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ABSTRACT

Motivation: Microarray data analysis has expanded from testing
individual genes for differential expression to testing gene sets for
differential expression. The tests at the gene set level may focus on
multivariate expression changes or on the differential expression of
at least one gene in the gene set. These tests may be powerful at
detecting subtle changes in expression, but findings at the gene set
level need to be examined further to understand whether they are
informative and if so how.

Results: We propose to first test for differential expression at the
gene set level but then proceed to test for differential expression
of individual genes within discovered gene sets. We introduce the
overall FDR (OFDR) as an appropriate error rate to control when
testing multiple gene sets and genes. We illustrate the advantage of
this procedure over procedures that only test gene sets or individual
genes.

Availability: R code (www.r-project.org) for implementing our
approach is included as supplementary material.

Contact: ruheller@wharton.upenn.edu

1 INTRODUCTION

the gene set to a standard defined by the complement of thasgén
The second hypothesis type, termed Q2 orgék-contained null
compares the gene set to a fixed standard that does not depérel o
measurements of genes outside the gene set. Excellenssisiosi
of the advantages and disadvantages of each hypothesisayire
found in Goeman and Buhlmann (2007) and Nettleton et al.§200
In short, self-contained hypotheses will typically be mposverful
and have a clear biological meaning.

We are going to restrict our attention to self-containeddtigpses.
In the category of self-contained hypotheses, there arg mays to
define what is meant by differential expression of a geneetetden
a control group and a treatment group. Two natural defirstiane:
(1) that the joint distribution of expression levels for gerin the
gene set is different between the control group and thenteyat
group (Nettleton et al. (2008)); (2) that at least one of theas in
the gene set is differentially expressed - this is a test efgiobal
null hypothesis (Goeman et al. (2004), Goeman and Buhlmann
(2007)). These characterizations have the advantage of bery
general, so a test may be quite powerful. However, the dis#dges
are respectively that (1) the joint distributions can diffie subtle
ways that can be hard to interpret; and (2) having only one géa
set differentially expressed may not be very meaningfubigjically.

Therefore, a reasonable approach is to start by using orteeof t

In recent years microarray data analysis has expanded frofyo characterizations above for initial screening. We tadl null

considering individual genes as units of interest to inelgdne sets

hypothesis of this first testscreening hypothesighe choice of the

as units of interest (see Nam and Kim (2008) for a review). Aege  screening hypothesis may depend on what the gene setsaepres

set is a collection of genes typically defined by prior knage
about biochemical pathways, biological processes, oxpoession
in previous studies. For example, the gene ontology (GOpkas

(e.g. biological processes or cellular components). Heweas
pointed out above, the finding that the screening hypothissis
false may be too vague and possibly not scientifically megnin

used to define gene sets based on three criteria: (1) bialogic Therefore, if the screening hypothesis is rejected for @ get, this

process, (2) molecular function and (3) cellular compon(&®
Consortium (2000)ht t p: / / www. geneont ol ogy. or g).

gene set needs to be examined further to understand whéther t
gene set finding is informative, and if so how. A natural fallap

‘Many statistical methods have been proposed for testing thguestion is to identify which genes in the gene set are diffally
differential expression of gene sets. The methods have beegxpressed, if any. This follow-up question has been corsitie the

classified in Tian et al. (2005) and in Goeman and Buhiman@720

in terms of the type of the gene set null hypothesis beingtedthe
first hypothesis type, termed Q1 or thempetitive null compares

