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Replicability analysis for genome-wide association studies

Ruth Heller and Daniel Yekutielﬂ

Abstract. The paramount importance of replicating associations is well recognized in the genome-
wide associaton (GWA) research community, yet methods for assessing replicability of associations
are scarce. Published GWA studies often combine separately the results of primary studies and
of the follow-up studies. Informally, reporting the two separate meta-analyses, that of the primary
studies and follow-up studies, gives a sense of the replicability of the results. We suggest a formal
empirical Bayes approach for discovering whether results have been replicated across studies, in
which we estimate the optimal rejection region for discovering replicated results. We demonstrate,
using realistic simulations, that the average false discovery proportion of our method remains small.
We apply our method to six type two diabetes (T2D) GWA studies. Out of 803 SNPs discovered
to be associated with T2D using a typical meta-analysis, we discovered 219 SNPs with replicated
associations with T2D. We recommend complementing a meta-analysis with a replicability analysis
for GWA studies.

Keywords: Combined analysis; Empirical Bayes; False discovery rate; Meta-analysis; Replication;
Reproducibility; Type 2 diabetes.

1 Introduction

The aim of a genome-wide association (GWA) study is to ideggnetic variants that are associated with a
given phenotype. An analysis that combines several GWAetuaf the same phenotype may have increased
power to discover the genetic variants that are associatadhve phenotype. Such a meta-analysis combines
all the data from all the studies to compute an overalblue for each SNP. The overallvalues are used

to identify the loci that are associated with the disease.emisal example of combining data to identify
association comes from the field of type 2 diabetes (T2D) GVi¥fight et al. (2010) discover in a meta-
analysis single nucleotide polymorphisms (SNPs) asstiaith T2D that were not discovered in single
studies.

The paramountimportance of replicating associations basa kvell-recognized in the GWAS literature (e.g.
McCarthy et al., 2008; NCI-NHGRI, 2007). Kraft et al. (200®)te that for common variants, the anticipated
effects are modest and very similar in magnitude to the sutiises that may affect genetic association
studies - most notably population stratification bias. k@ teason, they argue that it is important to see the
association in other studies conducted using a similarnbtidentical, study base. loannidis and Khoury
(2011) discuss multiple steps needed to validate “omicgliffigs, including “replication” which they define
as the step to answer the question“Do many different dataas®t their combination (meta-analysis) get
consistent results?”.

Meta-analysis of several GWA studies aims to discover tke@ations that are present in at least one study,
not replicated associations. We defieplicability analysisas an analysis with the aim to discover replicated
associations, i.e. associations between SNP and phentbigipare present in more than one of the studies.
Meta-analysis methods are not appropriate for discovegpticated associations. To see this, consider the
scenario where for testing the null hypothesis that a SNRdspendent of the phenotype, thevalue is
extremely small in one study, but not small at all in the otbteidies. The meta-analysis will result in a
small combined-value, since there is evidence of association of this SNR thie phenotype, but there
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is no evidence that this association is replicated. Theeefa smallp-value in a typical meta-analysis is
evidence towards association of the SNP with the phenotypeleast one study, but it is not evidence that
the association has been replicated in more than one study.

Many methods exist for meta-analysis, where follow-upigsidimply serve to add power. See Hedges and Olkin
(1985), Benjamini and Yekutieli (2005), Skol ef al. (200&hd Zeggini et al. (2007), among others. How-
ever, only a handful of methods have been suggested so feggdlicability analysis. Benjamini, Heller and
Yekutieli (2009; hereafter, BHY09) suggest applying th@penini-Hochberg procedure (Benjamini and Hochberg,
1995), henceforth referred to as the BH procedure, on padigunction hypothesgsvalues introduced in
Benjamini and Heller (2008). Bogomolov and Heller (2012)s on replicability analysis for two studies,

and suggest an alternative false discovery rate (FDR) allinty procedure for this setting. Natarajan et al.
(2012) suggest a list-intersection test to compare thedoged gene lists from multiple studies in order to
discover a common significant set of genes. In this work, vegyest an empirical Bayes approach to repli-
cability analysis. This approach may be viewed as an exdarsi the empirical Bayes approachlof Efron
(2008). We estimate the local Bayes FDRs under the varioufieoations of association status of SNP with
phenotype across studies, and then sum up the relevantjilitésiin order to estimate the Bayes FDR.

The motivating example for this work came from the field of T@WA studies, and therefore we discuss
this work in the context of GWA studies. However, the probagproach is a general approach for assessing
replicability in several studies when each study examihessame hypotheses. Sectldn 2 describes the
motivating example, and defines formally our replicabitityalysis aim. In Sectidd 3 we present the empirical
Bayes method, and in Sectioh 4 we apply the method to the atistiy example. In Sectionl 5 we use
simulations to evaluate the performance of our method. V@& ghat in realistic simulations, the average
false discovery proportion (FDP) of our method remains smdiile the power is much greater than the
power of the method of BHYQ9. A similar observation was ma®un and Wei (2011), where the advantage
of using an empirical Bayes approach to testing sets of ngsats over the methodlof Benjamini and Heller
(2008) was illustrated by an application to time-courserpacray data. We conclude with a brief summary
in Sectior{®6.

2 Motivating example and formulation of the replicability analysis
aims

Voight et al. (2010) conducted a meta-analysis of eight T2WAGstudies comprising 8130 T2D cases
and 38,987 controls of European descent. They combinedatesreferent data from the Wellcome Trust
Case Control Consortium (WTCCC), the Diabetes Genetiditivie (DGI), the Finland-US Investigation
of NIDDM genetics (FUSION) scans, deCode genetics (DECQEME Diabetes gene Discovery Group,
the Cooperative Health Research in the Region of Augsbuwrgmrthe Rotterdam study (ERGO), and the
European Special Populatin Research Network (EUROSPABSe®8 on a meta-analysis of these studies,
Voight et al. (2010) selected few dozen SNPs for follow-up] eeported the SNPs that had a smallalue

in the follow-up study, saying that these SNPs showed, iin therds, "strong evidence for replication”.

We received permission to use thealues for the following six studies used for meta-analyrgMoight et al.
(2010);: EUROSPAN, DECODE, ERGO, DGI, FUSION, and WTCCC. fhese six studies, our aim was to
discover the SNPs that show strong evidence for replicatiassociation with T2D within a formal statistical
analysis framework. Replication of association can be ddfin several ways: with or without regard to the
direction of association; with at leastout of the six studies showing association, where {2,...,6} is
fixed in advance. Since direction consistency is typicatlyght between the primary and follow-up studies
in GWAS (e.gl Voight et all, 2010), our definition takes theedtionality into account. For the six studies, we
consider a SNP as having a replicated association if themedaagh evidence to establish that the association
of SNP with the phenotype is in the same direction in at leaststudies.

In order to define the replicability aim formally, we use tédwing notation. Suppose there aténdepen-



dent studies, and in each stutly SNPs are measured. For S)ih studyi, defined;; as follows:

H;; = 0 if SNP j is not associated with the phenotype in study

1 if SNPj is positively associated with the phenotype in study
—1 if SNPj is negatively associated with the phenotype in study

Let T;; be the test statistic of SNPin studys. FollowinglEfron (2010), rather than computing thealue,
we transform the test statistic intozascoreZ;; = ®~!(Fjo(T;;)), whereF, is the cumulative distribution
functions forT;; when H;; = 0 and®~! is the inverse of the standard normal cumulative distrédsuti
function, respectively. The conditional densityf; given H;; is

fiyl(z) |f Hij = 1,
f(ZlH”) = fo(z) if Hij = O,
fi7_1(2’) if Hij = —1,
wherefy(z) is the standard normal density.

Let# = {h = (h1,...,hn) : h; € {—1,0,1}} be the set oB™ possible configurations of the vector of
association status (of SNP with phenotype) inithgtudies. We are interested in examining null hypotheses
for the n studies that are defined by subsetstofienoted byH°. In particular, we shall examine the
association null hypothesd%, , that the SNP is not associated with the phenotype in any dfttidées,

IH?VA : {(0705"' 50)}7

as well as theo replicability null hypothesig{, , thatthe SNP is positively and negatively associated with
the phenotype in at most one study,

Hyp:{h:Y Ithi=-1)<10 Y I(hi=1)<1},
i=1 i=1

wherel(-) is the indicator function.

Our primary goal in this work is to discover as many SNPs asiptswith falseH, . This goal is distinct
from the meta-analysis goal, of discovering as many SNP®ssille with falsef/% ,. For example, for
n = 2 studiesH contains3? = 9 configurations,

Hya=1{(0,0)},

7'[JO\/R = {(0’ 0)7 (1’ 0)7 (0’ 1)7 (_17 O)a (07 _1)7 (1’ _1)’ (_L 1)}7

and we aim to discover as many SNPs from the index{get H, e H/HY R}, whereH/H p =
{(1,1),(-1,-1)}. Had we defined replicability without taking directionglinto account, the null hy-
pothesis of interest would have bekfi = {(0,0), (1,0), (—1,0), (0,1), (0, —1)}, which aims to discover as
many SNPs as possible from the index &gt ﬁj e {(1,1),(-1,-1),(-1,1),(1,—1)}}. This aim could
be pursued just as easily as the aim that follows from our ifiefinof replicability, with the analysis method
of the next Sectiohl3, but we do not examine it here.

3 Theempirical Bayes approach to replicability analysis

3.1 Theempirical Bayesapproach to multipletesting

The two group model provides a simple Bayesian frameworkfaitiple testing, see e.g. Chapter 2.in Efron
(2010). Each SNP in studi’has marginal probabilityr(z) of not being associated with the phenotype,



i.e. Pr(H;; = 0) = mo(¢). Conditional onH;; = 0, the SNP has a standard normal densftyz).
Unconditionally, the continuous marginal (mixture) denss f;(z). For a subseg of R, let Py(Z) =

Iz fo(z)dz andPi(2) = [, fi(z)dz.
Suppose we observg; € Z and wish to tesf;; = 0. A direct application of Bayes’ theorem yields

Adopting the terminology in Efron (2010), we cdlldr;(Z) the Bayes FDRor Z: if we reportz;; € Z as
non-null, i.e. if we report;; # 0, thenFdr;(Z) is the chance that we have made a false discovery, i.e that
Hij =0.

