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We address the problem of testing in every brain voxel v whether at
least u out of n conditions (or subjects) considered shows a real effect.
The only statistic suggested so far, the maximum p-value method, fails
under dependency (unless u=n) and in particular under positive
dependency that arises if all stimuli are compared to the same control
stimulus. Moreover, it tends to have low power under independence.
For testing that at least u out of n conditions shows a real effect, we
suggest powerful test statistics that are valid under dependence bet-
ween the individual condition p-values as well as under independence
and other test statistics that are valid under independence. We use the
above approach, replacing conditions by subjects, to produce infor-
mative group maps and thereby offer an alternative to mixed/random
effect analysis.
© 2007 Elsevier Inc. All rights reserved.
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Introduction

Pooling together significance values evaluated under different
conditions enables the researcher to either (1) make a stronger
scientific statement, as is the case for example if the brain region
responds to all conditions, or (2) gain statistical power. As an
example for the latter, suppose there is only weak evidence that this
brain region responds to each condition, so the individual tests are
not convincing evidence by themselves, but since this evidence is
consistent across all conditions tested, the evidence is very
convincing. In fMRI, the need to pool together significance values
arises when looking for brain regions that respond to all of a set of
different conditions or to at least some of these conditions.
Interestingly, we suggest that the same need arises in multi-subject
analysis in order to create an informative group map.

In a typical analysis, a p-value map is produced and then a
threshold is computed so that only voxels with p-values below
the threshold are highlighted as findings. The need to correct for
multiple comparisons (rather than choose an arbitrary threshold)
has been recognized and the false discovery rate (FDR), which is
the expected proportion of false rejections, has been adopted in
the fMRI community as an appropriate error measure (see
Genovese et al., 2002). FDR controlling procedures have been
implemented in software packages such as SPM and Brain
Voyager. However, if we have two activation maps, and the cut-
off of each is calculated separately to control the FDR of the map
at q, then the FDR level of the conjunction of activation maps
may be larger than 2q. To see this, consider the following ex-
treme example: assume that the two activation maps overlap only
in a proportion q of activations of each, and this is exactly the
region of false discoveries for each of the maps. In this example,
the conjunction of activation maps is comprised entirely of false
discoveries. Choosing more conservative thresholds for each map
so that the FDR level of the combined map is maintained is either
very conservative, reverting to family-wise error (FWE) control
in each of the maps, or very complicated. Thus when studying
several p-value maps jointly, we suggest to combine p-values
first and then threshold this pooled map to control the FDR,
rather than first threshold each map and then combine the activ-
ation maps.

Methods for combining p-value maps have already been
introduced into the fMRI literature. The maximum p-value has
been suggested by Nichols et al. (2005) for addressing the problem
of looking for brain regions that respond to all of a set of different
conditions (i.e., the conjunction hypothesis). Friston et al. (2005)
argue that it is enough to look at brain regions that respond to at
least a certain number of different conditions and suggest adjusting
the distribution of the maximum p-value accordingly.

We can view multi-subject analysis as a problem in combining
individual p-value maps. Traditionally, the fixed effects model and
mixed (random) effects model have been in use for combining
brains. The fixed effect analysis answers the question whether at
least for one subject there is activation in the voxel. The mixed
(random) effects analysis answers the question whether the average
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activation level is higher than 0, as compared to the variability in
activation levels between subjects.

The mixed effect model is usually advocated (see e.g.,
Mumford and Nichols, 2006), since investigators want to infer
on the population from which the sample was drawn. For the usual
mixed analysis for inference on the population to be valid, it is
required that the subject specific effects come from the same
normal distribution. However, Mumford and Nichols (2006) men-
tion that it is known that human anatomy is highly variable, and
two brains cannot necessarily be matched gyri-to-gyri even when
the registration is done manually. The implication from such an
observation is that we face at best a mixture of normally distributed
effects and zero effects—a highly non-normal distribution. To
overcome these limitations of inter-subject registration, spatial
smoothing is applied to blur out residual anatomical differences.
So the inference can only be on the smoothed signal rather than on
the original signal. Thirion et al. (2007) give evidence that even
after smoothing the normal distribution assumption is not satisfied
in many voxels. Typically, only a proportion of subjects will
activate the voxel (see Friston et al. (1999) for a discussion on
estimating this proportion). Therefore the assumption of normality
required for mixed model inference is violated. Moreover, and
possibly as a result of this violation, the mixed model inference has
low power to discover activations, especially for small sample
sizes.