*to whom correspondence should be addressed

widely used GSEA (Subramanian et al. (2005)). Subramartiah e
(2005) suggested thkeading-edge subsetnalysis, that extracts
the core members of the gene set based on an intuitive yet ad-
hoc threshold. Specifically, the leading-edge subset (fsatkin
Subramanian et al. (2005)) consists of the genes in the geine s
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that appear in the ranked list at, or before, the point whhee t sets. Thel000 initial screening hypotheses may be more powerful
running sum (used for calculating the enrichment scoregdhesiits  tests than the tests on the individual gene hypotheses $&imce
maximum deviation from zero. Subramanian et al. (2005) anst  testing the screening hypothesis the evidence of 100 gepenied
the follow-up question of which genes are differentialljpeessed  together. Moreover, the number of screening hypothesesadier
in anexploratoryfashion, i.e. without controlling an error rate. We than the number of individual gene hypotheses. Therefdre, t
suggest instead eonfirmatory strategy, i.e. one that controls an OFDR controlling procedure may be more powerful than the FDR
error rate. Confirmatory analysis is necessary to be ableswer  controlling procedure. See Sections 4 and 5 for a compai@$on
whether the gene set findings are likely to be reproducibbeiridy the performance of these two procedures on real and sindulate
done the confirmatory analysis, exploratory analysis catién be  microarray data respectively.
performed to generate more questions or hypotheses on l®w th In Section 2 we describe a testing strategy for one gene set.
gene set is differentially expressed, and these hypothesgsbe In Section 3 we describe a general procedure that contrels th
validated with new data. OFDR when multiple gene sets are examined. In Section 4 we
The approach we describe above involves first a test of ariogee  give an example from microarray data analysis that dematestr
hypothesis for each gene set, and second a collection dii@uili  the advantages of our suggested procedure over existingodset
tests for the gene sets with rejected screening hypothesesie  In Section 5 we evaluate the OFDR controlling procedure by
have multiple hypotheses per gene set. We call the two stagesimulation and compare it to the leading-edge subset drailys
in our approach the screening stage and the confirmatiore stagcSEA. In Section 6 we give some final remarks.
respectively. For the screening stage, a natural error uneds
the expected proportion of gene sets for which the null Hygsis
was incorrectly rejected, out of all gene sets for which théd n
hypothesis was rejected, that is the false discovery raBR(F 2 A TESTING STRATEGY FOR ONE GENE SET
see Reiner et al. (2003) for a review). We suggest the use oDur proposed testing strategy for one gene set consistdteps:
the overall FDR (OFDR), introduced in Benjamini and Heller (1) test a screening hypothesiBscrcen; and (2) if the screening
(2008), as an appropriate and tractable error measure dotwth  hypothesis is rejected, test a collection of additional hygbotheses
stage procedure. Let discovered gene sdie a gene set for Hi,...,H, onthatset(e.g.testfor differential expression on single
which the screening hypothesis has been rejected, anddétedly  genes one by one).
discovered gene sée a discovered gene set for which at least one For step (1), a test that compares the joint expression aéggen
null hypothesis (including possibly the screening hypsislewas  across groups has to be performed. Tests that are targetati®
incorrectly rejected. The OFDR is the expected proportidalsely detecting multivariate changes in joint expression distions have
discovered gene sets out of all discovered gene sets. been proposed by Goeman et al. (2004), Liu et al. (2007), and
Another possible error measure when multiple hypotheses arNettleton et al. (2008), among others. We choose the nomnedri
tested per gene set may be to control the FDR on all hypothesésst introduced in Nettleton et al. (2008) as our screenymptinesis
for all gene sets. To illustrate the difference between the t because it has good power for detecting subtle changes iassipn
error measures, consider the following example. Let theesing  between two groups within a gene set. The test statistiagpoted
hypothesis be that none of the genes in the gene set areediifaty as follows: letD; be the average of all Euclidean distances between
expressed, so a falsely discovered gene set is a gene set withirs of data vectors from groupe {1, 2}; then the test statistic
at least one falsely discovered gene. Suppose each of 1080 geis D = D1 + 55, D2 for m cases in the first group and
sets contains 100 genes to be examined for differentialesgmn.  n cases in the second group. The test uses a standard peomutati
Suppose 100 genes are discovered to be differentially ssedeand  approach to assess the significance of the obsdivesbe Nettleton
these genes belong to 20 gene sets. Suppose further thati&ef et al. (2008) for details). The smaller the obseneds compared
genes have been falsely discovered, and all the falselpwbsed to the values of this statistic for permuted samples, thenger
genes belong to the same gene set. Then the proportioneffale  the evidence that the groups have different (multivariexgyession
discoveries isﬁj—% = 25%, but the proportion of falsely discovered distributions. Lepscreen be thep-value for testingHscreen. FOr step
gene sets ig% = 5%. This toy example suggests that by controlling (2), let the unadjusteg-values bep, . . ., p,.. For example, thege
the OFDR, the FDR on the level of individual genes is notvalues may be the Wilcoxon rank sum test unadjugtedliues for
controlled. Similarly, controlling the FDR on the level ofdividual comparing the expression levels of two groups for each gene.
genes does not guarantee control of the OFDR. To see thisosep If step (1) is performed at level, and step (2) is performed with
that 5 genes are falsely discovered, and each of these geloegd  family-wise error rate (FWER, the probability of making aabt
to a different gene set. Then the proportion of false geneodleyies  one incorrect rejection of a null hypothesis) control aelev, then
is % = 5%, but the proportion of falsely discovered gene sets isthe FWER onHscreen, Hi1, - . ., Hy, is controlled at levek. To see
% = 25%. For testing multiple hypotheses on gene sets, controllinghat this procedure controls the FWER at lewelnote that if the
the OFDR has two main advantages: (1) since the inferentitd af screening hypothesis is true theWER = Pr(Pscreen < a) <
interest are the gene sets, the error measure should ctrgrfalse  «, and if the screening hypothesis is false then the FWER is the
discoveries at the gene set level; and (2) the multiplicitybfem probability of rejecting at least one éf4, ..., H, falsely and this
may be less severe for an OFDR controlling procedure. To seerobability is at mostv. This procedure is a “Gatekeeper” method
this note that, in the example, an OFDR controlling procedur (Bauer et al. (1998)), in which tests at the individual genel are
considers only the 000 gene sets as the units for inference, but performed only if the test on the gene set level is significaie
an FDR controlling procedure considers the individual gease  advantage of the “Gatekeeper” method is that the test atahe get
the units for inference and there are usually more genesgbaa level need not be adjusted for multiplicity.
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Common stepwise procedures to control
Hi, ..., H, are (1) the Bonferroni-Holm procedure (Holm (1979))
which can be applied under any general dependency between th
values; and (2) the more powerful Hochberg procedure (Hexchb
(1988)) which can be applied if the-values are independent. If