Theorem 1 of Storey (2003) shows that for the two group maaleinfdependent test statisticBdr;(Z) is
closely connected to the FDR introduced in Benjamini andiecg (1995). LeH; = (H;1, ..., Him ), Zi =
(Zits - Zing), Q(2,Hy) = S I(zi5 € 2, Hyj = 0)/ max(R;, 1), whereR; = 3200 I(z; € 2) is
the number ofz-scores in the rejection region. The FDRADR(Z,H;) = Ez,u,Q(Z,H;). Taking
expectation over the randoHi;,

If Z is a single point,, then thdocal Bayes FDRs
fdri(z0) = Pr(H;; = 0|zi; = 20) = mo(i) fo(20)/ fi(20)-
Fdr;(Z) is the conditional expectation ¢gtir;(z) givenz € Z (Efron and Tibshirani, 2002),
Fdri(Z) = E,(fdri(z)]z € Z). 1)

The Bayes false negative ratefisur;(2) = Pr(H;; # 0|z;; ¢ Z) (Efron,[2010). Similar to_Storey (2007)
and Sun and Cai (2007), we observe that among all possil@eti@)j regionsZ constrained to satisfy that
Fdr(Z) < g, the region with maximal probability, and with minimal Bayklse negative rate, will be of the
form

Zor = {z: fdri(z) <t(q)}. 2)
The result is stated formally in the following proposition.

Proposition 3.1. Assume the two group model holds for thecores in study. Lett(q) in expression[(2) be
such thatF'dr;(Zor) = ¢. For any Z satisfyingFdr; (Z) < g,

1. Pi(2) < Pi(Zor).
2. Fnri(Zor) < Fnri(2).

See the proofin Section 1 of the Supplementary Material.

In the two group modelyy (i) and f; are needed in order to compute the local Bayes FDR. Thesditigsn

are estimated in the R packagefdr, available on CRAN. Poisson regression is used to estirhatearginal

density of thez-scores,f;. The assumption thatscores that fall in the range of the central 50% of the null
... -1 -1

distribution are null is used to estimate the fraction of hypothesesfry(i) = ez €[2 n((}f;?)f OO}

Other estimation methods are suggested in _Strimmer (20@8)alidharan [(2010), Storey and Tibshitani

(2003)/Benjamini et all (2006) , and Jin and|Cai (2007).

For a rejection regiolZ, equation[(ll) shows thdtdr;(Z) may be estimated by

FE"(Z) _ Zj:zijez fdr(zij)
' a Hj:zi; €2}
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whereﬁﬁi(zij) = #0(i) fo(2i;)/ fi(zi;) is the estimated local Bayes FDRsbcorez;;, and|{j : zi; € Z}|
is the number of-scores inZ. The estimated optimal rejection regionds= {z;; : fdri(z;;) < t(¢)}.
wheret(q) is the largest threshold so th&tlr; (Z) is at mosl.

3.2 Generalization of the two group model

Each SNP has probability() of having association configuratidni.e. Pr(H, = h) = =(h). We assume
the z-scores are independent across studies conditional orstfogiation statugl; = h, so the vector of.
z-scoresy; = (zij,. .., 2n;) has densityf(zﬂﬁ) = [T, f(zij|hi). Note thatr (i) is equal to the sum of

—

the probabilitiesr(h) over all3"~! configurations: € H with h; = 0.

Suppose we obseng for SNPj and wish to tesﬁj € HO. A direct application of Bayes’ theorem yields
the local Bayes FDR

fdryo(Z;) = Pr(H; € HO|Z;) = Y w(h)f(Z|h)/ f(%)), (3)

heHo

wheref(Z;) = > i cqy w(ﬁ)f(z”ﬂﬁ) is the mixture density. The local Bayes FDR for SNfor null hypoth-
esisHY , andHY, , respectively, is

fdrag, (Z5) = Pr(H; € H4|7;) and fdrayg, (%) = Pr(H; € Hygl?))-

For a subseg of i, if we reportforz; € Z thatﬁj ¢ HY, then the Bayes FDR is, as in equatibh (1),

Fdryo(2) = Pr(H; € H°|Zj € 2) = Ef(fdruo(5)|Z; € 2). (4)

The optimal rejection region to discover SNPs that are nah-ne. ﬁj ¢ MO, follows from the same
optimality argument of Propositidn 3.1. The rejection cegwith maximal probability and minimal Bayes
false negative rate among all possible rejection regioasale constrained to have a Bayes FDR of at most
levelq, is

Zormo ={7: fdryo (%) < t(q)}, )

wheret(q) is such thatF'dryo (Zor,0) = ¢. Section 2 of the Supplementary Material shows numerical
examples that demonstrate the different optimal rejectigions for no replicability null hypotheses and for
no association null hypotheses, as well as the loss in pdw¢ioccurs when the rejection region is chosen
sub-optimally based op-values.

To test whetheH; € #° on then studies, we need to first estimate the local Bayes FDR for tiserved
z-scores{ fdryo(Zx) : k=1,...,M}. We use these estimates to estimate the Bayes EDR (4) for ever
z-scorez; (j=1,...,M):

e (2)) Zk:z*kezj fdrypo(Zk)
0 i) = = N
oA {k: Z € Z;}]

(6)

whereZ; = {z; : fcﬁ,{o (Zx) < fcﬁ,{o (Z)),k = 1,...,M}. Leti(q) be the largest estimated local Bayes
FDR satisfyingfcﬁ(zj) < ¢. Then, our estimate of the optimal rejection regidn (5)45s : fcﬁm(zﬁg) <
i(q),k =1,...,M}. We conclude that SNR is non-null, i.e. H), ¢ Ho, if fcﬁﬂo (Zx) < t(q), or equiva-
lently, if Fdr(2) < q.

To computef(Z;) it is necessary to specify the conditional distributionstfte three states of nature for
association for each SNP in each study;; € {—1,0,1}. This is a key difference from the analysis



of single studies, where estimation of the marginal densiitthe z-scores does not require estimation of
the conditional distributions. In Section 3 of the Suppletaey Material we demonstrate the necessity of
estimating the conditional distributions for the statés = —1 and H;; = 1 in order to get a good estimate

of f(Z;) at the tails, forf; with dependent components.

Next, we show how to estimate(fz) and the conditionat-score densities that are necessary for estimating
the local Bayes FDR.

-

3.3 Estimating 7(h) and the conditional z-score densities

The likelihood for the z-scores for SNHs

L(7 2, f) = Pr(z|7) = Y f(Z| h)n(h), (7)

heH

where® = {n(h) : h € H,Y j,, m(h) = 1} is the set oB” — 1 probabilities of the multi-group model we
want to estimate.

The full likelihood requires both the joint distribution 6ff - - - H ;) and, for each study (i = 1,...,n),
the joint distribution of(Z,1, ..., Z;ar) given(H;, ..., H;ar). Since the joint distribution is unknown, we
consider instead the composite likelihood, which is thedpod of the marginal likelihoods for thi&/ SNPs,

LOM® 2, f) = 1T0L L(7; 2, f).

Although the composite likelihood is different than thel fikelihood, in large problems with local depen-
dency the maximum likelihood estimates of the compositililood and the full likelihood are very similar
(Cox and Reid, 2004). For GWAS the assumption of local depeaglseems reasonable, since the depen-
dency across SNPs diminishes as the distance between theigiPases. In Sectibh 5 we verified that the
composite likelihood was indeed appropriate using sinedlaata with GWA dependency.

Assuming that the probabilities fiwere known, the composite likelihood could be computeddfiitobabil-

ity distributions ofz;; givenH,; € {~1,0,1},i = 1,...,n, were known, sinc¢(Z;|H;) = [17_, fi.m, (2:7)-
Conditional onH;; = 0, the density ok;;, denoted byf,(-), is indeed known to be standard normal (in Sec-
tion[d we discuss what can be done whfgf) is unknown). Mixture model density estimation methods can
be used to estimatg ; andf; _; (McLachlan| 2000). First, the methods discussed in Seihican be used
to estimate the marginal density of thescores for each study;, and the fraction of SNPs with no associ-
ation with the phenotypes,(i). Denoting the estimates bfy and#(¢), the bimodal alternative density is

fiyA(z) = L"Ql))f"(z) Next, the expectation maximization (EM) algorithm, diediin Section 4 of the

T—70(

Supplementary Material, is used to fiidhat maximizes the composite likelihood.

4 Replicability analysis of T2D GWA studies

Our first step in this analysis is to estimate the fractionwfmypotheses for each of the six studies, using the
locfdr package. In two of the studies, the estimated fraction dfiiypotheses is 1. Since a stable estimate
of the conditional distribution under the alternative abobt be extracted for these two studies, we excluded
them from the empirical Bayes analysis. Studies DECODE,,[FGEION, and WTCCC had estimated frac-
tions of null hypotheses of 0.89, 0.98, 0.98, and 0.96, spdy. Figure 1 of the Supplementary Material
shows the histogram of z-scores, as well as the estimatatitooral densities, for each of the six studies, as
outputted from théocfdr package.



Binning of z-scores In the locfdr package, the--scores are binned before the densities are estimated.
Binning is practical in our application since in the estiioatof the local Bayes FDRs for several studies,
estimated conditional densities are multiplied. The aacyof multiplied estimates may be far less stable
without binning. Therefore, we first divide thescores{z;; : j = 1,..., M} into B bins of equal width.

For this application, we tried botB = 50 and B = 120 and received similar results. Let; ---z; p be

the centers of these bins. We assign each z-sggiiato the bin that it is in, denoted by; € {1,..., B}.

