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We consider a standard “signal+white noise” model on the unit interval and want to test

whether the signal is present on a subinterval Ω∆ ⊆ [0, 1] of length ∆. The composite alternative

is that the unknown signal f is separated away from zero in terms of its average power γ(f) =

‖f‖2

∆
/∆ on Ω∆ and also possesses some regularity properties. We evaluate the asymptotically

optimal (minimax) rates for testing the presence of a signal on Ω∆, where both the noise level
and the interval length tend to zero. We derive corresponding rate-optimal tests for local signal
detection.
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1. Introduction

Consider a standard “signal + white noise” model, where the data is a sample
path of a stochastic process

(1) dY (t) = f(t) dt+ ε dW (t), t ∈ [0, 1],

f is an unknown signal and W is a standard Wiener process. We wish to verify
whether the data contains a signal in addition to the noise.

¿From a statistical perspective, detection of signal’s presence is a functional
hypothesis testing problem. The standard nonparametric functional hypothesis
testing setting considers the global testing of the null hypothesis H0 : f(t) ≡ 0 on
the whole unit interval against the composite nonparametric alternative that f is
separated away from zero in L2[0, 1] norm, ‖f‖[0,1] ≥ ρ(ε), and also possesses some
smoothness properties. For the prescribed error probabilities of Type I (erroneous
rejection of H0) and Type II (erroneous acceptance of H0), the rate of decay of
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ρ(ε) as ε → 0 is traditionally viewed as a natural measure of goodness of a test
(see Ingster [9], [10]). The goal then is to find the minimal (optimal) ρ(ε) for which
such testing is still possible and to construct the rate-optimal test.

The corresponding global optimal (in the minimax sense) functional hypothe-
sis testing procedures were first studied by Ingster [9] and further developed in
Ermakov [6], Ingster [10], Spokoiny [16, 17], Lepski & Spokoiny [14], Ingster &
Suslina [11] and Horowitz & Spokoiny [8] for various separation distances between
the two hypotheses and different smoothness assumptions under the alternative. See
Ingster & Suslina [12] for a comprehensive review. The equivalent non-asymptotic
problem is addressed in Baraud [4].

In particular, for the Besov classes Bs
p,q with sp > 1, Lepski & Spokoiny [14]

showed that the optimal testing rate for this setting is

(2) ρ2(ε) = ε8s′′/(4s′′+1),

where s′′ = min(s, s − 1/(2p) + 1/4), and derived the corresponding rate-optimal
test. However, the proposed test required the knowledge of the parameters of the
Besov class, which are typically unknown in practice. Spokoiny in [16] considered
the problem of adaptive minimax testing, where the above parameters are unknown
a priori but are assumed to lie within a given range. He showed that there is an
unavoidable price to pay for adaptivity although the price is remarkably low. The
adaptive testing rate is

(3) ρ2(ε) = ε8s′′/(4s′′+1) · (log log ε−2)2s′/(4s′′+1),

where s′ = min(s, s − 1/p + 1/2), which is only within a log-log factor of (2).
Spokoiny constructed also the adaptive test that achieves the optimal rate (3).

Abramovich et al. [2] and Abramovich & Angelini [1] adapted the results for
testing in the “signal+white noise” model (1) for detecting differences among signals
or groups of signals within functional analysis of variance (FANOVA) framework.

However, in a variety of applications, the true signal f in (1) has a local nature
and one is interested in its localized detection, for example, within a local neighbor-
hood of some specific point of interest. Similar problems often arise in FANOVA
settings in detecting local differences between signals. For example, in seismic sig-
nal processing researchers try to determine the source of the signal (explosion or
earthquake) by analysing its local behavior right after the onset time. In this pa-
per we extend the results of Spokoiny [16] and Lepski & Spokoiny [14] mentioned
above for the local testing when both the noise level ε and the interval length ∆
monotonically tend to zero.

Consider local functional hypothesis testing H0 : f ≡ 0 on a subinterval Ω∆ ⊆
[0, 1] of length ∆, where both ∆ and ε tend to zero. As the interval gets shorter, more
localized signals can be detected. However, when it becomes “too short”, accurate
detection is impossible. The detection ability depends obviously also on the local
smoothness properties of f on Ω∆. We assume that under the alternative f belongs
to a Besov ball of radius M on Ω∆, Bs

p,q(Ω∆,M), where s > 0, 1 ≤ p, q <∞, sp > 1
and s > 1/2 for p ≥ 2.

For local testing it is more appropriate to define the separation of the alternative
set from the null hypothesis in terms of the average power of a signal on Ω∆,



Local Functional Hypothesis Testing 3

γ(f) = ‖f‖2
Ω∆
/∆, which is also invariant under rescaling of t in (1), rather than

in terms of its L2(Ω∆) norm. A function f from the alternative set satisfies then
γ(f) > γ(ε,∆) and for prescribed error probabilities of both types, the optimal
rates of local testing procedures are measured in terms of γ(ε,∆). The goal is to
find the minimal γ(ε,∆) for which testing is still possible and construct the optimal
test.