H;,i=1,...,ncorrespond to null hypotheses on individual genes,

the stepwise procedure may have little power iis large. In fact,
the stepwise procedure may fail to reject any of the indigidu
gene hypotheses since the procedure relies on the evidesroe f

the FWER oncontrolled at level; (see below) we expect at magbf these lower

bounds to be false.

THEOREM 3.1. Procedure 3.1 controls the OFDR at level q,
assuming that the-values of each gene set are independent from
all other screening-values.

See Appendix 7.1 for a proof.
The independence assumption is unrealistic in gene setsimal
However, previous works have shown that the BH procedure

individual genep-values only (whereas the screening hypothesiscontrols the FDR for quite general dependencies amongpthe

combines the individual genevalues).

values. Benjamini and Yekutieli (2001) proved that the BH

Ge et al. (2003) show that for comparing a control group andprocedure controls the FDR for positive regression depenyden

a treatment group for differential expression on each gehe,
step-down procedure in Westfall and Young (1993) based aPmi

each test statistic corresponding to a true null hypoth@RB®S).
See Benjamini and Yekutieli (2001) for examples where such

adjustedp-values is a powerful procedure that makes minimal dependency arises. Reiner (2007) argued via a combinafion o

assumptions. The strength of this procedure is that it ésplo
the dependencies in the test statistics in order to impraveep
Therefore, if the group sizes are not too small these steprdo
procedures are recommended. Implementations of thesedunas
are available in the R bioconductor packagel tt est (Pollard
et al. (2008)).

When multiple gene sets are simultaneously examined, theab
testing strategy has to be adjusted and this is done in $etio

3 THE CONTROL OF THE OVERALL FDR

Suppose that for each gene set € {1,...,S} we have

a screening hypothesiglscreen(s) and additional hypotheses
Hi(s),...,Hy(s). For controlling the FDR when only one
hypothesis is tested per gene set, Benjamini and Hochb8&p)1
suggested the first and still very popular FDR controllinggedure,
called the BH procedure. When more than one hypothesistidtes
per gene set, we suggest the following procedure and shavit tha
controls the OFDR:

PrRoCEDURE3.1. The hierarchical testing procedure:
1. Screening Stage:

e Choose the screening hypothesis for each sete
{1,...,S}

o Let {pscreen(s) : s 1,...,S} be the unadjusted
p-values for the screening hypotheses.

e Apply the BH procedure at levelto thesep-values. LefR
be the number of rejected screening hypotheses.

