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ABSTRACT
Motivation: Microarray data analysis has expanded from testing
individual genes for differential expression to testing gene sets for
differential expression. The tests at the gene set level may focus on
multivariate expression changes or on the differential expression of
at least one gene in the gene set. These tests may be powerful at
detecting subtle changes in expression, but findings at the gene set
level need to be examined further to understand whether they are
informative and if so how.
Results: We propose to first test for differential expression at the
gene set level but then proceed to test for differential expression
of individual genes within discovered gene sets. We introduce the
overall FDR (OFDR) as an appropriate error rate to control when
testing multiple gene sets and genes. We illustrate the advantage of
this procedure over procedures that only test gene sets or individual
genes.
Availability: R code (www.r-project.org) for implementing our
approach is included as supplementary material.
Contact: ruheller@wharton.upenn.edu

1 INTRODUCTION
In recent years microarray data analysis has expanded from
considering individual genes as units of interest to include gene sets
as units of interest (see Nam and Kim (2008) for a review). A gene
set is a collection of genes typically defined by prior knowledge
about biochemical pathways, biological processes, or co-expression
in previous studies. For example, the gene ontology (GO) hasbeen
used to define gene sets based on three criteria: (1) biological
process, (2) molecular function and (3) cellular component(GO
Consortium (2000),http://www.geneontology.org).

Many statistical methods have been proposed for testing the
differential expression of gene sets. The methods have been
classified in Tian et al. (2005) and in Goeman and Buhlmann (2007)
in terms of the type of the gene set null hypothesis being tested. The
first hypothesis type, termed Q1 or thecompetitive null, compares
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the gene set to a standard defined by the complement of that gene set.
The second hypothesis type, termed Q2 or theself-contained null,
compares the gene set to a fixed standard that does not depend on the
measurements of genes outside the gene set. Excellent discussions
of the advantages and disadvantages of each hypothesis typecan be
found in Goeman and Buhlmann (2007) and Nettleton et al. (2008).
In short, self-contained hypotheses will typically be morepowerful
and have a clear biological meaning.

We are going to restrict our attention to self-contained hypotheses.
In the category of self-contained hypotheses, there are many ways to
define what is meant by differential expression of a gene set between
a control group and a treatment group. Two natural definitions are:
(1) that the joint distribution of expression levels for genes in the
gene set is different between the control group and the treatment
group (Nettleton et al. (2008)); (2) that at least one of the genes in
the gene set is differentially expressed - this is a test of the global
null hypothesis (Goeman et al. (2004), Goeman and Buhlmann
(2007)). These characterizations have the advantage of being very
general, so a test may be quite powerful. However, the disadvantages
are respectively that (1) the joint distributions can differ in subtle
ways that can be hard to interpret; and (2) having only one gene of a
set differentially expressed may not be very meaningful biologically.

Therefore, a reasonable approach is to start by using one of the
two characterizations above for initial screening. We callthe null
hypothesis of this first test ascreening hypothesis. The choice of the
screening hypothesis may depend on what the gene sets represent
(e.g. biological processes or cellular components). However, as
pointed out above, the finding that the screening hypothesisis
false may be too vague and possibly not scientifically meaningful.
Therefore, if the screening hypothesis is rejected for a gene set, this
gene set needs to be examined further to understand whether the
gene set finding is informative, and if so how. A natural follow-up
question is to identify which genes in the gene set are differentially
expressed, if any. This follow-up question has been considered in the
widely used GSEA (Subramanian et al. (2005)). Subramanian et al.
(2005) suggested theleading-edge subsetanalysis, that extracts
the core members of the gene set based on an intuitive yet ad-
hoc threshold. Specifically, the leading-edge subset (as defined in
Subramanian et al. (2005)) consists of the genes in the gene set
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that appear in the ranked list at, or before, the point where the
running sum (used for calculating the enrichment score) reaches its
maximum deviation from zero. Subramanian et al. (2005) answered
the follow-up question of which genes are differentially expressed
in anexploratoryfashion, i.e. without controlling an error rate. We
suggest instead aconfirmatorystrategy, i.e. one that controls an
error rate. Confirmatory analysis is necessary to be able to answer
whether the gene set findings are likely to be reproducible. Having
done the confirmatory analysis, exploratory analysis can further be
performed to generate more questions or hypotheses on how the
gene set is differentially expressed, and these hypothesesmay be
validated with new data.

