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Professor Efron has given us an interesting article on how to quantify the uncertainty

in summary statistics of interest in large scale problems, when the summary statistics

are based on correlated normal variates. It is shown that the inflation in the accuracy

estimate due to correlation among the normal variates cannot be ignored (except

possibly at the very far tails of distributions).

Using a series of simplifications of the covariance formula, a simple formula is derived

and it is shown in a numerical example that the approximation is indeed very close to

the truth. In particular it is shown that the entire correlation structure is captured

by one parameter α, the rms correlation. Several methods of estimating α, as well as

the other unknown parameters, are suggested.

In what follows I will discuss several topics in large scale significance testing that are

related to the results of this paper.

Summary values of interest when z-values are correlated In large scale sig-

nificance testing, methods that control or estimate the false discovery rate are often

applied to identify the set of interesting discoveries. Professor Efron suggested the fol-

lowing two summary statistics and estimated their accuracy: the estimated tail-area

false discovery rate ˆFdr(x) = p0F0(x)/F̂ (x) and the estimated local false discovery

rate ˆfdr(x) = p0f0(x)/f̂(x). Keeping the same notations as in the manuscript, F0(·)

and F̂ (·) are the null and the empirical survival curve of the z-values.
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Another summary statistics of interest is the following quantity that “monotonizes”

the ˆFdr(z) curve: Fdr(z) = inf{z′ ≤ z : ˆFdr(z′)}. In practice, the cut-off value x

is often chosen to be the smallest z-value so that ˆFdr(z) ≤ q, where q is a desired

fraction chosen to be typically small (e.g. q=0.05,0.1,0.25), and the hypotheses with

z-values above this cut-off x are reported as interesting discoveries. The same cut-off

value x is selected when choosing the smallest z-value so that Fdr(z) ≤ q. This

practice coincides with the celebrated Benjamini and Hochberg’s false discovery rate

controlling procedure ([Benjamini and Hochberg, 1995]), henceforth referred to as the

BH procedure, up to the factor p0, conservatively taken as 1.

The BH procedure appears to control the false discovery rate in most circumstances

that are not highly artificial ([Yekutieli, 2008], [Romano et al., 2008]). When the

test statistics are correlated, the false discovery proportion (FDP , the fraction of

discoveries from null hypotheses out of all discoveries) of the specific data set at

hand may be very high even though the false discovery rate, FDR = E(FDP ), is

controlled at the nominal level q on average over (hypothetical) replications of the

study ([Pawitan et al., 2006], [Efron, 2007]). For a given data set, the interest of the

investigator is in the FDP , not the FDR. When the rms correlation is non-negligible,

the FDP may be much higher than q.

Similarly, for a given dataset and a given cut-off value x, the interest is in the false

discovery proportion FDP (x), the fraction of z-scores above x from null hypotheses

out of all z-scores above x. The variance of FDP (x) depends critically on the corre-

lation among the z-values. When the correlation is weak and the effect sizes are large,

the variability of FDP (x) is tight around its expectation, FDR(x) = E(FDP (x)).

In this favorable setting there may be interest in the quantities FDR(x), Fdr(x) =

p0F0(x)/F (x) or fdr(x) = p0f0(x)/f(x) . However, when the correlation is high or the

effect sizes are small, interest may no longer be in FDR(x), Fdr(x) or fdr(x) but in
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the unknown random quantity FDP (x). The estimated Fdr(x) (and its variability)

may therefore not be of interest when the estimated rms correlation in non-negligible.

However, from [Efron, 2007] and [Pawitan et al., 2006] it appears that using the his-

togram of z-scores, it may be possible to identify whether the FDP (x) is indeed much

higher than expected for a given dataset.

A simulation study to illustrate the effect of correlation on the FDP Each

of 1000 data sets was generated as follows: N = 1000 genes with expression val-

ues from two classes with parameters (p0, µ0, σ0) = (0.95, 0, 1) and (p1, µ1, σ1) =

(0.05, 1, 1); 40 cases were generated each from Xi ∼ MV N(~0, Σ) and 40 cases were

generated each from Xi ∼ MV N(~µ, Σ); the first 50 entries in ~µ are one and the

remaining 950 entries are zero; Σ is a block diagonal correlation matrix, each block of

size 200 with symmetric correlation of 0.5. The data matrix X was either standard-

ized by subtracting off its column-wise means (as done in Professor Efron’s paper)

or left unstandardized. The correlation in each data set was substantial: the rms

correlation was α = 0.2. For comparison, 1000 datasets were also generated under

independence (i.e. Σ was the identity matrix).