The fixed effect model usually produces large activation areas.
Alternatives to the fixed effect model are suggested in Lazar et
al. (2002), where a survey of additional ways to combine brains
is given. However, all one can conclude from the fixed effect
model or the suggested alternatives is that at least one subject in
the sample activated a detected voxel. In the extreme case, the
group map may be driven entirely by one subject. Hence, we
cannot say that the group's response is significant but only that at
least one subject showed activation. Although the statistical
power is large, this is a very weak scientific finding from mul-
tiple subjects. However, a generalization of the fixed effect
analysis that answers whether at least a proportion of subjects
activate the voxel is more scientifically meaningful. Moreover, a
further generalization to a statement on the population proportion
may be even more meaningful (we come back to this point in
Final remarks).

In this study, we address the general question of partial
conjunction testing, whether at least u out of n conditions or
subjects activated the voxel. We suggest combining the p-values at
the voxel level into a test statistic that is valid for positive (and
many other) dependencies. It coincides with the maximum p-value
when testing the (full) conjunction hypothesis. Applying an FDR
controlling procedure on this pooled p-value map will control the
FDR at the desired level. For the multi-subject problem, or more
generally if we have independent p-value maps, we will suggest a
generalization of the approach in Lazar et al. (2002), that will
enable the investigator to conclude on the least number of subjects
that show activation in every voxel. Although from this general-
ization we only have limited inference, the scientific finding is
stronger than that of the fixed model.

This question has been addressed in Friston et al. (2005)
assuming independence between the p-value maps, where they
suggest using the observed minimum t statistic (i.e., maximum p-
value), called Tmin, and compare it to a threshold based on the
distribution of the minimum of n−u+1 independent t random
variable that controls for the probability of making a type I error

even in a single voxel (Family-wise error rate—FWE). The theory
of random fields that is traditionally used to control for FWE when
testing a single contrast remains valid when n independent random
fields are combined into the Tmin statistical map (see Worsley and
Friston, 2000), making this choice a very natural starting point for
developing methods for conjunction analysis. However, this
method has very low power even if the brain region responds to
all but one condition, as mentioned in McNamee and Lazar (2004).
Similarly, Loughin (2004) showed that this method is not able to
reject the null hypothesis whenever at least one p-value becomes
too large, regardless of how small the other p-values may be.
Moreover, unless the conjunction hypothesis is tested, this method
is only valid for independent test statistics. Alas, in many
neuroimaging studies different conditions are compared to the
same control condition, leading to positive dependency between
the condition p-values.

The paper is organized as follows. First we present the new
proposals for pooling p-values. Then we will give recipes for
making multi-contrast and multi-subject inference respectively. We
proceed to show the gain in power in using the proposed pooled p-
values over using Tmin (i.e., the maximum p-value) even when the
test statistics are independent via simulations and apply the
suggested procedures on the results of an fMRI experiment.
Finally, we give our conclusions and additional remarks.

Pooling p-values for testing partial conjunctions

Let k be the (unknown) number of conditions or subjects that
show real effect. The problem of testing in every brain voxel v
whether at least u out of n conditions or subjects considered show
real effects, can be generally stated as follows:

Hu=n
0v : kbu versus Hu=n

1v : kzu ð1Þ

We shall call H0v
u/n the partial conjunction null hypothesis.

