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SUMMARY. We consider the problem of testing for partial conjunction of hypothesis, that
argues that at least u out of n tested hypotheses are false. It offers an in-between approach
to the testing of the conjunction of null hypotheses against the alternative that at least
one is not, and the testing of the disjunction of null hypotheses against the alternative that
all hypotheses are not null. We suggest powerful test statistics for testing such a partial
conjunction hypothesis that are valid under dependence between the test statistics as well
as under independence. We then address the problem of testing many partial conjunction
hypotheses simultaneously using the false discovery rate (FDR) approach. We prove that if
the FDR controlling procedure in Benjamini and Hochberg (1995) is used for this purpose

the FDR is controlled under various dependency structures. Moreover, we can screen at all
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levels simultaneously in order to display the findings on a superimposed map and still control
an appropriate FDR measure. We apply the method to examples from Microarray analysis
and functional Magnetic Resonance Imaging (fMRI), two application areas where the need

for partial conjunction analysis has been identified.

KEY WORDS: False discovery rate; Functional MRI; Global null; Meta-analysis; Microarray;

Multiple comparisons.
1. Introduction

In many modern biostatistics applications there is need to combine p-value maps. In func-
tional magnetic resonance imaging (fMRI) the signal in the brain indicating activity is
recorded over time while the subject is involved in a cognitive task. From the map of
p-values regions in the brain that participated in the task are identified. When several cog-
nitive tasks are studied the researcher is interested in the brain regions that participated in
most (or at least one) of several cognitive tasks. The map is indexed by the brain location,
and the p-values across tasks in the same location may be dependent. Another example
from genomics research is that of meta-analysis of microarray experiments to help identify
genes that were consistently differentially expressed in most experiments that examine the
same problem. The index in the map is the gene, and the p-values for the same gene across
experiments are independent.

Pooling together inferences made under different yet related conditions enables the re-
searcher to (1) gain statistical power, or (2) make a stronger scientific statement. The first
goal is the more familiar one, as it is in frequent use in meta-analysis. While there may be
only a weak evidence against the null hypothesis at each study, pooling the evidence across
studies may yield very convincing results. Methods are abundant for producing a single
combined p-value to show that at least one hypothesis is false by testing the conjunction of

null hypotheses, also known as the global null hypothesis, the intersection null hypothesis or



the omnibus null hypothesis. Fisher’s combined p-value is probably the best-known method
for this purpose (see e.g. Loughin (2004), Zaykin et al. (2002) and Lazar et al. (2002)).

Even when the above goal is achieved, the scientific conclusion arrived at is quite weak,
in the sense that the evidence may stem from a very strong result in a single study and
none in the others. Thus the second goal for combining p-values addresses this weakness:
we would like to show that the results across studies are consistent in the sense that the null
hypothesis at each and every study can be rejected. To show such a result, the disjunction of
null hypotheses is tested against the alternative that all hypotheses are false (i.e. against the
conjunction of alternative hypotheses). The need to answer such questions has arisen quite
naturally in fMRI analysis (see Friston et al. (1999) and Nichols et al. (2005)), where the
disjunction of null hypotheses is known as the conjunction null. The analysis is challenging
since this null is tested in many brain locations.

As noted above the findings from the rejection of the conjunction of null hypotheses
are often too general to be scientifically meaningful. Yet rejecting the disjunction of null
hypotheses is often too restrictive, making it practically very difficult to reject anywhere
when screening a large number of such hypotheses. A natural compromise is to test instead
the partial conjunction null that at least a pre-specified number of the null hypotheses hold,
against the alternative that at least u out of the n null hypotheses are false.