The approach we describe above involves first a test of a screening
hypothesis for each gene set, and second a collection of additional
tests for the gene sets with rejected screening hypotheses,so we
have multiple hypotheses per gene set. We call the two stages
in our approach the screening stage and the confirmation stage
respectively. For the screening stage, a natural error measure is
the expected proportion of gene sets for which the null hypothesis
was incorrectly rejected, out of all gene sets for which the null
hypothesis was rejected, that is the false discovery rate (FDR,
see Reiner et al. (2003) for a review). We suggest the use of
the overall FDR (OFDR), introduced in Benjamini and Heller
(2008), as an appropriate and tractable error measure for the two
stage procedure. Let adiscovered gene setbe a gene set for
which the screening hypothesis has been rejected, and let afalsely
discovered gene setbe a discovered gene set for which at least one
null hypothesis (including possibly the screening hypothesis) was
incorrectly rejected. The OFDR is the expected proportion of falsely
discovered gene sets out of all discovered gene sets.

Another possible error measure when multiple hypotheses are
tested per gene set may be to control the FDR on all hypotheses
for all gene sets. To illustrate the difference between the two
error measures, consider the following example. Let the screening
hypothesis be that none of the genes in the gene set are differentially
expressed, so a falsely discovered gene set is a gene set with
at least one falsely discovered gene. Suppose each of 1000 gene
sets contains 100 genes to be examined for differential expression.
Suppose 100 genes are discovered to be differentially expressed, and
these genes belong to 20 gene sets. Suppose further that 25 ofthese
genes have been falsely discovered, and all the falsely discovered
genes belong to the same gene set. Then the proportion of false gene
discoveries is25

100
= 25%, but the proportion of falsely discovered

gene sets is1
20

= 5%. This toy example suggests that by controlling
the OFDR, the FDR on the level of individual genes is not
controlled. Similarly, controlling the FDR on the level of individual
genes does not guarantee control of the OFDR. To see this, suppose
that 5 genes are falsely discovered, and each of these genes belongs
to a different gene set. Then the proportion of false gene discoveries
is 5

100
= 5%, but the proportion of falsely discovered gene sets is

5
20

= 25%. For testing multiple hypotheses on gene sets, controlling
the OFDR has two main advantages: (1) since the inferential units of
interest are the gene sets, the error measure should controlthe false
discoveries at the gene set level; and (2) the multiplicity problem
may be less severe for an OFDR controlling procedure. To see
this note that, in the example, an OFDR controlling procedure
considers only the1000 gene sets as the units for inference, but
an FDR controlling procedure considers the individual genes as
the units for inference and there are usually more genes thangene

sets. The1000 initial screening hypotheses may be more powerful
tests than the tests on the individual gene hypotheses sincefor
testing the screening hypothesis the evidence of 100 genes is pooled
together. Moreover, the number of screening hypotheses is smaller
than the number of individual gene hypotheses. Therefore, the
OFDR controlling procedure may be more powerful than the FDR
controlling procedure. See Sections 4 and 5 for a comparisonof
the performance of these two procedures on real and simulated
microarray data respectively.

In Section 2 we describe a testing strategy for one gene set.
In Section 3 we describe a general procedure that controls the
OFDR when multiple gene sets are examined. In Section 4 we
give an example from microarray data analysis that demonstrates
the advantages of our suggested procedure over existing methods.
In Section 5 we evaluate the OFDR controlling procedure by
simulation and compare it to the leading-edge subset analysis in
GSEA. In Section 6 we give some final remarks.

2 A TESTING STRATEGY FOR ONE GENE SET
Our proposed testing strategy for one gene set consists of two steps:
(1) test a screening hypothesis,Hscreen; and (2) if the screening
hypothesis is rejected, test a collection of additional null hypotheses
H1, . . . , Hn on that set (e.g. test for differential expression on single
genes one by one).

For step (1), a test that compares the joint expression of genes
across groups has to be performed. Tests that are targeted towards
detecting multivariate changes in joint expression distributions have
been proposed by Goeman et al. (2004), Liu et al. (2007), and
Nettleton et al. (2008), among others. We choose the nonparametric
test introduced in Nettleton et al. (2008) as our screening hypothesis
because it has good power for detecting subtle changes in expression
between two groups within a gene set. The test statistic is computed
as follows: letDi be the average of all Euclidean distances between
pairs of data vectors from groupi ∈ {1, 2}; then the test statistic
is D = m

m+n
D1 + n

m+n
D2 for m cases in the first group and

n cases in the second group. The test uses a standard permutation
approach to assess the significance of the observedD (see Nettleton
et al. (2008) for details). The smaller the observedD is compared
to the values of this statistic for permuted samples, the stronger
the evidence that the groups have different (multivariate)expression
distributions. Letpscreen be thep-value for testingHscreen. For step
(2), let the unadjustedp-values bep1, . . . , pn. For example, thesep-
values may be the Wilcoxon rank sum test unadjustedp-values for
comparing the expression levels of two groups for each gene.