For SNPj, the probability of the vector of binnedz-scores?; = (Zy;,..., Z,;) given configurationf ;

Frg;(wip)

is f(z|H;) =TI/, fim,, (%), where fi ., (b) = Sty FOTHig = 0, fo(wiy) is the standard
normal density at point;, ;. ForH;; € {—1,1},

0 If Ii,b S O,
fA(xi,b) if Tip > 0.

0 if Tib 2 O7
Jfa(zip) ifagp <O0.

fin(zip) = { and fi_1(zip) = {

The EM algorithm was used to find that maximizes the composite likelihood on the binnescores,

1 Sew F G| B)m(R).

Forn = 4 studies, the set® and#{ ; contain, respectively 81 and 21 configurations, &g, contains
only the configuratiort0, 0,0, 0). The empirical Bayes analysis at leye: 0.05 discovered 803 SNPs asso-
ciated with T2D and 219 SNPs with replicated associatioh W2D. A list of the 219 SNPs with replicated
associations discovered by the empirical Bayes analysitedby positions on the chromosome, is given in
Section 5 of the Supplementary Material. SNPs with reptidatssociation included 16 distinct genes. We
extracted the SNP with smallest estimated local Bayes FD&grall SNPs within each of these 16 genes,
as well as among all SNPs in non-coding areas. In Table 1 wihése 17 SNPs, along with the estimated
Bayes FDR for replicability analysis (column 5) and for thealysis to discover association in (column 6).
As expected, the estimated Bayes FDR is larger for replitabinalysis than for an analysis to discover
associations, and the ranking for replicability is difierehan for discovering associations. For example, the
empirical Bayes analysis for KIF11 ranksrih for evidence of replicability buith for evidence of associa-
tion; KCNJ11 is rankedth for evidence of replicability busth for evidence of association. The SNP which
has by far the strongest evidence of association, and atpticassociation, is in TCF7L2. This association
has been well established in previous studies (Voight/g2@10). The very small estimated Bayes FDRs for
this SNP are a result of compounding the strong evidencasigie null from four studies.

As a comparison procedure, we considered the replicataihilysis suggested in BHY09, which was to
apply the BH procedure on th&/ no replicability null hypotheseg-values, computed as suggested in
Benjamini and Heller| (2008). We applied the analysis sutggesr BHY09 on then = 4 studies with
estimated fraction of null hypotheses below one, as wellraalbbthen = 6 studies available. Briefly, the
recipe for computing-values for the no replicability null hypotheses was asofe#i. First, for every sub-
set ofn — 1 studies, a meta-analysisvalue was computed. Then, thevalue for the no replicability null
hypothesis was set to be the maximum of theneta-analysig-values. Since we considered in this work
a concordant version of replicability, where the assoaiatiias considered replicated only if it was present
in at least two studies in the same direction, thealue was taken to be twice the smaller of the left- and
right-sided combineg-values using the method of Fisher, as suggested in Cweig€)200

The replicability analysis of BHY09 at level= 0.05 based on the four studies, discovered 447 SNPs associ-
ated with T2D and 83 SNPs with replicated association with,Téhd based on the six studies discovered 466
SNPs associated with T2D and 113 SNPs with replicated asgmtiwith T2D. Tablé L shows the adjusted
p-values based on all six available studies in columns sendregght, respectively. While the meta-analysis
of BHYQ9 indicates that there is evidence of associationlnmost all these regions, evidence of replicated
association is inferred only for five regions.

The empirical Bayes approach provides for each SNP a measurelief in each possible configuration
h conditional on its vector o¢-scores. For example, the vector sEcores for SNPB-s7903146 in gene
TCF7L2 was? = (—8.8, —4.5,—4.4, —7.5) in studies DECODE, DGI, FUSION, and WTCCC, respectively.

The estimated posterior probability was 0.98 that the candiion wash = (-1,—-1,-1,-1), conditional



on the binned:-score vector. The vector of-scores for SNPs10923931 in gene NOTCH2 was’ =
(—3.4,—4.9,-0.12, —2.8) with estimated posterior probability 0.92 for configuratio= (—1, —1,

Tablel2 shows the estimated posterior probability distiiims for these two SNPs.

0,—1).

Table 1: For the SNPs with strongest evidence towards wglity in 17 distinct regions discovered by the
empirical Bayes replicability analysis: the estimated &alfDR for replicability and for association (column
5-6); the adjusteg@-values from the analysis of BHY09 for replicability and #ssociation (column 7-8).

Empirical Bayes Fdr

BHYO09 adjustedvalues

chr pos gene Replicability Association Replicability Asisdion
rs7903146 10 114758349 TCF7L2 2.40e-11 4.61e-22 0.00e+00.00e600
rs10440833 6 20688121 CDKAL1 1.60e-05 8.06e-08 9.06e-09 00€3:00
rs5015480 10 94465559 non-coding 1.10e-03 7.74e-05 &78e- 1.12e-07
rs4402960 3 185511687 IGF2BP2 3.14e-03 6.87e-04 0.0205 1led5
rs5215 11 17408630 KCNJ11 8.91e-03 4.50e-03 1.00e+00 ©.023
rs757110 11 17418477 ABCCS8 9.98e-03 6.16e-03 1.00e+00 60.02
rs4933734 10 94414567 KIF11 0.0111 2.96e-04 1.00e+00 A1N55e
rs10923931 1 120517959 NOTCH2 0.0134 2.70e-03 1.00e+00 5ed4
rs11187033 10 94262359 |IDE 0.0189 2.07e-03 0.0186 7.07e-06
rs319602 5 134222164 TXNDC15 0.0202 7.07e-03 1.00e+00 6@.03
rs849134 7 28196222 JAZF1 0.0210 7.80e-03 9.84e-01 1.36e-0
rs6883047 5 134272055 PCBD2 0.0235 8.55e-03 1.00e+00 D.047
rs10832778 11 17394073 B7H6 0.0282 0.0164 1.00e+00 1.53e-0
rs13070993 3 12217797 SYN2 0.0370 0.0235 1.00e+00 0.0369
rs10433537 3 12198485 TIMP4 0.0360 0.0233 1.00e+00 0.0386
rs10113282 8 96038252 CB8orf38 0.0387 0.0102 1.00e+00 8.040
rs1554522 17 25913172 KSR1 0.0436 0.0145 1.00e+00 2.13e-01

Table 2: The estimated posterior probabilities for diff&rcmnfiguration§, conditional on the binnegtscore
of Z, for two examplez-scoresrs7903146 in gene TCF7L2 (column 2), ant10923931 in gene NOTCH2

(column 3).

h Z=(-88,—4.5,—4.4,—7.5)

7= (-34,-4.9,-0.12, —2.8)

0.980
0.012
0.000
0.008
0.000
0.000
0.000

0.000
0.924
0.047
0.000
0.004
0.024
0.001

5 Simulation studies

If all parameters were known, the optimal rejection regionld be calculated. In Section 2 of the Sup-
plementary Material , we present two simple examples thatatestrate the difference between the optimal
rejection region for a replicability analysis and that for analysis to discover associations, and show that
the optimal region can be much larger than that baseghealues. Since the optimal rejection region has to
be estimated in practice, we examine here the empirical 8agproach, that estimates the optimal rejection
region for inference. Specifically, the goal of the simuat was twofold. First, to investigate the effect of



the number of SNP4/, and the dependence across SNPs, on the empirical Bayesdprec Second, to
compare the empirical Bayes procedure to the replicalalitglysis of BHY09 at the same levgl In the
empirical Bayes analysis, thescores were first binned, usiti§)= 50 bins, and SNPs were considered dis-
covered if the estimated Bayes FDR in equatidn (6) was belew0.05. In addition to the empirical Bayes
procedure that estimaté&svia the EM algorithm, we also considered the oracle Bayesquiore that knows
the association status;; of each SNP. The oracle Bayes procedure estimates the icoradpprobabilities of
the binned:-scores in each study by the relative frequency of each biditional on the association status,
and uses the true vect@rfor computing the local Bayes FDRs.

5.1 Independence within each study

We considered, = 3 studies, with 2000 cases and 2000 referentsfené {103, 10* 10°} SNPs in each
study. Although there werg™ = 27 possible configurations of the vector of associations stadur data
generation process had positive probability only for thectBfigurations that do not have a positive and
negative association for the same SNP: configurdtip, 0) for 90% of the SNPs; the six configurations with
exactly one true association, i.&; s.t. Zf’zl |H,;| = 1, each for 1% of the SNPs; the eight configurations
with at least two true associations in the same directien,ﬁ.j s.t. | Z?:l H,;| > 2, each for 0.5% of the
SNPs. Following Wakefield (2007), we simulated data for g\&XP independently with disease rigk;,
given by the logistic regression modelit(p;;) = o+ ub;;, whereu = 0,0.5, and 1 corresponds to 0,1 and
2 copies of the mutant allele, respectively. We samipl@iven H;; as follows:

U(0.25,0.5) if Hy =1,
eileij ~ 0 if Hij = O,
U(—0.5,-0.25) if Hy; = —1.

whereU (a, b) denotes the uniform distribution betweeandb. Moreover, the minor allele frequency (MAF)
for each SNPj in studyi, was sampled front/ (0.05, 0.50), and we setx = —6, soe* = 0.0025 was the
prior odds of a disease due to a SNP withk- 0.

Results The simulation results were based on 50 repetitionsiMor= 10, and on 100 repetitions for
M = 10* andM = 1000. Figure 2 in the Supplementary Material shows the FDP in atyais to discover
associations and in a replicability analysis. The varratio FDP decreases with/, and is very small for
M = 10°. Table[3 presents the average FDP, and number of rejecfiosthough the average FDP of the
empirical Bayes analysis was below 0.05 fdr > 10, the average FDP wheld = 1000 was 0.071, with

a standard error (SE) of 0.006. The empirical Bayes anafyaiees only few more discoveries than the the
analysis of BHY09 when the aim is to discover associationsthree-fold more discoveries when the aim is
to discover replicated associations. For exampleMot= 10> SNPs the empirical Bayes analysis discovers
on average 2040 SNPs with replicated associations, whelaialysis of BHY09 discovers only an average
of 684 SNPs. A comparison of columns 6 and 8 shows that thdeoBayes analysis produces only few
more discoveries than the empirical Bayes analysis, stiggdhat the loss of power in the estimation of the
parameters is small.