Such a test is called the partial conjunction test. Formally, consider n > 2 null hypotheses
at each “location” s € {1,..., S}, Hoi(s), Ho2(s), - .., Hon(s), and let pi(s), ..., pn(s) be their
associated p-values. Let k(s) be the (unknown) number of false null hypotheses in location
s, then our question ’Are at least u out of n null hypotheses false?” can be formulated as
follows:

HY"(s) : k(s) <u versus H'"(s) : k(s) > u (1)

Friston et al. (2005) have recognized the usefulness of testing H /™(s) in fMRI research,



when searching for regions in the brain that participate in u different cognitive tasks out of
n tasks of similar nature. They suggested using the maximum p-value at each location as
the test statistic, adjusting its distribution to take care of both the u-out-of-n and of the
multiple locations simultaneously by controlling the family-wise error rate. However, this
method has two drawbacks. First, it has very low power at a location even if the location
responds to all but one condition, as noted by McNamee and Lazar (2004) and demonstrated
in Section 7. Second, unless the conjunction hypothesis where u = n is tested, the method
is only valid for independent test statistics within every brain location.

The approach we suggest here is different. First, in Section 2 we present a simple general
principle for combining the p-values at each location s to derive a valid p-value for testing
H, / "(s). The actual choice should further rely on the dependency structure between the
p-values at each location, as discussed in Sections 2.1 and 2.2. All choices lead to the use
of the maximum p-value when the tested null is the disjunction of null hypotheses (where
u =n) and lead to familiar tests when the tested null is the conjunction of null hypotheses
(where u = 1).

We then suggest to screen the valid partial conjunction p-value map across locations
while controlling for the FDR. The (perhaps more) intuitive procedure in such settings,
to apply an FDR controlling procedure on each p-value map separately and then take the
intersection of the discovered locations, does not control the FDR of the combined discoveries.
In the extreme situation where the conjunction of threshold maps is that of the falsely
discovered locations, the FDR of such a procedure will be 1. In Section 3 we prove that
the procedure in Benjamini and Hochberg (1995), hereafter BH, on the pooled p-values for
partial conjunctions, controls the FDR when the original maps are independent even when
the p-values within every map are dependent and discuss the validity of this procedure in

other realistic settings. Since it may be of interest to look at all levels of partial conjunction



Hy / " foru=1,...,n, in Section 4 we define an appropriate error measure to control in this
case and prove that it is controlled by the procedure in BH.

In Sections 5 and 6 we give examples from fMRI and Microarray analysis respectively.
In Section 7 we discuss the power of the methodology suggested via simulations. In Section

8 we give our final remarks.

2. Combining p-values

Many methods for combining p-values can be designed. Under the partial conjunction
null Hé‘/"(s), let Uy,...,U,_us1 be the p-values for which the null hypotheses hold, in
the sense that U;ZU(0,1) for ¢ = 1,...,n —u+ 1, and let Pi,..., P,_; be the other p-
values. Without loss of generality, for a vector of p-values from the partial conjunction
null let the first n — u 4+ 1 entries correspond to the p-values where the null hypothe-
sis holds and let P“/"(s) = f(Uy,...,Up—us1, P1,..., Ps_1) be the combined p-value. As
long as the combining method makes sense, in that f is nondecreasing in all its compo-
nents, f(Ur,...,Up—ws1,h1(P1), ..., hy—1(Puz1)) < f(Ury .o Un—usr, P, ..., Py_q) for func-
tions hy(x) < x,i =1,...u — 1. Therefore, if the event {P*/"(s) < q} occurs then the event
{f(Ur,.. s Up—us1, hi(Pr), ..., hy—1(Py—1)) < q} occurs and we just proved the following

lemma

LEMMA 1. Under HY'"(s), let hi(P,) < P; for some function hi(-), i=1,...,u—1, and let
PY™s) = f(Ur, ... Un—upr, hi(PL), .. hue1(Pu_y)) and PY"(s) = f(Uy, ..., Up_usr, P1, . ..
Then PY'™(s)ZP"/"(s).

Lemma 1 helps us construct valid pooled p-values. Since the stochastically smallest
P/ (s) under Hy / "(s) will occur when u — 1 p-values are identically zero, the pooled value
p“/"(s) will be valid if it depends only on the n — u + 1 largest p-values using a combining

function that satisfies f(Ui,...,Up—ut1,0,...,0)5U(0,1). Below we give several valid p-
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values.
2.1 Combining p-values under dependence

Given p;(s) the p-value for testing Ho;(s), and the sorted values being pa)(s) < pea)(s) <
... < Pwy(s), the intersection of hypotheses M, Hy;(s) is rejected at level o by Simes’ test if
there exists an i s.t. py) < %a. Equivalently, use the adjusted p-value min;—; . »{%p@(s)},
rejecting the intersection hypothesis if the adjusted p-value is smaller than a.