If step (1) is performed at levelα, and step (2) is performed with
family-wise error rate (FWER, the probability of making at least
one incorrect rejection of a null hypothesis) control at level α, then
the FWER onHscreen, H1, . . . , Hn is controlled at levelα. To see
that this procedure controls the FWER at levelα, note that if the
screening hypothesis is true thenFWER = Pr(Pscreen ≤ α) ≤
α, and if the screening hypothesis is false then the FWER is the
probability of rejecting at least one ofH1, . . . , Hn falsely and this
probability is at mostα. This procedure is a “Gatekeeper” method
(Bauer et al. (1998)), in which tests at the individual gene level are
performed only if the test on the gene set level is significant. The
advantage of the “Gatekeeper” method is that the test at the gene set
level need not be adjusted for multiplicity.
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Common stepwise procedures to control the FWER on
H1, . . . , Hn are (1) the Bonferroni-Holm procedure (Holm (1979))
which can be applied under any general dependency between thep-
values; and (2) the more powerful Hochberg procedure (Hochberg
(1988)) which can be applied if thep-values are independent. If
Hi, i = 1, . . . , n correspond to null hypotheses on individual genes,
the stepwise procedure may have little power ifn is large. In fact,
the stepwise procedure may fail to reject any of the individual
gene hypotheses since the procedure relies on the evidence from
individual genep-values only (whereas the screening hypothesis
combines the individual genep-values).

Ge et al. (2003) show that for comparing a control group and
a treatment group for differential expression on each gene,the
step-down procedure in Westfall and Young (1993) based on minP
adjustedp-values is a powerful procedure that makes minimal
assumptions. The strength of this procedure is that it exploits
the dependencies in the test statistics in order to improve power.
Therefore, if the group sizes are not too small these step-down
procedures are recommended. Implementations of these procedures
are available in the R bioconductor packagemulttest (Pollard
et al. (2008)).

When multiple gene sets are simultaneously examined, the above
testing strategy has to be adjusted and this is done in Section 3.

3 THE CONTROL OF THE OVERALL FDR
Suppose that for each gene sets ∈ {1, . . . , S} we have
a screening hypothesisHscreen(s) and additional hypotheses
H1(s), . . . , Hn(s)(s). For controlling the FDR when only one
hypothesis is tested per gene set, Benjamini and Hochberg (1995)
suggested the first and still very popular FDR controlling procedure,
called the BH procedure. When more than one hypothesis is tested
per gene set, we suggest the following procedure and show that it
controls the OFDR:

PROCEDURE3.1. The hierarchical testing procedure:

1. Screening Stage:

• Choose the screening hypothesis for each sets ∈
{1, . . . , S}.

• Let {pscreen(s) : s = 1, . . . , S} be the unadjusted
p-values for the screening hypotheses.

• Apply the BH procedure at levelq to thesep-values. LetR
be the number of rejected screening hypotheses.

2. Confirmation Stage: For each rejected sets,

• compute the adjustedp-values for each gene in the gene
set (e.g. using the Westfall and Young (1993) step-down
minP procedure) .

• Test these adjustedp-values at levelRq/S, rejecting the
gene hypotheses with adjustedp-values≤ Rq/S.

An estimated lower bound for the proportion of genes
differentially expressed in sets is u(s)/n(s), whereu(s) is the
number of rejected gene hypotheses in sets, and since the OFDR is

controlled at levelq (see below) we expect at mostq of these lower
bounds to be false.

THEOREM 3.1. Procedure 3.1 controls the OFDR at level q,
assuming that thep-values of each gene set are independent from
all other screeningp-values.

See Appendix 7.1 for a proof.
The independence assumption is unrealistic in gene set analysis.