The z-score for row i was zi = Φ−1(F78(ti)), where ti = (
∑

80

j=41
xij/40−

∑
40

j=1
xij/40)/ŜE

is the t-statistic for comparing the mean of the last 40 cases with that of the first

40 cases, and F78 and Φ are the cumulative distribution functions for a Student-t

distribution with 78 degrees of freedom and a standard normal respectively. The

BH procedure was applied at nominal level q = 0.01, 0.02, . . . , 0.25 to the z-scores in

each data set. Figure 1 top shows the 50th, 75th, and 95th quantiles of the FDP for

each q after applying the BH procedure to each of 1000 simulated data sets when the

data matrix was not standardized (left) and when it was standardized (right). For

comparison, the same analysis was repeated when the data was independent and the

results are displayed in Figure 1 bottom. The blue line in Figure 1 is the average
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FDP, the red line is the nominal FDR level 0.95 ∗ q. The variability of the FDP

was much higher when the data was correlated than when it was independent. The

standardization of X reduced the variability of the FDP . The variability in the cor-

related case was reduced as the nominal value q decreased. The average FDP was

below the nominal level for all q as expected, and moreover it was almost the same

as the nominal level when X was not standardized and the data was independent.

When the data was standardized yet independent, the average FDP was below the

nominal level since after standardization the p-values were no longer independent, nor

were they uniformly distributed but had instead a distribution that was stochastically

larger than the uniform.

For each dataset, FDP (x) and ˆFdr(x) were computed for the following cut-off values:

x = 2.00, 2.25, 2.50, 2.75, 3.00, 3.50, 4.00, 5.00, 6.00. Table 1 shows summary statistics

of FDP (x) and ˆFdr(x) for the correlated case as well as for the independent case

(the columns of the data matrix X were not standardized). The average and stan-

dard deviation are summarized. For FDP (x), which may be highly skewed in the

correlated case, the 50th, 85th and 95th quantiles are also summarized. While the

average FDP (x) was below the average ˆFdr(x) for the correlated case, the variability

of FDP (x) was very large for the smaller x’s and diminished as x increased. For the

independence case, the average FDP (x) was very close to the average ˆFdr(x), and

the variability of FDP (x) was much smaller compared with the correlated case. For

example, the effect of correlation cannot be ignored at x = 2.25: for correlated data,

the average FDP (2.25) was 0.15, but the 85th and 95th quantiles of FDP (2.25) were

respectively 0.31 and 0.48; for independent data, the average FDP (2.25) was 0.19,

and the 85th and 95th quantiles were respectively 0.23 and 0.26.

Correlation in relation to Signal In Professor Efron’s paper it is assumed that

the correlation is not informative of where the signal lies. However, this assump-
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Figure 1: A plot of the 50th, 75th, and 95th FDP percentiles for each level q after
applying the BH procedure to each of 1000 simulated data sets. Solid red line is the
nominal level 0.95 ∗ q, blue line is the average FDP.
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Correlated rows Independent rows

FDP (x) ˆFdr(x) FDP (x) ˆFdr(x)
x mean(SD), Q0.5, Q0.85, Q0.95 mean(SD) mean(SD), Q0.5, Q0.85, Q0.95 mean(SD)

2.00 0.24 (0.18), 0.21, 0.45, 0.61 0.33 (0.08) 0.30 (0.04), 0.30, 0.34, 0.37 0.31 (0.02)
2.25 0.15 (0.15), 0.10, 0.31, 0.48 0.20 (0.04) 0.19 (0.05), 0.19, 0.23, 0.26 0.19 (0.01)
2.50 0.09 (0.12), 0.04, 0.18, 0.33 0.11 (0.02) 0.11 (0.04), 0.11, 0.14, 0.17 0.11 (0.01)
2.75 0.05 (0.09),0.02, 0.09, 0.21 0.06 (0.01) 0.05 (0.03),0.06, 0.09, 0.11 0.06 (0.00)
3.00 0.02 (0.06),0.00, 0.04, 0.12 0.03 (0.01) 0.03 (0.02), 0.02, 0.04, 0.06 0.03 (0.00)
3.50 0.01 (0.03),0.00, 0.00, 0.04 0.01 (0.01) 0.00 (0.01), 0.00, 0.02, 0.03 0.01 (0.00)
4.00 0.00 (0.01),0.00, 0.00, 0.00 0.00 (0.00) 0.00 (0.01),0.00, 0.00, 0.00 0.00 (0.00)

Table 1: Summary statistics of FDP (x) and ˆFdr(x) for the correlated case as well as
for the independent case (the columns of the data matrix X were not standardized).
The average and standard deviation are summarized. For FDP (x), which may be
highly skewed in the correlated case, the 50th, 85th and 95th quantiles are also
summarized.

tion may not always apply. For example, different genes may cluster into groups that

participate in the same molecular functions or biological process and exhibit high cor-

relation. If these groups are known a-priori, this knowledge can be incorporated into

the multiple comparisons procedure to gain power (e.g. [Benjamini and Heller, 2007],

[Heller et al., 2009]). Aggregates of statistical estimates within each group (and their

accuracy) can be useful in this setting. Incorporating the correlation structure with-

out a-priori knowledge of the grouping is a greater challenge ([Sun and Cai, 2009]

model the unknown correlation structure assuming a hidden Markov model for the

hypotheses).

In closing, I congratulate Professor Efron for the interesting article, and I thank the

editor for giving me an opportunity to contribute to the discussion.
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