Testing the null hypothesis against a constant alternative H1 : f(t) = c, t ∈ Ω∆,
implies an obvious lower bound for γ(ε,∆), which is the classical rate ε2/∆. If
ε∆−1/2 does not tend to zero, the two hypotheses are asymptotically undistin-
guishable in the sense that for any test the sum of probabilities of its Type I and
Type II errors tends to 1. The interval is “too short” to detect signals under the
given noise level or, equivalently, the noise is “too strong” to detect signals on an
interval of a given length.

For ε∆−1/2 → 0 we show that the asymptotic minimax rate of local testing the
null hypothesis against a general nonparametric alternative described above is

(4) γ(ε,∆) =

{

ε8s′′/(4s′′+1)∆−(2s+1)/(4s′′+1) if ε∆−s′ → 0,

ε2∆−1 otherwise,

where s′ > 1/2 was defined before. We consider also the adaptive local testing,
where the parameters of the Besov ball under the alternative are not known a

priori. As in global testing, the resulting adaptive test yields an additional log-log
factor in the rate.

At first sight, it might seem somewhat paradoxical that when ε∆−1/2 tends to
zero slowly, so that ε∆−s′ 6→ 0, one obtains the classical rate but the rate surpris-
ingly slows down as ε∆−s′ → 0. We come back to this phenomenon with more
rigorous arguments in Section 2.3 and provide here a somewhat intuitive explana-
tion. Note that the geometry of the alternative set varies with both ε and ∆. For
a fixed ∆, when ε > ∆1/2, the whole alternative set is strongly compressed and
covered by heavy noise, so that nothing can be extracted from the chaos. As the
chaos disperses (ε decreases), the alternative set spreads out and first distinguish-
able signals start to appear. When ε is still fairly large, these signals are so simple
that they can be detected at the classical rate. As dispersion continues, less and less
primitive signals come out of the noise. At a certain critical point depending on the
“complexity” of the alternative set (via s′) they already have such a complicated
structure that cannot be detected at the classical rate with given accuracy any
more. This explains slower rates in this case. These half-heuristic considerations
certainly suffer from several drawbacks. For example, they treat ∆ as fixed, while
the results in (4) are asymptotic with respect to both ε and ∆. Still we find them
useful to give one some insight into the above phenomenon.

The paper is organized as follows. Section 2 contains the main results including
the definition of the local testing problem, its optimal testing rate γ(ε,∆), and the
non-adaptive and adaptive rate-optimal test procedures. The resulting tests are
based on the empirical wavelet coefficients of the data and, in a way, can be viewed
as the local versions of the corresponding global tests of Spokoiny [16]. Concluding
remarks and discussion are made in Section 3. All the proofs are given in the
Appendix.
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2. Local Functional Testing

2.1. Local hypothesis testing problem. Consider again the white
noise model (1). Let Ω∆ ⊆ [0, 1] be a subinterval of length ∆. We want to test the
null hypothesis that there is no signal on Ω∆ :

(5) H0 : f(t) = 0, ∀t ∈ Ω∆.

We do not specify any parametric form for f under the alternative hypothesis and
wish to test the null hypothesis (5) against as large a class of alternatives as possible.
As in the estimation problem, we have to assume some regularity conditions on f to
distinguish it from completely irregular white noise. In particular, we assume that f
belongs to a Besov ball, Bs

p,q(Ω∆,M), of radius M on Ω∆. Besov classes are known
to have exceptional expressive power: for particular choices of the parameters s,
p, and q they include the Hölder (p = q = ∞) and Sobolev (p = q = 2) classes
of smooth functions, and functions of bounded variation sandwiched between B1

1,1

and B1
1,∞. We refer to Meyer [15] for rigorous definitions and a detailed study of

Besov spaces.
As we have mentioned in the Introduction, to be able to distinguish between the

two hypotheses, the set of alternatives should also be separated away from zero in
terms of the average power on Ω∆. We consider then the nonparametric alternative
hypothesis of the form

(6) H1 : f ∈ F(γ(ε,∆)) =
{

f : f ∈ Bs
p,q(Ω∆,M), γ(f) ≥ γ(ε,∆)

}

.

The first (regularity) constraint bounds the set of possible alternatives, while the
second one cuts out the alternatives “too close” to the null hypothesis.