However, previous works have shown that the BH procedure
controls the FDR for quite general dependencies among thep-
values. Benjamini and Yekutieli (2001) proved that the BH
procedure controls the FDR for positive regression dependency on
each test statistic corresponding to a true null hypotheses(PRDS).
See Benjamini and Yekutieli (2001) for examples where such
dependency arises. Reiner (2007) argued via a combination of
simulations and analytic results that applying the BH procedure on
p-values from two-sided tests of correlated normal test statistics
with any correlation structure controls the FDR. Storey et al.
(2004) gave convergence conditions on thep-values for the BH
procedure to control the FDR asymptotically. Reiner et al. (2003)
show in simulations that for typical dependency between thetest
statistics in microarray data the BH procedure controls theFDR
on individual genes. Similarly, for gene set analysis we show in
simulations in Section 5 that for typical microarray dependency the
FDR is controlled when applying the BH procedure to the screening
hypothesesp-values. The simulations in Section 5 also show
that Procedure 3.1 controls the OFDR under realistic microarray
dependencies. In most practical situations where the BH procedure
is appropriate, the OFDR controlling procedure will also be
appropriate. If in doubt the more conservative level ofq/(

∑S

j=1
1
j
)

can be applied to guarantee FDR control at levelq at the gene set
level (Benjamini and Yekutieli (2001)).

Finally, a cautionary remark about the use of other FDR
controlling procedures instead of BH in the hierarchical testing
procedure 3.1. The BH procedure is known to be conservative by
the proportion of null hypotheses tested,π0, so that even when
the p-values are independent the FDR is controlled at the level π0q
(Benjamini and Hochberg (1995)). This conservativeness motivated
the development of procedures that first estimate the numberof null
hypotheses and then use the estimate to enhance power (Benjamini
et al. (2006), Storey et al. (2004), Ge et al. (2003)). However,
applying these methods at the screening stage of Procedure 3.1
instead of the BH procedure may be nonconservative and the OFDR
may not be controlled. To see this, note that if in every gene set
at least one true null hypotheses is tested, then Procedure 3.1 may
control the OFDR exactly at levelq. Thus Procedure 3.1 may not be
conservative in such a setting. However, if there areS1 gene sets for
which all null hypotheses considered are false, then Procedure 3.1 is
conservative by the factorS−S1

S
. If S1 was known, then performing

in Procedure 3.1 the screening stage at levelS−S1

S
(instead of at

levelq) and the confirmation stage at levelRq

S−S1
(instead of at level

Rq

S
) will be more powerful than Procedure 3.1 and still control the

OFDR at levelq.

4 APPLICATION TO A MICROARRAY STUDY
We use the data set of Chiaretti et al. (2004), available in the
Bioconductor ALL package atwww.bioconductor.org. The
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Table 1. The distribution of the number of individual gene discoveries within
the 418 discovered gene sets. ADD GENE NAMES.

#genes
discovered 0 1 2 3 4 5 6 7 9 10 12 14
#gene sets 198 138 67 38 18 5 7 9 2 1 1 1

data set was collected to identify genes that distinguish subgroups
of leukemia patients. It consists of 128 patients split into95
with B-cell and 33 with T-cell type acute lymphoblastic leukemia
(ALL). The data consist of 12,625 expression profiles from the
HGU95aV2 Affymetrix chip for each patient. Using version 2.0.1
of the hgu95av2 Bioconductor package, we were able to map 9671
of the Affymetrix probe sets to at least one GO term for biological
process, and 4364 terms from the GO biological process termswere
each associated with at least one probe set. After restricting our gene
sets to be of minimum size 2 and maximum size 500, we had 3367
gene sets to examine. The union of the 3367 gene sets included8678
individual probes.

4.1 Method
We performed the following analysis for a random sample of 10, 15,
or 20 replicates per group.

We applied Procedure 3.1 at levelq = 0.05: the screeningp-
values were calculated by the method in Nettleton et al. (2008)
(using 5000 permutations of the group labels to compute the gene set
p-values); the FWER adjusted two-sidedp-values were computed
by the Westfall and Young (1993) step-down minP procedure using
the Wilcoxon test statistic. We refer to this procedure as the
screening+minPprocedure.

For comparison, we applied the GSEA method. Gene sets with
adjusted FDR below 0.05 where considered discovered gene sets,
and the leading edge analysis was performed only on the discovered
gene sets.

4.2 Results
We first examine the results of applying screening+ minP procedure
at the 5% level on the data with 10 replicates per group. We
discovered 418 gene sets and 87 unique genes within the discovered
gene sets. The number of individual gene discoveries per gene set
ranged from 0 to 15, see Table 1 for the distribution. The genesets
with 10, 12 and 14 individual gene discoveries were of size 220, 24
and 70 respectively.