In Nichols et al. (2005) and Friston et al. (2005) the n-out-of-n
hypothesis, that asks whether all conditions show a real effect in
voxel v, is referred to as the test of the Conjunction Null (option
“Conjn” in SPM5)

Hn=n
0v : kbn versus Hn=n

1v : k ¼ n ð2Þ

and the 1-out-of-n hypothesis test, that tests whether one or more
conditions show a real effect in voxel v, is referred to as the test of
the Global Null (option “Global” in SPM5)

H1=n
0v : k ¼ 0 versus H1=n

1v : kz1 ð3Þ

Option “Intermed” in SPM5 refers to the case that 1bubn.
The researcher should decide what choice of u, u=1, …, n is

relevant for the problem at hand, depending on the desired
inference. To infer a conjunction of real effects (e.g., brain regions
that respond to all of a set of different conditions) (2) should be
tested. If finding real effects in less than all conditions is scien-
tifically sufficiently convincing, then taking ubn may be appro-
priate. For example if n is the number of subjects and each subject
is tested for the same effect, then taking u=n/2 we may infer from
(1) that the effect is real for at least half of the subjects. As another
example, for testing n similar mental activities, we may infer from
(3) that at least one of them activated the voxel.
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Let pv
1, …, pv

n be the p-values for testing the n conditions (or
subjects) at voxel v. The method to combine the p-values for
testing H0v

u/n into a valid p-value at the voxel level should depend
on the statistical relation between the n p-values in each voxel: if
they are independent or dependent, we suggest below ways of
combining the p-values. If they are independent, the possibility
opens up to utilize many additional tests, and some are highlighted
below. Note that the choice of appropriate method for combining
p-values relies on the statistical relation between the p-value
maps, not the statistical relation of p-values within each map.

Pooling dependent p-values

For the most general dependency structure, we can always rely
on the Bonferroni approach. For testing H0v

u/n, the combined p-value
is

pu=nv ¼ ðn� uþ 1ÞpðuÞv ð4Þ
As always, the penalty for its general applicability will be lower
power. We therefore suggest the following combined p-value:

pu=nv ¼ min

(
n� uþ 1ð ÞpðuÞv ;

ðn� uþ 1Þ
2

pðuþ1Þ
v ; N ;

ðn� uþ 1Þ
n� u

pðn�1Þ
v ; pðnÞv

)
ð5Þ

where pv
(u) is the u-th largest p-value in {pv

i : i=1, …, n}. This is a
generalization of the Simes p-value which originally addresses the
global null, i.e., the case u=1.

This method can be used when the dependency is more
structured. For example, when several conditions are compared
to the same control condition. For these and more general
structures of positive dependence, Theorem 1 in Benjamini and
Heller (2007) shows the combined p-value in Eq. (5) to be a
valid one, in the sense that the p-value is uniformly distributed
under the partial conjunction null or has a stochastically larger
distribution than the uniform. Similarly, Theorem 2 in Benjamini
and Heller (2007) shows that for any dependency structure, the
combined p-value in Eq. (4) is valid.

For example, suppose that 3 conditions end up with p-values
0.5, 0.022, and 0.01. For testing that all three conditions show a
real effect we use pv

3/3 =pv
(3) =0.5, for testing that at least one

condition shows a real effect we use pv
1/3 =min{3pv

(1), 1.5pv
(2),

pv
(3)}=0.03 and for testing that at least two conditions show a real
effect we use pv

2/3 =min{2pv
(2), pv

(3)}=0.044.

Pooling independent p-values

Lazar et al. (2002) discussed several ways available for
combining p-values in order to test the global null (i.e., u=1) in
the context of fMRI analysis. Lemma 1 in Benjamini and Heller
(2007) tells us that if we apply these combining p-value methods
on the n−u+1 largest p-values, the resulting p-value is valid for
testing H0v

u/n. Based on the comparison of the performance of
these various combining methods in Lazar et al. (2002) and
McNamee and Lazar (2004), we choose to give particular
attention to the Stouffer and Fisher methods for combining
p-values.

Let zv(1)≤…≤ zv(n) be the sorted z-scores corresponding
the n p-values zvi=Φ

−1 (1−pvi ). For testing (1), the p-value

motivated by the Stouffer method for combining p-values is
given by

pu=nv ¼ 1� U
Rn�uþ1
i¼1 zvðiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� uþ 1

p
 !

