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Abstract

We propose a formal method to declare that findings from a primary study
have been replicated in a follow-up study. Our proposal is appropriate for
primary studies that involve large-scale searches for rare true positives (i.e.
needles in a haystack). Our proposal assigns an r-value to each finding; this
is the lowest false discovery rate at which the finding can be called replicated.
Examples are given and software is available.

The use of big data is becoming a central way of discovering knowledge in modern
science. Large amounts of potential findings are screened in order to discover the few
real ones. In order to verify these discoveries a follow-up study is often conducted,
wherein only the promising discoveries are followed-up. This is a common research
strategy in genomics, proteomics and in other areas where high throughput methods
are used. We show how to decide whether promising findings from the preliminary
study are replicated by the follow-up study, keeping in mind that the preliminary study
involved an extensive search for rare true signal in a vast amount of noise. The
proposal computes a number, the r-value, to quantify the strength of replication.
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We are concerned with situations in which many features are scanned for their statis-
tical significance in a primary study. These features can be single nucleotide polymor-
phisms (SNPs) examined for associations with disease, genes examined for differential
expression, pathways examined for enrichment, protein pairs examined for protein-
protein interactions, etc. Interesting features are selected for follow-up, and only the
selected ones are tested in a follow-up study.

This approach addresses two goals. The first goal is to increase the number of cases in
order to increase the power to detect a feature, at a lower cost. The second goal is to
address the basic dogma of science that a finding is more convincingly a true finding
if it is replicated in at least one more study. Replicability has been the cornerstone of
science as we know it since the foundation of experimental science. Possibly the first
documented example is the discovery of a phenomenon related to vacuum, made by
Huygens in Amsterdam in the 17th century, who travelled to Boyle’s laboratory in
London in order to replicate the experiment and prove that the scientific phenomenon
was not idiosynchronic to his specific laboratory with his specific equipment [1]. In
modern research, the lack of replicability has deeply bothered behavioral scientists
that compare the behavior of different strains of mice, e.g. in knockout experiments.
It is well documented that in different laboratories, the comparison of behaviors of the
same two strains may lead to opposite conclusions that are both statistically signifi-
cant ([2], [3], and Chapter 4 in [4]). An explanation may be the different laboratory
environment (i.e. personnel, equipment, measurement techniques) affecting differ-
ently the study strains (i.e. an interaction of strain with laboratory). This means
that the null hypothesis that the effect is say non-positive is true in one laboratory,
but false in the other laboratory, and thus the positive effect is not replicated in both
laboratories. Replicability problems also emerge in medical research and are of great
concern. Half of phase III clinical trials fail even though they rely on one of the many
measures of success that were studied in the phase II trials ([5] and [6]). This suggests
that the therapeutic effect discovered in the phase II study, which leads to the phase
III study conducted in different patients, using similar but not identical methods and
measures of success, was not replicated. Obviously the phase III studies were not
under-powered, so failing to discover an effect suggests that the effect was absent
from phase III even if it was present in phase II. In genomic research, the interest is
in the genetic effect on phenotype. In different studies of the same associations with
phenotype, we seem to be testing the same hypotheses but the hypotheses tested are
actually much more particular. Whether a hypothesis is true may depend on the co-
horts in the study, that are from specific populations exposed to specific environments
(for particular examples, see section Results). However, if discoveries are made, it is
of great interest to see whether these discoveries are replicated in different cohorts,
from different populations, with different environmental exposures and different mea-
surement techniques. The paramount importance of having replicated findings is well
recognized in genomic research [7]. In particular, this is so in genome-wide association
studies (GWAS), see [8] and [9]. As noted in [10], the anticipated effects for common
variants in GWAS are modest and very similar in magnitude to the subtle biases that
may affect genetic association studies - most notably population stratification bias.
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For this reason, they argue that it is important to observe the same association in
other studies using similar, but not identical, sub-populations and methods. Obvi-
ously, splitting the data into two independent parts and doing the same analysis on
each does not answer the above concerns.

Replicability problems arise in many additional scientific areas, and discussions of
these problems reached prominent general-interest venues, for instance the New Yorker
(December 13, 2010) and the Economist (October 19, 2013). We need to have an ob-
jective way to declare that a certain study really replicates the findings in another
study. This paper makes a concrete, objective, easy to apply, and rigorously moti-
vated way to determine that a finding has been replicated.

Replicability versus meta-analysis. In many areas it is common to combine the
results of studies that examine the same hypotheses by a meta-analysis. Pooling
results across studies is especially attractive when single studies are underpowered,
utilizing the potential increase in power of combining the studies, but the meta-
analysis p-value tests only the null hypothesis of no signal in all studies. As a result,
a strong signal in one of the studies (with p-value close to zero) is enough to declare
the meta-analysis finding as highly significant.

A meta-analysis discovery based on a few studies is no better than a discovery from
a single large study in assessing replicability, unless we are ready to assume that if a
signal exists in one study it exists in all, i.e. that a discovery has to be a replicated
discovery. This obviously need not be true, as discussed above. Similarly, replicability
cannot be assessed in the following common practice: features are screened in a
primary study, then the features with promising results are examined in a follow-
up study, and the discoveries are only based on the results from the follow-up study.
These are follow-up study discoveries, not discoveries that replicated from the primary
study to the follow-up study.

In GWAS, a typical table of results reports the p-values in the primary and follow-
up study, side by side, as well as the meta-analysis p-values, for the SNPs with the
smallest meta-analysis p-values. Table 1 columns 1-6 is an example of such a table of
results [11]. In replicability analysis, the null hypothesis of signal in at most one study
is tested, the rejection of which yields the statistical significance of the replicability
claim. (Replicability is sometimes referred to as reproducibility, but see [13].)

The r-value for replicability. If a hypothesis in one study is rejected at the
0.05 level, and it is also rejected in the same direction in another study at the 0.05
level, then replicability is intuitively established. This is also a sound statistical
claim, in the sense that the probability of claiming that a finding is replicated if
the null hypothesis is true in at least one of the studies is at most 0.05. The need
for a statistical framework for establishing replicability becomes essential with the
use of high throughput methods. The potential to err in inference when more than
one study is involved is more severe when each study is examining simultaneously
many features. The choices for selection are much wider. Therefore, the statistical

3



methods needed are more complicated than the very intuitive statistical method for
establishing replicability when a single feature is involved.

Multiple testing methods are widely employed to adjust for the effect of selection,
either by controlling the probability of erroneously selecting even a single feature
(FWER), or by controlling the false discovery rate (FDR). The concern regarding
the selected claims of replicability is even greater, because the selection takes place
both after the primary study and after the follow-up study. Our method reports the
r-value, that can be defined for either error rates for replicability analysis. Here we
emphasize the FDR:
Definition.The FDR r-value for feature i is the lowest FDR level at which we can

say that the finding is among the replicated ones.

The smaller the r-value, the stronger the evidence in favor of replicability of the
finding. It can be compared to any desired level of FDR in the same way that a
p-value is commonly compared to the desired false detection parameter α.

In this work we introduce a method for computing r-values for features examined
in primary and follow-up studies. We suggest to complement tables of results that
report for selected findings the primary, follow-up, and meta-analysis p-values, with
an additional column of r-values. The r-values in column 7 of Table 1 are all below
0.05, concurring with the main replicability findings of [11]. The ranking of r-values
is different than the ranking of the meta-analysis p-values, indicating the novelty of
the added information. Table 2 shows the results of a somewhat more complicated
example to be discussed below, where the difference between the meta-analysis and
the replicability conclusions is more dramatic.

1 Assessing replicability from follow-up studies

We will concentrate on the widely used design in “omics” that examines m features
in the primary study, and only a fraction thereof in the follow-up study. For other
designs, see the Section on “Assessing replicability in other designs”.

When m = 1, as we discussed in the introduction, replicability is established at the
0.05 significance level if both p-values are at most 0.05. When m > 1, this design
can be analyzed by applying a multiple testing procedure on the maximum of the
two studies p-values, setting conservatively the maximum value at one if the feature
was not followed-up. This is not recommended since the price paid for multiplicity
is too large. More powerful procedures for FWER and FDR control were suggested
for this design in [16], in which effectively the primary study p-values have to be
adjusted for the multiplicity of m hypotheses, but the follow-up study p-values need
to be adjusted only for the multiplicity of the hypotheses followed up. Here we
suggest a generalization of the method of [16], which offers further power gain in the
typical situation in “omics” research where most of the hypotheses examined in the
primary study are true null hypotheses. We demonstrate our proposal on p-values
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from GWAS. However, the p-values can obviously come from other applications such
as exome-sequencing studies, ChIP experiments, or microarray studies.

Let f00 denote the fraction of features, out of the m features examined in the primary
study, that are null in both studies. We cannot estimate f00 from the data, since
only a handful of promising features (SNPs) are followed up in practice. However,
f00 is typically closer to one than to zero, and we can give a conservative guess for a
lower bound on f00, call it l00. In typical GWAS on the whole genome, l00 = 0.8 is
conservative. We can exploit the fact that l00 > 0 to gain power.

1.1 Computation of r-values for FDR-replicability

1. Data input:

(a) m, the number of features examined in the primary study.

(b) R1, the set of features selected for follow-up based on primary study results.
Let R1 = |R1| be their number.

(c) {(p1j , p2j) : j ∈ R1}, where p1j and p2j are, respectively, the primary and
follow-up study p-values for feature j ∈ R1.

2. Parameters input:

(a) l00 ∈ [0, 1), the lower bound on f00 (see above), default value for whole
genome GWAS is l00 = 0.8.

(b) c2 ∈ (0, 1), the emphasis given to the follow-up study (see Section Varia-
tions), default value is c2 = 0.5.

3. Definition of the functions fi(x), i ∈ R1, x ∈ (0, 1):

(a) Compute c1 =
1−c2

1−l00(1−c2x)
.

(b) For every feature j ∈ R1 compute the following e-values

ej = max

(
1

c1
p1j,

R1

mc2
p2j

)
, j ∈ R1.

(c) Let fi(x) = min{j:ej≥ei,j∈R1}
ejm

rank(ej)
, where rank(ej) is the rank of the e-

value for feature j ∈ R1 (with maximum rank for ties).

4. The FDR r-value for feature i ∈ R1 is the solution to fi(ri) = ri if a solution
exists in (0, 1), and 1 otherwise. The solution is unique, see SI Lemma S1.1 for
a proof.

The r-values can be computed using our web application http://www.math.tau.ac.il/$\sim$ruheller/A

An R script is also available in RunMyCode,http://www.runmycode.org/companion/view/542.
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The adjustment in Step 3(c) is similar to the computation of the adjusted p-values
[15] for the Benjamini-Hochberg (BH) procedure [14], the important difference being
that e-values are used instead of p-values. The replicability claims at a prefixed level
q, say q = 0.05, are all indices with r-values at most 0.05. The FDR for replicability
analysis is then controlled at level 0.05, see Section Derivation and Properties for
details.

For l00 = 0, declaring as replicated the findings with r-values at most q coincides
with Procedure 3.2 in [16]. It is easy to see that with l00 > 0, we will have at least
as many replicability claims as with Procedure 3.2 in [16]. Next we show in GWAS
examples and simulations that the power increases with l00, and can lead to many
more discoveries than with Procedure 3.2 in [16], while maintaining FDR control.

1.2 Results

We consider three recent articles reporting GWAS, where hundreds of thousands of
SNPs are examined in the primary studies, and only a small fraction of these SNPs
are examined in the follow-up studies. In these examples, the primary and follow-up
studies differ in the sub-populations examined, and may also differ in design and
analysis. In addition, the primary and follow-up studies may differ in quality. It is
therefore of scientific importance to discover which associations were replicated. The
examples differ in design, and in the selection rules for forwarding SNPs for follow-up.
In the first example, there is one primary study and one follow-up study, few dozen
SNPs are followed up, and only a handful have r-values below 0.05. In the second
example, the primary study is a meta-analysis of three studies, more than a hundred
hypotheses are followed-up, and few dozen SNPs have r-values below 0.05. In the
third example, there were three stages: a primary study, then a follow-up study, and
then an additional follow-up study that was based on the first follow-up study.