2. Confirmation Stage: For each rejected set

e compute the adjustegtvalues for each gene in the gene

set (e.g. using the Westfall and Young (1993) step-dow

minP procedure) .

e Test these adjusteatvalues at levelRq/ S, rejecting the
gene hypotheses with adjustedalues< Rq/S.

simulations and analytic results that applying the BH pdoce on
p-values from two-sided tests of correlated normal testissied
with any correlation structure controls the FDR. Storey ket a
(2004) gave convergence conditions on fh&alues for the BH
procedure to control the FDR asymptotically. Reiner et 200Q)
show in simulations that for typical dependency betweentése
statistics in microarray data the BH procedure controls RBdR

on individual genes. Similarly, for gene set analysis wewslio
simulations in Section 5 that for typical microarray depemzi/ the
FDR is controlled when applying the BH procedure to the sureg
hypothesesp-values. The simulations in Section 5 also show
that Procedure 3.1 controls the OFDR under realistic micaga
dependencies. In most practical situations where the Bidgohare

is appropriate, the OFDR controlling procedure will also be
appropriate. If in doubt the more conservative Ieve@p@jle %)
can be applied to guarantee FDR control at leyek the gene set
level (Benjamini and Yekutieli (2001)).

Finally, a cautionary remark about the use of other FDR
controlling procedures instead of BH in the hierarchicaititey
procedure 3.1. The BH procedure is known to be conservative b
the proportion of null hypotheses testes;, so that even when
the p-values are independent the FDR is controlled at thed 1@\
(Benjamini and Hochberg (1995)). This conservativenestvated
the development of procedures that first estimate the nuoflver
hypotheses and then use the estimate to enhance power rfeinja
et al. (2006), Storey et al. (2004), Ge et al. (2003)). Howeve
applying these methods at the screening stage of Procedire 3
instead of the BH procedure may be nonconservative and t¥ROF
may not be controlled. To see this, note that if in every geste s
at least one true null hypotheses is tested, then Procedlimas/
control the OFDR exactly at level Thus Procedure 3.1 may not be
conservative in such a setting. However, if theregrgene sets for
which all null hypotheses considered are false, then Proeedi1 is
conservative by the facto?’s—&. If S1 was known, then performing
in Procedure 3.1 the screening stage at Ie%gf—l (instead of at
rgevelq) and the confirmation stage at Ie\/gf%l (instead of at level

%) will be more powerful than Procedure 3.1 and still contta t
OFDR at levely.

An estimated lower bound for the proportion of genes4 APPLICATION TO A MICROARRAY STUDY

differentially expressed in setis u(s)/n(s), whereu(s) is the
number of rejected gene hypotheses inssaind since the OFDR is

We use the data set of Chiaretti et al. (2004), available & th
Bioconductor ALL package atmw. bi oconduct or. org. The




Heller et al

Tablel. The distribution of the number of individual gene discogsnvithin ~ Table 2. For the ALL data with 10 type B replicates and 10 type T repésa

the 418 discovered gene sets. ADD GENE NAMES. the discovered gene sets, discovered probe set IDs (gert®os)mand percent
of probe discoveries in the gene set, for the gene sets vattatgest proportion
#genes of gene discoveries within the gene sets using the scre¢nimgP procedure at

discovered 0 1 2 3 4 5 6 7 9 10 12 14 the5% level. Expect only 5% of the rows in the complete talhlé1® rows to
#genesets 198 138 67 38 18 5 7 9 2 1 1 1 contain false positives.

Discovered Gene Sets Discovered Probes Sefs Percent
(Genes) Discovered

. . L . G0:0046827 positive regulation| 1253 at (GSK3B), 100
data set W_as Col!ected to Ident!fy genes that dl_stmgwﬁg_myps of protein exp?ort from n%cleus 40645at((GSK3L3>)
of leukemia patlents.. It consists of 128 patients spht n@@ GO:0043368 positive T498at (ZAPT0), 100
with B-cell and 33 with T-cell type acute lymphoblastic |enkia T cell selection, 38319at (CD3D)
(ALL). The data consist of 12,625 expression profiles frora th G0:0045059 positive
HGU95aV2 Affymetrix chip for each patient. Using versio)Z thymic T cell selection

of the hgu95av2 Bioconductor package, we were able to map 9§7G0:0050862 positive regulation df 2059 at (LCK), 75
of the Affymetrix probe sets to at least one GO term for biatal T cell receptor signaling pathway  3303Q2at (TRAT1),

=

process, and 4364 terms from the GO biological process tenres 33238at (LCK)
each associated with at least one probe set. After resiotir gene G0:0046825 regulation 1253 at (GSK3B), 67
sets to be of minimum size 2 and maximum size 500, we had 3367 °f protein export from nucleus | 40645at (GSK3B)
gene sets to examine. The union of the 3367 gene sets inchéd&d GO:0006426 3658Lat (GARS), 67
individual probes. glycyl-tRNA aminoacylation 36582at

G0:0045022 early endosome 41164at (IGHM), 60

to late endosome transport 41165at,

41 Method 41166at (IGHM)

We performed the following analysis for a random sample ¢fl5)
or 20 replicates per group.

