.27e-09 7.00e-08 0.00e+00
rs12718338 10 114813047 TCF7L2 2.32e-04 1.35e-08 1.11e-07 0.00e+00
rs10832778 11 17394073 B7H6 2.82e-02 1.64e-02 1.00e+00 1.53e-01
rs1557765 11 17403639 non-coding 9.61e-03 6.34e-03 1.00e+00 3.68e-02
rs5215 11 17408630 KCNJ11 8.91e-03 4.50e-03 1.00e+00 2.36e-02
rs7124355 11 17412960 non-coding 2.06e-02 1.57e-02 1.00e+00 4.76e-02
rs757110 11 17418477 ABCC8 9.98e-03 6.16e-03 1.00e+00 2.67e-02
rs1877527 12 71405206 non-coding 4.07e-02 8.08e-03 1.00e+00 3.68e-02
rs11178531 12 71408690 non-coding 2.55e-02 5.63e-03 1.00e+00 2.36e-02
rs7132840 12 71411561 non-coding 3.81e-02 9.35e-03 1.00e+00 2.19e-02
rs2063591 12 71411855 non-coding 2.59e-02 5.72e-03 1.00e+00 3.59e-02
rs7957932 12 71421552 non-coding 4.76e-02 1.31e-02 1.00e+00 4.31e-02
rs1512991 12 71422768 non-coding 1.77e-02 4.99e-03 1.00e+00 2.33e-02
rs7956274 12 71424402 non-coding 1.81e-02 5.08e-03 1.00e+00 2.36e-02
rs7959965 12 71425164 non-coding 1.85e-02 5.17e-03 1.00e+00 2.36e-02
rs7298255 12 71428069 non-coding 1.30e-02 4.01e-03 1.00e+00 2.07e-02
rs10784891 12 71429798 non-coding 1.64e-02 4.73e-03 1.00e+00 2.79e-02
rs7955901 12 71433293 non-coding 2.75e-02 6.07e-03 1.00e+00 3.17e-02
rs4760894 12 71438923 non-coding 2.90e-02 7.53e-03 1.00e+00 3.64e-02
rs4760785 12 71438945 non-coding 2.63e-02 5.81e-03 1.00e+00 3.69e-02
rs4760895 12 71439127 non-coding 2.67e-02 5.90e-03 1.00e+00 3.77e-02
rs7138300 12 71439589 non-coding 2.71e-02 5.99e-03 1.00e+00 3.86e-02
rs1913201 12 71439825 non-coding 2.86e-02 7.44e-03 1.00e+00 3.86e-02
rs10879240 12 71443285 non-coding 3.27e-02 8.85e-03 1.00e+00 3.88e-02
rs7313973 12 71444058 non-coding 1.56e-02 4.58e-03 1.00e+00 4.02e-02
rs1554522 17 25913172 KSR1 4.36e-02 1.45e-02 1.00e+00 2.13e-01

S12 Details of simulations results in Section 6.1

Figure S4 shows the false discovery proportion (FDP) in a replicability analysis (top), and in an analysis to discover associations
(bottom). The variation in FDP decreases withM , and is very small forM = 100, 000.
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Figure S3: The histogram of z-scores for each of the six T2D GWA studies. The heavy curve is the estimate
f̂i(z) for the mixture densityf(z), scaled to match the histogram area. Dashed curve is scaled estimate
π̂0(i)f0(z), wheref0(z) is the standard normal density. The estimated non-null counts are shown in pink.
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Figure S4: Replicability analysis (top) and analysis to discover association (bottom): Boxplots of FDP for
M=100000, M=10000, and M=1000 for empirical Bayes analysis(left) and the analysis of BHY09 (right).
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