Remark 5.1. Table[3 shows that the average FDP for the analysis of BHYQ&nwthe aim is to discover
associations was lower than(0, 0,0) x 0.05 = 0.045. For example, forM = 10° the average FDP was
0.039. This is due to the discreteness of the distributidheyf-values, that were computed from contingency
tables. Indeed, when the sample size was tripledpih@lues from true no association null hypotheses were
closer to uniform and therefore the average FDP was clos¢héonominal level (not shown). However, the
over-conservativeness of the replicability analysis remed severe when the sample size was tripled.



Table 3: The average FDP and number of rejectiBns an empirical Bayes analysis (columns 3 and 6), in
the analysis of BHY09 (columns 4 and 7), and in an oracle Bayedysis (columns 5 and 8), for different
values ofM =number of hypotheses.

FDP (SE x 1000) R (SE)
Analysis Empirical Oracle Empirical Oracle
type M Bayes BHYO09 Bayes Bayes BHY09 Bayes

Replicability 10° 0.049 (1) 0.001(0) 0.050 (1) 2040.6(6.3) 684.1(3.4) 2094.8)
10 0.049(2) 0.000(0) 0.049 (1) 203.6(1.4) 68(0.9) 211.2(1.1)
103 0.071(6) 0.000(0) 0.044(4)  20.5(0.4) 7.1(0.3)  22.7(0.3)
Association 10° 0.046 (0) 0.039 (0) 0.050 (0) 5911.3(8.7) 54958 (7.8) 60493)
10 0.047(1) 0.038(1) 0.050(1) 591.3(1.7) 549.7(1.8) 610.8)1
10 0.051(2) 0.040(3) 0.045(2) 58.7(0.6) 54.9(0.6)  66.6(0.5)

5.2 GWA dependency within each study

We simulated three GWA studies from the simulator HAPGENZ2 éfal., 20111). The three studies where
generated from three samples of the HapMap praject (Thenatienal HapMap Consortiurn, 2003): a sam-
ple of 87 individuals with African ancestry in Southwest UBASW), a sample of 165 Utah residents with
Northern and Western European ancestry (CEU), and a sahp8®dChinese in Metropolitan Denver, Col-
orado (CHD). We limited ourselves to chromosomes 1-4, toatained)M = 415,154 SNPs. In these
populations, the number of causal SNPs was 26 for ASW, 22 K @nd 27 for CHD. Since the effects
are typically small for GWA studies, we consider for eachydapion four sub-populations, and within each
sub-population about 1/4 of the causal SNPs had an increaatiplicative relative risk of 1.5. Overall,
there were 48 different causal SNPs in the four chromosomesf which 22 SNPs were causal in more
than one population. Specifically, the three populatiorgsfhee causal SNPs in common, and in addition,
the number of causal SNPs in common in exactly two of the thogeilations was: four for ASW and CEU,
seven for ASW and CHD, and six for CEU and CHD. Each study ¢oeth8000 cases and 8000 referents
from each population. The simulator HAPGEN2 uses an estinbthe fine-scale recombination rate map
to simulate haplotypes conditional on the reference hgptotlata from the HapMap project. The simula-
tor assumes a hidden Markov model and treats the recomtrinaties and mutation rates as transition and
emission probabilities, respectively. The resulting dated data has the same linkage disequilibrium (LD)
patterns as each reference data from the HapMap project.

Due to LD, the number of SNPs associated with the phenotygeeny study was larger than the number
of causal SNPs. Since it is not known from the data generationess which SNPs are associated with
the phenotype in each study, then for a non-causal $M@ do not know whethet® € {HY, , ,H z}

is false, since non-causal SNPs may have f&l8edue to LD patterns in the different populations. Since a
major goal in the simulations was to assess whether the FiDRated, it was necessary to establish a ground
truth. We wanted to estimate a conservative ground truthwith very high probability estimates a SNP
as having a trud?? if indeed it is fromH?°, at the possible expense of estimating a SNP as having a true
HY even if H° was false. The estimation of the ground truth was as folloWse simulation studies were
repeated 20 times, resulting in 26/alues per population for every SNP. Thej2@alues were first combined
with Fisher’'s combining method, and the analysis of BHY0%wapplied to the combinegvalues from the
three populations, to form for each SNP a combipedilue for H° € {HS, , ,H z} that is based on 20
studies per population® was considered to be false for a SNP if thealue for testingd® was below
the severe Bonferroni threshold for FWER control at lev@b0.The resulting ground truth contains 2126
SNPs associated with the phenotype, i.e. with f&l§e,, and 695 SNPs with replicated association with the
phenotype, i.e. with fals&l{, .. The ground truth based on 20 repetitions was very similargoound truth
that was established based on only 19 of the 20 repetitiodsfeerefore for an analysis of one repetition, the
resulting FDP using the ground truth based on 20 repetitimassvery similar to the FDP using the ground
truth that results from the 19 repetitions excluding theetijon being analyzed.
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Results Table[4 shows the analysis results for the 20 repetitionseftiree studies. Although the average
number of rejections was only slightly larger with the engal Bayes analysis than with the analysis of
BHYOQ9 for testing associations, it was more than 20 timegdawhen testing for replicated associations.
The average FDP for the empirical Bayes analysis was sligiitbve the nominal level of 0.05, possibly
because either “ground truth” was too conservative (“fadgections” are not really “false”) or the empirical
Bayes analysis is indeed slightly anti-conservative fertipe of dependency that occurs in GWA studies.
Nevertheless, this simulation demonstrates the largeigaising an empirical Bayes analysis over the anal-
ysis of BHYO09 for discovering replicated associations.sTlarge gain comes at a small risk, slightly inflated
FDP.

Table 4: The average FDP, and number of rejectiBng an empirical Bayes analysis (columns 2 and 4),
and in the analysis of BHY09 (columns 3 and 5), for the sinedatata with GWA dependency within each
study.

FDP (SE x 1000) R (SE)
Analysis type Empirical Bayes = BHY09 Empirical Bayes BHY09
Replicability 0.065 (9) 0.000 (0) 154.1 (8.5) 6.4 (1.2)
Association 0.072(9) 0.053(5) 2749 (12.4) 242.7(10.4)

6 Summary

In our analysis, we assumed for each study that if the nulbthygsis was true for a SNP, thevalues was
uniformly distributed, i.e. the-score had a standard normal density. Efron (2008) listsragéveasons why
the empirical null may be preferred over the theoreticdldistribution of thez-scores. The R packagmcfdr

fits the empirical null by truncated maximum likelihood orfit{ing a quadratic tdog f; near the center. Ifin
doubt about the theoretical null, the theoretical null mayéplaced with the empirical null in the empirical
Bayes analysis. In our analysis we estimated the conditievesity of Z;; givenH,; € {—1,0,1} in order

to discover replicated positive and negative associationfsiture work we intend to examine a more general
parametrization of the associations.

The accuracy of the empirical Bayes analysis relies on tlilgyato estimate well the unknown parame-
ters. We demonstrated in simulations that the variabilitthe FDP decreased as the number of hypotheses
increased. In a simulation of realistic GWA studies we destiated that the empirical Bayes analysis pro-
duced inferences with a small FDP, despite the dependenop@thep-values within each study. A full
Bayesian approach to the problem of GWA studies repligghsinot possible, since we do not know the true
likelihood. To estimate the probabilities of each of #feconfigurations of null and non-null hypotheses, we
used the product of the marginal SNP likelihoods. In apgiices were the exact likelihood is known, it is
possible to use a full Bayesian approach, so that the suegyéstmework for replicability analysis can be
extended to account for the uncertainty of the Bayes FDRastis.

From a comparison of an empirical Bayes analysis with thdyaisaof BHYQ9, we see that they may give
similar inferences when the analysis is aimed at discogeagsociations. However, for replicability the
empirical Bayes analysis discovers many more replicatedciations than the analysis of BHY09. In our
analysis of the T2D studies, we removed the two studies witksiimated fraction of null hypotheses of
one from the empirical Bayes analysis, since the alteraatistribution could not be reliably estimated for
these two studies using the R packégefdr. However, these studies are useful, as indicated by theHact
the analysis of BHY09 detected more associations using stliélies than using only the 4 studies with an
estimated fraction of null hypotheses below one. How to inestrporate these two studies into the empirical
Bayes analysis is an open question.
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Supplementary Material for Replicability analysis for Genome-
wide Association studies

S7 Proof of Proposition 3.1

Proof. Since the result is for a single study for notational convenience we omit the subscriph the
following proof. Lety, (z) be the indicator of whether € Zor, and lety)(z) be the indicator of whether
z € Z for another rejection region that satisfiedr(Z) < ¢. Straightforward calculus shows for every

P(2)(1 = fdr(2)/t(q)) < Yor(2)(1 — fdr(z)/t(q)) (8)

Taking expectations on both sides of equatidn (8),

[ - ) @)1 < [ o)1 - far()/ta)] )
we receive the following expression:

P(2)(1 = Fdr(2)/t(q)) < P(Zor)(1 — Fdr(Zor)/t(q)) 9)

SinceFdr(Zor) is the expectation of dr(z) for fdr(z) < t(q), andg < t(q), it follows thatFdr(Zor) <
t(q). Moreover, sincé'dr(2) < Fdr(Zor), it follows that(1 — Fdr(Z)/t(q)) > (1— Fdr(Zor)/t(q)) >
0. Therefore, the right hand side of expressian (9) is sméflen P(Zor)(1 — Fdr(Z)/t(¢q)) and item 1
follows.