We applied Procedure 3.1 at lewgl= 0.05: the screening-
values were calculated by the method in Nettleton et al. §200
(using 5000 permutations of the group labels to computeehe get
p-values); the FWER adjusted two-sidgd/alues were computed
by the Westfall and Young (1993) step-down minP proceduirggus
the Wilcoxon test statistic. We refer to this procedure as t
screening-minP procedure.

For comparison, we applied the GSEA method. Gene sets wit
adjusted FDR below 0.05 where considered discovered gasge se
and the leading edge analysis was performed only on thedised
gene sets.

a large proportion of genes in a gene set gives strong e\édiradt
this GO process behaves differently between the two groajgb
investigated. In this example, we sorted the rows by dergas
h order of proportion of individual genes discovered withisadvered
gene sets with rejected screening hypotheses, to help &biargion
fio the gene set discoveries where most of the individual gene
are differentially expressed. It may also be useful to lobkhe
sorted rows by decreasing order of the number of individesleg
discovered, or by a score that combines the number and pi@por
of individual gene discoveries in discovered gene setsekample,
a discovered gene set of size 20 with 15 individual gene desoes
4.2 Results may be more relevant to the researcher than a discoveredsgeot
We first examine the results of applying screeringinP procedure  size 2 with 2 individual gene discoveries.
at the 5% level on the data with 10 replicates per group. We Table 3 shows the number of gene set discoveries and the numbe
discovered 418 gene sets and 87 unique genes within thevdiseb ~ of unique gene discoveries after applying the screepmmP
gene sets. The number of individual gene discoveries pex gen  procedure to data with 10, 15 or 20 replicates per groups.has t
ranged from 0 to 15, see Table 1 for the distribution. The gete  number of replicates increases, so does the number of @isesy
with 10, 12 and 14 individual gene discoveries were of siZ& 22  The number of gene set discoveries with a group size of 155168
and 70 respectively. much larger than that with a group size of 10 (418) but onlgtgly
Table 2 shows a sample of discovered gene sets and discoverschaller than with a group size of 20 (1229). Similarly, thenter
genes within these gene sets. This sample corresponds to tloéindividual gene discoveries with a group size of 15 (3@0niuch
discovered gene sets with the largest proportion of indisidjene  larger than that with a group size of 10 (87) but only a littieedler
discoveries in the set. By applying the screeringnP procedure than with a group size of 20 (383).
we expect at most 5% of the gene set discoveries to be false The GSEA method did not discover any gene sets with groups
discoveries (i.e. the FDR is controlled on the screeningthgsis).  of size 10 or 15, and only 4 gene sets with groups of size 20. The
In addition, by testing the individual genes we expect attmos leading-edge subset analysis identifies 30 individual gene
5% of the rows in the complete results table of 418 (formatted Finally, note that in a situation where many individual geaee
Table 2) to contain false positives (i.e. the OFDR is coferl differentially expressed, a gene by gene analysis may fintemo
Note that if only one gene is discovered, it may be that thereindividual genes than the proposed method. but the intedpitiy
is only one differentially expressed gene in this set and aemo of the discoveries by the proposed method is greater simgedin
satisfactory explanation for this gene being significanthiat it be associated with biological processes. In a gene by gaaigsis
participates in another GO process. On the other hand,\disog it is not clear how to associate the list of discovered geaegehe
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Table3. For data with 10, 15, or 20 replicates per only into the 345 genes that are in the union of the 10 gene sets
group, the number of gene set discoveries and the listed in 3. Third, since the standard deviations of the esgion
number of unique probe discoveries after applying levels vary across genes (they range from 0.1 to 2.3, with@iane

the screeningminP> procedure. of 0.3 and an inter-quartile range of [0.2,0.5]), the poveedétect

the same difference of sizk varies across genes.