ð6Þ

and the p-value motivated by the Fisher method for combining p-
values is given by

pu=nv ¼ Pðv22ðn�uþ1Þz�2
Xn
i¼u

log pðiÞv Þ ð7Þ

As an example, suppose again that the three independent subject
p-values are 0.5, 0.022, and 0.01. For testing that at least one
subject shows a real effect, the p-value based on the Stouffer method

is 1� UððŨ�1ð0:5Þ þŨ�1ð0:022Þ þŨ�1ð0:01ÞÞ= ffiffiffi
3

p Þ=0.0061 and
the one based on the Fisher method is P(χ6

2≥−2(log(0.5)+
log(0.022)+ log(0.01)))=0.0057, so the pooled significance value
is smaller than all individual p-values. For testing that at least two
subjects show a real effect, the p-value based on the Stouffer

method 1� UððŨ�1ð0:5Þ þŨ�1ð0:022ÞÞ= ffiffiffi
2

p Þ ¼ 0:077 and the one
based on the Fisher method is P(χ4

2≥−2(log(0.5)+ log(0.022)))=
0.061.

Thresholding a partial conjunction p-value map

Once the partial conjunction p-values have been computed at
each voxel, a p-value map has been created. At this stage we
have to decide how to threshold the map. While choosing the
threshold to control the probability of making even one error
(i.e., the family-wise error, FWE) is feasible, it is more
complicated and more conservative than in the usual setting of
thresholding a single map. We choose to control the FDR, as
explained in the introduction. On single p-value maps from
nueroimaging data, Genovese et al. (2002) argue that the FDR
procedure controls the FDR at level q. Their reasoning is that
while strict independence between voxel p-values is hard to
verify and will often fail with neuroimaging data, the
correlations are local and tend to be positive. Benjamini and
Yekutieli (2001) prove that for such positive dependency, the
BH procedure (Procedure 1 below) controls the FDR. Since pv

u/n

is an increasing function of pv
1≤…≤pv

n, the positive dependency
carries over to the pooled p-value map if Eqs. (6) or (7) are
used for combining p-values (see Theorem 3 in Benjamini and
Heller (2007) for a proof ), so the procedure below controls the
FDR at level q. While it is quite likely for positive-dependent
maps that this procedure controls the FDR also when the p-
values are pooled using Eq. (5), this result has not been
formally proved. However, Storey et al. (2004) proves that for
local dependencies, this procedure controls the FDR asympto-
tically. This reasoning carries over to the pooled p-value map
for any combining method, since the correlations of the pooled
p-values will remain local, so the procedure below controls the
FDR (asymptotically) at level q.

Procedure 1. The FDR procedure for testing H0v
u/n:

1. For every voxel v, v=1, …, V, let pv
u/n be the voxel pooled p-

value using one of (4)–(7) as appropriate.

1180 R. Heller et al. / NeuroImage 37 (2007) 1178–1185
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2. Sort the p-values p(1)
u/n≤…≤p(V)

u/n.
3. Let k=max{j:p(j)

u/n≤ (j/V)q}. Reject all voxels with pv
u/n≤ (k/V)q.

Let us now take this general scheme and apply it to multi-
contrast analysis. Let n be the number of conditions considered.
Calculate the full general linear model (GLM). Next, calculate the
p-value map for every contrast of interest separately. For exam-
ple, if we have three conditions A, B and C, then the p-value
map for contrast A will be calculated from the GLM that includes
A, B and C. Next, specify the scientifically appropriate number
of conditions u (1≤u≤n) for testing H0v

u/n. Based on the
relationship between the contrasts and the experimental design,
assess whether the contrast p-values are independent or if not
identify whether the dependency structure allows the use of Eq.
(5) for combining the contrast p-values (if not, use Eq. (4)).
Finally, apply Procedure 1.

Multi-subject analysis

As discussed before, the above methodology of partial
conjunction analysis gives the opportunity to create informative
group maps by combining the maps of individual subjects while
controlling for the FDR across the map.

In preparation for the multi-subject analysis, all subjects need
first to be transformed into a common space, e.g., by warping the
brain images of the subjects onto a common atlas, using Talairach
coordinates. Let n be the number of subjects. First, specify the
scientifically appropriate hypothesis per voxel for every subject.
The scientifically appropriate hypothesis tests per voxel for every
subject can be of the multi-contrast type. Next, calculate a valid p-
value per voxel for every subject. Specify the number of people u
(1≤u≤n) for testing H0v

u/n. Since the subjects produce independent
observations, use Eqs. (6) or (7) to combine the voxel p-values.
Finally, apply Procedure 1.