In order to prove item 2, letdr(z) = 1 — fdr(z) be the true discovery rate. Straightforward calculus shows
for everyz

[1=9(2)][1 —tdr(2)/(1 = t(q))] < [1 = Yor(2)][1 —tdr(z)/(1 —t(q))] (10)
Taking expectations on both sides of equation (10),

Jl= @it @)/ = )l )z < [ = von(][t - tar(2)/(1 - t@)) (),
we receive the following expression:
(1= P(2)][1 = Fnr(2)/(1 = t(g))] <[1 = P(Zor)I[l — Fnr(Zor)/(1 - t(q))] (11)

Sincefdr(z) > t(q) for z ¢ Zog, it follows that1 — tdr(z)/(1 — t(q)) > 0 for 2 ¢ Zog, and therefore
thatl — Fnr(Zor)/(1—t(¢q)) > 0. Combining this observations with the fact fromitem 1 that P(Z) >

1 — P(Zor), the RHS of equatioi (11) can be bounded abovélby P(Z)][1 — Fnr(Zor)/(1 — t(q))].
It thus follows thatl — Fnr(Z)/(1 —t(q)) < 1— Fnr(Zor)/(1 —t(q)), proving item 2.1

S8 Testing normal means

In this section we give simple examples that demonstratahieaejection region for replicability analysis is
very different than for an analysis to discover associati@nd also that the optimal rejection regions may
be far larger than a rejection region basedpewalues. In this section only, for simplicity, we assumettha
each hypothesis has only two states: the null state withegoectation, and the non-null state with positive
expectation.
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S8.1 Comparison of Bayes FDR for optimal and p-value based Bayesian analysis

Example S8.1. For n = 2 studies, suppose the marginal z-score density in the tvebestis V (0, 1) under
the no-association null hypothesis, and under the altéveapositive association hypotheses the z-score
density isN (i, 1) in the first study andV (u, 1) in the second study. Thus the joint z-score density is

f(z1,22) = 7(0,0)p(21)p(22) + 7(0,1)p(21) (22 — p12)
+ 7m(1,0)p(21 — py)B(22) + 7(1, 1)p(21 — py)p(22 — a),

for ¢(z) the standard Normal density. Far € {(0,0), (0,1), (1,0), (1,1)}, the conditional probability that
H= (h1, ho) given(zy, zq) is

Pr(if = | (21, 7)) = 21~ Iy =f1(>;flif)<22 — I(hs = L))

The local Bayes fdr for testing%, , and HY, ., respectively, idry a(z1, z2) = Pr(H = (0,0)| (21, 21))
and

fdrngr(z1, 22) = Pr(ﬁ = (0,0)] (21, 22)) +Pr(ﬁ = (0,1)] (21, 22)) +Pr(ﬁ = (1,0)| (21, 22))-

We compared the optimal rejection region and the rejectegian based op-values for the Bayesian anal-
ysis. Thep-values forH%, , and HY , were, respectively, the-values of the Fisher combined (right-sided)
p-values,and the maximum of the two stugiesmlues. Specifically, fof = (Z1,75),let P =1 — ®(Z;)
and P, = 1 — ®(Z5). The p-value for testing no-association wa8* = 1 — F,2(=2(log(P1) + log(P)),
and the p-value for testing no-replication w&8'f* = max(Py, ).

For p; = py = 3, letx(0,0) = 0.80,7(0,1) = 7(1,0) = 0.08, and=«(1,1) = 0.04. Figure[S1 shows
the rejection region boundaries for the optimal rejecticgion (solid) and thep-values based rejection
region (dashed) for testingf %, , (top) andH?Y, ; (middle). Clearly, the rejection regions are much larger fo
detecting associations than for detecting replicability.

For 7(0,0) = 0.88,7(0,1) = 0.12, Figure[S1 (bottom) shows the rejection regions when testifg . The
hypothesid7Y,  is not tested, since the local Bayes FDR of no replicabititgrie, and there does not exist a
region with Bayes FDR at mogt< 1. The difference between the optimal rejection region aedéfection
region based op-values is much larger in this configuration than in the poeig configuration. Specifically,
the optimal rejection region is only determined by thecore of the second stud¥s.

Table[Sh shows the probability of the rejection regions fa mo association and no replicability null hy-
potheses. The probabilities of the rejection regions tealrer replicability are much smaller than for dis-
covering associations. Moreover, the probabilities of tpimal rejection regions are larger than for the
p-value based region, and the differences between the pilitieshof the regions are larger for configuration
7(0,0) = 0.88,7(0,1) = 0.12 than forz(0,0) = 0.80, 7(0, 1) = m(1,0) = 0.08, and=(1,1) = 0.04.

The following example illustrates the large loss of powee ttua non-optimal choice of rejection region that
can occur when more than two studies are available.

Example S8.2. For n = 6 studies, letr((0,0,0,0,0,0)) = 0.90 andx((0,0,0,0,0,1)) = 0.10. Thus the
first five z-scoresZ; - - - Zs are N (0, 1). The sixthz-scoreZg is N (0, 1) with probability 0.9 and N(3,1)
with probability0.1. Similar to the settindy, 1) = (0, 3) in Exampld_S811, thg-value based rejection
region for testingH ¥, , is very different than the optimal rejection region, whistonly based os. For a
Bayes FDR off = 0.05, the probability of the optimal rejection region wa$66, and the probability of the
p-value based rejection region wa€)12.

15



z2
z2

71 Z1

71

Figure S1: Optimal (solid curves), p-value based (dashedes) rejection regions boundaries for bayes
FDR levelsq € {0.20,0.05}, as well as the rejection region for the analysis of Benjaetial. (2009)
(dotted curves) for FDR levels € {0.20,0.05}, in configurationr((0,0)) = 0.80,7((0,1)) = 7((1,0)) =
0.08,, andn((1,1)) = 0.04 of the test ofHY , (top) andHY, ;, (middle) , and in configuration((0,0)) =
0.88,7((0,1)) = 0.12 for the test ofHY, , (bottom). The further the boundary is from (0,0) the smater
value ofq.

Table S5: The probability of the optimal and of thevalue based rejection regions, for various Bayes FDR
levelsq and two configurations af = (7(0,0),7(0,1),n(1,0),7(1,1)).

Null  7(0,0),n(0,1),7(1,0),7(1,1) | Rejection region ¢ =0.05 ¢ =0.20
HY (0.80,0.08,0.08,0.04) ZoR 0.0234  0.0417
p-value: Bayes 0.0230 0.041(

BHY09 0.0028 0.0145

HY , (0.80,0.08,0.08,0.04) ZoR 0.1498  0.2230
p-value: Bayes 0.1417 0.2187

BHY09 0.1334 0.2007

HY , (0.88,0.12,0.00, 0.00) ZoR 0.0855  0.1355
p-value: Bayes 0.0621 0.1179

BHY09 0.0563 0.1050
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S8.2 Comparison of Bayes FDR for p-value based Bayesian analysisand for the BH
procedure

In Exampld S811, the dotted curve in Figlird S1 shows thetiefecegion using the BH procedure, as sug-
gested in BHY09. While the rejection region is only slighgiyaller than that of thg-value based Bayesian

rejection region for testing for no association (top andd, it is much smaller for testing for no replica-

bility (middle figure). We shall explain why these differescarise.

In the two group model, when the rejection region is basecdhertdils of thez-scoresZ = {z : z < t(q)}
which are equivalent to one-sidpevalues, there is a strong connection between empiricaéBagtimation
of the Bayes FDR and the frequentist BH procedure for FDRrogras noted by Efron and Tibshirani (2002)
and Storey! (2002). If thgth p-value in study: is p;; = ®(z;;), then the BH rule rejects all hypotheses with
z-scores that satisfy the following inequality:

@i,BH(Zim)Zngx‘I’(Zi(z))/(l/M) < g (12)

wherez; ;) is the jth largestz-score in study. Sincej/M is the empirical distribution of for the rejection
regionz; = {z: z < z;(;) }, then if we setr((i) conservatively to be one, the BH procedure coincides with
the procedure that chooses the largésto that the estimatelldr; (Z;) is at mosty. Specifics follow. The
rejection region of the BH procedure®, ,,, = {7: P;; < ppu}, wherep; pg = sup{p: Fdr; pu(p) <

q} and

N _ p
Flren ) = 1 <oy )

The Bayes FDR of, = {z;; : P;; < p}is

mo(1) Pr(Pi; < p|Hj = 0)
Pr(P; € Zp)

FdTl(Zp) = PI‘(Hij = 0| Pij c Zp) = (14)

Comparing [(ZB) with[{14), as the denominator [of](13) is thepigiwal distribution of the event in the de-
nominator of [(14), ifP;; is U[0, 1] under the null hypothesis, the Fdr estimator[inl (13) is tagdaby a
factor of 1/my(i). If P;; is stochastically greater thali[0, 1], the Fdr estimator inf_(13) may be greatly
over-conservative.

Similarly, for the null hypothesi${; ,, the conservative factor il;/w(ﬁ), since the rejection region of the
——NA
BH procedure isZ,n s = {2 : p)'* < pyj;}, wherepyj; = sup{p : Fdrpp(p) < ¢} and

Fr s (p) s (15)
T p) = - )
BH {Z: pM A <p}l/M
and the Bayes FDR of, = {Z: pN4 < p} is
. ~ NA < 7 — 0
FarNA(2,) = Pr(HY | P € 2,) = T PHEPTT S plH = 0) (16)

Pr(zj € 2,)

However, 1Y » is a composite null hypothesis and therefore the conseeragss of the BH procedure is far
greater. The rejection region of the BH proceduréfj%zg ={Z: pij < pEY wherepRE = sup{p :

Fdrpy(p) < ¢} and

Fdrpyy (p) - (17)
reg(p) = — .
B {z;: pNE<p}|/M
The Bayes FDR of,, = {Z': p' < p}is
i w(h)Pr(PNE < p|H = h)
FdrNR(2,) = Pr(HQp| 2 € 2,) = he Y p (18)

Pr(zj € 2p)
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Figure S2: The Bayes FDR valygsolid Iine),fcﬁBH for the test of %, , (bottom dash-dot line) and for
the test of Y, ; (top dash-dot line). The horizontal dashed line is at lev@band it intersects the bottom

and top dash-dot lines &f'dr, F/CE"BH) values (0.05,0.05) and (0.0022, 0.05), respectively.

Comparing [(II7) with[{18), as the denominator[of](17) is thepieiwal distribution of the event in the de-
nominator of [IB), the conservatism of the BH procedureofedl from the differences in the numerators of
these two expressions. The BH procedure is conservatirzeE‘_iﬁR is stochastically greater thdf0, 1] for

H € H,, especially ford = (. Therefore, the numerator i {17) is much larger than theerator in [I8)
when(0) is large.