Table 2 shows a sample of discovered gene sets and discovered
genes within these gene sets. This sample corresponds to the
discovered gene sets with the largest proportion of individual gene
discoveries in the set. By applying the screening+minP procedure
we expect at most 5% of the gene set discoveries to be false
discoveries (i.e. the FDR is controlled on the screening hypothesis).
In addition, by testing the individual genes we expect at most
5% of the rows in the complete results table of 418 (formattedas
Table 2) to contain false positives (i.e. the OFDR is controlled).
Note that if only one gene is discovered, it may be that there
is only one differentially expressed gene in this set and a more
satisfactory explanation for this gene being significant isthat it
participates in another GO process. On the other hand, discovering

Table 2. For the ALL data with 10 type B replicates and 10 type T replicates,
the discovered gene sets, discovered probe set IDs (gene symbols), and percent
of probe discoveries in the gene set, for the gene sets with the largest proportion
of gene discoveries within the gene sets using the screening+minP procedure at
the 5% level. Expect only 5% of the rows in the complete table of 418 rows to
contain false positives.

Discovered Gene Sets Discovered Probes Sets Percent
(Genes) Discovered

GO:0046827 positive regulation 1253 at (GSK3B), 100
of protein export from nucleus 40645at (GSK3B)

GO:0043368 positive 1498at (ZAP70), 100
T cell selection, 38319at (CD3D)

GO:0045059 positive
thymic T cell selection

GO:0050862 positive regulation of 2059 s at (LCK), 75
T cell receptor signaling pathway 33039at (TRAT1),

33238at (LCK)
GO:0046825 regulation 1253 at (GSK3B), 67

of protein export from nucleus 40645at (GSK3B)
GO:0006426 36581at (GARS), 67

glycyl-tRNA aminoacylation 36582at
GO:0045022 early endosome 41164at (IGHM), 60

to late endosome transport 41165at,
41166at (IGHM)

a large proportion of genes in a gene set gives strong evidence that
this GO process behaves differently between the two groups being
investigated. In this example, we sorted the rows by decreasing
order of proportion of individual genes discovered within discovered
gene sets with rejected screening hypotheses, to help focusattention
to the gene set discoveries where most of the individual genes
are differentially expressed. It may also be useful to look at the
sorted rows by decreasing order of the number of individual genes
discovered, or by a score that combines the number and proportion
of individual gene discoveries in discovered gene sets. Forexample,
a discovered gene set of size 20 with 15 individual gene discoveries
may be more relevant to the researcher than a discovered geneset of
size 2 with 2 individual gene discoveries.

Table 3 shows the number of gene set discoveries and the number
of unique gene discoveries after applying the screening+minP
procedure to data with 10, 15 or 20 replicates per groups. As the
number of replicates increases, so does the number of discoveries.
The number of gene set discoveries with a group size of 15 (1086) is
much larger than that with a group size of 10 (418) but only slightly
smaller than with a group size of 20 (1229). Similarly, the number
of individual gene discoveries with a group size of 15 (300) is much
larger than that with a group size of 10 (87) but only a little smaller
than with a group size of 20 (383).

The GSEA method did not discover any gene sets with groups
of size 10 or 15, and only 4 gene sets with groups of size 20. The
leading-edge subset analysis identifies 30 individual genes.

Finally, note that in a situation where many individual genes are
differentially expressed, a gene by gene analysis may find more
individual genes than the proposed method. but the interpretability
of the discoveries by the proposed method is greater since they can
be associated with biological processes. In a gene by gene analysis
it is not clear how to associate the list of discovered genes to gene
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Table 3. For data with 10, 15, or 20 replicates per
group, the number of gene set discoveries and the
number of unique probe discoveries after applying
the screening+minP procedure.

# Replicates # Gene sets # Unique probes
per group discovered discovered

10 418 87
15 1086 300
20 1229 383

sets while controlling the FDR on individual genes (see Goeman
and Buhlmann (2007) for a critique of available methods).

5 A SIMULATION STUDY
The goals of these simulations are (1) to verify that the Procedure
3.1 controls the OFDR for microarray dependency structures; and
(2) to compare this procedure to that of a gene-by-gene analysis as
well as to a variant of Procedure 3.1 that controls the FDR instead
of the FWER when testing after the screening stage (see details in
Section 5.1.2). Note that FDR control for each gene set does not
necessarily imply FDR control for the entire study (Benjamini and
Yekutieli (2005)), nor does it imply OFDR control. Note moreover
that OFDR control of Procedure 3.1 implies FDR control on the
screening hypotheses, thus showing that the BH procedure controls
the FDR for microarray dependence in gene set analysis.