Our first example is GWAS of IgA nephropathy in Han Chinese [11]. To discover
association between SNPs and IgA nephropathy, 444882 SNPs were genotyped in
1523 cases from southern China, and 4276 controls from Singapore and from southern
and northern China, with the same ancestral origin. For follow-up, 61 SNPs were
measured in two studies: 1402 cases and 1716 controls from northern China, and
1301 cases and 1748 controls from southern China. The 61 SNPs selected for follow-
up had primary study p-values below 10−5. Table 1 shows the seven SNPs with the
smallest meta-analysis p-values, out of the 61 SNPs followed up. The associations for
these seven SNPs have been replicated with r-values ≤ 0.05 for l00 = 0.8. The seven
SNPs clearly stand out from the remaining 54 SNPs followed-up, that have r-values
of one, see Table S1 in the Supporting Information (SI). If the researcher is willing to
assume only a lower bound of 0.5 or of zero for f00, then the r-values are larger than
with l00 = 0.8. Table S1 in the SI shows that with l00 = 0.5 and l00 = 0, respectively,
only six and five SNPs had r-values below 0.05.
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Our second example is GWAS of Crohn’s disease (CD). To discover associations
between SNPs and CD, [17] examined 635547 SNPs on 3230 cases and 4829 controls
of European descent, collected in three separate studies: NIDDK4, WTCCC5, and a
Belgian-French study. For follow-up, 126 SNPs were measured in 2325 additional cases
and 1809 controls as well as in an independent family-based dataset of 1339 trios of
parents and their affected offspring. The two smallest p-values in each distinct region
with primary study p-values below 5 × 10−5 were considered for follow-up. Table S2
in the SI shows the 126 SNPs followed-up. Applying our proposal with parameter
l00 = 0.8, we decide that 52 SNPs have replicated associations at r-values ≤ 0.05.
The 52 SNPs with replicated associations did not correspond to the 52 SNPs with
the smallest meta-analysis p-values. For example, the SNP in row 35 had the 35th
smallest meta-analysis p-value, but its r-value was 0.09, thus it was not among the 52
replicated discoveries.The last column of Table S2 in the SI marks the 30 SNPs that
were highlighted as “convincingly (Bonferroni P < 0.05) replicated CD risk loci”,
based on the follow-up study p-values, in Table 1 of the main manuscript of [17].
These 30 SNPs have r-values below 0.05, so they are a subset of the 52 replicated
discoveries. Our replicability analysis discovers more loci, in particular three loci
(rows 34, 44, and 59 in Table S2 of the SI) that did not reach the conservative
Bonferroni threshold of [17] on the follow-up study p-values, yet were pointed out in
Table 2 of [17] to be ”Nominally (uncorrected P < 0.05) replicated CD risk loci”.

Our third example is GWAS of type 2 diabetes (T2D). To discover association between
SNPs and T2D, [18] examined more than two million SNPs imputed from about
400000 SNPs collected on 4549 cases and 5579 controls combined from three separate
studies: DGI, WTCCC, and FUSION. For follow-up, 68 SNPs were measured in 10037
cases and 12389 controls combined from additional genotyping of DGI, WTCCC, and
FUSION. The 68 SNPs chosen for follow-up had primary study p-values below 10−4,
and they were in loci that were not discovered in previous studies. For additional
follow-up, 11 out of the 68 SNPs were measured in 14157 cases and 43209 controls of
European descent combined from 10 centers. The 11 SNPs forwarded for an additional
follow-up had p-values below 0.005 in the first follow-up study, as well as meta-analysis
p-values below 10−5 when combining the evidence from the primary study and the
first follow-up study. While there was no evidence of replicability from the primary
study to the follow-up studies, there was evidence of replicability from the first follow-
up study to the second follow-up study. Table 2 shows the 11 SNPs followed-up from
the first follow-up study to the second follow-up study. Applying our proposal with
l00 = 0, we decide that five SNPs have replicated associations with r-values ≤ 0.05.
Note that we set l00 = 0 since most of the 68 SNPs in the first follow-up study are
already believed to be associated with the disease.

7



2 Derivation and properties

Here we give the formal framework for replicability analysis, and the theoretical prop-
erties of our proposal. The family of m features examined in the primary study, in-
dexed by I = {1, . . . , m}, may be divided into four sub-families with the following
indices: I00, I01, I10, and I11, for the features with hypotheses that are, respectively,
null in both studies, null in the primary study only, null in the follow-up study only,
and non-null in both studies. Suppose R replicability claims are made by an analysis.
Denoting by Rij the number of replicability claims from sub-family Iij , R11 is the
number of true replicability claims, and R−R11 = R00 +R01 +R10 is the number of
false replicability claims.

The FDR for replicability analysis is the expected proportion of false replicability
claims among all those called replicated:

FDR = E

(
R00 +R01 +R10

max(R, 1)

)
.

Definition. A stable selection rule satisfies the following condition: for any j ∈ R1,

fixing all primary study p-values except for p1j and changing p1j so that j is still

selected, will not change the set R1.

Stable selection rules include selecting the hypotheses with p-values below a certain
cut-off, or by a non-adaptive multiple testing procedure on the primary study p-values
such as the BH procedure for FDR control or the Bonferroni procedure for FWER
control, or selecting the k hypotheses with the smallest p-values, where k is fixed in
advance.

Theorem 2.1 A procedure that declares findings with r-values at most q as replicated
controls the FDR for replicability analysis at level at most q if the rule by which the
set R1 is selected is a stable selection rule, l00 ≤ f00, the p-values within the follow-up
study are jointly independent or are positive regression dependent on the subset of true
null hypotheses (property PRDS), and are independent of the primary study p-values,
in either one of the following situations:

1. The p-values within the primary study are independent.

2. Arbitrary dependence among the p-values within the primary study, when in
Step 3 m is replaced by m∗ = m

∑m
i=1 1/i.

3. Arbitrary dependence among the p-values within the primary study, and the
selection rule is such that the primary study p-values of the features that are
selected for follow-up are at most a fixed threshold t ∈ (0, 1), when c1 computed
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in Step 3(a) is replaced by

c̃1(x) = max{a : a(1 +

⌈tm/(ax)−1⌉∑

i=1

1/i) = c1(x)},

where c1(x) = 1−c2
1−l00(1−c2x)

. Steps 3(b) and 3(c) remain unchanged. In step 4,

the FDR r-value for feature i ∈ R1 is ri = min{x : fi(x) ≤ x} if a solution
exists in (0, 1), and one otherwise.

See the SI for a proof. The implication of item 3 is that for FDR-replicability at
level q, if t ≤ c1(q)q/m, no modification is required, so the procedure that declares
as replicated all features with r-values at most q controls the FDR at level q on
replicability claims for any type of dependency in the primary study. Note that the
modification in item 3 will lead to more discoveries than the modification in item 2
only if t < c1(q)q

1+
∑m−1

i=1 1/i
.

In the SI we show realistic GWAS simulations that preserve the dependency across p-
values in each study. For l00 ∈ {0, 0.8, 0.9, 0.95, 0.99}, the FDR of the procedure that
declares findings with r-values (computed in Steps 1-4 of the original proposal) at
most 0.05 as replicated is controlled below level 0.05, suggesting that this procedure
is valid for the type of dependency that occurs in GWAS. Since this procedure can be
viewed as a two dimensional variant of the BH procedure, and the BH procedure is
known to be robust to many types of dependencies, we conjecture that for l00 ≤ f00,
our procedure controls the FDR at the nominal level q for most types of dependencies
that occur in practice, even if hypotheses with primary study p-values above c1(q)q/m
are followed-up. In Table S5 of the SI we further show the superior power of our
procedure over applying the BH procedure on the maximum of the two studies p-
values (at level 0.05/(1− l00), where the maximum value is set to one for j /∈ R1).

3 Variations

3.1 Choice of emphasis between the studies

The e-value computation requires combining the p-values from the primary and the
follow-up study using a parameter c2, which we set to be c2 = 0.5 in the computation
above. More generally, for FDR control we need to first select c2 ∈ (0, 1). We shall
show the effect the choice of c2 has on the r-values for given p-values, and argue from
power considerations that the choice c2 = 0.5 is reasonable.

The following procedure is identical to that of declaring the set of findings with r-
values at most q as replicated, see proof in SI Lemma S1.1. First, compute the number
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of replicability claims at level q as follows:

R2 , max

{
r :
∑

j∈R1

I

[
(p1j, p2j) ≤

(
r

m
c1(q)q,

r

R1

c2q

)]
= r

}
.

Next, declare as replicated findings the set

R2 =

{
j : (p1j, p2j) ≤

(
R2

m
c1(q)q,

R2

R1
c2q

)
, j ∈ R1

}
.

From this equivalent procedure it is clear that a larger choice c2 ∈ (0, 1) will make the
threshold that p2j has to pass larger, but the threshold that p1j has to pass smaller,
so for the extreme choice c2 ≈ 1, the discovered findings can only be features with
tiny primary study p-values, and for the extreme choice of c2 ≈ 0, the discovered
findings can only be features with tiny follow-up study p-values. For q small, the
primary and follow-up study p-values will have the same threshold if 1

m
(1−c2)
1−l00

= c2
R1
,

i.e. c2 = 1
1+m(1−l00)/R1

, which is close to zero if R1/m is very small (as is typical in

GWAS). Therefore, this choice is not recommended unless the power of the follow-
up study is extremely large. For the choice c2 = 0.5, the threshold for the follow-up
study p-value is larger than for the primary study p-value by the factor m(1− l00)/R1,
i.e. the ratio of the number of hypotheses that should be adjusted for in the primary
study to that in the follow-up study. We show next that this choice is good from
efficiency considerations.

In simulations, detailed in the SI, we observed that for a given l00 the optimal c2,
i.e. the choice of c2 that maximizes power, has only a small gain in power over the
choice c2 = 0.5. We considered m = 1000 SNPs, out of which f00 = 0.9 had no signal,
f01 = 0.025 had signal only in the follow-up study, f10 = 0.025 had signal only in the
primary study, and f11 = 0.05 had signal in both studies. The power to detect the
signal in the primary study was set to be π1 = 0.1 for a threshold of 0.05/m, and the
power to detect the signal in the follow-up study was set to be π2 ∈ {0.8, 0.5, 0.2}
for a threshold of 0.05/R1. The selection rule for follow-up was the BH procedure at
level c1(q)q on the primary study p-values, with q = 0.05. See Section S3 in the SI
for a discussion of the advantage of this selection rule over other selection rules.

The power increased with l00 as well as with π2. In the SI, Table S4 shows that the
gain in power of using l00 > 0 over l00 = 0 can be large. Figure S1 shows the average
power and the power for at least one true replicability discovery as a function of c2.

Our simulations mimic the typical setting in GWAS on the whole genome, where
SNPs that are associated with the phenotype have typically low power (0.1 in the
above simulations) to pass the severe Bonferroni threshold of the large number of
hypotheses examined in the primary study, yet the power to pass the far less severe
Bonferroni threshold of the few dozen hypotheses examined in the follow-up study is
greater (0.2, 0.5, or 0.8 in the above simulations). Therefore, for GWAS on the whole
genome, we recommend setting c2 = 0.5.
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3.2 FWER-replicability

The FWER criterion,

FWER = Pr(R00 +R01 +R10 > 0),

is more stringent than the FDR, yet it may sometimes be desired. We define the
FWER r-value as the lowest FWER level at which we can say that the finding has
been significantly replicated. The r-value can be compared to any desired level of
FWER. An FWER controlling procedure for replicability analysis was suggested in
[16]: it applies an FWER controlling procedure at level c1α on the primary study
p-values, and at level c2α on the subset of discoveries from the primary study that
were followed-up, where c1 + c2 = 1. If a non-zero lower bound on f00 is available,
then this lower bound can be used in order to choose parameters (c1, c2) with a sum
greater than one. Specifically, for FWER control using Bonferroni, the data input
and parameters input is the same as in our proposal for FDR-replicability in Steps 1
and 2, but the computation in Step 3 is different. For feature j ∈ R1,

fBonf
j (x) = max (mp1j/c1, |R1|p2j/c2) , c1 =

1− c2
1− l00(1− c2x)

.