For testing the partial conjunction null Hy / "(s), we combine the n—u+1 largest p-values

similarly, thus creating a restricted and shifted Simes p-value,

p (S> i:l,.r.r.lr?—lu-i-l{ 7

Pau—1+i)(8)} (2)

For example, suppose that the test of 3 conditions end up with p-values 0.5,0.022,0.015.
For testing that the alternative hypothesis holds for all three conditions we use p*3(s) =
p@)(s) = 0.5, for at least two conditions we use p?3(s) = min{2p)(s), p@)(s)} = 0.044 and
for at least one condition we use p*/3(s) = min{3p(1)(s), 1.5p()(s), p3)(s)} = 0.033.

The Simes test was originally developed for independent test statistics, where it is an
exact test. Efforts over the last years have extended its applicability. Sarkar (1998) was the
first to show that the Simes test is valid under a specific dependency structure. It is now
well established that the Simes test is valid under any of the following conditions. (D1) The
p-values per location are independent (Simes (1986)). (D2) The p-values per location satisfy
the positive regression dependency on a subset (PRDS) property, as defined in Benjamini
and Yekutieli (2001): P({P(s),i =1,...,n} € A|P;(s) = ) is non-decreasing in z for any
7 in the subset of null hypotheses and any increasing set A, where a set A is increasing if
x € A and y > x implies that y € A. Important examples include comparison of various

independent treatments with the same control and the set of p-values for testing one-sided



hypotheses based on Gaussian test statistics that are positively correlated. (D3) The p-
values per location for testing one-sided hypotheses are based on t-statistics from positively
correlated normals with a joint estimator of the variability (Benjamini and Yekutieli (2001),

case 4).

THEOREM 1. Let p*/™(s) be the pooled p-value using equation (2). If the set of p-values
corresponding to null hypotheses at location s satisfy either of the conditions D1-D3 abowve,

then p*/™(s) is a valid p-value for testing Hg/"(s).

See Web Appendix A for a proof.

For general dependence we may always revert to Bonferroni, leading to

P (s) = (n —u+ 1)py(s) (3)

Since P(P'/"(s) < q) = P(Puy(s) < gieryy) < PUS™{Ui(s) <

= (n—u+1) (n—Z-ﬁ-l)}) < ¢, we

have

THEOREM 2. Let p/™(s) be the pooled p-value using equation (3). Then p*/™(s) is a valid
p-value for testing H.'™(s).
2.2 Combining independent p-values

Let z(1y(s) < ... < 2w (s) be the sorted z-scores corresponding to the n p-values (2;(s) =
®~1(1 — p;(s))). For the partial conjunction null H/"(s), the p-value motivated by the
Stouffer method for combining p-values is

S 2 (s)
vn—u-+1

and the p-value motivated by the Fisher method for combining p-values is

P (s) =1 - & ) (4)

P"(8) = P30 urn) = —2 Y logpg(s)) (5)

=u



These are valid partial conjunction p-values since they are both increasing functions of
p1(8),...,pn(s) so Lemma 1 can be invoked, and the combining function f in each case
satisfies f(U1,...,Up—us1,0,...,0) ~ U(0,1).

Many other valid combining p-values can be generated. For a systematic comparison of
combining methods for testing the global null and for further references see Loughin (2004).
A similar modification of these combining methods can be used for more partial conjunction

tests.

3. Screening while controlling the FDR

Consider now the situation where we test a large family of partial conjunction hypotheses
HSL/”(S), s=1,...,5. Once we have a valid combined p-value per location utilizing one of
equations (2)-(5) as appropriate, we can use an FDR controlling procedure on the combined
location p-values. The question arises whether conditions on the individual p-value maps
that permit the use of an FDR controlling procedure per each map separately, endow the
combined partial conjunction p-values with the condition that allows the use of the same
FDR controlling procedure.