For Examplé S8]1, Table 55 shows the probability of the BHaté&n regions fof 4, py) = (3, 3). Figure

——NA ——NR —

showsFdr g (p) versusFdrN4(Z,) and Fdr gy (p) versusFdrNE(Z,). For testingH$, 4, Fdrgp
was overly conservative by a factor b25. Therefore the rejection region withidr gz = 0.05 actually had
Fdr = 0.04, and a rejection probability df.133, while the rejection probability wa$.1417 for the p-value
based rejection region withdr = 0.05. For testingH$, 5, the rejection region with"dr gz = 0.05 actually

had F'dr = 0.0022, and the rejection probability was orlly0028. For comparison, the rejection probability
was0.0230 for the p-value based rejection region withir = 0.05.

SO Computation of f(2)
The locfdr package estimate’z;;| H;; = 0) andPr(H;; = 0) in addition to f(z;;), and then derives
f(zi;] Hi; # 0) through the relation

f(zi) = f(zij| Hij = 0) - Pr(Hi; = 0) + f(2i;] Hij #0) - {1 — Pr(H;; =0)}.

18



In replicability analysis, that considers

?‘i
~—

f )
 A{TI, f(zy] Hig = ha)} - Pr(H; = h)
- ) (19)

for h # 0, it is also necessary to specifyz;;| Hi; = —1) and f(z;;| H; = 1).

Pr(H; = h| 7)) =

le

If H;; are independent then the componentsoére also independent and thus the locfdr estimates of the
marginalz-score densities are sufficient for computing

L 7 { (2] Hij = 0) - Pr(Hy; =0
Pr(H; =0| zj) = St H?f_lf(;j) =0

However, if the components df; are dependent then specifyirfgz;;| H;; = —1) and f(z;;| Hy; = 1) is
necessary for computingyr(H; H: = 6| Z;), as illustrated in the example below.

Example S9.1. Assume that eithef; = 0 or H; € #', for ' = {—1,1}", and IetPr( f

= ) = TQ.
Therefore,f(2;, H; = 0) = {TI"_, f(zi;] Hi; = 0)} - mo. Sincef (Z)) = FZ, Hy =0) + f(Z;, Hy € HY),
to computePr( 43- =0] z;) we neeqlf(zj,HJ € H'). In general,
1@ el = Y (5, H; =
heH!
= > f|Hy=h)-Pr(H; =h)
heH?!
= Z {1y f(zi5] Hij = ha)} - Pr( = }_i) (20)
ReH!
If the components dff; were independent conditional dii; € ', then
fEH ey = f(5| H e 1Y) Pr(H; e M)
= {IGL, f(zi5] Hij # 0)} - (1 = mo). (21)

Note that to computé (20) it is necessary to estinydte,;| H;; = —1) and f(z;;| H;; = 1) and that if
H;; are independent conditional oﬁj € H! then expression§ (20) and {21) are the same, but for large
and highly dependerf;; they may be very different. To see this, we further asderl; = (1,...,1)) =

(1 —m)/2 and Pr(H; = (—1,...,—1)) = (1 — m)/2, and considerZ = (z1;-- - z,;) With 0 < z;;
for which f(21]| Hij = —1) << f(le| Hij = 1) and f(21]| Hij = O) << f(ZZJ| Hij = 1) Since
f(zi5] Hij = —1) << f(zi;| Hi; = 1), expressiorn[(20) can be approximated as follows:

> A, f(zi;] Hij = h)} - Pr(H; = h)

heH?l
~ AL, f(zi| Hij = 1)} - (1 —mo)/2. (22)
Furthermore sinc&r(H,; = 1| H;; # 0) = 1/2 and
f(zij| Hij #0) = f(z5| Hij = —1) - Pr(Hy; = —1| Hy; # 0)

+ f(zij| Hij = 1) - Pr(Hy; = 1| Hij #0),
then f(zi;| Hij = 1)/f(zi;| Hij # 0) ~ 2. Thus expressiof (22) &"~1) larger than expressiori (21).
Sincef(zw| H;; =0) << f(zj]| Hij = 1) it follows thatf(Z;) ~ f(zj,ﬁ € H'). As the denominator of
Pr(H; = 0] Z,) is approximatelyf (Z;, H; € #') then in this cas@r(H, = 0| Z;) is 2(»~1) smaller then it
would have been if7;; were independent conditional dif; € A
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S10 TheEM algorithm

The observed data are z-scoggs. . ., zj; and the missing values affél, ceey ﬁM. The complete likelihood
for SNPj is

Le(7; 25, £, Hy) = f(Z5|H;)m(H)).

The composite complete likelihood for all the SNPs is

M Le(7; 25, f, Hy) = TIL, £ (25| Hy)m(H;).

E step In the E step we calculate the expected value of the log coteddelihood function, with respect
to the conditional distribution off givenz under the current estimate of the parametﬁ?@;

—

(7| #Y) = By 2 20 [log{TI}L, f(Z;|H;) - n(H;)}]

o

g

M
= >3 Pt = Rz, 7 ) og S (5, = B) + log{n(0)}]

<

+ 3N Pr(H; = bz, 7)) log{n(h)} (23)

where

f(E 1) ()

Pr(H; = h|z;,#Y) = —— =
Yen FE I )T (R)

M step Find #“*Y that maximizex)(7| #*)). Since the second sum in equatibnl(23) has the same form
as the log-likelihood for the multinomial distribution fdgllows that

7T_(tJrl) (ﬁ) _

>

The updated parameters aétt) = {z(t+1 (k) : h € ).

startingvaluer(®)  As starting values, we recommend using values constrair&atisfyio (i) = 3 i yynni—oy T (h).
Such a starting position will provide a good initial estimaf the non-null densities in the E step. Specifically,
given estimate$(i),7 = 1,...,n, we suggest as starting values

O (R) =TI 0, (0),

Whel’eﬁl(i) = ﬁ_l(i) = (1 — 7%0(2))/2

20



Updating of f(2j|ﬁ) After the EM converged to a new estimate, the estimatedifracif null hypotheses

in each study can be extracteﬁléT) (1) = Z{Eeﬂ}m{hFO} 7(T)(R), whereT is the number of steps till
convergence of the EM. A modified estimatefpf andf; _; can then be computed using the new estimates
fr((JT)(i),i = 1,...,n, if these estimates are different than the starting vafugs$),i = 1,...,n. These
modified estimated can now be used to recompi(t%%). Next, the EM can be repeated with the new

estimated conditional densities. This iterative procésaikl end when the new estimatesﬁé@ (1), =
1,...,n, are almost the same as the starting values of the EM.

S11 Replicability analysisof T2D GWA studies

Figure[SB shows the empirical z-scores, as well as the gstih@nditional densities, for each of the six
studies, as outputted from the locfdr package.

The table below gives the list of the 219 SNPs with replicatssbciations, as discovered by the empirical
Bayes analysis, sorted by positions on the chromosome. ditgns were found by NCBI build GRCh37.p5
reference assembly, and they were mapped to nearby gen&SbhiPd

(htt p: // www. nchi . nl m ni h. gov/ proj ects/ SNP/ dbSNP. cgi ?l i st =rsli st). Thetable shows
the estimated Bayes FDR for replicability analysis as weflax the analysis to discover association, and the
adjustedb-values from the corresponding analysis of BHY09 based lsixaavailable studies.

Empirical Bayes Fdr BHYO09 adjusted p-values

chr pos gene Repl. Assoc. Repl. Assoc.
rs10923931 1 120517959 NOTCH2 1.34e-02 2.70e-03 1.00e+00 .45e-®4
rs6442307 3 12143355 SYN2 4.43e-02 2.74e-02 1.00e+00 039
rs11715886 3 12147236 SYN2 4.40e-02 2.73e-02 1.00e+00 e-039
rs4488811 3 12182028 SYN2 3.74e-02 2.36e-02 1.00e+00 BD21e
rs11721223 3 12185160 SYN2 3.67e-02 2.35e-02 1.00e+00 e21
rs11708978 3 12188495 SYN2 3.64e-02 2.34e-02 1.00e+00 e-0P6
rs6792867 3 12189900 SYN2 3.77e-02 2.37e-02 1.00e+00 -0D2e
rs7629805 3 12192394 SYN2 4.79e-02 3.15e-02 1.00e+00 H20e
rs10433537 3 12198485 SYN2,TIMP4  3.60e-02 2.33e-02 1@De+ 3.86e-02
rs13070993 3 12217797 SYN2 3.70e-02 2.35e-02 1.00e+00 e-BB9
rs11720578 3 12267084 non-coding 4.33e-02 2.68e-02 1000e+ 4.81e-02
rs13071168 3 12275447 non-coding 1.39e-02 1.24e-02 1000e+ 1.53e-02
rs11709119 3 12276493 non-coding 4.14e-02 2.97e-02 10m0e+ 1.56e-02
rs17036101 3 12277845 non-coding 1.47e-02 1.26e-02 1000e+ 1.56e-02
rs1562040 3 12285405 non-coding 1.43e-02 1.25e-02 1.@0e+0 1.78e-02
rs17036130 3 12288288 non-coding 1.51e-02 1.27e-02 1000e+ 1.73e-02
rs13081389 3 12289800 non-coding 4.17e-02 2.98e-02 10m0e+ 1.73e-02
rs1596417 3 12290898 non-coding 4.20e-02 2.99e-02 1.@0e+0 1.75e-02
rs13089415 3 12301360 non-coding 2.27e-02 1.62e-02 10m0e+ 1.88e-02
rs6771792 3 12301472 non-coding 2.31e-02 1.63e-02 1.@0e+0 1.82e-02
rs4376068 3 185497635 IGF2BP2 7.82e-03 2.16e-03 1.07e-01 .88e-D4
rs6801848 3 185499057 IGF2BP2 1.19e-02 3.81e-03 3.10e-01 .60e94
rs4481184 3 185505787 IGF2BP2 3.92e-03 1.12e-03 3.00e-02 .22e®H5
rs11705729 3 185507299 IGF2BP2 3.29e-03 8.83e-04 2.44e-02 4.23e-05
rs11929397 3 185510190 IGF2BP2 5.88e-03 1.22e-03 2.44e-02 4.23e-05
rs7633675 3 185510613 IGF2BP2 6.22e-03 1.28e-03 2.44e-02 .23e-405
rs16860234 3 185510884 IGF2BP2 1.98e-02 6.43e-03 1.00e+001.83e-02
rs4402960 3 185511687 IGF2BP2 3.14e-03 6.87e-04 2.05e-02 .51e-®5
rs16860235 3 185512361 IGF2BP2 3.12e-02 1.33e-02 1.00e+004.10e-02
rs7640539 3 185513296 IGF2BP2 4.56e-03 1.07e-03 2.44e-02 .23e45
rs7651090 3 185513392 IGF2BP2 5.35e-03 9.58e-04 2.19e-02 .83e-B5
rs6444081 3 185514393 IGF2BP2 4.25e-03 1.01e-03 2.44e-02 .23e45
rs7646518 3 185514931 IGF2BP2 4.71e-03 1.09e-03 2.44e-02 .23e-405
rs7637773 3 185515635 IGF2BP2 4.41e-03 1.04e-03 3.00e-02 .90e®5
rs4686696 3 185516520 IGF2BP2 4.09e-03 9.86e-04 2.44e-02 .23e45
rs6767484 3 185520578 IGF2BP2 3.45e-03 9.03e-04 2.44e-02 .23e-405
rs7640744 3 185522447 IGF2BP2 2.14e-02 8.37e-03 1.00e+00 .52e-D2
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rs11711477
rs1470579
rs6769511
rs9859406
rs2548966
rs319602
rs319598
rs319592
rs319589
rs6883047
rs7728823
rs12658264
rs9348440
rs6456364
rs9295474
rs2328545
rs9368216
rs4712522
rs4712523
rs4710940
rs6906327
rs6456367
rs6456368
rs6456369
rs10946398
rs7774594
rs7754840
rs9460544
rs9460545
rs4712525
rs4712526
rs9460546
rs742642
rs7748382
rs7772603
rs7752780
rs7752906
rs9358356
rs9356743
rs9368219
rs1012635
rs1569699
rs7756992
rs9350271
rs9356744
rs7766070
rs9368222
rs10440833
rs2206734
rs6931514
rs11753081
rs1040558
rs9295478
rs2328548
rs6935599
rs9465871
rs10946403
rs2328549
rs9358357
rs9368224
rs9358358
rs9460550
rs9356746
rs9368226
rs12111351
rs9356747
rs9356748
rs7767391