The Bonferroni r-value for feature j is the solution to fBonf
j (rj) = rj if a solution

exists in [0, 1), and one otherwise. The replicability claims at a prefixed level α, say
α = 0.05, are all indices with r-values at most 0.05. The FWER for replicability
analysis is then controlled at level 0.05, see SI for the proof.

We computed the Bonferroni r-values in a GWAS of thyrotoxic periodic paralysis
(TPP) [19]. In 70 cases and 800 controls from the Hong Kong (Southern) Chinese
population, 486782 SNPs were genotyped. Table S3 shows the four most signifi-
cant SNPs followed-up in additional 54 southern Chinese TPP cases and 400 healthy
Taiwanese controls. The associations were successfully replicated with Bonferroni r-
values far below 0.05, concurring with the claim in [19] that “Associations for all four
SNPs were successfully replicated”.

4 Assessing replicability in other designs

The concept of the r-value is also relevant to the communication of the results of
replicability in other designs. If n > 2 studies examine a single feature, then repli-
cability of the finding in all n studies is established at the 0.05 significance level if
the maximum p-value is at most 0.05. However, if a weaker notion of replicability
is of interest, e.g. that the finding has been replicated in at least two studies, then
the evidence towards replicability can be computed as follows. First, for every sub-
set of n − 1 studies, a meta-analysis p-value is computed. Then, replicability in at
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least two studies is established at the 0.05 significance level if the maximum of the n
meta-analysis p-values is at most 0.05. This can be generalized to discover whether
the finding has been replicated in at least u studies, where u ∈ {2, . . . , n}, as detailed
in [20].

If n ≥ 2 studies examine each m > 1 features, then for each i ∈ {1, . . . , m} the p-value
for testing for replicability can be computed as above, but instead of comparing each
to 0.05, the BH procedure is applied and the discoveries are considered as replicated
findings. The procedure was suggested in [21], and for n = 2 it amounts to using
the maximum of the two studies p-values for each feature in the BH procedure. The
power of this procedure may be low when a large fraction of the null hypotheses are
true, since the null hypothesis for replicability analysis is not simple, and the BH
procedure is applied on a set of p-values that may have a null distribution that is
stochastically much larger than uniform. The loss of power of multiple testing pro-
cedures can indeed be severe when using over-conservative p-values from composite
null hypotheses [22]. An empirical Bayes approach for discovering whether results
have been replicated across studies was suggested in [23], and compared with the
analysis of [21], concluding that the empirical Bayes analysis discovers many more
replicated findings. The accuracy of the empirical Bayes analysis relies on the ability
to estimate well the unknown parameters, and thus it is suitable in problems such as
GWAS, where each study contains hundreds of thousands of SNPs, and the depen-
dency across SNPs is local, but may not be suitable for applications with a smaller
number of features and non-local dependency. A method based on relative ranking of
the p-values to control their “irreproducible discovery rate” was suggested in [24]. A
list-intersection test to compare top ranked gene lists from multiple studies to discover
the common significant set of genes was suggested in [25].

To summarize, although for m = 1 there is a straightforward solution for the problem
of establishing replicability, once we move away from this simple setting the problem is
more complicated. For designs with more than one potential finding, it is very useful
to quantify and report the evidence towards replicability by an r-value. The r-value
is a general concept, but the r-value computation depends on the multiple testing
procedure used, which in turn depends on the design of the replicability problem.

5 Discussion

The r-value was coined in the FDR context, in accordance with the commonly used
q-value [26]. We proposed the r-value as an FDR-based measure of significance for
replicability analysis. We showed in GWAS examples that the smallest meta-analysis
p-values may not have the strongest evidence towards replicability of association, and
we suggest to report the r-values in addition to the meta-analysis p-values in the table
of results.

In practice, the primary study p-values are rarely independent. We prove that our
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main proposal controls the FDR on replicability claims if the primary study p-values
are independent, and suggest modifications of the proposal that are more conservative
but have the theoretical guarantee of FDR control for any type of dependency among
the primary study p-values. From empirical investigations, we conjecture that the
conservative modifications in items 2 and 3 of Theorem 1 are unnecessary for the
types of dependencies encountered in GWAS. For our second example, of GWAS in
CD, applying the more conservative proposal in item 2 of Theorem 1 resulted in 34
discoveries. In future research we plan to investigate theoretically the effects of local
dependency and positive dependency in the primary study.

We saw examples where the primary study was comprised of more than one study,
and more than one follow-up study was performed. In the current work, we used all
the information from the primary studies for selection for follow-up, and to establish
replicability the meta-analysis p-values of the primary studies and the meta-analysis p-
values of the follow-up studies were used. Alternative ways of combining the evidence,
that can also point to the pair of studies in which the evidence of replication is
strongest, will be considered in the future. The scientific evidence of two out of
two (2/2) studies is more convincing than that of two out of three (2/3) studies
or two out of n (2/n) studies, and the scientific evidence of 3/n studies is more
convincing than that of 2/n towards replicability. In the future, we plan to develop
methods for computing the ru/n-value, that quantifies the evidence that the finding
has been replicated in at least u out of n studies, for 2 ≤ u ≤ n. This problem has
been addressed in [20], but as was shown in [16] alternatives along the lines of the
procedures suggested here may benefit from increased power.

A referee pointed out that follow-up studies may be designed to give more trustworthy
data, using more expensive equipment, e.g. using PCR or fine linkage analysis. If the
aim is to detect associations in the follow-up study, then there is no need to combine
the evidence from the primary study with that of the follow-up study. However,
if the aim is to detect replicated associations, then it may be of interest to have
unequal penalties for the error of discovering a finding that is only true in the primary
study, and the error of discovering a finding that is only true in the follow-up study.
Developing procedures that give unequal penalties to these two errors is a challenging
and interesting problem for future research, which may be approached by utilizing
weights [27].
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Table 1: Replicability analysis for FDR control for the study of [11]: GWAS of IgA
nephropathy in Han Chinese. The number of SNPs in the primary study was 444882,
and 61 were followed-up. For the seven most significant meta-analysis p-values: the
position (columns 1-3), the primary and follow-up study p-values (column 4 and 5),
the meta-analysis p-values (column 6), and the r-values (column 7). See Table S1
of the SI for the results for all 61 SNPs followed-up. The lower bound for f00 was
l00 = 0.8 for the r-value computation.

Chr. Position Gene p1 p2 p meta r-value
6 32685358 HLA-DRB1 8.19e-08 8.57e-14 4.13e-20 0.0074
8 6810195 DEFAs 2.04e-07 1.25e-07 3.18e-14 0.0090
6 32779226 HLA-DQA/B 3.28e-08 3.57e-06 3.43e-13 0.0059
22 28753460 MTMR3 2.30e-07 2.02e-05 1.17e-11 0.0090
6 30049922 HLA-A 4.05e-09 3.68e-04 1.74e-11 0.0090
17 7403693 TNFSF13 1.50e-06 2.52e-05 9.40e-11 0.0413
17 7431901 MPDU1 5.52e-07 3.16e-04 4.31e-10 0.0169

Table 2: Replicability analysis for FDR control for the study of [18] on GWAS of
T2D. The number of SNPs in the first follow-up study was 68, and 11 were followed-
up to the second follow-up study. For these 11 SNPs: the positions (columns 1-2), the
primary study p-values and first and second follow-up studies p-values (columns 3-5),
the meta-analysis p-values from all 3 studies (column 6), and the r-values quantifying
the evidence of replicability from the first to the second follow-up study (column 7).
The lower bound for f00 was l00 = 0 for the r-value computation, since the set of
SNPs in the first follow-up study are already believed to be associated with T2D.

Chr. Position p.primary p1 p2 p meta r-value
7 27953796 1.55e-04 8.07e-05 1.34e-07 4.96e-14 0.0055
10 12368016 4.21e-04 5.40e-05 1.49e-04 1.21e-10 0.0055
12 69949369 1.80e-05 9.83e-03 4.35e-05 1.11e-09 0.1490
2 43644474 1.83e-04 1.62e-03 9.22e-05 1.12e-09 0.0441
3 64686944 5.44e-04 1.02e-04 3.47e-03 1.17e-08 0.0254
1 120230001 1.14e-04 2.89e-03 1.95e-03 4.10e-08 0.0604
12 53385263 3.18e-05 3.11e-03 8.81e-03 1.79e-07 0.0604
3 12252845 1.05e-05 4.50e-03 1.22e-02 1.97e-07 0.0765
1 120149926 1.35e-03 1.17e-03 7.84e-03 4.04e-07 0.0431
6 43919740 5.41e-05 1.46e-03 9.49e-02 4.03e-06 0.2090
2 60581582 3.38e-05 1.38e-03 6.54e-01 1.02e-04 1.0000
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A Proof of Theorem 1

The procedure that declares as replicated all features with r-values ≤ q is equivalent
to the procedure in Section Variations, where the choice of emphasis between the
studies is discussed (bottom of page 4), as proved in Lemma A.1. We shall show that
our proposal, in its most general form (i.e. with c2 ∈ (0, 1)), controls the FDR at
level at most

f00c1(q)c2q
2 + f01c1(q)q + E

(
|I10 ∩ R1|

max(|R1|, 1)

)
c2q (1)

under the conditions of Theorem 1, where f0j =
|I0j |

m
, j ∈ {0, 1}, and f10 =

|I10|
m

.

Before proving the above upper bound on FDR, we shall show that if the above upper
bound holds and l00 ≤ f00, Theorem 1 follows. Note that if the constants (l00, c2)
satisfy the inequality

f00c1(q)c2q + f01c1(q) + c2 ≤ 1,

then the FDR for replicability analysis is controlled at level at most q. This inequality
holds for any choice of (l00, c2) that satisfies the relationship

l00 ≤
1− f01 − f00c2q

1− c2q
.

Unfortunately, f00 and f01 are not known. If the guess for l00 is indeed conservative,
i.e. l00 ≤ f00, then the above inequality holds since f00 ≤ 1− f01. Thus, for any value
l00 ≤ f00 and c2 ∈ (0, 1), the FDR for replicability analysis is controlled at level at
most q.

Proof for the upper bound in (1). Let Rj be the indicator of whether j was
declared replicated for j = 1, . . . , m, and R =

∑m
j=1Rj . The FDR for replicability

analysis is

FDR = E

(
∑

j∈I00

Rj

max(R, 1)

)
+ E

(
∑

j∈I01

Rj

max(R, 1)

)
+ E

(
∑

j∈I10

Rj

max(R, 1)

)
. (2)

For items 1-3 we shall find an upper bound for each of the terms, specifically we shall
show the following inequalities (3)-(5).

E

(
∑

j∈I01

Rj

max(R, 1)

)
≤ |I01|

c1(q)q

m
= f01c1(q)q, (3)

E

(
∑

j∈I10

Rj

max(R, 1)

)
≤ E

(
|I10 ∩ R1|

max(|R1|, 1)

)
c2q, (4)

E

(
∑

j∈I00

Rj

max(R, 1)

)
≤ f00c1(q)c2q

2. (5)
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Obviously the upper bounds in (3)-(5) and the equality in (2) complete the proof for
the upper bound in (1). The upper bounds in (3) and (4) follow directly from [16].
The key difference from [16] is the fact that we consider a tighter upper bound for

E
(∑

j∈I00
Rj/max(R, 1)

)
given in (5). We shall proceed to prove inequality (5) for

items 1-3.