If the p-values within the individual maps are independent the answer is simple, any
FDR controlling procedure for independent test statistics will obviously control the FDR at
the desired level ¢ . However, the independence assumption is often not met. For example,
in fMRI a single null hypothesis tested is often one-sided (did the stimulus increase the
activity in the brain location?) and the p-values are based on (approximately) Gaussian test
statistics that are non-negatively correlated across neighboring brain locations. Such PRDS
structure allows the use of the procedure in BH. Now, if several p-value maps are combined,
within each map the location p-values satisfy the PRDS property and the n p-values in each
location are independent, the following condition guarantees that the combined p-value map

also satisfies the PRDS property:



Condition 3.1. If f : " — R is the combining function and Uy, ..., U, 1 are U(0,1)
random variables, then f(Uy, ..., Uy ui1,0,...,0) = G321 g(Uh)), where G(-) and g(-)
are increasing functions and the probability density of g(U;) is a Polya frequency function of

order 2 (PF3) (see Efron (1965) for details on these functions).

In particular, the combining functions motivated by Fisher’s and Stouffer’s methods for
combining p-values satisfy the above conditions but the combining functions motivated by the
Simes or Bonferroni methods do not. For the Fisher method: f(Us,...,Uy_ys1,0,...,0) =
P(X3nuiny = —2 S ogUy), so G(x) = P(X3(n w1y = —27) is increasing in z for
x < 0 and g(u) = logu is increasing in w; g(U;) = logU; has an exponential distribu-
tion and therefore a PFy density. For the Stouffer method: f(Uy,...,U,—ys+1,0,...,0) =
(1 — Ui)//n—u+ 1)), so G(z) = (x/(n — u + 1)) is increasing in z
and g(u) = —®~ (1 — u) is increasing in u; g(U;) = —®~1(1 — U;) has a standard normal

distribution and therefore a PF; density.

THEOREM 3. Assume the p-values within individual maps satisfy the PRDS property, and
that the p-values in each location are independent. Then if furthermore condition 3.1 is
satisfied, the BH procedure on the partial conjunction p-value map controls the FDR at the

desired level q.

See Web Appendix B for a proof.

It follows that applying the procedure in BH after using equation (4) or (5) to combine the
p-values in each location will control the FDR at the desired level ¢ if within every map the
p-values satisfy the PRDS assumption and the n p-values in each location are independent.
While it is quite likely that BH screening after using equation (2) to combine the p-values at
each location also controls the FDR, we do not have such a result. Simulations with PRDS

dependency across locations in the same map and across maps in same locations, detailed



in Web Appendix C, suggest that the BH procedure on the pooled map using equation (2)
controls the FDR.

Previous works show that the BH procedure controls the FDR for p-value maps with
many dependency structures other than PRDS. Reiner (2007) shows via a combination of
simulations and analytic results that applying the BH procedure on p-values from two sided
tests of correlated normal test statistics with any correlation structure controls the FDR. In
an asymptotic framework, Storey et al. (2004) gave convergence conditions on the distribu-
tion of the p-values for the inference on a single map of dependent p-values using BH to be
valid. We show in Web Appendix D the asymptotic validity of partial conjunction screening
if these conditions are satisfied for every map combined. Storey et al. (2004) also suggested
more powerful procedures than the BH for FDR control. The asymptotic validity of these
procedures carries over to the partial conjunction p-value map. To summarize, we believe
that in most practical situations where the BH procedure is appropriate when screening
individual maps, it is also so for screening partial conjunction hypotheses. (If in doubt it
can always be applied at a more conservative level of ¢/ (Zle %) to guarantee FDR control

at level ¢, see Benjamini and Yekutieli (2001)).

4. Screening at all levels u

As partial conjunction Hj /™ is a flexible in-between approach for any 1 < u < n, it may
be tempting to look at all n such maps. In Figure A, for example, we display three such
maps superimposed, where at each location s the largest u for which Hy / "(s) can be rejected
is presented. In applications where it is interesting to create and examine all n maps (e.g.
screening for conjunctions in a large group of people, see Heller et al. (2007)), it is necessary
to define an overall error measure to control for multiplicity. We will define the FDR for
screening at all levels v and prove that it is controlled when the BH procedure is applied to

the combined p-values based on Simes (2).
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Define an overall location discovery at s if for some u Hy / "(s) is rejected. Let i (s) =
max{u|Hy / "(s) is rejected} be the strongest overall result we can claim about s, and define
the discovery at location s false if the claim is too strong, in that A (s) > k(s). Then,
the overall FDR is the expected proportion of the overall false discoveries out of the overall

discoveries.