185526690
185529080
185530290
185534482
134215127
134222164
134240235
134252619
134255333
134272055
134282777
141764189
20641336
20649254
20652717
20653550
20655110
20656800
20657564
20658012
20659459
20659587
20659806
20660365
20661034
20661143
20661250
20661529
20661550
20662966
20663035
20663632
20665081
20665549
20665946
20666022
20666055
20667382
20667688
20674691
20675295
20679310
20679709
20683164
20685486
20686573
20686996
20688121
20694884
20703952
20705590
20713706
20716253
20716958
20717095
20717255
20717404
20718240
20719145
20719232
20719393
20719561
20720279
20723057
20724558
20725007
20725097
20725240

IGF2BP2
IGF2BP2
IGF2BP2
IGF2BP2
TXNDC15
TXNDC15
PCBD2
PCBD2
PCBD2
PCBD2
PCBD2
non-coding
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1
CDKAL1

5.70e-03
5.19e-03
6.05e-03
6.39e-03
3.01le-02
2.02e-02
3.05e-02
3.94e-02
2.39e-02
2.35e-02
2.43e-02
3.84e-02
3.19e-02
4.56e-02
2.56e-03
2.93e-02
4.59e-02
2.32e-03
2.40e-03
5.02e-03
3.76e-03
1.48e-03
1.05e-03
3.60e-03
2.02e-03
1.82e-03
2.09e-03
2.63e-03
1.89e-03
2.48e-03
1.40e-03
2.17e-03
2.97e-02
1.55e-03
1.76e-03
1.62e-03
1.69e-03
7.29e-04
1.69e-02
1.95e-03
4.27e-02
4.99e-04
1.14e-04
5.42e-04
5.83e-04
2.83e-05
3.81e-05
1.60e-05
8.97e-04
9.05e-05
6.76e-04
7.88e-04
6.95e-03
6.28e-04
9.48e-04
2.63e-04
8.44e-04
3.42e-02
9.98e-04
3.12e-04
1.73e-02
3.59%e-04
1.22e-02
4.54e-04
6.75e-03
7.14e-03
1.26e-02
4.07e-04
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1.18e-03
9.31e-04
1.25e-03
1.31e-03
1.06e-02
7.07e-03
1.08e-02
1.21e-02
9.74e-03
8.55e-03
9.84e-03
6.98e-03
3.36e-03
4.08e-03
2.53e-04
2.50e-03
4.15e-03
2.28e-04
2.36e-04
8.62e-04
3.99%e-04
1.31e-04
5.92e-05
3.80e-04
1.13e-04
1.70e-04
2.11e-04
2.60e-04
1.78e-04
2.45e-04
1.22e-04
2.19e-04
2.55e-03
1.39e-04
1.63e-04
1.47e-04
1.55e-04
3.94e-05
1.99e-03
4.83e-05
4.65e-03
1.55e-05
4.37e-07
1.77e-05
1.98e-05
1.43e-07
2.02e-07
8.06e-08
3.05e-05
3.12e-07
2.20e-05
2.49e-05
6.19e-04
1.32e-05
3.31e-05
1.74e-06
2.78e-05
2.81e-03
3.56e-05
4.08e-06
2.03e-03
6.28e-06
1.84e-03
1.08e-05
6.03e-04
6.36e-04
1.88e-03
8.58e-06

2.74e-02 5.02e-05

2.98e-02
2.99e-02
3.16e-02
1.00e+00
1.00e+00
1.00e+00
1.00e+00
1.00e+00
1.00e+00
1.00e+00
4000e
1.00e+00
1.00e+00
6.90e-04
1.00e+00
1.00e+00
6.11e-04
7.28e-04
7.01e-03
6.65e-03
5.93e-04
4.31e-04
6.52e-03
8.02e-04
5.91e-04
1.23e-03
5.91e-04
5.91e-04
6.04e-04
6.09e-04
1.23e-03
1.00e+00
5.91e-04
5.53e-04
5.21e-04
5.13e-04
4.74e-04
6.57e-01
5.23e-05
8.35e-01
3.32e-07
1.05e-08
7.74e-07
7.44e-07
9.06e-09
9.06e-09
9.06e-09
2.44e-05
9.06e-09
1.90e-05
1.66e-05
1.29e-03
1.42e-05
1.42e-05
6.30e-06
1.32e-05
2.02e-01
1.42e-05
1.42e-05
1.23e-01
1.42e-05
1.08e-01
5.48e-05
3.17e-03
3.18e-03
9.40e-02
6.90e-05

.16eB5
41le®5
.65e®5
.97e3d2

64ed2
e-022
e077
e-833

le-8Z

2e-0D

1.35e-01

9e10B
6e103
S5etd
9e702
0e80H
9el07
1e30F
9e40B
2e20b6
3el07
8ell
66406
40e207
2e107
0e307
3el0n
3el07
4e107
4ex07
9e305
ef82
2e107
8elly
8et0¥
6e10¥
2e1@
4e202
5e109®
8e103
6e113
0e3:00
8e219
8e219
0e3:00
0e3:00
00€3-00
671D
0e3:00
95e410
2e41®
0e307
8e31D
5e31D
5et1D
42€310
0e806
3e31D
3e31D
5505
3e31D
1e405
7e109
70€e707
26707
7e40%
9e1(®



rs7747752
rs9270986
rs9492055
rs11154899
rs10872465
rs2876354
rs11154900
rs6906007
rs10457653
rs10872466
rs4407733
rs947733
rs849133
rs849134
rs849135
rs10281305
rs4493865
rs2442982
rs4734295
rs10113282
rs1892012
rs10117648
rs7868773
rs10122799
rs10964378
rs10964380
rs7020996
rs2383208
rs10965250
rs10811661
rs1333051
rs2798253
rs6583813
rs11187007
rs2149632
rs11187033
rs10509645
rs2421941
rs10786050
rs10882091
rs10882094
rs10882095
rs10736069
rs7900689
rs6583830
rs10882096
rs11187114
rs4933734
rs7911264
rs2488087
rs10882100
rs1111875
rs12778642
rs5015480
rs10882102
rs11187144
rs7087591
rs10748582
rs7923837
rs7923866
rs7917983
rs7901275
rs4074720
rs4074718
rsl7747324
rs7901695
rs4506565
rs7903146

20725423
32574060
129048640
137293890
137294656
137295352
137296161
137296300
137296895
137297967
137299152
137304427
28192280
28196222
28196413
54890409
54898402
20590386
96000919
96038252
19979945
19981497
19985150
19987293
19994736
19999413
22129579
22132076
22133284
22134094
22136489
94202905
94209939
94214580
94232247
94262359
94277866
94345909
94367230
94374377
94387676
94394402
94395393
94395748
94398118
94401386
94406237
94414567
94436851
94446041
94460687
94462882
94464307
94465559
94466495
94469980
94473629
94477219
94481917
94482076
114732882
114732906
114748497
114748617
114752503
114754088
114756041
114758349

CDKAL1
non-coding
non-coding
non-coding
non-coding
non-coding
non-coding
non-coding
non-coding
non-coding
non-coding
non-coding
JAZF1
JAZF1
JAZF1
non-coding
non-coding
non-coding
non-coding
C8orf38
non-coding
non-coding
non-coding
non-coding
non-coding
non-coding
non-coding
non-coding
non-coding
non-coding
non-coding
non-coding
non-coding
IDE
IDE
IDE
IDE
non-coding
KIF11
KIF11
KIF11
KIF11
KIF11
KIF11
KIF11
KIF11
KIF11
KIF11
non-coding
non-coding
non-coding
non-coding
non-coding
non-coding
non-coding
non-coding
non-coding
non-coding
non-coding
non-coding
TCF7L2
TCF7L2
TCF7L2
TCF7L2
TCF7L2
TCF7L2
TCF7L2
TCF7L2