5.1 Simulation Study Design
5.1.1 Data Based Simulation ModelIn order to capture the
complex dependence among genes and gene sets in microarray data,
we performed the following data based-simulation, similarto that
suggested in Nettleton et al. (2008).

The procedure below was used to generate 40 simulated data sets
from the data described in Section 4:

1. Randomly select (without replacement) 30 of the 95 B-cell
replicates and randomly divide the selected samples into two
treatment groups of size 15 each.

2. Create two 12625 by 15 data matrices (one for each group)
from the 12625 dimensional expression vectors associated with
the selected B-cell replicates.

3. Extract the genes identified by the following 10 GO biological
process terms: GO:0002263, GO:0019882, GO:0019883,
GO:0019884, GO:0019885, GO:0019886, GO:0030097,
GO:0045058, GO:0046649, GO:0050862. 345 unique genes
were in the union of these 10 gene sets. We introduced
differential expression into these genes by adding a constant
∆ ∈ {0.1, 0.2, 0.3, 0.4} to the expression of these genes for
each case in the first group.

Three remarks follow. First, note that the correlation between
pairs of genes is unchanged within each group by the artificial
introduction of differential expression. Second, since the gene sets
are not mutually exclusive, 1649 gene sets contain differentially
expressed genes even though we introduced differential expression

only into the 345 genes that are in the union of the 10 gene sets
listed in 3. Third, since the standard deviations of the expression
levels vary across genes (they range from 0.1 to 2.3, with a median
of 0.3 and an inter-quartile range of [0.2,0.5]), the power to detect
the same difference of size∆ varies across genes.

5.1.2 Microarray Data Analysis ProceduresWe applied the two
procedures in Section 4.1: screening+minP and GSEA.

We also did a typical gene-by-gene analysis on the 8678
individual genes: first we computed the unadjusted Wilcoxonp-
values for individual genes; on thesep-values we applied the BH
procedure at level 0.05. We refer to this procedure as thegene-
by-gene analysisprocedure. Two remarks follow about the choice
of this gene-by-gene analysis. First, note that the BH procedure
is just one of many gene-by-gene analysis procedures that control
the FDR. In this simulation setting, it is conservative by the factor
π0 = 8678−345

8678
= 0.96, which is close to 1. Therefore, the power of

the BH procedure is expected to be similar to that of procedures that
first estimateπ0 (discussed in Section 3). Second, we only consider
an FDR controlling procedure since Reiner et al. (2003) showed that
FDR controlling procedures obtain substantially more power than
FWER controlling procedures.

In addition, we applied two FDR controlling procedure after
the screening stage instead of the minP procedure for FWER
control. Yekutieli (2008) suggested two level hierarchical FDR
procedures in another context. Although there is no guarantee
of controlling an error measure for gene set analysis using the
screening+FDR procedures, they are intuitively appealing since
FDR controlling procedures may be more powerful than FWER
controlling procedures. We wanted to see how much power we lose
by the fact that the FWER is controlled instead of the FDR within
detected gene sets.

The first procedure is the BH procedure at levelR
S

0.05, where
R is the number of rejected sets andS is the number of gene sets
(S=3367 in our simulation). The second procedure is the minP-
augmented FDR controlling procedure suggested in Van Der Laan
et al. (2004). This procedure takes the joint density of the individual
gene p-values in the gene set into account, whereas the BH
procedure relies only on the marginal distribution of thep-values.
Dudoit et al. (2004) suggest that there is substantial powergain of
joint procedures compared to marginal procedures when the number
of hypotheses tested is fairly small. In our gene sets, the median
number of genes per gene set is 8 and the average is 30. Therefore,
the minP-augmented FDR is expected to be much more powerful
than the BH procedure within discovered gene sets. We refer to these
two procedures asscreening+BH andscreening+augmented minP,
and collectively asscreening+FDR.

5.2 Results
Procedure 3.1 controls the OFDR under Microarray Dependency.
The estimated OFDRis the average of the proportion of falsely
discovered gene sets out of all gene sets discovered. It was below
the nominal level of 0.05 for the screening+minP in all the settings
considered (See column 2 of Table 4). Moreover, since OFDR
control implies FDR control on the screening hypotheses, the
simulations suggest that the FDR on the screening hypotheses is
controlled under microarray dependency.
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Table 4. The mean (SE) in 40 simulations of the total number of true gene
set discoveries as well as the total number of individual gene discoveries in the
screening+minP procedure, and the total number of individual gene discoveries
in the gene be gene analysis.