THEOREM 4. If each partial conjunction map based on Simes (2) is PRDS, and is tested by
the procedure in BH at level q, the overall FDR of the superimposed analysis is also less or

equal to q.

See appendix A for a proof.

Actually the proof only makes use of the fact that the combining function satisfies the
following monotonicity property p~Y/"(s) < p“/™(s). To achieve control of the overall
FDR for the combining methods (3)-(5), we can introduce the monotonicity requirement by
defining pi/"(s) = p'/"(s) and p*/"(s) = max{p{"~"(s),p*/"(s)} for u = 2,...,n. Then,
if the resulting maps are PRDS, using the procedure in BH on {pff/"(s) :s=1,...,5} for

u=1,...,n will also assure overall FDR control.

5. Application to fMRI

In this example, the subject viewed at different time points different pictures belonging to
four categories: faces, houses, common man-made objects, and geometric patterns. The
researcher is interested in finding the regions in the brain that were more active during
the presentation of the first three picture categories than during the viewing of geometric
patterns. For each of the first three categories, a t-test statistic was computed for testing the
contrast that the brain activity during the presentation of pictures from that category was
larger than during the presentation from the fourth category. Since the resulting three test

statistics in each brain location are positively correlated, the combining method in equation
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(2) is used.

Figure A shows the superimposed maps that passed the FDR cut-off of 0.05 for testing
that at least one, at least two or all three contrasts were greater than zero. From this figure,
the regions that were found to react to all three contrasts at an FDR level of 0.05, are
colored in blue; the regions that were found to react to at least two contrasts at an FDR
level of 0.05, are colored in blue or yellow; and the regions that reacted to at least one
contrast at an FDR level of 0.05 are colored in red, yellow or blue. The partial conjunction
analysis reveals the much wider region associated with a single contrast. However, when a
conjunction of at least two categories are considered (the union of yellow and blue regions)
- then the delineated regions shrink and become confined to a well studied cortical region,
the object-related lateral occipital complex (LOC), whose most robust functional signature
is a preferential activation to images of objects compared to texture patterns (Malach et al.
(1995), Malach and Levy (2002)). See Heller et al. (2007) for more details on this example

as well as for more examples.
[Figure 1 about here.|

Remark. On single p-value maps from nueroimaging data, Genovese et al. (2002) argue that
the FDR procedure controls the FDR at level ¢ since the correlations are local and tend to
be positive. This reasoning carries over to the pooled p-value map, so the BH procedure is
justified by the asymptotic argument in Section 3. Moreover, simulations in Web Appendix

C show the FDR control for finite samples.

6. Application to Microarray meta-analysis

Microarray technology is used to measure simultaneously the expression of thousands of
genes under various experimental conditions. Rapidly growing collections of large datasets

are becoming available for subsequent analysis. Given the differences in characteristics of
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the raw datasets, combining the results can help identify the consistently true signals as well
as give indications about possibly inconsistent findings.

Chromatin immunoprecipitation (ChIP) is a well-established procedure used to investi-
gate interactions between proteins and DNA. Coupled with whole-genome DNA microarrays,
ChIPs allow one to determine the entire spectrum of in vivo DNA binding sites for any given
protein. Proteins called transcription factors (TFs) regulate transcription by binding to DNA
motifs upstream of their target genes. The availability of the genome sequence for budding
yeast allowed ChIP to be coupled to high-throughput analysis on microarrays (’chips’), to
monitor and measure the binding of a given set of TFs to the upstream regulatory regions
of thousands of genes. We applied our combining methods to three well-known ChIP-chip
genome-wide TF binding datasets (see details in Pyne et al. (2006)). Pyne et al. (2006) com-
bined these datasets by first applying a cut-off value for each p-value map with a conservative
FDR threshold so that only p-values that were below their FDR threshold are combined us-
ing the truncated Fisher method (adjusted as suggested by Zaykin et al. (2002)), then the
combined map cut-off is chosen with an FDR controlling procedure. Pyne et al. (2006)
added a calculation for finding the genes where at least two or all three datasets cleared
their cut-offs under the global null hypothesis. So in fact their definition of a discovery in at
least two or all three datasets is different from ours. Moreover, the p-values in the combined
map are calculated under the assumption that the map thresholds are fixed even though the
thresholds are data dependent, so the control of the FDR is not guaranteed. We apply the
Fisher and Stouffer based methods for combining the p-values, and then threshold the com-
bined p-value maps with an FDR level of 0.05. We adjusted for missing values conservatively
by marking their p-values as 1. In table 1 we compared our method with the naive method
of cutting off every dataset with its own nominal FDR level of 0.05, and with the results in