# Replicates| # Gene setq # Unique probeg
per group | discovered discovered

10 418 87 5.1.2 Microarray Data Analysis ProceduresiNe applied the two
15 1086 300 procedures in Section 4.1: screeninginP and GSEA.
20 1229 383 We also did a typical gene-by-gene analysis on the 8678

individual genes: first we computed the unadjusted Wilcoxen
values for individual genes; on thepevalues we applied the BH
procedure at level 0.05. We refer to this procedure asgtree-
sets while controlling the FDR on individual genes (see Ga@m py-gene analysigrocedure. Two remarks follow about the choice
and Buhlmann (2007) for a critique of available methods). of this gene-by-gene analysis. First, note that the BH phoce
is just one of many gene-by-gene analysis procedures timatoto
the FDR. In this simulation setting, it is conservative bg factor
5 A SIMULATION STUDY m = B35 — .96, which is close to 1. Therefore, the power of
the BH procedure is expected to be similar to that of procesithrat
first estimater, (discussed in Section 3). Second, we only consider
an FDR controlling procedure since Reiner et al. (2003) sbthat
FDR controlling procedures obtain substantially more pothan
FWER controlling procedures.
In addition, we applied two FDR controlling procedure after

The goals of these simulations are (1) to verify that the &doce
3.1 controls the OFDR for microarray dependency struciuaad
(2) to compare this procedure to that of a gene-by-gene sisadg
well as to a variant of Procedure 3.1 that controls the FDReats
of the FWER when testing after the screening stage (seddatai
Section 5.1.2). Note that FDR control for each gene set doés n . . .
necessarily imply FDR control for the entire study (Benjanand the screenlng_st_age instead of the minP procgdure _for FWER
Yekutieli (2005)), nor does it imply OFDR control. Note mover control. Yekgtlell (2008) suggested two level h|grarch|EeDR

that OFDR control of Procedure 3.1 implies FDR control on theprocedures in another context. Although there is no guaeant

screening hypotheses, thus showing that the BH proceduteot® of cont_rolling an error measure for g(_ane_§et analysis_uslmg ¢
the FDR for microarray dependence in gene set analysis. screening-FDR procedures, they are intuitively appealing since
FDR controlling procedures may be more powerful than FWER

. . . controlling procedures. We wanted to see how much power s lo
5.1 Simulation Study Design by the fact that the FWER is controlled instead of the FDR inith
5.1.1 Data Based Simulation Modeln order to capture the detected gene sets.

complex dependence among genes and gene sets in microataay d  The first procedure is the BH procedure at lev).05, where
we performed the following data based-simulation, simitathat R is the number of rejected sets afds the number of gene sets

suggested in Nettleton et al. (2008). (S=3367 in our simulation). The second procedure is the minP
The procedure below was used to generate 40 simulated data s&iugmented FDR controlling procedure suggested in Van DanlLa
from the data described in Section 4: etal. (2004). This procedure takes the joint density of tiuévidual

gene p-values in the gene set into account, whereas the BH
1. Randomly select (without replacement) 30 of the 95 B-cellprocedure relies only on the marginal distribution of jhealues.
replicates and randomly divide the selected samples into tw Dudoit et al. (2004) suggest that there is substantial pga@r of
treatment groups of size 15 each. joint procedures compared to marginal procedures whenumbear
2. Create two 12625 by 15 data matrices (one for each group®f hypotheses tested is fairly small. In our gene sets, théiane
from the 12625 dimensional expression vectors associatad w number of genes per gene set is 8 and the average is 30. Tiegrefo
the selected B-cell replicates. the minP-augmented FDR is expected to be much more powerful

3. Extract the genes identified by the following 10 GO biotagi than the BH procedure V\_/ithin discovered gene sets. We rretbgse
process terms: GO:0002263, G0:0019882 G0:0019883M° procedures ascreening-BH andscreening-augmented minP

GO:0019884, GO:0019885, GO:0019886, GO:0030097,27 collectively ascreening-FDR

G0:0045058, GO:0046649, GO:0050862. 345 unique genes

were in the union of these 10 gene sets. We introduced

differential expression into these genes by adding a cohsta 5.2 Results

A € {0.1,0.2,0.3,0.4} to the expression of these genes for Procedure3.1 controlsthe OFDR under Microarray Dependency.

each case in the first group. The estimated OFDRs the average of the proportion of falsely

discovered gene sets out of all gene sets discovered. It alas/b

Three remarks follow. First, note that the correlation w  the nominal level of 0.05 for the screeniaminP in all the settings
pairs of genes is unchanged within each group by the artificiaconsidered (See column 2 of Table 4). Moreover, since OFDR
introduction of differential expression. Second, since glene sets  control implies FDR control on the screening hypothese® th
are not mutually exclusive, 1649 gene sets contain difteaky simulations suggest that the FDR on the screening hypathsse
expressed genes even though we introduced differentiaésgion  controlled under microarray dependency.