∆ Estimated OFDR # True sets # True unique genes discovered
discovered screening+minP gene-by-gene

0.1 0.016 (0.005) 86.3 (19.7) 3.44 (1.82) 8.23 (0.64)
0.2 0.008 (0.003) 366.9 (26.9) 36.6 (0.5) 9.9 (0.4)
0.3 0.016 (0.004) 752.2 (25.5) 121.3 (0.65) 87.21 (2.58)
0.4 0.011 (0.003) 896.3 (16.5) 184.2 (0.4) 155.5 (0.4)

Table 5. The mean (SE) in 40 simulations of the total number of true gene set
discoveries in a GSEA analysis as well as the total number of individual gene
discoveries in the leading-edge subset analysis of GSEA.

∆ Estimated Estimated FDR Estimated FDR # True sets # True unique
OFDR of gene sets of genes discovered genes discovered

0.1 0.05 (0.03) 0.000 (0.003) 0.024 (0.107) 4.9 (21.4) 9.0 (40.1)
0.2 1 (0) 0.056 (0.022) 0.35 (0.02) 108.0 (21.9) 217.7 (17.9)
0.3 1 (0) 0.038 (0.012) 0.51 (0.04) 294.4 (26.7) 276.7 (6.6)
0.4 1 (0) 0.024 (0.015) 0.55 (0.08) 383.3 (14.6) 302.4 (2.0)

Procedure 3.1 may be more powerful than a gene-by-gene
analysis for discovering individual genes. Table 4 shows the
average of the number of true gene set discoveries as well as the total
number of true gene discoveries for the screening+minP procedure,
and the total number of gene discoveries for the gene-by-gene
analysis. When the signal difference is weak∆ = 0.1 barely any
individual genes are discovered by either method, but 86.3 gene sets
are discovered on average using the screening+minP procedure.
As the signal increases more individual genes are discovered, and
the screening+minP procedure has greater power than the gene-by-
gene analysis.
Procedure 3.1 has advantages over GSEA. Table 5 shows that the
average number of true gene set discoveries is much smaller for
GSEA compared to Procedure 3.1. Moreover, it shows that while
GSEA controls the FDR at the gene set level, the leading-edge
subset analysis produces as many true individual gene discoveries as
it does false gene discoveries. Therefore, even though thisanalysis
discovers more than twice as many true gene discoveries as 3.1,
the false positive rate is about 0.5. Since the leading-edgesubset
analysis always contains false positives, the estimated OFDR of
GSEA is 1 for∆ ≥ 0.2. For∆ = 0.1 the OFDR is small because
gene set discoveries where made only in 2 out of the 40 runs.
However, in the 2 runs that produced gene set discoveries about
half of the genes discovered by a leading-edge subset analysis were
false.
Screening+FDR procedures may be more powerful than
Procedure 3.1 but they may not achieve OFDR control.
Table 6 shows for every∆ the estimated OFDR for the
screening+augmented minP and screening+BH procedures, as
well as the average number of true individual gene discoveries.
The screening+augmented minP is the most powerful procedure
considered. For∆ = 0.2 it discovers almost twice as many genes
as the screening+minP procedure, but for∆ = 0.3 it discovers
only about 20% more genes and for∆ = 0.4 only about 10% more

Table 6. The estimated OFDR (and SE) and average of the total
number (and SE) of true gene discoveries in 40 simulations ofthe
screening+augmented minP and screening+BH procedures.

∆ estimated OFDR # True genes discovered
screening screening screening screening

+ augmented minP + BH + augmented minP + BH
0.1 0.124 (0.019) 0.015 (0.004) 13.26 (0.33) 2.62 (0.16)
0.2 0.018 (0.006) 0.007 (0.004) 66.5 (0.7) 32.8 (0.7)
0.3 0.026 (0.005) 0.03 (0.008) 147.0 (0.5) 128.8 (0.7)
0.4 0.016 (0.003) 0.022 (0.004) 203.1 (0.3) 194.7 (0.4)

genes. The screening+BH procedure appears to have very similar
power to that of the screening+minP procedure. Note that there is
no reason for either procedure to control the OFDR, even though the
OFDR is controlled in this particular setting for the screening+BH
procedure as well as for∆ > 0.1 for the screening+augmented
minP procedure.