Pyne et al. (2006). We discover more than Pyne et al. (2006), suggesting our procedure is
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more powerful. The naive method makes more discoveries for u = 3, but significantly less
discoveries with u < 3 since it does not gain power from pooling together information from
several sources. Of course, since it does not guarantee control of FDR, the naive method is
not recommended. Note that for global testing, the naive method FDR is bounded above
by 3¢, so a simple solution is to threshold each map at the ¢/3 level. However, if every map

is threshold at 0.05/3, only 118 rejections of the global null are made.
[Table 1 about here.]

The finding that the gene was differentially expressed in at least one dataset may be
too weak scientifically, and the requirement that the gene should be significant in all three
datasets may be too severe so it ignores interesting gene discoveries. Therefore’, the genes
that were found to be differentially expressed in at least 2 datasets may be the most inter-

esting to look at.

7. A Simulation Example

We considered different settings in order to compare the power of the suggested methods of
pooling p-values, as well as examine how the choice of u affects the power. In each of 1000
locations 10 independent unit variance Gaussian noise measurements were simulated, and
in 100 locations a signal of size p was added in k out of the 10 repetitions (k = 3,7,9) per
location. The signal size p was independently sampled for each location and map from a
N (po, 02) distribution, where we varied jg = 2,...,6 and o9 = 0, ..., max(2, 10/2).

We pooled the p-values using equations (2), (4) or (5), as well as using the maximum
p-value method (see Friston et al. (2005) for details) since this is the only method used up
to now for 1 < u < n. Next, we computed the resulting map threshold using the suggested
BH procedure.

The simulation results show that none of the pooling methods dominates. The power

14



of each method depends both on the configuration of signal p and on the proportion k/n
of false hypotheses. A careful examination of the identifiable factors that affect the choice
between the combining methods in terms of power are outside the scope of this manuscript
(see Loughin (2004) for some insight when u = 1). Our key observations are 1) the maximum
p-value method has little power to reject the partial conjunction null whenever at least one p-
value is a null, regardless of how small the other p-values may be, and 2) the power decreases
sharply when u increases, supporting our motivation for using the partial conjunction test
rather than testing of the disjunction of nulls when screening for many hypotheses. In the
representative Figure 2 we see that when the partial conjunction hypothesis is false, if most
p-values come from the alternative (e.g. kK = 7 or kK = 9) then pooling the p-values using
equations (4) or (5) is usually more powerful than using equation (2), but when the number
of p-values that come from the alternative is small (e.g. k = 3) pooling the p-values using
equation (2) may be more powerful even under independence between p-values within each

location.

[Figure 2 about here.|

8. Discussion

In this article we have suggested powerful new methods to combine both independent and
dependent p-value maps for testing partial conjunctions. We showed that the power decreases
as a function of the conjunction parameter u, and discussed the advantages of choosing a
u to be larger than 1 but smaller than n. If screening at all levels of u is of interest, we
suggested superimposing the maps to discern the results and we showed that if the procedure
in BH was used for each partial conjunction at level ¢ then for the superimposed map the
expected proportion of false overall discoveries is bounded at the same level ¢g. The result is
restricted to the above procedure, but we suspect they hold more widely and advances on

this front are desirable. Several other extension are discussed below.
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In the cases considered, the identity of the null hypotheses rejected in every location
is not important, and only the proportion of null hypotheses rejected is of interest. If the
identity of the rejected null hypotheses is of interest as well, stepwise procedures can be
applied in every location (e.g. in Tamhane and Dunnett (1999)) to discover whether at least
u out of n null hypotheses are rejected and in addition identify these u hypotheses, but the
level of testing needs to be adjusted so that the FDR on locations is properly defined and
controlled.