2.2. Minimax local testing rate. A (non-randomized) test φ is defined
as a measurable function of the data with two values 0 and 1 that correspond to
accepting and rejecting the null hypothesis respectively. As usual, the quality of
the test φ is measured by the Type I and Type II errors. The probability of the
Type I error is defined as

α(φ) = Pf≡0(φ = 1),

while the probability of the Type II error for the composite nonparametric alter-
native hypothesis H1 is defined as

β(φ, γ(ε,∆)) = sup
f∈F(γ(ε,∆))

Pf (φ = 0).

We focus on the asymptotic hypothesis testing problem as the noise level ε and
the length of the interval ∆ monotonically tend to zero. Our aim is to evaluate the
fastest rate of decay to zero of γ(ε,∆) for which testing with prescribed α and β is
still possible.

Consider first testing the null hypothesis H0 : f(t) = 0, t ∈ Ω∆, against a con-
stant alternative H1 : f(t) = c, where obviously γ(f) = c2. Simple calculus shows
that for the prescribed α and β the testing is possible if c > (Z1−α +Z1−β)ε∆−1/2,
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where Z1−α and Z1−β are the corresponding quantiles of the standard normal dis-
tribution. The necessary condition for asymptotic (as ε → 0 and ∆ → 0) distin-
guishability (non-triviality) of these and the more general hypotheses (5) and (6)
is, therefore, the requirement ε∆−1/2 → 0.

To define the minimax rate γ(ε,∆) for local hypothesis testing (5)–(6), consider
the new variables u = ε∆−1/2 and any other variable v, so that the correspond-
ing Jacobian is not zero. For any two functions g(ε,∆) and g′(ε,∆) we say that
g′(ε,∆) = oε∆−1/2(g(ε,∆)) if g′(u, v)/g(u, v) → 0 as u→ 0 for any fixed v.

Definition 2.1. A sequence γ(ε,∆) is called the minimax rate of local testing

if γ(ε,∆) = oε∆−1/2(1) as ε → 0 and ∆ → 0 monotonically and the following two
conditions hold:

(i) for any γ′(ε,∆) = oε∆−1/2(γ(ε,∆)), one has

inf
φε,∆

[

α(φε,∆) + β(φε,∆, γ
′(ε,∆))

]

= 1 − oε∆−1/2(1),

(ii) for any α > 0 and β > 0 there exists a constant c > 0 and a test φ∗
ε,∆ such

that

α(φ∗ε,∆) ≤ α+ oε∆−1/2(1), β(φ∗ε,∆, cγ(ε,∆)) ≤ β + oε∆−1/2(1).

The first condition states that local testing with a rate faster than γ(ε,∆) is
impossible, while the second one guarantees the existence of a test with the rate
γ(ε,∆).

Define p′ = min(p, 2), s′ = s − 1/p′ + 1/2, and s′′ = s − 1/(2p′) + 1/4. To
derive the minimax rate for the local testing on Ω∆, note that by time rescaling
and normalization f̃(u) =

√
∆f(∆u), 0 ≤ u ≤ 1, the problem can be transformed

to the global testing on the whole unit interval, where ‖f̃‖[0,1] = ‖f‖Ω∆
. The Besov

norm (the Lp-norm + the Besov semi-norm) is not homogeneous under rescaling
and, as a result, a Besov ball Bs

p,q(Ω∆,M) on Ω∆ does not transform to a Besov
ball on [0, 1]. However, the semi-norm itself is homogenous and only it is, in fact,
essential in nonparametric settings. In particular, all the existing results for global
testing remain true when the Besov norms are replaced by the corresponding semi-
norms. Furthermore, it is easy to show that under such rescaling, the resulting
Besov radius will be M∆s′

which, unlike the standard global testing setting with
a fixed Besov radius, will tend to zero as ∆ → 0. However, changing, in addition,
the noise level ε to ε̃ = ε∆−s′

implies a Besov ball of a fixed radius M . Thus,
for ε∆−s′ → 0, after the above transformations one can apply the corresponding
results of Lepski & Spokoiny [14] for global testing (see (2)) to get the minimax
rate γ(ε,∆) in this case:

γ(ε,∆) = ∆2s′−1γ(ε̃, [0, 1]) = ∆2s′−1ε̃ 8s′′/(4s′′+1) = ε8s′′/(4s′′+1)∆−(2s+1)/(4s′′+1).

In the following Section 2.3 we show that the case ε∆−1/2 → 0 but ε∆−s′ 6→ 0
is similar to a paramteric one and propose a test that achieves the classical rate
ε2∆−1.
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Summarizing all the above arguments leads to the following Theorem 2.1 that
establishes the minimax rate γ(ε,∆) for the local hypothesis testing (5)–(6):

Theorem 2.1. Given θ = (s, p, q,M), where sp > 1, p, q ≥ 1, and s > 1/2 for

p ≥ 2, the minimax rate of local testing (5)–(6) as ε → 0, ∆ → 0 monotonically

and ε∆−1/2 → 0 is

(7) γ(ε,∆) =

{

ε8s′′/(4s′′+1)∆−(2s+1)/(4s′′+1) if ε∆−s′ → 0,

ε2∆−1 otherwise.