6 DISCUSSION
We have described a method, screening+minP, for testing multiple
hypotheses on multiple gene sets. We introduced an appropriate
error measure, the OFDR, as well as a general procedure for
controlling this error measure.

We illustrated the usefulness of our approach in focusing attention
on discovered gene sets where a large proportion of individual genes
have been discovered. Our procedure controlled the proportion
of falsely discovered screening hypotheses as well as falsely
discovered gene sets. Thus, by applying the screening+minP
procedure at levelq and displaying the discovered gene sets and
the discovered genes within a gene set in a table similar to Table 3,
we expect at mostq of the rows to contain false positives.

A comparison of the screening+minP method with the widely
used GSEA method shows that GSEA may be less powerful in
detecting differentially expressed gene sets. Moreover, the leading-
edge subset analysis of GSEA may report many false positives.

The advantage of screening gene sets over a gene-by-gene
analysis is large when the signal is weak since there may be
enough power to detect differentially expressed gene sets even
when there is practically no power to detect differentiallyexpressed
genes. Depending on the signal configuration, the screening+minP
procedure may be more powerful in detecting individual genes than
a gene-by-gene analysis. There does not appear to be a disadvantage
in power of the screening+minP procedure over the screening+BH
procedure. However, there is a disadvantage in power in comparison
to the screening+augmented minP procedure when the signal is
weak.

An essential feature of analysis of large data sets is to control for
false positives in order to guarantee that the results are reproducible.
We established theoretically that the screening+minP procedure
controls the OFDR for independentp-values. We applied the
method to the dependent situation of microarray analysis, based
on evidence from simulations that the screening+minP controls the
OFDR in such settings. Further verification of the validity of the
screening+minP procedure in dependent settings is a direction for
future research.
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7 APPENDIX

7.1 Proof of Theorem 3.1
Let I0 be the index set for gene sets that have at least one true null
hypothesis. LetV (s) = 1 if gene sets is a falsely discovered
gene set, i.e. a set that has been discovered and at least one
of Hscreen(s),H1(s), . . . , Hn(s)(s) has been falsely rejected, and
0 otherwise. LetR(s) = 1 if gene sets is a discovered set

and 0 otherwise. LetQ =
∑

S

s=1
V (s)∑

S

s=1
R(s)

if at least one gene set

was discovered and 0 otherwise.Q is the proportion of falsely
discovered gene sets out of all discovered gene sets if at least one
gene set was discovered. The OFDR is, by definition,E[Q]. Then

E(Q) =

S∑

s=1

S∑

k=1

1

k
Pr(V (s) = 1 ∩

S∑

i=1

R(i) = k)

=
∑

s∈I0

S∑

k=1

1

k
Pr(V (s) = 1 ∩

S∑

i=1,i6=s

R(i) = k − 1)

=
∑

s∈I0

S∑

k=1

1

k
Pr(V (s) = 1 ∩ C

(s)
k )

where C
(s)
k is the event thatp(s)

(k−1) ≤ kq/S, p
(s)

(k) > (k +

1)q/S, . . . , p
(s)
(S−1) > q, wherep

(s)
(1) ≤ . . . ≤ p

(s)
(S−1) are the

ordered coordinates of the vector~p(s) of p-values for the screening
hypothesis excluding that ofs.

E(Q) =
∑

s∈I0

S∑

k=1

1

k
Pr(V (s) = 1 ∩ C

(s)
k )

=
∑

s∈I0

S∑

k=1

1

k
Pr(Pscreen(s) ≤ kq/S ∩ {type I error ats} ∩ C

(s)
k )

=
∑

s∈I0

S∑

k=1

1

k
Pr(Pscreen(s) ≤ kq/S ∩ {type I error ats})Pr(C

(s)
k )

where the last equality follows since thep-values are independent.
For every gene set withR(s) = 1, s ∈ I0, there is a

hypothesis that was falsely discovered. If the falsely discovered
hypothesis is the screening hypothesis (i.e. the screeninghypothesis
is null), thenPr(Pscreen(s) ≤ kq/S) ≤ kq/S. If the falsely
discovered hypothesis is not the screening hypothesis, then the
probability of rejecting such a null is≤ kq/S since the FWER
is controlled at levelkq/S . ThereforePr(Pscreen(s) ≤ kq/S ∩
{type I error ats}) ≤ kq/S for a givenk.

The result follows:

E(Q) ≤
∑

s∈I0

S∑

k=1

1

k
· kq/S · Pr(C

(s)
k ) =

∑

s∈I0

q/S ≤ q
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