We shall start with the proof of item 1 for the case where the p-values within the
follow-up study are jointly independent. Inequality (3) follows from the derivations
leading to (A.3) in [16]1. Inequality (4) follows from the derivations leading to (A.7) in
[16], and by taking the expectation of the expression in (A.7) over the primary study
p-values. We shall now prove inequality (5). We recall the following definitions from

[16]. Let P
(j)
1 and P

(j)
2 denote the vectors P1 = (P11, . . . , P1m) and P2 = (P21, . . . , P2m)

with, respectively, P1j and P2j excluded. For j ∈ {1, . . . , m} arbitrary fixed, let

R
(j)
1 (P

(j)
1 ) ⊆ {1, . . . , j − 1, j + 1, . . . , m} be the subset of indices selected along with

index j. Note that since the selection rule is stable, this subset is fixed as long as P1j

is such that j is selected based on (P
(j)
1 , P1j). For any j ∈ {1, . . . , m} and given P

(j)
1 ,

for i ∈ {1, . . . , j − 1, j + 1, . . . , m}

e
(j)
i =





max

(
P1i

c1
,

(|R
(j)
1 (P

(j)
1 )|+1)P2i

mc2

)
if i ∈ R

(j)
1 (P

(j)
1 ),

∞ otherwise.

Let e
(j)
(1) ≤ . . . ≤ e

(j)
(m−1) be the sorted e

(j)
i s, and e

(j)
(0) = 0.2 For r = 1, . . . , m, we define

C
(j)
r as the event in which if j ∈ I00∪ I01 ∪ I10 is declared replicated, r hypotheses are

declared replicated including j, which amounts to:

C(j)
r = {(P

(j)
1 , P

(j)
2 ) : e

(j)
(r−1) ≤

rq

m
, e

(j)
(r) >

(r + 1)q

m
, e

(j)
(r+1) >

(r + 2)q

m
, . . . , e

(j)
(m−1) > q}.

Note that given P1, for r > |R1|, C
(j)
r = ∅, since exactly |R1| − 1 e

(j)
i ’s are finite.

Obviously, C
(j)
r and C

(j)
r′ are disjoint events for any r 6= r′, and ∪m

r=1C
(j)
r is the entire

space of (P
(j)
1 , P

(j)
2 ). Therefore,

∑m
r=1 Pr

(
C

(j)
r

)
= 1.

Note that from the equivalent procedure in Section Variations the following equality

1Replacing q1 with c1q, q − q1 with c2q, and |I0| with |I01| in the derivations leading to (A.3) in
[16] we obtain the proof of inequality (3). This replacement should be made in all the derivations
in [16] used in this proof.

2The e-values are closely related to T -values defined in Appendix A of [16]. Specifically, e
(j)
i =

Tiq/m for j ∈ {1, . . . ,m} and i ∈ {1, . . . , j − 1, j + 1, . . . ,m}.
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follows.

E

(
∑

j∈I00

Rj

max(R, 1)

)
=
∑

j∈I00

m∑

r=1

1

r
Pr

(
j ∈ R1, P1j ≤

rc1(q)q

m
, P2j ≤

rc2q

max(|R1|, 1)
, C(j)

r

)

≤
∑

j∈I00

m∑

r=1

1

r
Pr

(
P1j ≤

rc1(q)q

m
, P2j ≤ c2q, C

(j)
r

)
(6)

≤ c2q
c1(q)q

m

∑

j∈I00

m∑

r=1

Pr(C(j)
r ) = |I00|c2q

c1(q)q

m
= f00c1(q)c2q

2,

(7)

where the inequality in (6) follows from the fact that for any given realization of

|R1| and value of r such that r > |R1|, C
(j)
r = ∅, the inequality in (7) follows from

the independence of the p-values and the fact that P1j and P2j are null-hypothesis

p-values, and the first equality in (7) follows from the fact that
∑m

r=1 Pr
(
C

(j)
r

)
= 1,

thus completing the proof of item 1 for the case where the p-values within the follow-
up study are independent.

We shall now prove item 1 for the case where the p-values within the follow-up study
have property PRDS. The inequalities (3) and (4) for this case follow from the results
in the Supplementary Material of [16]. Specifically, inequality (3) follows from the
proof of Theorem S3.1 in [16] and inequality (4) follows from the proof of item 2 in
Lemma S2.1 in [16]. For j ∈ I00 and an arbitrary fixed p1 = (p11, . . . , p1m) such that
|R1(p1)| > 0,

E

(
Rj

max(R, 1)
|P1 = p1

)
=

|R1(p1)|∑

r=1

I
(
j ∈ R1(p1), p1j ≤

rc1(q)q
m

)

r
Pr

(
P2j ≤

rc2q

|R1(p1)|
, C(j)

r |P1 = p1

)

≤ I

(
p1j ≤

|R1(p1)|c1(q)q

m
, j ∈ R1(p1)

) |R1(p1)|∑

r=1

1

r
Pr

(
P2j ≤

rc2q

|R1(p1)|
, C(j)

r |P1 = p1

)

= I

(
p1j ≤

|R1(p1)|c1(q)q

m
, j ∈ R1(p1)

) |R1(p1)|∑

r=1

1

r
Pr

(
C(j)

r |P2j ≤
rc2q

|R1(p1)|
, P1 = p1

)

×Pr

(
P2j ≤

rc2q

|R1(p1)|
|P1 = p1

)

≤
c2q

|R1(p1)|
I

(
p1j ≤

|R1(p1)|c1(q)q

m
, j ∈ R1(p1)

)
(8)

×

|R1(p1)|∑

r=1

Pr

(
C(j)

r |P2j ≤
rc2q

|R1(p1)|
, P1 = p1

)

≤
c2q

|R1(p1)|
I

(
p1j ≤

|R1(p1)|c1(q)q

m
, j ∈ R1(p1)

)
, (9)
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where inequality (8) follows from the independence of the p-values across the studies
and the fact that P2j is a null-hypothesis p-value. We shall now show that inequality
(9) holds. It follows from item 1 of Lemma S2.1 in the Supplementary Material of
[16] that

|R1(p1)|∑

r=1

Pr

(
C(j)

r |P2j ≤
rc2q

|R1(p1)|
, P1 = p1

)
≤ 1

for any p1 = (p11, . . . , p1m) and j ∈ I10 ∩ R1(p1). It is straightforward to verify that
this result holds for j ∈ I00 ∩ R1(p1) as well, yielding inequality (9). It follows that
for j ∈ I00,

E

(
Rj

max(R, 1)

)
≤ c2qE



I
(
P1j ≤

|R1(P1)|c1(q)q
m

, j ∈ R1(P1)
)

max(|R1(P1)|, 1)


 . (10)

Note that for j ∈ I00

E



I
(
P1j ≤

|R1(P1)|c1(q)q
m

, j ∈ R1(P1)
)

max(|R1(P1)|, 1)




=

m∑

r=1

1

r
Pr

(
P1j ≤

rc1(q)q

m
, j ∈ R1(P1), |R

(j)
1 (P

(j)
1 )| = r − 1

)
(11)

≤
m∑

r=1

1

r
Pr

(
P1j ≤

rc1(q)q

m
, |R

(j)
1 (P

(j)
1 )| = r − 1

)
(12)

≤
c1(q)q

m

m∑

r=1

Pr
(
|R

(j)
1 (P

(j)
1 )| = r − 1

)
=

c1(q)q

m
. (13)

The inequality in (13) follows from the independence of the p-values within the pri-
mary study and the fact that P1j is a null-hypothesis p-value. The equality in (13)

follows from the fact that ∪m
r=1{|R

(j)
1 (P

(j)
1 )| = r − 1} is the entire space of P

(j)
1 ,

represented as a union of disjoint events. Combining (10) with (13) we obtain for
j ∈ I00

E

(
Rj

max(R, 1)

)
≤ c2q

c1(q)q

m
. (14)

Summing this upper bound over all j ∈ I00 we obtain the upper bound in (5), thus
completing the proof of item 1 for the case where the set of p-values within the
follow-up study has property PRDS.

We shall now prove item 2. Inequalities (3) and (4) follow from the results in the
Supplementary Material of [16]. Specifically, inequality (3) follows from the deriva-
tions leading to (S2.8) and inequality (4) follows from the proof of item 2 and item 3
of Lemma S2.1 in [16]. We shall now prove inequality (5). Both for the case where
the p-values within the follow-up study are independent and for the case where the
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p-values within the follow-up study have property PRDS, the derivations leading to
(10) and (12) remain valid when m is replaced with m∗ in those derivations and in

the terms defining C
(j)
r . Therefore

∑

j∈I00

E



I
(
P1j ≤

|R1(P1)|c1(q)q
m∗

, j ∈ R1(P1)
)

max(|R1(P1)|, 1)




≤
∑

j∈I00

m∑

r=1

1

r
Pr

(
P1j ≤

rc1(q)q

m∗
, |R

(j)
1 (P

(j)
1 )| = r − 1

)
. (15)

It follows from the derivations leading from (S2.3) to (S2.8) in the Supplementary

Material of [16], replacing I0 with I00, q1 with c1(q)q, and the event C
(j)
r with the

event |R
(j)
1 (P

(j)
1 )| = r − 1 both in the derivations and in the definition of pjrl, that

∑

j∈I00

m∑

r=1

1

r
Pr

(
P1j ≤

rc1(q)q

m∗
, |R

(j)
1 (P

(j)
1 )| = r − 1

)
≤ |I00|

c1(q)q

m
. (16)

Combining (10) with m replaced by m∗, (15) and (16) we obtain inequality (5), which
completes the proof of item 2.

We shall now prove item 3. If we replace q̃1 with c̃1(q)q and |I0| with |I01| in the
derivations leading to (S2.18) in the Supplementary Material in [16], we obtain

E

(
∑

j∈I01

Rj

max(R, 1)

)
≤ |I01|

c̃1(q)q

m
= f01c̃1(q)q. (17)

It follows from the definition of c̃1(x) that c̃1(x) ≤ c1(x) for all x ∈ (0, 1), in particular
c̃1(q) ≤ c1(q). Inequality (3) follows immediately from this inequality and inequality
(17). Inequality (4) is obtained using the derivations from the main manuscript and
the Supplementary Material of [16], as detailed in the proof of inequality (4) in item
1. For this item q1 is replaced with c̃1(q)q in those derivations, and in order to obtain
inequality (4) we use the fact that c̃1(q) ≤ c1(q). We shall now prove inequality (5).
Both for the case where the p-values within the follow-up study are independent and
for the case where the p-values within the follow-up study have property PRDS, the
derivations leading to (10) and (11) remain valid when c1(q) is replaced with c̃1(q) in

those derivations and in the terms defining C
(j)
r . Therefore

∑

j∈I00

E

(
Rj

max(R, 1)

)
≤ c2q

∑

j∈I00

m∑

r=1

1

r
Pr

(
P1j ≤

rc̃1(q)q

m
, j ∈ R1(P1), |R

(j)
1 (P

(j)
1 )| = r − 1

)
.

(18)

It follows from the derivations leading from (S2.9) to (S2.18) in the Supplementary

Material of [16], replacing I0 with I00, q̃1 with c̃1(q)q, and the event C
(j)
r with the
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event |R
(j)
1 (P

(j)
1 )| = r − 1 both in the derivations and in the definition of p̃jrl, that

∑

j∈I00

m∑

r=1

1

r
Pr

(
P1j ≤

rc̃1(q)q

m
, j ∈ R1(P1), |R

(j)
1 (P

(j)
1 )| = r − 1

)
≤ |I00|

c̃1(q)q

m
. (19)

Combining (18) with (19), and using the fact that c̃1(q) ≤ c1(q), we obtain inequality
(5), which completes the proof of item 3.

Lemma A.1 For Steps 1-4 in the computation of r-values:

1. For feature i ∈ R1, if there exists a solution ri ∈ (0, 1) to fi(ri) = ri, then this
solution is unique, i.e. the r-value in Step 4 is well-defined.