Procedure 1 can be repeated for all u values of interest (e.g.,
u=1, …, n). Since the activation map of at least u subjects is a
subset of the activation map of at least u′ subjects for any u′bu,
the n activation maps can be superimposed on the same display.

For an example of such a display, see Fig. 4 which will be
discussed in detail in Applications.

A simulated example

We considered different settings in order to compare the
currently used statistic Tmin with our proposed methods. A
10×10×10, V=1000, voxel image was filled with unit variance
Gaussian noise for n independent subjects, n=3, 5, 10, 15. For a
total activation area of 100 voxels a signal of size μ was added to k
subjects in the same voxel, k=n/2,...,n.

We pooled the p-values using (5) or (7), then we computed the
resulting map threshold using the suggested FDR controlling
procedure. For comparison, we computed the p-value map based
on Tmin and computed the resulting map threshold using the same
FDR controlling procedure. Recall that under dependency, the FDR
of Tmin is not controlled unless the conjunction null is tested, and can
be as high as 1. Therefore we only show results under independence.

The simulations show that the power when pooling the p-
values using Eqs. (5) or (7) is much larger than when using Tmin,
unless all n subjects activate the voxel (in which case the power is
similar). For example, Fig. 1 shows the power versus the signal
size μ (standard errors at most 0.0004 for Tmin and 0.004 for the
other two methods) when testing H0v

5/10 in a simulation setting in
which 7 subjects activate the same voxel (left figure) and H0v

3/10 in a
simulation setting in which 3 subjects activate the same voxel
(right figure). Tmin has very low power in both settings because
even when H0v

5/10 is false 3 subjects are inactive and when H0v
3/10 is

false 7 subjects are inactive. The identifiable factors that affect the
choice between the two combining methods in terms of power are
outside the scope of this manuscript.

Applications

High-order object areas

We have applied the new statistical approach to data obtained
from 19 subjects, which participated in a well established, visual

Fig. 1. Power as a function of signal size μ when the FDR level is 0.05 and the combining method is based on (a) Eq. (7) (solid line) (b) Eq. (5) (dashed line) and
(c) Tmin (dotted line). Left, testing H0v

5/10 in a simulation setting in which 7 subjects activate the same voxel; the most powerful analysis method is clearly (a), but
both (a) and (b) are much more powerful than (c). Right, testing H0v

3/10 in a simulation setting in which 3 subjects activate the same voxel; the most powerful
analysis method is clearly (b), but both (a) and (b) are much more powerful than (c).
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localizer paradigm (e.g., Hasson et al., 2003; Levy et al., 2001). An
interleaved short block design was used in the experiment. The
visual stimuli included line drawings of faces, buildings, common
man-made objects, and geometric patterns. Nine images of the
same type were presented in each epoch, which lasted 9 s, followed
by a 6 s blank screen. A central red fixation point was present
throughout the experiment. During the experiment, one or two
consecutive repetitions of the same image occurred in each epoch.
The subject's task was to covertly report whether the presented
stimulus was identical to the previous stimulus or not.

A well studied cortical region which can be consistently
revealed using this paradigm, is the object-related lateral occipital
complex (LOC) whose most robust functional signature is a
preferential activation to images of objects compared to texture
patterns. In the original studies (Malach et al., 1995) of the LOC, it
was pointed out that the region also showed a preferential
activation to other images, such as faces, so it could be of interest
to perform a conjunction analysis on different object categories and
see if the “core” LOC showed a conjunction response to different
object categories. For that aim we performed a multi-contrast
analysis on the data of one representative subject. The contrasts
included in the analysis were: faces versus patterns, objects versus
patterns, and houses versus patterns. For comparison we also
produced a GLM analysis on these contrasts that tests whether the

average effect of faces, objects and houses is greater than that of
patterns. The results are presented in Fig. 2. As can be seen, the
new multi-contrast analysis (Fig. 2, bottom) is much more
informative compared to the conventional GLM (Fig. 2, top) since
it reveals the much wider distribution associated with a single
contrast—which includes areas whose selectivity is unique to a
single object category, such as the FFA (e.g., Kanwisher et al.,
1997), the PPA (e.g., Epstein and Kanwisher, 1998) and other
object-related regions (for review see e.g., Hasson et al., 2003;
Malach and Levy, 2002). However, when a conjunction of at least
two categories is considered (the union of yellow and blue regions)
or of all three categories (the blue region), then the delineated
regions shrink and become confined to the typical LOC boundaries
(Malach et al., 1995; Malach and Levy, 2002).