2.3. Nonadaptive minimax local test. In this section we construct
the rate-optimal test φ∗

ε,∆ under the distinguishability condition ε∆−1/2 → 0. Sim-

ilarly to the rate-optimal test of Spokoiny [16] for global testing, the resulting test
statistics will be based on the empirical wavelet coefficients of the data on Ω∆.

Given a compactly supported scaling function ϕ of regularity r > s and the
corresponding mother wavelet ψ, one can generate an orthonormal wavelet basis
{ϕj∆k, ψjk; j ≥ j∆} on the interval Ω∆, where j∆ is the minimal integer such that
2−j∆ | suppϕ| < ∆. In fact, asymptotically we may assume that j∆ = log2 ∆−1.
The number of scaling coefficients, Cϕ, is finite and depends on the support of the
scaling function, while the number of wavelet coefficients on each resolution level j
is [2j∆] ∼ 2j−j∆ (see Anderson et al. [3] for details).

For clarity of exposition we use the same notation for interior and edge wavelets
and in what follows denote ϕj∆k by ψj∆−1,k. Let J = {j ≥ j∆ − 1} be the set of
resolution levels for the considered wavelet basis and let Jj be the index set for the
jth level:

Jj∆−1 = {(j∆ − 1, k) : k = 0, . . . , Cϕ − 1},
Jj = {(j, k) : k = 0, . . . , 2j−j∆ − 1}, j ≥ j∆.

Then f is expanded in the orthonormal wavelet series on Ω∆ as

(8) f(t) =
∑

j∈J

∑

I∈Jj

wIψI(t),

where wI =
∫

Ω∆
f(t)ψI(t) dt.

¿From Parseval’s identity,

(9) ‖f‖2
Ω∆

=
∑

j∈J

∑

I∈Jj

w2
I .

Moreover, wavelet series constitute unconditional bases for Besov spaces Bs
p,q(Ω∆),

max(0, 1/p − 1/2) < s < r; p, q ≥ 1, and the Besov norm of f is equivalent to the
corresponding sequence space norm of its wavelet coefficients:

‖f‖Bs
p,q

³ ‖w‖bs
p,q

=

(

∑

I∈Jj∆−1

|wI |p
)1/p

+











(

∑∞
j=j∆

2j(s+ 1
2
− 1

p )q
(
∑

I∈Jj
|wI |p

)

q
p

)
1
q

, 1 ≤ q <∞,

supj≥j∆ 2j(s+ 1
2
− 1

p )
(

∑

I∈Jj
|wI |p

)
1
p

, q = ∞
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(e.g., Section 6.10 in Meyer [15], Anderson et al. [3]). The original testing setting
(5)–(6) can therefore be equivalently reformulated in the wavelet domain, where the
sparseness of wavelet bases over Besov spaces is exploited to significantly reduce
the dimensionality of the problem.

Performing the wavelet transform of (1) on the interval Ω∆ one has

YI = wI + εξI , I ∈ Jj , j ∈ J ,

where the empirical wavelet coefficients of the data are YI =
∫

Ω∆
ψI(t) dY (t) and

ξI
iid∼ N(0, 1).
Let jε be the maximal integer such that jε < log2 ε

−2. Asymptotically we can
assume again that jε = log2 ε

−2 and that j∆ < jε for sufficiently small ε∆−1/2. Set
Jε = {j ∈ J : j ≤ jε}. Let jθ be the resolution level defined as

(10) jθ =
4

4s′′ + 1

(

log2(M/ε) +
1

2p′
log2 ∆−1

)

.

Since sp > 1 and s > 1/2 for p ≥ 2, one can easily verify that jθ < jε for sufficiently
small ε∆−1/2.

Consider first the case jθ > j∆. Let Jε = J− ∪ J+, where J− = {j∆ −
1, . . . , jθ − 1} and J+ = {jθ, . . . , jε − 1}. As in Spokoiny [16], for each j ∈ J−,
define Sj to be

(11) Sj =
∑

I∈Jj

(Y 2
I − ε2),

while, for each j ∈ J+ and for a given threshold λ > 0, define Sj(λ) to be

(12) Sj(λ) =
∑

I∈Jj

[

(Y 2
I 1(|YI | > ελ) − ε2b(λ)

]

,

where 1(A) is the indicator function of the set A, b(λ) = E
[

ξ21(|ξ| > λ)
]

=
2(Φ(−λ) + λφ(λ)), ξ is a N(0, 1) random variable, and Φ and φ are its probability
and density function respectively.