Heller et al

Table 4. The mean (SE) in 40 simulations of the total number of trueegenTable 6. The estimated OFDR (and SE) and average of the total
set discoveries as well as the total number of individualegdiscoveries in the number (and SE) of true gene discoveries in 40 simulationghef
screening-minP procedure, and the total number of individual geneadisiies  screening-augmented minP and screenin@H procedures.

in the gene be gene analysis.

A estimated OFDR # True genes discovered
A | Estimated OFDR| # True sets| # True unique genes discoveref screening _ screening screening _ screening
discovered | screening-minP | gene-by-gend +augmented minf  +BH +augmented minf _ + BH
01| 0.016(0.005) | 86.3(19.7) 3.44 (1.82) 8.23 (0.64) 0.1 0.124 (0.019) | 0.015 (0.004) 13.26 (0.33) 2.62(0.16)
o2 00080009 | ss69zo9] 35605 | 909 |  [T2] OIOMY [oromml —srs0) | 2307
0.3 0.016(0.004) | 752.2(25.5)] 121.3(0.65) 87.21 (2.58) 0 0.016 (0.003) | 0.022 (0.002) 2031(03) 1947 (04)
0.4 0.011(0.003) | 896.3(16.5) 184.2 (0.4) 155.5 (0.4)

Table 5. The mean (SE) in 40 simulations of the total number of trueegset genes. The screenind@H procedure appears to have very similar

discoveries in a GSEA analysis as well as the total numbendiidual gene

discoveries in the leading-edge subset analysis of GSEA.

Procedure 3.1 may be more powerful than a gene-by-gene
analysis for discovering individual genes. Table 4 shows the
average of the number of true gene set discoveries as wak astal
number of true gene discoveries for the screemiminP procedure,
and the total number of gene discoveries for the gene-bg-genhave been discovered. Our procedure controlled the piioport
analysis. When the signal difference is weak= 0.1 barely any
individual genes are discovered by either method, but 8éng gets
are discovered on average using the screepmiP procedure.
As the signal increases more individual genes are discdyeaed
the screeningminP procedure has greater power than the gene-bywe expect at mosi of the rows to contain false positives.
gene analysis.
Procedure 3.1 has advantages over GSEA. Table 5 shows thatthe used GSEA method shows that GSEA may be less powerful in
average number of true gene set discoveries is much smaler f detecting differentially expressed gene sets. Moreoher|gading-
GSEA compared to Procedure 3.1. Moreover, it shows thatewhil edge subset analysis of GSEA may report many false positives
GSEA controls the FDR at the gene set level, the leading-edge The advantage of screening gene sets over a gene-by-gene
subset analysis produces as many true individual genevdises as
it does false gene discoveries. Therefore, even thougtatiaiky/sis
discovers more than twice as many true gene discoverieslas 3.when there is practically no power to detect differentiabypressed
the false positive rate is about 0.5. Since the leading-etipset
analysis always contains false positives, the estimateBROBf
GSEAis 1 forA > 0.2. ForA = 0.1 the OFDR is small because a gene-by-gene analysis. There does not appear to be aalisage
gene set discoveries where made only in 2 out of the 40 runsin power of the screeningminP procedure over the screenirigH
However, in the 2 runs that produced gene set discoveriest abo procedure. However, there is a disadvantage in power in adsgn
half of the genes discovered by a leading-edge subset &algse

false.

Screening+FDR procedures may be more powerful than

Procedure 3.1 but they may not achieve OFDR control.