5.52e-03
3.16e-02
4.73e-02
4.89e-02
4.86e-02
4.96e-02
4.93e-02
3.31e-02
4.83e-02
3.91e-02
4.99e-02
3.08e-02
4.24e-02
2.10e-02
3.23e-02
4.04e-02
4.63e-02
3.46e-02
9.25e-03
3.87e-02
4.46e-02
4.49e-02
4.53e-02
4.11e-02
4.69e-02
4.66e-02
1.25e-03
2.24e-03
1.32e-03
1.17e-03
2.71e-03
1.60e-02
3.57e-02
2.78e-02
1.94e-02
1.89e-02
3.97e-02
4.30e-02
3.35e-02
3.38e-02
2.51e-02
4.01e-02
2.47e-02
2.23e-02
2.19e-02
3.49e-02
3.53e-02
1.11e-02
1.15e-02
1.07e-02
1.04e-02
3.02e-03
2.90e-03
1.10e-03
2.80e-03
8.09e-03
8.35e-03
7.35e-03
8.61e-03
7.56e-03
6.55e-03
4.86e-03
1.98e-04
7.27e-05
6.05e-08
5.21e-09
1.07e-10
2.40e-11
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3.43e-04
4.82e-03
1.51e-02
1.11e-02
1.10e-02
1.13e-02
1.12e-02
8.27e-03
1.09e-02
7.35e-03
1.14e-02
8.46e-03
1.58e-02
7.80e-03
1.16e-02
1.18e-02
1.52e-02
2.29e-02
3.49e-03
1.02e-02
9.54e-03
1.03e-02
1.04e-02
9.64e-03
1.37e-02
1.72e-02
2.02e-04
8.61e-05
7.13e-05
6.51e-05
2.70e-04
3.19e-03
3.13e-03
2.75e-03
2.12e-03
2.07e-03
3.02e-03
1.38e-03
7.05e-04
7.22e-04
6.69e-04
3.08e-03
6.52e-04
4.37e-04
4.18e-04
3.25e-03
3.30e-03
2.96e-04
3.11e-04
1.04e-04
9.52e-05
3.61e-04
2.82e-04
7.74e-05
3.25e-04
1.70e-03
1.73e-03
1.35e-03
1.77e-03
1.44e-03
4.35e-05
5.33e-05
9.75e-09
5.26e-10
4.00e-13
8.64e-15
4.28e-20
4.61e-22

2.24e-03
1.@0e+0
1000e+
4000e
4000e
1000e+
4000e
1000e+
4000e
4000e
1000e+
1.@0e+0
1.00e+00
9.84e-01
9.75e-01
1000e+
1.@0e+0
1.@0e+0
1.@0e+0

5e509

2.29e-03
4.80e-02
1.09e-01
1.09e-01
1.09e-01
1.10e-01
8.99e-02
1.09e-01
9.89e-02
1.09e-01
6.22e-02

-D26e

-D3i6e

-D34e
1.09e-01
1.14e-01
1.34e-01
2.34e-02

1.00e+00 .08e492

1.@0e+0
1000e+
1.@0e+0
1000e+
1000e+
1000e+
1.80e-0
3.29%-0
n86e-
&83e-
7.82e-0
038e-
DZ3e-
1.26e-02
1.80e-02
1.86e-02
2.55e-02
1000e+
1.00e+00
1.00e+00
1.00e+00
3.16e-02
1.00e+00
1.00e+00
1.00e+00
2.74e-02
2.44e-02
1.00e+00
824e-
834e-
BB5e
D24e-
DOH5e
&28e-
D30e
DP3e
D3le-
®©B5e
&97e-
&37e-
1.78e-01
1.63e-01
7.42e-09
6.32e-09

6.54e-02
6.93e-02
7.03e-02
9.47e-02
1.09e-01
1.09e-01
3.66e-06
3.61e-06
7.57e-07
7.70e-07
3.98e-05
9.56e-06
1.22e-05
edQB4
DG2e
e-N67
eb6
9.64e-05
05e104
0led5
52e85
22ed05
55e05
5e05
2e{08
02e405
93e8)6
5ed05
4.18e-07
4.18e-07
4.28e-07
4.82e-07
4.49e-07
1.12e-07
4.77e-07
8.93e-06
6.14e-06
3.33e-06
4.89e-06
4.89e-06
.65e87
.70e®7
.00e600
.00e600

0.00e+000.00e+00
0.00e+00 .00e00
0.00e+00 .00e€00
0.00e+00 .00e00



rs10885402 10 114761697 TCF7L2 4.88e-05 3.72e-10 7.42e-09 0.00e+00

rs6585198 10 114762237 TCF7L2 7.86e-05 6.60e-10 7.42e-09 .00e€00
rs4132670 10 114767771 TCF7L2 3.25e-09 5.32e-15 0.00e+00 .00e€00
rs6585200 10 114768609 TCF7L2 9.65e-05 9.05e-10 8.10e-09 .00e600
rs6585201 10 114768783 TCF7L2 8.37e-05 7.78e-10 8.10e-09 .00e€00
rs7904519 10 114773927 TCF7L2 1.89e-04 1.68e-09 9.06e-09 .00e600
rs10885405 10 114777670 TCF7L2 1.26e-04 1.31e-09 9.06e-09 0.00e+00
rs10885406 10 114777724 TCF7L2 1.32e-04 1.43e-09 9.06e-09 0.00e+00
rs10787472 10 114781297 TCF7L2 1.20e-04 1.18e-09 1.00e-08 0.00e+00
rs7924080 10 114787012 TCF7L2 1.08e-04 1.04e-09 9.06e-09 .00e600
rs12243326 10 114788815 TCF7L2 9.89e-09 4.46e-14 0.00e+000.00e+00
rs7077039 10 114789077 TCF7L2 1.02e-04 1.19e-10 8.32e-09 .00e€00
rs7900150 10 114793823 TCF7L2 6.60e-05 8.16e-11 7.42e-09 .00e600
rs7100927 10 114796048 TCF7L2 1.79e-04 2.12e-10 7.42e-09 .00e€00
rs7895340 10 114801525 TCF7L2 5.81e-05 4.77e-11 7.42e-09 .00e600
rs11196200 10 114801938 TCF7L2 1.41e-04 1.62e-10 7.42e-09 0.00e+00
rs11196205 10 114807047 TCF7L2 2.08e-04 8.02e-09 7.00e-08 0.00e+00
rs12255372 10 114808902 TCF7L2 2.25e-07 4.11e-12 0.00e+000.00e+00
rs12265291 10 114810240 TCF7L2 1.60e-04 4.87e-09 6.65e-08 0.00e+00
rs11196208 10 114811316 TCF7L2 1.51e-04 3.35e-09 6.65e-08 0.00e+00
rs7077247 10 114812071 TCF7L2 1.69e-04 6.27e-09 7.00e-08 .00e€00
rs12718338 10 114813047 TCF7L2 2.32e-04 1.35e-08 1.11e-07 0.00e+00
rs10832778 11 17394073 B7H6 2.82e-02 1.64e-02 1.00e+00 3eDb
rs1557765 11 17403639 non-coding 9.61e-03 6.34e-03 10m0e+ 3.68e-02
rs5215 11 17408630 KCNJ11 8.91e-03 4.50e-03 1.00e+00 -P36e
rs7124355 11 17412960 non-coding 2.06e-02 1.57e-02 10m0e+ 4.76e-02
rs757110 11 17418477 ABCCS8 9.98e-03 6.16e-03 1.00e+00 eDB7
rs1877527 12 71405206 non-coding 4.07e-02 8.08e-03 1000e+ 3.68e-02
rs11178531 12 71408690 non-coding 2.55e-02 5.63e-03 41000e 2.36e-02
rs7132840 12 71411561 non-coding 3.81e-02 9.35e-03 1000e+ 2.19e-02
rs2063591 12 71411855 non-coding 2.59e-02 5.72e-03 10m0e+ 3.59e-02
rs7957932 12 71421552 non-coding 4.76e-02 1.31e-02 1000e+ 4.31e-02
rs1512991 12 71422768 non-coding 1.77e-02 4.99e-03 10m0e+ 2.33e-02
rs7956274 12 71424402 non-coding 1.81e-02 5.08e-03 1000e+ 2.36e-02
rs7959965 12 71425164 non-coding 1.85e-02 5.17e-03 1000e+ 2.36e-02
rs7298255 12 71428069 non-coding 1.30e-02 4.01e-03 10m0e+ 2.07e-02
rs10784891 12 71429798 non-coding 1.64e-02 4.73e-03 4000e  2.79e-02
rs7955901 12 71433293 non-coding 2.75e-02 6.07e-03 10m0e+ 3.17e-02
rs4760894 12 71438923 non-coding 2.90e-02 7.53e-03 1000e+ 3.64e-02
rs4760785 12 71438945 non-coding 2.63e-02 5.81e-03 10m0e+ 3.69e-02
rs4760895 12 71439127 non-coding 2.67e-02 5.90e-03 1000e+ 3.77e-02
rs7138300 12 71439589 non-coding 2.71e-02 5.99e-03 10m0e+ 3.86e-02
rs1913201 12 71439825 non-coding 2.86e-02 7.44e-03 10m0e+ 3.86e-02
rs10879240 12 71443285 non-coding 3.27e-02 8.85e-03 4000e  3.88e-02
rs7313973 12 71444058 non-coding 1.56e-02 4.58e-03 10m0e+ 4.02e-02
rs1554522 17 25913172 KSR1 4.36e-02 1.45e-02 1.00e+00 e-p13

S12 Detailsof ssmulationsresultsin Section 6.1

Figure[S# shows the false discovery proportion (FDP) in digapility analysis (top), and in an analysis to discovesasations
(bottom). The variation in FDP decreases with and is very small fon/ = 100, 000.
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Figure S3: The histogram of z-scores for each of the six T2DAGWIdies. The heavy curve is the estimate
fi(z) for the mixture densityf(z), scaled to match the histogram area. Dashed curve is scsiiathée
70 (%) fo(z), wherefy(2) is the standard normal density. The estimated non-nulltscane shown in pink.
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Figure S4: Replicability analysis (top) and analysis tacdi®r association (bottom): Boxplots of FDP for
M=100000, M=10000, and M=1000 for empirical Bayes anal{lsiff) and the analysis of BHYQ9 (right).
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