With the above notation, introduce the following test statistics:

(13) T (jθ) =
∑

j∈J−

Sj

and

(14) Q(jθ) =
∑

j∈J+

Sj(λj),

where

(15) λj = 4
√

(j − jθ + 8) log 2.
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Let V 2
0 (jθ) and W 2

0 (jθ) be the variances of T (jθ) and Q(jθ), respectively, under H0.
It is easy to see that

V 2
0 (jθ) = 2ε42jθ−j∆ and W 2

0 (jθ) = ε4
∑

j∈J+

2j−j∆d(λj),

where d(λ) = E
[

ξ41(|ξ| > λ)
]

− b(λ)2 and

E
[

ξ41(|ξ| > λ)
]

= 6Φ(−λ) + 2λ(3 + λ2)φ(λ).

Finally, for a given significance level α ∈ (0, 1), define the following test:

(16) φ∗ε,∆ = 1

{

T (jθ) +Q(jθ)
√

V 2
0 (jθ) +W 2

0 (jθ)
> Z1−α

}

.

The resulting test statistic has a clear intuitive meaning and is essentially the
standardized sum of squares of the thresholded empirical wavelet coefficients YI

with the properly chosen level-dependent thresholds. The coefficients on the coarse
levels j ∈ J− are not thresholded. The resulting coefficients are centered to yield
ESj = 0 and ESj(λ) = 0 under H0. The null hypothesis is rejected when the above
test statistic is large.

For jθ ≤ j∆, one cannot extract any information from the wavelet coefficients to
distinguish between the two hypotheses, so testing is entirely based on the sum of
squares of the scaling coefficients by performing the standard χ2-test.

The following theorem establishes the asymptotic optimality of the proposed test
procedure:

Theorem 2.2. Let the mother wavelet ψ be of regularity r > s, and let the

parameters θ = (s, p, q,M) of the Besov ball Bs
p,q(Ω∆,M) be known, where 1 ≤

p, q ≤ ∞, sp > 1, and s > 1/2 for p ≥ 2. For local functional hypothesis testing

(5)–(6) at a given significance level α ∈ (0, 1) define the following test:

(17) φ∗ε,∆ =











1

{

T (jθ)+Q(jθ)√
V 2

0
(jθ)+W 2

0
(jθ)

≥ Z1−α

}

if jθ > j∆,

1
{

∑

I∈J∆−1 Y
2
I /ε

2 ≥ χ2
Cϕ,1−α

}

if jθ ≤ j∆,

where jθ is given in (10). Then, for any β ∈ (0, 1), φ∗
ε,∆ is a level α asymptotically

rate-optimal test as ε→ 0, ∆ → 0 monotonically and ε∆−1/2 → 0.

The construction of the test (17) helps in better understanding the classical

rate when ε∆−s′ 6→ 0. Using the wavelet expansion (8), the function f can be
represented as a sum of its initial gross approximation f0 generated by a finite
linear combination of scaling functions and complementary details given by an
infinite number of wavelet terms. When ε∆−1/2 6→ 0, j∆ > jε for sufficiently small
ε and ∆, both of these components are covered by a strong noise and no accurate
detection is available. For ε∆−1/2 → 0 but ε∆−s′ 6→ 0 it becomes possible to detect
f0, while the details are still non-distinguishable from the noise. Detection of f0 is,
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in a way, a parametric testing problem that under general regularity assumptions
has a classical rate (e.g., Section 2.6.1 in Ingster & Suslina [12]). Finally, when

ε∆−s′ → 0, for sufficiently small ε and ∆, one has j∆ < jθ < jε and it is now
possible to detect the detailed wavelet terms. However, the problem in this case
becomes nonparametric and, therefore, results in slower rates.

We finish this section by the following two remarks.

Remark 2.1. For p ≥ 2 corresponding to “spatially” homogeneous signals
whose wavelet coefficients are concentrated on coarse resolution levels, the above
optimal test (17) can be simplified by truncating the wavelet series at level jθ − 1
(see also Abramovich et al. [2]). The resulting test φ∗

ε,∆ becomes

φ∗ε,∆ =







1
{

T (jθ)
V0(jθ) > Z1−α

}

if jθ > j∆,

1
{

∑

I∈Jj∆−1
Y 2

I /ε
2 > χ2

Cϕ,1−α

}

if jθ ≤ j∆.

Remark 2.2. Using the results of Fan [7] one can get asymptotic approximations
for b(λj) and d(λj) :

E
[

ξ2k1(|ξ| > λj)
]

=
√

2/πλ2k−1
j 2−8(j−jθ+8) + O(λ2k−3

j 2−8(j−jθ+8)), k = 1, 2, . . .

2.4. Adaptive local minimax test. The rate-optimal test derived in
the previous section relies on the knowledge of the parameters of the Besov ball
θ = (s, p, q,M). However, they are typically unknown in practice. In this section
we consider the adaptive local testing problem where the above parameters are
not specified a priori but are assumed to lie within a given range, and extend the
corresponding results of Spokoiny [16] for adaptive global testing. We first construct
the adaptive test and then show its asymptotic optimality.