Table 6 shows for everyA the estimated OFDR for the
screening-augmented minP and screeniflgH procedures, as
well as the average number of true individual gene disceseri
The screening.augmented minP is the most powerful procedure on evidence from simulations that the screeringnP controls the
considered. Fo\ = 0.2 it discovers almost twice as many genes OFDR in such settings. Further verification of the validitytioe
as the screeningminP procedure, but foA = 0.3 it discovers
only about 20% more genes and fasr= 0.4 only about 10% more

power to that of the screenirgninP procedure. Note that there is
no reason for either procedure to control the OFDR, everginthe
OFDR is controlled in this particular setting for the scriegr-BH

A | Estimated | Estimated FDR| Estimated FDR| # True sets| # True unique .
OFDR of gene sets of genes discovered | genes discovere prpcedure as well as foA > 0.1 for the screeningaugmented
0.1] 0.05(0.03)| 0.000(0.003) | 0.024 (0.107) | 4.9 (21.4) 9.0 (40.1) minP procedure.
0.2 1(0) 0.056 (0.022) [ 0.35(0.02) | 108.0(21.9)[ 217.7(17.9)
0.3 1(0) 0.038(0.012) | 0.51(0.04) | 294.4(26.7) 276.7 (6.6)
0.4 1(0) 0.024 (0.015) | 0.55(0.08) | 383.3(14.6)[ 302.4(2.0)

6 DISCUSSION

We have described a method, screesingnP, for testing multiple
hypotheses on multiple gene sets. We introduced an apptepri
error measure, the OFDR, as well as a general procedure for
controlling this error measure.

We illustrated the usefulness of our approach in focusitengion
on discovered gene sets where a large proportion of indiigenes

of falsely discovered screening hypotheses as well as lfalse
discovered gene sets. Thus, by applying the screemirigP
procedure at leved and displaying the discovered gene sets and
the discovered genes within a gene set in a table similartite T3

A comparison of the screenirgninP method with the widely

analysis is large when the signal is weak since there may be
enough power to detect differentially expressed gene sein e

genes. Depending on the signal configuration, the screg¢mmgP
procedure may be more powerful in detecting individual gethan

to the screeningaugmented minP procedure when the signal is
weak.

An essential feature of analysis of large data sets is taalior
false positives in order to guarantee that the results aredecible.
We established theoretically that the screeriminP procedure
controls the OFDR for independentvalues. We applied the
method to the dependent situation of microarray analysiset

screening-minP procedure in dependent settings is a direction for
future research.




Two Stage Procedure

7 APPENDIX
7.1 Proof of Theorem 3.1

Benjamini, Y. and Heller, R. (2008). Screening for partiahginction hypotheses.
Biometrics doi: 10.1111/j.1541-0420.2007.00983.x.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the atliscovery rate - a practical

Let I, be the index set for gene sets that have at least one true null and powerful approach to multiple testiny.Roy. Stat. Soc. B Me&7 (1):289-300.

hypothesis. Leti’(s) = 1 if gene sets is a falsely discovered

gene set,

Of Hscreen(s), H1(s), ..., Hy(s5)(s) has been falsely rejected, and
0 otherwise. LetR(s) = 1 if gene sets is a discovered set
and 0 otherwise. Lef) = ZS%EE&; if at least one gene set

was discovered and 0 otherW|sQ is the proportion of falsely
discovered gene sets out of all discovered gene sets if st de@
gene set was discovered. The OFDR is, by definitioff)]. Then

EQ =Y %PT(V(S)flﬂZR(z):k)
S 17 S
:E;E :1@_;#3()*14:—1)
S
1 s

where C(S is the event thagn(k y < kq/&p(k) > (k +

1)q/S,. .,p(s) H >4 wherepglg < < pg‘;)il) are the

ordered coordinates of the vect@r’) of p-values for the screening
hypothesis excluding that af

s)=1nct)

ZZ —Pr(V

sc€lg k=1

S
= 33 L Pr(Pareen(s) < ka/S 1 {type | error ats} 1 Cf)

selp k=1

s€lp k=1

where the last equality follows since thevalues are independent.

For every gene set witlR(s) = 1,s € Io, there is a
hypothesis that was falsely discovered. If the falsely @isced
hypothesis is the screening hypothesis (i.e. the scredwipgthesis
is null), then Pr(Pacreen(s) < kq/S) < kq/S. If the falsely
discovered hypothesis is not the screening hypothesis) the
probability of rejecting such a null i kgq/S since the FWER
is controlled at levekq/S . ThereforePr(Pscreen(s) < kq/S N
{type | error ats}) < kq/S for a givenk.

The result follows:

vyl

selp k=1

~kq/S - Pr(C}”) =

> a/S<q

se€lp
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