Another critical issue is to what extent the neuro-anatomical
locations of the LOC reproduce in brains of different individuals.
Note that precise co-localization is unlikely due to the inter-subject
variability in cortical organization. However, one would expect
such reproducibility to occur across some subjects, and particularly
if the mapped regions are large. As can be seen in the bottom of
Fig. 3, the new conjunction analysis nicely reveals significant
activations in the expected location of LOC including its larger LO
subdivision as well as its ventral pFS focus, evident in the right
hemisphere (Malach et al., 1995). Note in white outline the much

Fig. 2. Activation maps for a single subject presented on unfolded cortical hemispheres. Top: GLM testing whether the average of the faces, objects and houses
coefficients is larger than that of patterns with FDR b0.05. Bottom: blue regions activated in all three contrasts with FDR b0.05; yellow or blue regions activated
in at least two contrasts with FDR b0.05; red, yellow, or blue regions activated in at least one contrast with FDR b0.05. POS: parietal occipital sulcus; IPS:
inferior parietal sulcus; STS: superior temproal sulcus; ITS: inferior temporal sulcus; CoS: collateral sulcus; OTS: occipito temproal sulcus; LS: lateral sulcus;
IFS: inferior frontal sulcus; CS: central sulcus.
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larger spread of activation when the constraint is relaxed to at least
a single subject showing significant activation. The top of Fig. 3
presents the mixed effect analysis. In reporting activation maps
from a mixed effect analysis, the standard interpretation is that the
regions detected show where the average population activity lies.
Comparison with the bottom Fig. 3 reveals that some of the regions
discovered by mixed effect analysis were only discovered with the
u=1 partial conjunction hypothesis, suggesting that these regions
are subject specific with strong enough signal to affect the average
group activity. As cautioned in the introduction and by the above
comparison with our method, the standard interpretation of regions
revealed by a mixed effect analysis depends critically on the
assumed model.

Face-selective regions

Another well known cortical area, that has been extensively
studied, is the Fusiform Face Area (FFA, Kanwisher et al., 1997)
which can be typically revealed using the contrast FaceNHouse.
As can be seen in the bottom of Fig. 4, the new method reveals
characteristic, right-lateralized face-selective regions, in lateral

occipital region and fusiform gyrus. As expected from the inter-
subject brain variability, spatial smoothing enhances the number of
subjects which show conjoined activation (Fig. 4 bottom left vs.
right). For comparison, a mixed effect analysis was also performed,
with FDR b0.05 with and without smoothing.

Computational details

The data presented in Figs. 2–4, top and bottom left, were
spatially smoothed with a Gaussian filter of full width half
maximum value (FWHM) of 8 mm.

To obtain the multi-subject maps, time series of images of brain
volumes for each subject were converted into Talairach space and
z-normalized. Further details of data analysis and acquisition can
be found in Levy et al. (2001).

The general linear model (Friston et al., 1995) consisted of a
multiple regression with a regressor for each condition in the
experiment, using a box-car shape and assuming a hemodynamic
lag of 3 s. The analysis was performed independently for the time
course of each individual voxel. After computing the coefficients
for all regressors, we performed a test between coefficients of

Fig. 3. Activation maps for the group of subjects. Top: mixed effect analysis testing whether the average of the faces, objects, and houses coefficients is larger
than that of patterns with FDR b0.05. Bottom: multi-subject analysis testing whether at least one contrast activated the region in at least u subjects with FDR
b0.05 (u=1, … 8). The intensity represents the minimum number of subjects that activated the region, ranging from at least 1 to 4 in shades of red, and 5 to 8 in
shades of orange to white. Regions of high u indicate consistency across subjects. Note that some of the regions detected by the mixed model correspond to u=1
only, while others correspond to uN4.