Assume now that θ = (s, p, q,M) is unknown, but 1/2 < s ≤ smax, 1 ≤ p ≤ pmax,
1 ≤ q < ∞, sp > 1, and 0 < Mmin ≤ M ≤ Mmax. Denote such a range of θ
by T . For each given set of parameters θ one may determine jθ from (10). In
fact, the range T determines essentially a range of admissible levels of the form
jmin ≤ jθ ≤ jmax. One performs a series of tests of type (17) for each admissible
level and rejects the null hypothesis if it is rejected at least for one of them.

More precisely, let jmin = 4
4s′′

max+1 (log2(Mmin/ε)+
1

2p′

max
log2 ∆−1), jmax = jε−1,

where s′′max = smax − 1/(2p′max) + 1/4. Choose a mother wavelet of regularity
r > smax. Since the number of admissible levels is O(log(ε−2∆)), a Bonferroni type
correction for multiple testing leads to the following asymptotic adaptive test, where
we distinguish between two possible cases depending on whether j∆ lies below or
within the admissible range for jθ (cf. (17)):

(18) φa
ε,∆ =

{

maxjmin≤jθ≤jmax
φa

ε,∆,jθ
, jmin > j∆,

maxj∆≤jθ≤jmax
φa

ε,∆,jθ
, j∆ ∈ [jmin, jmax],

where φa
ε,∆,jθ

= 1
[

T (jθ)+Q(jθ)√
V 2

0
(jθ)+W 2

0
(jθ)

>
√

2 log log(ε−2∆)
]

if jθ > j∆, and φa
ε,∆,j∆

=

1
[
∑

I∈Jj∆−1
Y 2

I /ε
2 > χ2

Cϕ,1−α

]

.
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Note that jmin > j∆ if ε∆−s′

max → 0 and jmax > j∆ if ε∆−1/2 → 0. The rate of
testing is given in the following theorem:

Theorem 2.3. Suppose ε∆−1/2 → 0 as ε→ 0 and ∆ → 0 monotonically. Then

the rate γ(ε,∆) of the adaptive test (18) for testing (5)–(6) is

γ(ε,∆) =











ε8s′′/(4s′′+1)∆−(2s+1)/(4s′′+1) · (log log(ε−2∆))2s′/(4s′′+1)

if ε∆−s′ → 0,

ε2∆−1 otherwise.

Moreover, if ε∆−s′

max → 0, then

α(φa
ε,∆) = oε∆−1/2(1),

sup
θ∈T

β(φa
ε,∆, cγ(ε,∆)) = oε∆−1/2(1) for some c > 0.

Theorem 2.3 establishes that if ε∆−s′ → 0, the adaptive test (18) is nearly rate-
optimal (up to an additional log log(ε−2∆)-factor). The results of Spokoiny [16]
imply that there is no adaptive testing without loss of efficiency and such an extra
log-log factor is an unavoidable (though inexpensive) price to pay for adaptivity in
nonparametric testing. In addition, the above theorem demonstrates the degenerate
behavior of the error probabilities for φa

ε,∆ when ε∆−s′

max → 0, which is also typical

for adaptive global testing (see Ingster & Suslina [12]).

3. Concluding Remarks and Discussion

We considered the problem of testing the presence of a signal on an interval
when both the noise level and the interval length tend to zero against a nonpara-
metric alternative. We derived optimal (minimax) nonadaptive and adaptive tests
extending the analogous results of Spokoiny [16] for fixed-length intervals.

Although in the paper we consider only one-dimensional signals, the extensions
of the obtained results to two-dimensional signals (e.g., image analysis) and, in
general, to d-dimensional signals are straightforward using d-dimensional wavelet
transforms. See Horowitz & Spokoiny [8] for the corresponding d-dimensional global
testing problem.

As in Abramovich et al. [2] and Abramovich & Angelini [1], the results of this
paper can be directly applied in FANOVA models for testing local differences among
groups of signals or their contrasts.

In practice one observes a discrete data sample of size n with noise variance
σ2. Therefore, the sampled versions of the derived tests should be applied with
empirical wavelet coefficients obtained by the discrete wavelet transform. Well-
known results (see Brown & Low [5]) show the asymptotic equivalence (under some
mild conditions) as n→ ∞, of the discrete model to the continuous “signal + white
noise” model (1) with ε = σ/

√
n. The distinguishability condition ε∆−1/2 → 0 for

discrete data naturally corresponds to the usual requirement on the number of data
points n∆ sampled on Ω∆ to tend to infinity.
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4. Appendix

4.1. Proof of Theorem 2.2. Consider first the case ε∆−s′ → c∗, where
0 ≤ c∗ < M . In this case for sufficiently small ε and ∆ we can assume that
j∆ < jθ < jε and the proof is somewhat similar to that of Spokoiny [16] for global
testing with necessary modifications. The statistics T (jθ) and Q(jθ) are the sums
of jθ−j∆ and jε−jθ independent, squared integrable random variables respectively.
Moreover, under the null hypothesis, they have zero means and variances V 2

0 (jθ)
and W 2

0 (jθ). By the central limit theorem, the resulting standardized test statistic
in (16) is then asymptotically normal N(0, 1) and the significance level of φ∗

ε,∆ is
asymptotically α.