2. Item 1 holds when the function fi(x) is computed with the modification in item
2 of Theorem 1.

3. Declaring the features with r-values at most q is equivalent to the procedure
given in Section Variations (left column at the bottom of page 4).

4. For r-values computed with the modification in item 2 of Theorem 1, declaring
the features with r-values at most q is equivalent to the procedure given in Section
Variations where m is replaced by m∗ = m

∑m
i=1 1/i.

5. The function c̃1(x) in item 3 of Theorem 1 is well-defined. For r-values com-
puted with the modification in item 3 of Theorem 1, declaring the features with
r-values at most q is equivalent to the procedure given in Section Variations
where c1(q) is replaced by c̃1(q).

Proof of Lemma A.1.

Proof of items 1 and 2 of Lemma A.1. Simple calculations show that g(x) =
xc1(x) is a strictly increasing function of x for x > 0. Therefore for each feature
j ∈ R1, ej(x)/x is a strictly decreasing function of x. Despite the fact that ej(x)/[x ·
rank(ej(x))] may not be monotone decreasing functions for j ∈ R1, it is guaranteed
that fi(x)/x = min{j:ej(x)≥ei(x),j∈R1} ej(x)/[x · rank(ej(x))] is a strictly decreasing
function of x for each feature i ∈ R1.

3 Therefore if there exists a solution ri ∈ (0, 1)
to fi(x)/x = 1, then it is unique, since for all x < ri, fi(x)/x > 1 and for all x > ri,
fi(x)/x < 1. When the function fi(x) is computed with the modification in item 2 of
Theorem 1, the proof remains the same, since m∗ does not depend on x.

Proof of items 3-5 of Lemma A.1. It is easy to see that for the procedure
given in Section Variations, R2 = {i ∈ R1 : fi(q) ≤ q}. The same result holds for

3The proof that fi(x)/x is a strictly decreasing function is quite involved and is omitted for
brevity.
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the function fi(x) with the modification of item 2 and item 3 of Theorem 1 and the
modified procedures in items 4 and 5 of Lemma A.1, respectively. Therefore it is
enough to prove that for i ∈ R1, fi(q) ≤ q if and only if ri ≤ q for each one of the
items of Lemma A.1.
Proof of item 3. Assume fi(q) ≤ q. Note that fi(x) can be defined on [0, 1) and
fi(0) > 0 since the p-values are positive. It can be shown that fi(x) is a continuous
function on [0, 1),4 therefore hi(x) = fi(x)−x is a continuous function as well. Using
the facts that hi(0) = fi(0) − 0 > 0 and hi(q) = fi(q) − q ≤ 0, we obtain from the
intermediate value theorem that there exists a value 0 < xi ≤ q satisfying fi(xi) = xi.
Using item 1 we obtain that this solution is unique and ri = xi. Thus we have proved
ri ≤ q. Let us now assume that ri ≤ q and prove that fi(q) ≤ q. Since ri ≤ q, ri 6= 1,
therefore ri is the unique solution in (0, 1) to fi(x) = x. It follows from the fact that
fi(x)/x is monotone decreasing (see proof of item 1) that fi(q)/q ≤ fi(ri)/ri = 1,
therefore fi(q) ≤ q.
Proof of item 4. We need to prove that when we replace m with m∗ = m

∑m
i=1 1/i

in the computation of fi(x) and ri for i ∈ R1, ri ≤ q if and only if feature i is
rejected by the procedure in Section Variations, where m is replaced by m = m∗.
It is easy to see that for this modified procedure, R2 = {i ∈ R1 : fi(q) ≤ q},
where fi(q) is computed with the modification above. It remains to prove that
{i ∈ R1 : fi(q) ≤ q} = {i ∈ R1 : ri ≤ q}. Since fi(x) is continuous, it is ob-
vious that the modified function fi(x) is continuous as well. Moreover, fi(x)/x is
monotone decreasing in x, thus using arguments similar to the proof of item 3 the
result follows.
Proof of item 5. The proof that the function c̃1(x) is well-defined, i.e. that

for all x ∈ (0, 1) there exists a solution a to a
∑⌈tm/(ax)−1⌉

i=1 1/i = c1(x) is techni-
cal and therefore is omitted. Similarly to the items above, we need to prove that
{i ∈ R1 : f̃i(q) ≤ q} = {i ∈ R1 : r̃i ≤ q}, where f̃i(x) and r̃i are the modi-
fied functions and r-values respectively, given in item 3 of Theorem 1. We shall
first show that if f̃i(q) ≤ q, then there exists r̃i = min{x : f̃i(x) ≤ x} ∈ (0, 1).
It can be shown that c̃1(x) is right continuous,5 and therefore f̃i(x) is right con-

tinuous. If f̃i(q) ≤ q, then inf{x : f̃i(x) ≤ x} < 1. It remains to show that
inf{x : f̃i(x) ≤ x} 6= 0, since f̃i(x) is right continuous for all x ∈ (0, 1), therefore
if inf{x : f̃i(x) ≤ x} ∈ (0, 1), then inf{x : f̃i(x) ≤ x} = min{x : f̃i(x) ≤ x}.
We shall now prove that inf{x : f̃i(x) ≤ x} 6= 0. Note that c̃1(x) ≤ c1(x) for all
x ∈ (0, 1), therefore it can be shown that f̃i(x) ≥ fi(x) for all x ∈ (0, 1). As we
noticed in the proof of item 3 of Lemma A.1, fi(x) can be defined for x ∈ [0, 1),

4It is easy to see that fi(x) is continuous at each x0 where e-values are unique. Note that for
each j ∈ R1 the numerator of ej(x)m/rank(ej(x)) is continuous and there is a small neighbourhood
of x0 where rank(ej(x)) does not change, yielding that ej(x)m/rank(ej(x)) is continuous at x0.
Since the minimum of continuous functions is also continuous, fi(x) is a continuous function as well.
For x0 where e-values are not unique, the proof is more involved. In these points the functions
ej(x)m/rank(ej(x)) may be not continuous, however fi(x) is continuous.

5The proof that c̃1(x) is right continuous is based on the facts that ⌈tm/(ax) − 1⌉ is a right
continuous function of x and c1(x) is a continuous function. Since the proof is technical, it is
omitted.
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it is a continuous function on [0, 1), and fi(0) > 0. Therefore there exists δ > 0
such that fi(x) > x for x ∈ [0, δ). It follows that f̃i(x) > x for x ∈ (0, δ), therefore

inf{x : f̃i(x) ≤ x} 6= 0. Thus we have proved that if f̃i(q) ≤ q, then there exists

r̃i = min{x : f̃i(x) ≤ x} ∈ (0, 1). From the definition of r̃i we obtain r̃i ≤ q. Assume

now that r̃i ≤ q, i.e. min{x : f̃i(x) ≤ x} ≤ q. It can be shown that f̃i(x)/x is a

monotone decreasing function,6 therefore f̃i(q)/q ≤ f̃i(ri)/ri ≤ 1, i.e. f̃i(q) ≤ q.

B GWAS Real data examples

Tables S1, S2, and S3 show the results of the replicability analysis for the SNPs
followed-up based on the results of the primary study (or studies). Columns 1-3 in
Tables S1 and S2 and columns 1-2 in Table S3 contain the position of each SNP.
Columns 4-5 in Tables S1 and S2 and columns 3-4 in Table S3 show the primary
and follow-up p-values. Columns 6-8 in Tables S1 and S2 and column 6 in Table
S3show the r-values for different choices of l00. Column 9 in Tables S1 and S2 and
column 5 in Table S3 shows the meta-analysis p-values, which are the unadjusted
p-values computed using the data from the primary and follow-up studies for testing
the global null hypothesis of no association in any of the studies. In Tables S1 and
S2 the rows are sorted by the meta-analysis p-values, and the handful of findings
with most significant meta-analysis p-values which were reported as interesting in the
published works are marked with an ∗ in the last column.

6The proof that f̃i(x)/x is a monotone decreasing function is quite involved and is omitted for
brevity. It is based on the facts that c̃1(x)x is monotone increasing, therefore ej(x)/x is monotone
decreasing for all j ∈ R1.
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Table S1: Replicability analysis for the study of [11].

Chr.Position Gene p1 p2 l00 = 0 l00 = 0.5 l00 = 0.8 p meta
6 32685358 HLA-DRB1 8.19e-08 8.57e-14 0.0243 0.0150 0.0074 4.13e-20 *
8 6810195 DEFAs 2.04e-07 1.25e-07 0.0409 0.0207 0.0090 3.18e-14 *
6 32779226 HLA-

DQA/B
3.28e-08 3.57e-06 0.0224 0.0147 0.0059 3.43e-13 *

22 28753460 MTMR3 2.30e-07 2.02e-05 0.0409 0.0207 0.0090 1.17e-11 *
6 30049922 HLA-A 4.05e-09 3.68e-04 0.0224 0.0150 0.0090 1.74e-11 *
17 7403693 TNFSF13 1.50e-06 2.52e-05 0.1907 0.1001 0.0413 9.40e-11 *
17 7431901 MPDU1 5.52e-07 3.16e-04 0.0819 0.0418 0.0169 4.31e-10 *
2 111315937 ACOXL 6.83e-05 3.41e-03 1 1 1 4.08e-07
16 31255249 x 6.67e-05 7.41e-03 1 1 1 4.64e-06
4 78121177 x 3.14e-10 8.16e-01 1 1 1 2.23e-05
11 113369319 x 1.82e-09 9.74e-01 1 1 1 5.42e-05
7 33386800 BBS9 2.75e-05 1.67e-01 1 1 1 1.17e-04
11 44042263 x 1.74e-05 2.72e-01 1 1 1 1.24e-04
4 40144579 x 9.95e-07 6.72e-01 1 1 1 1.85e-04
12 13229380 x 1.23e-05 4.41e-01 1 1 1 3.09e-04
14 69116920 x 4.60e-05 3.72e-01 1 1 1 3.71e-04
8 30305114 x 3.19e-05 4.73e-01 1 1 1 5.38e-04
12 129587780 x 4.59e-05 5.53e-01 1 1 1 6.84e-04
6 31382359 x 8.20e-08 9.53e-01 1 1 1 7.64e-04
16 77632003 WWOX 7.20e-05 4.57e-01 1 1 1 1.04e-03
8 97393458 PTDSS1 5.67e-05 6.12e-01 1 1 1 1.09e-03
6 26384629 x 4.32e-06 2.79e-01 1 1 1 1.25e-03
13 62434248 x 3.77e-05 5.39e-01 1 1 1 1.70e-03
11 109836841 FDX1 7.15e-05 7.19e-01 1 1 1 2.03e-03
18 35923102 x 4.35e-05 2.85e-01 1 1 1 2.32e-03
6 13733392 RANBP9 1.70e-05 8.45e-01 1 1 1 2.55e-03
9 78162069 PSAT1 5.98e-05 8.01e-01 1 1 1 2.71e-03
10 55006847 x 7.93e-05 6.87e-01 1 1 1 3.16e-03
6 33163516 x 1.46e-04 7.74e-01 1 1 1 4.56e-03
7 158006056 x 9.26e-05 7.50e-01 1 1 1 4.99e-03
6 106231017 x 6.19e-05 8.59e-01 1 1 1 6.41e-03
21 19339830 x 7.81e-05 5.34e-01 1 1 1 6.58e-03
12 19488937 AEBP2 4.95e-05 4.77e-01 1 1 1 6.92e-03
18 57221085 x 8.62e-06 5.48e-01 1 1 1 7.96e-03
10 76538473 DUSP13 7.84e-05 8.54e-01 1 1 1 9.18e-03
8 1307131 x 4.95e-05 7.52e-01 1 1 1 1.14e-02
16 72315398 x 4.92e-05 9.92e-01 1 1 1 1.24e-02
3 130747968 H1FOO 1.85e-05 8.90e-01 1 1 1 1.65e-02
12 39245441 x 1.21e-07 4.38e-01 1 1 1 1.66e-02
7 92588411 CCDC132 1.28e-07 4.09e-01 1 1 1 1.77e-02
1 110389963 x 1.46e-07 2.59e-01 1 1 1 1.99e-02
9 21342862 x 7.95e-05 9.45e-01 1 1 1 2.18e-02
2 46170592 PRKCE 1.78e-05 3.40e-01 1 1 1 2.21e-02
17 52636364 x 3.45e-05 5.20e-01 1 1 1 2.26e-02
1 82547439 x 5.51e-05 8.89e-01 1 1 1 2.72e-02
6 156238397 x 4.73e-05 1.43e-01 1 1 1 2.80e-02
11 61956393 x 2.16e-06 5.37e-01 1 1 1 4.10e-02
10 135319919 x 3.90e-05 6.76e-01 1 1 1 4.33e-02
12 66026196 x 2.57e-06 5.08e-01 1 1 1 4.42e-02
8 25535212 x 2.46e-05 3.44e-01 1 1 1 5.31e-02
15 88817746 IQGAP1 8.64e-05 2.22e-01 1 1 1 5.76e-02
6 13707282 SIRT5 3.98e-05 3.66e-01 1 1 1 6.84e-02
1 70907559 x 3.96e-05 4.71e-01 1 1 1 7.24e-02
1 176696794 CEP350 7.14e-05 4.50e-01 1 1 1 1.04e-01
12 8955888 x 7.85e-06 2.07e-01 1 1 1 1.10e-01
11 94090071 x 5.22e-05 3.08e-01 1 1 1 1.29e-01
2 4641380 x 9.57e-05 3.68e-01 1 1 1 1.39e-01
1 23749819 x 8.10e-05 2.08e-01 1 1 1 1.58e-01
7 105466371 x 4.61e-05 9.90e-02 1 1 1 2.32e-01
5 4489013 x 8.96e-05 3.83e-02 1 1 1 4.40e-01
1 215993345 x 2.67e-05 1.32e-02 1 1 1 4.90e-01
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Table S2: Replicability analysis for the study of [17], with 635547 SNPs in the primary
study, and with 126 SNPs followed-up. The last column marks the 30 SNPs that were
highlighted as “convincingly (Bonferroni P < 0.05) replicated CD risk loci”, based
on the follow-up study p-values, in Table 2 of the main manuscript of [17].