For combining a large number of maps n sampled from a population, for example when
each map corresponds to a subject, it may be interesting to estimate rather than test the
proportion of non-null hypotheses per location, say by getting a lower confidence bound
on this proportion (Friston et al. (1999) and Friston et al. (1999) address this issue in
fMRI). This is an interesting point for further research, in particular using the approach of

confidence intervals after selection suggested in Benjamini and Yekutieli (2005).

9. Supplementary Materials

Web Appendices and Figures referenced in Sections 2.1 - 7 are available under the Paper

Information link at the Biometrics website http://www.biometrics.tibs.org
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APPENDIX A

Proof of Theorem

Let m; be the number of locations s for which exactly ¢ hypotheses are false, namely k(s) = 1,
and let I; be their corresponding location indices for ¢ = 0,...,n. Then Y " jm; = S is the
total number of locations and U | I; = {1,...,S}.

Let R, be the number hypotheses rejected when testing H, / "(s) on all S locations using
the procedure in BH for FDR control at level g. Note that Ry > Ry > ... > R, if p™/"(s) >
> ptn(s) > ... > pY/n(s). To see this, note that since S, 1[pi/™ < R,q/m] = R, we
have 7 1[p" """ < R,q/m] > R,. But since R,_; = max{k : 3.7, 1[p\*"" < kq/m] >
k} then R, ; > R,. Moreover, the number of false discoveries is > 7, Zselj,l L(PI/"(s) <
R;L). For example, if s € I; then if s is rejected when testing u = 3 it is also rejected when
testing u = 2 because p*"(s) < p*/™(s) and Ry < R, so we should count it only once as an
error (at the level u = 2). Moreover, since Hé/ "(s) was also rejected the number of overall

discoveries is R;.

Therefore,

E(z;.;l S er, LPI(s) < R]%)) B Z 5 (1(Pf/“(s) < Ry,
Ry B R
j=1 SEijl

n 1(Pi"(s) < RjL) & 51 . s
<D P ) S D Y D PP(s) < kg/mn O

j=1s€l;j_1 J j=1 s€l;_1 k=1
<IN <> g =(1--)g<q (A1)

Jj=1s€l; 1 m J=1 m m

where C’](sk) is the set that when screening for partial conjunctions with parameter u = j
exactly & p-values are rejected including the s from the partial conjunction null (as defined

by BY), so the third inequality follows if the partial conjunction p-values are PRDS (or
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independent) according to the proof in Benjamini and Yekutieli (2001).
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@ 1 contrast
O 2 contrasts
@® 3 contrasts

Figure 1. Activation maps for a single subject presented on unfolded cortical hemispheres:
blue regions activated in all three contrasts with FFDR < 0.05; yellow or blue regions acti-
vated in at least two contrasts with F'DR < 0.05; red, yellow or blue regions activated in at
least one contrast with ' DR < 0.05.
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k=3 k=7 k=9

Figure 2. Power as a function of u when the FDR level is 0.05 and the simulated setting is
that in which the number of p-values per location that come from the alternative is either
null or 3 (first column), 7 (second column) or 9 (third column). The combining method is
based on (1) equation 5 (solid line) (2) equation 4 (dashed line) (3) equation 2 (dotted line)
and (4) the maximum p-value method (dash-dot line). Each row correspond to a different
to (00 = 2): o = 2 (top), o = 4 (middle) and py = 6 (bottom). There is not one pooling
method that is more powerful than all others in all simulation settings; there is a sharp

decrease in power when wu increases.
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[Thbp]

Table 1
Number of significant genes for protein Swij (that forms part of TF SBF)

All 3 At least 2 At least 1

Pyne et al. (2006) 64 103 162
Stouffer method 73 195 321
Fisher method 73 176 305
Naive method 78 121 161
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