Consider now the Type II error of the test φ∗
ε,∆. It is straightforward to see that

for any specific f ∈ F(γ(ε,∆)), one has asymptotically

β(φ∗ε,∆, f) = Φ

(

R(θ)
1
2Z1−α − Ef (T (jθ) +Q(jθ))

{Varf (T (jθ)) +Q(jθ))}
1
2

)

+ oε∆−1/2(1),

where R(θ) = (V 2
0 (jθ) + W 2

0 (jθ))/(Varf (T (jθ) + Q(jθ))). Since R(θ) is bounded
from above by one, the asymptotic behavior of β(φ∗

ε,∆, f) depends only on the ratio

Ef (T (jθ) +Q(jθ))/(Varf (T (jθ) +Q(jθ))
1/2.

The following lemmas provide the necessary bounds for Ef (T (jθ) +Q(jθ)) and
Varf (T (jθ))+Q(jθ)). Their technical proofs essentially repeat the analogous argu-
ments of Spokoiny [16] (pp. 2491–2493) up to somewhat different notation and the
initial resolution level being j∆.

Lemma 4.1. For any f ∈ F(γ(ε,∆)),

Ef

(

T (jθ) +Q(jθ)
)

≥ 1

2
‖f‖2

Ω∆
−M2ε4s′ − 1

2
Mp′

ε−p′+22−jθs′p′

.

Lemma 4.2. For any f ∈ F(γ(ε,∆)), there exist positive constants c1, c2 and

c3 such that

Varf

(

T (jθ) +Q(jθ)
)

≤ c1ε
2‖f‖2

Ω∆
+ c2 · 2jθ−j∆ε4 + c3ε

4−p′

2−jθs′p′

.

Recall that ‖f‖2
Ω∆
/∆ ≥ γ(ε,∆). Substituting jθ from (10) and γ(ε,∆) =

ε8s′′/(4s′′+1)∆−(2s+1)/(4s′′+1), Lemma 4.1 and Lemma 4.2 imply that there exists
a constant c̃β such that

inf
f∈F(γ(ε,∆))

Ef (T (jθ) +Q(jθ))
{

Varf (T (jθ)) +Q(jθ))
}

1
2

> c̃β ,

where c̃β > 0 satisfies Φ(Z1−α − c̃β) = β (in fact, c̃β = Z1−α + Z1−β). This shows
that the test φ∗

ε,∆ achieves the asymptotic minimax rate.
Consider now the case M ≤ c∗ ≤ ∞. Then, asymptotically jθ ≤ j∆ and

the test (16) involves only the scaling coefficients. Under the null hypothesis
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∑

I∈Jj∆−1
Y 2

I /ε
2 has a χ2 distribution with Cϕ degrees of freedom and the sig-

nificance level of the test is clearly α. The Type II error for any f ∈ F(γ(ε,∆))
is

β(φ∗ε,∆, f) = Pf

(

∑

I∈Jj∆−1

Y 2
I /ε

2 < χ2
Cϕ,1−α

)

.

Let f0 be the projection of f on the finite-dimensional linear span of ϕj∆,k, k =
0, . . . , Cϕ − 1. For any f ∈ F(γ(ε,∆)) we have ‖f0‖2 =

∑

I∈Jj∆−1
w2

I and

(19) β(φ∗ε,∆, f) = X2
Cϕ,ε−2‖f0‖2(χ2

Cϕ,1−α),

where X2
ν,d(·) is the probability function of the noncentral χ2 distribution with ν

degrees of freedom and non-centrality parameter d. Since f ∈ Bs
p,q(Ω∆,M) and

ε∆−s′ → c∗ ≥M ,
∑

j≥j∆

∑

I∈Jj

w2
I ≤ 2M2∆2s′ ≤ 2ε2

(e.g., Meyer [15] and Spokoiny [16]). On the other hand, for any c and any f ∈
F(cε2∆−1)

‖f‖2
Ω∆

= ‖f0‖2 +
∑

j≥j∆

∑

I∈Jj

w2
I ≥ cε2.