row
#

Chr.Position p1 p2 l00 = 0 l00 = 0.5 l00 = 0.8 p meta

1 1 67417979 3.19e-34 1.50e-36 4.05e-28 2.03e-28 8.11e-29 2.15e-68
2 1 67414547 5.05e-36 3.10e-29 3.91e-27 3.91e-27 3.91e-27 3.33e-63 *
3 1 67387537 1.35e-24 5.62e-17 4.72e-15 4.72e-15 4.72e-15 1.82e-39
4 2 233962410 5.66e-21 7.67e-14 4.83e-12 4.83e-12 4.83e-12 1.18e-32 *
5 5 40428485 2.51e-22 2.79e-08 1.34e-06 1.14e-06 1.14e-06 3.09e-27 *
6 5 40437266 2.26e-22 3.18e-08 1.34e-06 1.14e-06 1.14e-06 3.41e-27
7 2 233965368 1.28e-21 3.66e-05 5.76e-04 5.76e-04 5.76e-04 4.61e-25
8 10 64108492 9.51e-12 1.61e-10 1.73e-06 1.14e-06 4.84e-07 2.23e-20 *
9 5 131798704 2.29e-09 3.52e-11 2.08e-04 1.04e-04 4.16e-05 1.16e-18 *
10 18 12769947 5.95e-12 2.41e-07 7.20e-06 6.48e-06 6.48e-06 2.55e-17 *
11 10 101281583 8.53e-11 1.69e-07 1.05e-05 6.48e-06 5.32e-06 1.53e-16 *
12 5 150239060 3.18e-11 2.57e-07 7.20e-06 6.48e-06 6.48e-06 1.70e-16 *
13 10 101282445 9.09e-11 3.10e-07 1.05e-05 7.10e-06 7.10e-06 3.05e-16
14 18 12799340 3.27e-11 1.23e-06 2.38e-05 2.38e-05 2.38e-05 7.05e-16
15 5 150203580 4.09e-11 7.47e-07 1.57e-05 1.57e-05 1.57e-05 7.33e-16
16 13 43355925 8.04e-08 1.33e-07 5.68e-03 2.84e-03 1.21e-03 1.04e-13 *
17 5 158747111 4.40e-09 3.66e-06 3.73e-04 1.86e-04 7.46e-05 1.93e-13 *
18 6 167408399 1.65e-07 3.26e-07 8.74e-03 4.57e-03 1.91e-03 5.22e-13 *
19 3 49696536 1.08e-07 5.64e-07 6.54e-03 3.27e-03 1.38e-03 5.76e-13 *
20 17 37767727 2.97e-06 9.15e-08 8.58e-02 4.60e-02 2.07e-02 3.41e-12 *
21 3 49676987 9.47e-08 2.24e-06 6.02e-03 3.01e-03 1.27e-03 3.55e-12
22 1 197667523 3.41e-07 2.34e-06 1.44e-02 7.50e-03 3.36e-03 7.17e-12 *
23 12 39104262 8.95e-08 6.55e-05 5.99e-03 3.00e-03 1.27e-03 6.36e-11
24 6 106541962 1.85e-06 7.70e-06 6.03e-02 3.23e-02 1.42e-02 1.22e-10 *
25 9 114645994 1.96e-07 6.58e-05 9.46e-03 4.93e-03 2.18e-03 1.30e-10 *
26 12 38888207 6.64e-08 1.65e-04 4.96e-03 2.49e-03 1.91e-03 1.54e-10 *
27 6 20836710 1.26e-07 2.78e-04 7.28e-03 3.65e-03 2.92e-03 4.48e-10 *
28 11 75978964 7.16e-08 7.32e-04 8.02e-03 6.83e-03 6.36e-03 6.60e-10 *
29 21 44439989 5.41e-06 1.59e-05 1.32e-01 7.27e-02 3.18e-02 7.04e-10 *
30 1 157665119 1.75e-07 4.81e-04 8.90e-03 4.93e-03 4.33e-03 7.30e-10 *
31 1 169593891 2.01e-07 3.21e-04 9.46e-03 4.93e-03 3.24e-03 7.66e-10 *
32 1 197691964 9.69e-07 1.00e-04 3.52e-02 1.94e-02 8.07e-03 8.10e-10
33 10 35327656 4.24e-06 2.53e-05 1.10e-01 6.03e-02 2.64e-02 8.93e-10 *
34 19 1074378 5.80e-09 3.47e-03 2.82e-02 2.57e-02 2.19e-02 1.06e-09
35 19 1075031 6.48e-09 2.10e-02 1.10e-01 9.80e-02 8.97e-02 1.18e-09
36 20 61798026 7.60e-07 1.38e-04 2.93e-02 1.57e-02 6.52e-03 1.30e-09
37 7 50081722 1.58e-05 9.41e-06 2.73e-01 1.67e-01 8.20e-02 1.39e-09
38 6 167405736 1.65e-07 1.21e-03 1.09e-02 1.02e-02 9.24e-03 1.58e-09
39 9 4971602 3.40e-07 4.30e-04 1.44e-02 7.50e-03 4.01e-03 1.73e-09 *
40 6 32789255 1.53e-08 3.82e-03 2.93e-02 2.75e-02 2.35e-02 2.17e-09
41 8 126609233 2.45e-06 1.09e-04 7.41e-02 3.87e-02 1.74e-02 2.25e-09 *
42 7 50046933 2.46e-05 1.10e-05 3.68e-01 2.36e-01 1.24e-01 2.30e-09 *
43 17 35294289 1.06e-06 2.92e-04 3.74e-02 2.06e-02 8.57e-03 2.50e-09 *
44 6 32484449 7.23e-09 6.02e-03 4.10e-02 3.79e-02 3.23e-02 2.60e-09
45 8 126603853 1.90e-06 1.82e-04 6.04e-02 3.23e-02 1.42e-02 2.78e-09
46 9 114648320 1.31e-07 4.22e-03 3.13e-02 2.95e-02 2.53e-02 3.67e-09
47 21 15727091 1.03e-05 4.58e-05 2.02e-01 1.16e-01 5.37e-02 3.70e-09 *
48 1 114015850 7.75e-06 8.25e-05 1.67e-01 9.75e-02 4.28e-02 4.95e-09
49 1 114089610 9.05e-06 1.01e-04 1.89e-01 1.10e-01 4.85e-02 7.30e-09 *
50 10 35589263 6.05e-06 1.76e-04 1.40e-01 8.00e-02 3.42e-02 8.04e-09
51 21 44436378 5.21e-06 3.61e-04 1.30e-01 7.14e-02 3.16e-02 1.43e-08
52 21 15734423 1.00e-05 4.44e-04 2.02e-01 1.16e-01 5.31e-02 3.36e-08
53 3 49499240 2.42e-08 1.94e-01 5.28e-01 5.28e-01 5.28e-01 3.56e-08
54 9 4978761 1.96e-06 1.62e-03 6.08e-02 3.25e-02 1.42e-02 4.34e-08
55 2 61129193 3.07e-06 2.80e-03 8.67e-02 4.64e-02 2.08e-02 6.36e-08
56 1 169594596 1.90e-07 2.60e-02 1.30e-01 1.16e-01 1.09e-01 9.01e-08
57 3 49425868 2.84e-08 1.07e-01 3.28e-01 3.16e-01 3.16e-01 1.20e-07
58 13 43497789 6.90e-07 8.82e-03 5.85e-02 5.05e-02 4.36e-02 1.44e-07
59 2 61098480 3.82e-06 5.65e-03 1.03e-01 5.54e-02 3.16e-02 1.57e-07
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60 6 20797924 1.83e-07 2.88e-02 1.34e-01 1.19e-01 1.17e-01 1.64e-07
61 6 5096246 3.54e-07 1.92e-02 1.03e-01 9.49e-02 8.34e-02 3.48e-07
62 1 157691986 2.98e-07 2.77e-02 1.32e-01 1.16e-01 1.14e-01 3.82e-07
63 17 29611838 2.01e-06 1.35e-02 7.91e-02 7.14e-02 6.19e-02 5.34e-07
64 17 37824128 7.42e-06 7.40e-03 1.65e-01 9.50e-02 4.17e-02 7.10e-07
65 19 18300383 5.43e-08 5.26e-02 2.02e-01 1.92e-01 1.84e-01 7.54e-07
66 2 27652888 3.62e-05 3.81e-03 5.06e-01 3.16e-01 1.75e-01 1.15e-06
67 6 3378317 1.04e-06 3.91e-02 1.67e-01 1.54e-01 1.49e-01 1.37e-06
68 2 102521887 1.02e-05 1.60e-02 2.02e-01 1.16e-01 7.20e-02 1.45e-06
69 2 27642591 3.44e-05 1.08e-02 4.86e-01 3.14e-01 1.70e-01 2.30e-06
70 2 230934834 7.59e-06 5.44e-02 2.02e-01 1.93e-01 1.85e-01 2.48e-06
71 20 61820069 2.04e-07 3.30e-01 7.58e-01 7.58e-01 7.58e-01 2.66e-06
72 6 3379241 1.15e-06 5.82e-02 2.13e-01 2.04e-01 1.96e-01 2.83e-06
73 10 75302766 1.23e-05 3.14e-02 2.23e-01 1.32e-01 1.24e-01 3.03e-06
74 1 7840274 1.47e-06 5.41e-02 2.02e-01 1.93e-01 1.85e-01 3.63e-06
75 6 149618772 3.64e-06 4.40e-02 1.85e-01 1.67e-01 1.64e-01 4.39e-06
76 6 21578398 4.97e-06 6.78e-02 2.41e-01 2.34e-01 2.25e-01 5.02e-06
77 22 20264229 1.25e-06 3.25e-01 7.58e-01 7.58e-01 7.58e-01 6.26e-06
78 11 63906946 4.74e-06 2.45e-01 6.30e-01 6.30e-01 6.30e-01 7.44e-06
79 4 187576360 1.35e-06 8.65e-02 2.87e-01 2.83e-01 2.76e-01 7.81e-06
80 2 230916728 8.93e-06 8.43e-02 2.83e-01 2.80e-01 2.72e-01 9.04e-06
81 17 29849794 1.25e-05 9.61e-02 3.10e-01 3.07e-01 2.99e-01 1.01e-05
82 2 102529086 1.08e-05 4.93e-02 2.02e-01 1.83e-01 1.75e-01 1.11e-05
83 20 57351084 1.73e-06 1.01e-01 3.22e-01 3.14e-01 3.10e-01 1.18e-05
84 4 187585769 1.34e-06 1.07e-01 3.28e-01 3.16e-01 3.16e-01 1.33e-05
85 16 84545499 4.74e-06 2.26e-01 5.87e-01 5.87e-01 5.87e-01 1.40e-05
86 18 17927329 1.59e-05 4.43e-02 2.73e-01 1.67e-01 1.64e-01 1.44e-05
87 18 54054001 5.56e-06 2.07e-01 5.55e-01 5.55e-01 5.55e-01 1.97e-05
88 14 75071147 4.71e-06 1.52e-01 4.35e-01 4.26e-01 4.26e-01 2.25e-05
89 5 37949301 1.74e-06 2.73e-01 6.68e-01 6.68e-01 6.68e-01 2.41e-05
90 10 75324937 1.12e-05 1.04e-01 3.28e-01 3.16e-01 3.16e-01 3.32e-05
91 6 21565929 1.09e-05 1.23e-01 3.68e-01 3.56e-01 3.56e-01 3.40e-05
92 11 63967228 1.60e-05 8.82e-02 2.89e-01 2.85e-01 2.78e-01 3.45e-05
93 12 58059725 2.84e-05 1.49e-01 4.32e-01 4.22e-01 4.22e-01 3.97e-05
94 22 20281207 8.65e-07 4.93e-01 1.00e+00 1.00e+00 1.00e+00 4.55e-05
95 4 106463957 6.25e-06 2.71e-01 6.68e-01 6.68e-01 6.68e-01 5.03e-05
96 1 222692358 2.73e-06 3.93e-01 8.46e-01 8.46e-01 8.46e-01 5.08e-05
97 4 7649390 3.24e-06 3.52e-01 7.99e-01 7.99e-01 7.99e-01 5.27e-05
98 17 35315722 3.41e-06 4.19e-01 8.95e-01 8.95e-01 8.95e-01 5.45e-05
99 3 133674827 6.84e-06 1.61e-01 4.56e-01 4.46e-01 4.46e-01 6.21e-05
100 1 7766478 1.45e-05 2.11e-01 5.60e-01 5.60e-01 5.60e-01 6.82e-05
101 8 83235127 1.32e-05 2.23e-01 5.85e-01 5.85e-01 5.85e-01 1.28e-04
102 21 39215894 8.73e-06 2.63e-01 6.63e-01 6.63e-01 6.63e-01 1.65e-04
103 10 122495603 2.08e-05 3.63e-01 8.10e-01 8.10e-01 8.10e-01 1.98e-04
104 14 75056332 1.28e-05 3.31e-01 7.58e-01 7.58e-01 7.58e-01 2.22e-04
105 13 80961793 1.61e-07 3.72e-01 8.22e-01 8.22e-01 8.22e-01 2.23e-04
106 18 75866208 1.38e-06 2.56e-01 6.52e-01 6.52e-01 6.52e-01 2.80e-04
107 12 13070503 8.89e-06 4.35e-01 9.18e-01 9.18e-01 9.18e-01 3.27e-04
108 10 132842492 2.65e-05 4.41e-01 9.18e-01 9.18e-01 9.18e-01 3.88e-04
109 5 37948752 1.06e-05 4.41e-01 9.18e-01 9.18e-01 9.18e-01 4.78e-04
110 13 80973593 2.64e-07 3.29e-02 1.48e-01 1.32e-01 1.28e-01 5.54e-04
111 12 13046606 4.05e-05 4.55e-01 9.40e-01 9.40e-01 9.40e-01 7.51e-04
112 10 1453158 7.72e-06 2.90e-01 6.96e-01 6.96e-01 6.96e-01 7.56e-04
113 1 181883035 1.04e-05 3.88e-01 8.43e-01 8.43e-01 8.43e-01 9.32e-04
114 18 59311578 1.01e-05 4.98e-01 1.00e+00 1.00e+00 1.00e+00 9.48e-04
115 7 130385443 1.24e-05 3.81e-01 8.35e-01 8.35e-01 8.35e-01 9.64e-04
116 18 55030807 1.75e-05 3.04e-01 7.23e-01 7.23e-01 7.23e-01 1.06e-03
117 19 50999246 1.95e-05 4.60e-01 9.42e-01 9.42e-01 9.42e-01 1.32e-03
118 15 72660732 7.44e-06 2.73e-01 6.68e-01 6.68e-01 6.68e-01 1.33e-03
119 18 55028896 8.34e-06 3.56e-01 8.01e-01 8.01e-01 8.01e-01 1.80e-03
120 16 84542932 3.44e-04 2.78e-01 1.00e+00 1.00e+00 1.00e+00 2.39e-03
121 8 107779719 2.92e-05 3.14e-01 7.40e-01 7.40e-01 7.40e-01 2.78e-03
122 12 58052436 1.14e-05 2.89e-01 6.96e-01 6.96e-01 6.96e-01 3.45e-03
123 18 54054701 9.40e-06 1.95e-01 5.28e-01 5.28e-01 5.28e-01 5.28e-03
124 18 75865061 2.11e-06 1.08e-01 3.28e-01 3.16e-01 3.16e-01 6.92e-03
125 15 72685472 5.81e-06 7.71e-02 2.70e-01 2.59e-01 2.52e-01 1.27e-02
126 8 107743073 2.59e-05 1.43e-01 4.19e-01 4.09e-01 4.09e-01 1.36e-02
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Table S3: Replicability analysis for FWER control for the study of [19] on GWAS
of TPP. The number of SNPs in the primary study was 486782, and four SNPs were
followed-up. The lower bound for f00 was l00 = 0.8 for the r-value computation.