1183R. Heller et al. / NeuroImage 37 (2007) 1178–1185
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different conditions (e.g., patterns versus buildings, common
objects, and faces—the coefficient of the pattern predictor was
compared to the average of the building, common object and faces
predictors).

The Simes method was used for combining contrast p-values
which may be dependent. The p-values motivated by the Fisher
and Stouffer methods for combining p-values were used for
combining subject p-values utilizing the independence across
subjects. While both these methods discovered more activations
than the traditional fixed effect analysis, only the Fisher method is
shown in Figs. 3 and 4. The decision of when to choose which
combining method is a direction for further research.

Final remarks

We found that we can combine brains to discover more active
regions than in fixed effect analysis, as well as give a stronger

scientific statement. We developed an inference method for testing
that at least a proportion u/n of a group of subjects shows a real
effect, while controlling for false discoveries using the FDR. Can
we further infer on the proportion of the population that has a real
effect? A partial answer can be obtained using the following
reasoning. For testing whether at least a quarter of the population
activate the region, taking into account the background binomial
variation, the null hypothesis is rejected with an α level of
significance if the estimated sample proportion is larger than
1
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we can infer that

at least a quarter of the population showed a real effect. However,
further attention is needed to the multiplicity of tests at this stage as
well. The simplest, yet conservative, adjustment is to use the Bon-
ferroni correction. Less conservative adjustments, thereby reducing
the lower bound on the proportion of subjects u/n, can be found in
Benjamini and Yekutieli (2005). Another approach is to use ideas

Fig. 4. Activation maps for the group of subjects, testing whether the effect of faces is greater than that of houses. Top: mixed effect analysis with FDR b0.05, un-
smoothed (left) and smoothed with 8 mm FWHM (right). Bottom: multi-subject analysis showing activated regions in at least u subjects with FDR b0.05. The
intensity corresponds to u=1,...,8. Left, un-smoothed image; Right, 8 mm FWHM smoothed image. Regions of high u indicate consistency across subjects. Note
that the maximum u is 8 for the smoothed image, but only 6 for the un-smoothed image.
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from Friston et al. (1999) to get a lower bound on the proportion of
the population that shows an effect in a voxel.

The proportion that shows a real effect will be underestimated
because of the inter-subject brain variabilities. Since the analysis is
voxel based, it is very sensitive to this variability. Smoothing the data
prior to the analysis can increase the overlap of signal between
subjects (as shown in the bottom of Fig. 4), but it also smears localized
individual signals so the overall evidence may beweaker. Ourmethod
of combining brains gives a way to assess the consistency across
individuals: the least consistent regions are the regions where we can
only say that at least one subject shows an effect, and the consistency
increases with the minimum number of subjects u that show a real
effect. If we could capture the inter-subject variability better a priori,
the estimated proportions would be higher. One step toward this end
may be to combine clusters of voxels rather than individual voxels
across subjects (see Heller et al. (2006) for controlling the FDR on
clusters of voxels). This is a point for further research.

Friston et al. (2005) suggest another approach that depends on
the order in which the contrasts are tested: to use small volume
adjusted p-values centered on the maximum of the first contrast
(e.g., searching over a sphere of 8 mm radius). Note, however, the
difficulty in computing the p-values for the second contrast, since
these p-values are conditional on the outcome of testing the first
contrast. So for example, if after correcting for multiple comparisons
all voxels above a threshold tA are declared as active for contrast A,
the p-value for such a voxel when testing for contrast B is p(T≥TB|
TA≥ tA), where TA and TB are the test statistics of this voxel. Unless
the distribution of these two test statistics is independent, e.g., when
contrasts on same data are orthogonal, the p-values cannot be
computed since the distribution of TA under the alternative (i.e.,
contrast A activates the voxel) is unknown. For finding that at least
one (or more) of the dependent contrasts activates the voxel, our
multi-contrast approach should be used instead. Note, however, that
if the joint distribution of the n−u+1 null p-values under H0v

u/n was
known, a more powerful method could be constructed. Tamhane and
Dunnett (1999) give special situations where this is the case. A
similar approach may be appropriate in some cases in fMRI.
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Supplementary data associated with this article can be found, in
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