Hence, for c > 2, ‖f0‖2 ≥ (c− 2)ε2 and (19) yields

β(φ∗ε,∆, f) ≤ X2
Cϕ,c−2(χ

2
Cϕ,1−α),

where one can always find a c = c(β) > 2 such that the above expression will be
less than any fixed β.

Finally, note that although the proof showed that the test (16) achieves the rate

ε8s′′/4s′′+1∆−(2s+1)/(4s′′+1) for any 0 ≤ c∗ < M , this rate in fact coincides with the
classical rate ε2∆−1 for non-zero c∗. ¤

4.2. Proof of Theorem 2.3. For convenience define the following two
tests:

φ
(1)
ε,∆ = 1

[

max
max{j∆,jmin}<jθ≤jmax

T (jθ) +Q(jθ)
√

V 2
0 (jθ) +W 2

0 (jθ)
>
√

2 log log(ε−2∆)

]

,

φ
(2)
ε,∆ = 1

[

∑

I∈Jj∆−1

Y 2
I /ε

2 > χ2
Cϕ,1−α

]

.

Obviously, φa
ε,∆ =

{

φ
(1)
ε,∆ if jmin > j∆,

max(φ
(1)
ε,∆, φ

(2)
ε,∆) otherwise.

Under the null hypothesis,

{

T (jθ) +Q(jθ)
√

V 2
0 (jθ) +W 2

0 (jθ)
, jθ ∈ [max{j∆, jmin}, jε − 1]

}
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is a sequence of O(log(ε−2∆)) weakly dependent, asymptotically N(0, 1) random
variables. Applying the well-known extreme value results for Gaussian random
variables (e.g., Leadbetter et al. [13]) one has

P0(φ
(1)
ε,∆ = 0) → 0 as ε∆−1/2 → 0.

The significance level of the test φ
(2)
ε,∆ is clearly α and therefore

α(φa
ε,∆) ≤ P0(φ

(1)
ε,∆ = 1) + P0(φ

(2)
ε,∆ = 1) ≤ α+ oε∆−1/2(1).

Choose now any set of parameters θ = (s, p, q,M) ∈ T . Consider first the case

ε∆−s′ → 0 and ε∆−s′

max → c∗, 0 ≤ c∗ < Mmin. Then, for sufficiently small ε and
∆, jmin > j∆. Define j∗θ by

j∗θ =
4

4s′′ + 1

(

log2

(

M

ε

)

+
1

2p′
log2

∆−1

2 log log(ε−2∆)

)

.

Given θ, for any f from the alternative

(20) Pf (φ
(1)
ε,∆ = 0) ≤ Pf

(

T (j∗θ ) +Q(j∗θ )

(V 2
0 (j∗θ ) +W 2

0 (j∗θ ))
1
2

≤
√

2 log log(ε−2∆)

)

≤ Φ

(

√

2 log log(ε−2∆) − Ef (T (j∗θ ) +Q(j∗θ ))

(Varf (T (j∗θ ) +Q(j∗θ )))
1
2

)

+ oε∆−1/2(1).

Substituting j∗θ and γ(ε,∆) = ε
8s′′

4s′′+1 ∆
− 2s+1

4s′′+1 (2 log log(ε−2∆))
2s′

4s′′+1 in (20) and re-
peating the arguments in the proof of Theorem 2.2, a straightforward calculus im-
plies that it is always possible to find a constant c such that for any f ∈ F(cγ(ε,∆))

(21)
Ef (T (j∗θ ) +Q(j∗θ ))

(Varf (T (j∗θ ) +Q(j∗θ )))
1
2

>
√

2 log log(ε−2∆),

and hence
sup

f∈F(cγ(ε,∆))

Pf

(

φ
(1)
ε,∆ = 0

)

= oε∆−1/2(1).

Consider next the case ε∆−s′ → 0 and ε∆−s′

max → c∗, Mmin ≤ c∗ ≤ ∞. Asymp-
totically, j∆ ∈ [jmin, jmax], but

Pf

(

φa
ε,∆ = 0

)

≤ Pf

(

φ
(1)
ε,∆ = 0

)

,

and the previous arguments remain valid for this case as well. Summarizing, for
ε∆−s′ → 0 the adaptive test φa

ε,∆ always achieves the optimal rate γ(ε,∆) up to

an additional log log(ε−2∆) factor.

Finally, suppose ε∆−s′ 6→ 0. Asymptotically, j∆ ∈ [jmin, jmax] again, but now
use the fact that

Pf

(

φa
ε,∆ = 0

)

≤ Pf

(

φ
(2)
ε,∆ = 0

)

.
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The test φ
(2)
ε,∆ does not depend on θ and involves only the scaling coefficients. Hence,

for ε∆−s′ 6→ 0 the adaptive test obviously achieves the same classical rate ε2∆−1

as the nonadaptive test in Section 2.2 without any price for adaptivity. ¤
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