Chr. Position p1 p2 p meta r-value
17 65837933 6.28e-10 1.49e-05 7.69e-14 0.00012
17 65818432 1.39e-09 7.36e-05 1.59e-12 0.00059
17 65799923 2.27e-09 7.25e-05 1.09e-12 0.00058
17 65778654 1.84e-08 0.000116 1.6e-11 0.00360

C Choice of selection rule for replicability analysis

Although any stable selection rule can be used, some selection rules may be more effi-
cient than others. For a given FDR level q, the promising hypotheses for replicability
analysis are the set of hypotheses rejected with the BH procedure at level c1(q)q on
the primary study p-values. Therefore, for the purpose of replicability analysis, the
set of hypotheses to be considered should be only this set or a subset thereof. This
means that if R1 hypotheses are followed-up, not all R1 features need to be selected
for a replicability analysis at a predetermined level q. The advantage of selecting
only the relevant subset is that the power of the procedure will be greater since the
problem of multiplicity among the selected will be smaller, without compromising
any potential replicability claims. Specifically, in order for the r-value to be below q,
only the subset of R1 hypotheses selected for follow-up with primary study p-values
that are small enough need to be considered, where our requirement for small enough
is as follows: when applying the BH procedure at level c1(q)q on p11, . . . , p1m, these
hypotheses will be among the rejected. Computing the r-values for the subset of R1

with small enough primary study p-values, we receive smaller r-values than if all R1

SNPs are considered for replicability analysis.

For the example of GWAS of IgA nephropathy, for an FDR level of 0.05, only 14 SNPs
out of the 61 followed-up had primary study p-values small enough to be considered
for replicability analysis. The number of r-values below 0.05 was still seven with
this modified selection rule, but these seven r-values were smaller than the r-values
for the seven SNPs in Table 1 of the main manuscript. Specifically, with parameters
(l00, c2) = (0.8, 0.5) for this superior selection rule that selected 14 SNPs for follow-up,
the r-values were 0.005, 0.008, 0.005, 0.008, 0.005, 0.041, 0.017, whereas the r-values
computed using all 61 SNPs selected were, respectively, 0.007, 0.009, 0.006, 0.009,
0.009, 0.041, and 0.017.
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D Power comparison for different values of (l00, c2)

We conducted simulations in order to investigate how the power and FDR of our
proposal depends on c2 ∈ (0, 1) and l00 ∈ {0, 0.5, 0.8, 0.9} for q = 0.05. The p-values
were generated independently as follows. Let P1j and P2j be the p-values in the
primary and in the follow-up study, respectively, for feature j. We set P1j = 1−Φ(X1j)
and P2j = 1−Φ(X2j), where X1j ∼ N(µ1j , 1), X2j ∼ N(µ2j , 1). For i ∈ {1, 2}, we set
µij = 0 if feature j comes from a true null hypothesis in study i, and µij = µi > 0
if feature j comes from a false null hypothesis in study i. The values of µ1 and µ2

were set according to the requirement that the power of the Bonferroni procedure at
level 0.05 in the primary study is π1, and in the follow-up study is π2, for π1 = 0.1
and π2 ∈ {0.2, 0.5, 0.8}. Specifically, we set µ1 = Φ−1(1− 0.05/m)−Φ−1(1− π1), and
µ2 = Φ−1(1 − 0.05/R1) − Φ−1(1 − π2), where Φ−1 is the inverse of the cumulative
distribution function of a standard normal variable and R1 is the number of rejected
hypotheses by the BH procedure at level c1 × 0.05 applied on the primary study
p-values. In addition, m = 1000, f00 = 0.9, f01 = f10 = 0.025, f11 = 0.05.

The simulation results were based on 10000 repetitions. The FDR was estimated by
averaging the false discovery proportion. The average power was estimated by the
average number of true replicability claims, divided by mf11. We also estimated the
probability that our proposal makes at least one true replicability claim (which we
refer to as ”power for at least one”) by the proportion of repetitions in which at least
one true replicability claim was made. The standard errors of the estimators were of
the order of 10−3 or 10−4 for all the sets of parameters.

A comparison of columns 8-9 with columns 3, 5, and 7 in Table S4 shows that the gain
in power of using l00 > 0 over l00 = 0 can be large. Figure S1 shows the average power
and the power for at least one of our proposal as a function of c2 ∈ {0.05, 0.1, . . . , 0.95}
and l00 ∈ {0, 0.5, 0.8, 0.9} for q = 0.05. As expected, both measures of power increase
as l00 increases. For fixed l00 and (π1, π2), the highest average power among all the
choices of c2 is close to the average power when c2 = 0.5 (Figure S1, left column), also
shown in Table S4. The power curve for at least one as a function of c2 is flat around
c2 = 0.5 (Figure S1, right column), suggesting as well that c2 = 0.5 is an appropriate
choice.

Figure S2 shows the FDR of our proposal as a function of c2 ∈ {0.05, 0.1, . . . , 0.95},
for l00 ∈ {0, 0.5, 0.8, 0.9} and q = 0.05. It can be seen that the FDR is far below 0.05
for all the sets of parameters considered. This follows from the fact that our data
generation may result in FDR much lower than the upper bound given in (1). In
order to see this, note that it follows from the proof of Theorem 1 that the FDR of
our proposal achieves the upper bound in (1) when the p-values under the alternative
are practically zero. In our simulation setting, this condition would hold if µi, for
i ∈ {1, 2} were always extremely large when compared to N(0, 1) random variables,
e.g. µi ≥ 4. Obviously this does not hold for our data generation process. Therefore
we could get higher FDR values for another data generation process, however we still
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Table S4: The estimated average power of our proposal with parameters (l00, c2, 0.05),
where c2 is the optimal choice among the values in {0.05, 0.1, . . . , 0.95} for l00 = 0.5
(column 2), l00 = 0.8 (column 4), l00 = 0.9 (column 6), and l00 = 0 (column 8),
the optimal value of c2 is given in the row below; c2 = 0.5, for l00 ∈ {0.5, 0.8, 0.9, 0}
(columns 3, 5, 7, 9) in a configuration f00 = 0.9, f01 = f10 = 0.025, f11 = 0.05. The
number of hypotheses examined in the primary study is 1000. The signal to noise
ratios for the primary study and the follow-up study, µ1/σ1 and µ2/σ2, respectively,
are taken according to the requirement that the power of Bonferroni procedure at level
0.05 in the primary study is π1, and in the follow-up study is π2 (given in the first
column). The standard errors were of the order of 10−3 or 10−4 for all the estimates.

(π1, π2) Optimal for l00 = 0.5 Optimal for l00 = 0.8 Optimal for l00 = 0.9 Optimal for l00 = 0
l00 = 0.5 c2 = 0.5 l00 = 0.8 c2 = 0.5 l00 = 0.9 c2 = 0.5 l00 = 0 c2 = 0.5

(0.1, 0.8) 0.2980 0.2515 0.4486 0.3858 0.5681 0.4921 0.2009 0.1686
c2 = 0.2 c2 = 0.2 c2 = 0.15 c2 = 0.2

(0.1, 0.5) 0.1749 0.1666 0.2881 0.2750 0.3837 0.3669 0.1105 0.1044
c2 = 0.35 c2 = 0.35 c2 = 0.35 c2 = 0.35

(0.1, 0.2) 0.0425 0.0425 0.0786 0.0781 0.1152 0.1152 0.0261 0.0258
c2 = 0.5 c2 = 0.55 c2 = 0.5 c2 = 0.55

would not expect to achieve 0.05 because of using conservative upper bounds for f01
and E(|I10 ∩ R1|/(max |R1|, 1)) in expression (1).

E GWAS simulation example

The goal of the simulation was threefold. First, to verify that the FDR is controlled
below the nominal level for realistic simulations with GWAS type dependency, even
if hypotheses with primary study p-values above c1(q)q/m are followed-up. Second,
to compare the performance of our suggested proposal with the BH procedure on
maximum p-values. Third, to examine the effect of l00 on the power of the two
procedures.

The information on l00 is incorporated into the BH procedure on maximum p-values,
to make the comparison fair, by performing the BH procedure at level q/(1− l00). It
is straightforward to show that the FDR is controlled at level at most q for the BH
procedure on the maximum p-values at level q/(1 − l00), when the p-values within
each study are independent.

We simulated two GWAS from the simulator HAPGEN2 [28]. The two studies were
generated from two samples of the HapMap project [29], a sample of 165 Utah res-
idents with Northern and Western European ancestry (CEU), and a sample of 109
Chinese in Metropolitan Denver, Colorado (CHD). In the CEU and CHD populations,
respectively, 34 and 38 SNPs were set as disease SNPs with an increased multiplica-
tive relative risk of 1.2, and 18 of the disease SNPs were common to both populations.
Each study contained 4500 cases and 4500 referents. The linkage disequilibrium (LD)
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(a) Average power, (π1, π2) = (0.1, 0.2).
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(b) Power for at least one, (π1, π2) = (0.1, 0.2).
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(d) Power for at least one, (π1, π2) = (0.1, 0.5).
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(e) Average power, (π1, π2) = (0.1, 0.8).

0 0.2 0.4 0.6 0.8 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

c2

P
ow

er
 fo

r 
at

 le
as

t o
ne

(f) Power for at least one, (π1, π2) = (0.1, 0.8).

Figure S1: The estimated average power (first column) and the probability of at least
one true replicability claim (power for at least one, column 2) of our proposal with
parameters (l00, c2, 0.05) as a function of c2 in a simulation where f00 = 0.9, f01 =
f10 = 0.025, f11 = 0.05, the number of hypotheses examined in the primary study is
1000, and the signal to noise ratios for the primary study and the follow-up study,
respectively, are taken according to the requirement that the power of the Bonferroni
procedure at level 0.05 in the primary study is π1, and in the follow-up study is π2

for (π1, π2) = (0.1, 0.2) (row 1), (π1, π2) = (0.1, 0.5) (row 2), (π1, π2) = (0.1, 0.8) (row
3); l00 = 0.9 (solid), l00 = 0.8 (dashed), l00 = 0.5 (dash-dotted), and l00 = 0 (dotted).
The standard errors of the estimators were of the order of 10−3 or 10−4 for all the
sets of parameters.
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Figure S2: The estimated FDR of our proposal with parameters (l00, c2, 0.05) as a
function of c2 in a simulation where f00 = 0.9, f01 = f10 = 0.025, f11 = 0.05, the
number of hypotheses examined in the primary study is 1000, and the signal to noise
ratios for the primary study and the follow-up study, µ1/σ1 and µ2/σ2, respectively,
are taken according to the requirement that the power of the Bonferroni procedure
at level 0.05 in the primary study is π1, and in the follow-up study is π2 for (π1, π2) =
(0.1, 0.2) (left panel), (π1, π2) = (0.1, 0.5) (middle panel), (π1, π2) = (0.1, 0.8) (right
panel); l00 = 0.9 (solid), l00 = 0.8 (dashed), l00 = 0.5 (dash-dotted), and l00 = 0
(dotted). The standard errors were of the order of 10−3 or 10−4 for all the sets of
parameters.
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across SNPs, as measured for the samples in the HapMap project, was retained. Due
to LD, the number of SNPs associated with the phenotype in each study was larger
than the number of disease SNPs. See [16] for the details of this simulation.

The CHD study was the primary study, and the CEU study was the follow-up study.
SNPs were selected for follow-up only if they were discovered by the BH procedure at
level c1(0.05)× 0.05. Table S5 presents the average number of replicated findings, as
well as the average false discovery proportion (FDP), for our proposal with c2 = 0.5
and q = 0.05, and the BH procedure on maximum p-values at level 0.05/(1− l00), for
different values of l00. From columns 4 and 7 it is clear that the FDR is controlled and
that our proposal is actually conservative, for all values of l00. From a comparison of
columns 2 and 5 it is clear that our proposal is more powerful than the BH procedure
on maximum p-values. Finally, from comparisons of the rows it is clear that the power
increases as l00 increases.

Table S5: For 4500 cases and 4500 referents in both studies, the average number of
associated and disease SNPs discovered (SE), and the average FDP (SE), for different
values of l00. The actual value of f00 was above 0.999. Results are given for our
proposal with c2 = 0.05 and q = 0.05 in columns 2-4, and for the BH procedure
on maximum p-values at level 0.05/(1− l00) in columns 5-7. SNPs were selected for
follow-up only if they were discovered by the BH procedure at level c1(0.05)× 0.05.

FDR r-values≤ 0.05 BH Procedure on maximum p-values at level 0.05/(1 − l00)
# Replicated findings FDP # Replicated findings FDP

l00 associated SNPs (SE) disease SNPs (SE) (SE) associated SNPs (SE) disease SNPs (SE) (SE)
0 41.5 (5.3) 8.3 (0.5) 0.011 (0.011) 29.2 (3.2) 7.4 (0.4) 0.000 (0.000)
0.8 55.4 (5.3) 9.3 (0.4) 0.013 (0.013) 39.0 (3.5) 8.5 (0.5) 0.000 (0.000)
0.9 58.4 (4.9) 9.6 (0.3) 0.014 (0.014) 42.8 (3.3) 9.1 (0.4) 0.000 (0.000)
0.95 59.9 (4.5) 9.7 (0.3) 0.015 (0.014) 46.1 (3.5) 9.3 (0.3) 0.000 (0.000)
0.99 60.0 (4.6) 9.7 (0.3) 0.015 (0.014) 50.8 (3.9) 9.4 (0.3) 0.000 (0.000)

F Procedure for FWER control

Theorem F.1 A procedure that declares findings with Bonferroni r-values at most α
as replicated controls the FWER for replicability analysis at level at most α if l00 ≤ f00
and the follow-up study p-values are independent of the primary study p-values.

Proof of Theorem F.1. It is easy to show that the procedure that declares findings
with Bonferroni r-values at most α as replicated is equivalent to that of declaring as
replicated all features with fBonf

j (α) ≤ α. The equivalence follows from the facts that

fBonf
j (x) is a continuous function of x and fBonf

j (x)/x is strictly monotone decreasing.
We shall prove that the above procedure controls the FWER at level which is smaller
or equal to

c1c2f00α
2 + f01c1α+ c2αE

(
|R1 ∩ I10|

max(|R1|, 1)

)
, (20)
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where c1 = (1 − c2)/ (1− l00(1− c2α)) . Note that this upper bound is equal to the
upper bound given in expression (1) with q = α. We showed in the proof of Theorem
1 that the expression in (1) is at most q if l00 ≤ f00. Therefore, if the upper bound in
(20) holds and l00 ≤ f00, Theorem F.1 follows.

We shall now prove that the expression in (20) is an upper bound for the FWER for
replicability analysis, which is Pr(R00 +R10 +R01 > 0). Note that

Pr(R00 +R10 + R01 > 0) ≤ E(R00 +R10 +R01) =
∑

x∈{00,01,10}

∑

j∈Ix

E (Rj) .

For the procedure that declares as replicated all features with fBonf
j (α) ≤ α, which is

equivalent to the procedure that declares findings with Bonferroni r-values at most
α as replicated (as discussed above),

E (Rj) = Pr

(
j ∈ R1, P1j ≤

c1α

m
, P2j ≤

c2α

max(|R1|, 1)

)
. (21)

We shall give an upper bound for expression (21) for j ∈ I01, j ∈ I10, and j ∈ I00.
For j ∈ I01,

Pr

(
j ∈ R1, P1j ≤

c1α

m
, P2j ≤

c2α

max(|R1|, 1)

)
≤ Pr

(
P1j ≤

c1α

m

)
≤

c1α

m
, (22)

where the last inequality follows from the fact that P1j is a null-hypothesis p-value.

For j ∈ I00 ∪ I10 and an arbitrary fixed p1 = (p11, . . . , p1m) such that |R1(p1)| > 0,

E (Rj |P1 = p1) = I
(
p1j ≤

c1α

m
, j ∈ R1(p1)

)
Pr

(
P2j ≤

c2α

|R1(p1)|
|P1 = p1

)

≤
c2α

|R1(p1)|
I
(
p1j ≤

c1α

m
, j ∈ R1(p1)

)
, (23)

where inequality (23) follows from the independence of the p-values across the studies
and the fact that P2j is a null-hypothesis p-value. Using (23) we obtain the upper
bounds on expression (21) for j ∈ I10 and for j ∈ I00. For j ∈ I10, it follows that

E (Rj |P1 = p1) ≤
c2α

|R1(p1)|
I (j ∈ R1(p1)) ,

therefore

E (Rj) ≤ c2αE

(
I (j ∈ R1)

max(|R1|, 1)

)
. (24)

For j ∈ I00, it follows that

E (Rj) ≤ c2αE

[
I
(
P1j ≤

c1α
m
, j ∈ R1(P1)

)

max(|R1(P1)|, 1)

]
≤ c2αE

[
I
(
P1j ≤

c1α

m

)]
≤ c2α

c1α

m
,(25)
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where the last inequality follows from the fact that P1j is a null-hypothesis p-value.
From summing over the upper bounds (22), (24), and (25) it thus follows that

FWER ≤ E(R00 +R10 +R01) ≤ c1c2f00α
2 + f01c1α + c2αE

(
|R1 ∩ I10|

max(|R1|, 1)

)
.
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