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We explain the problem of selective inference in complex research using a recently
published study: a replicability study of the associations in order to reveal and establish
risk loci for type 2 diabetes. The false discovery rate approach to such problems will be
reviewed, and we further address two problems: (i) setting confidence intervals on the
size of the risk at the selected locations and (ii) selecting the replicable results.

Keywords: false discovery rate; false coverage rate; multiple comparisons; replicability;
genome-wise association scan

1. Introduction

In the current decade we have witnessed an explosion in the size of a typical study,
in terms of both the amount of data and the many research questions that fall into
the domain of the study and determine its outcome. Instead of a study trying to
establish associations between a disease and a few genetic markers on the genome,
the current practice is to engage in a genome-wise scan for associations (GWA)
involving hundreds of thousands of markers of location in the form of single
nucleotide polymorphisms (SNPs) in order to identify risk loci. The question
we address is how to draw inference from the few findings selected from the
many tested. Moreover, there are new demands in the process of comparing one’s
own results with those of previous studies. The ease with which the data of
completed studies can be stored has driven research funds and journals to require
that even these large datasets be made publicly available. As a result, the question
of replicability of results has gained a more concrete dimension: not only a verbal
discussion, but a possibility to analyse one’s own data together with previously
collected data.

In order to make our discussion more concrete, we take a study that reports
replicable results in an important area as an example. While generally the study
benefits from careful and competent data analysis, issues regarding the effect of
selection on the inferences made have not been addressed adequately, as we shall
explain below. This is not a limitation unique to the example study. Many large
and complex studies suffer from similar problems, partly because some of the
statistical challenges raised by selective inference have only recently surfaced.
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Table 1. Odds ratio estimates, 0.95 confidence intervals (CIs) and 0.05 FCR-adjusted CIs for
confirmed T2D susceptibility variants in Zeggini et al. (2007).

region odds ratio 0.95 CIs FCR-adjusted CIs

FTO 1.17 [1.12, 1.22] [1.05, 1.30]
CDKAL1 1.12 [1.08, 1.16] [1.03, 1.22]
HHEX 1.13 [1.08, 1.17] [1.02, 1.25]
CDKN2B 1.20 [1.14, 1.25] [1.07, 1.34]
CDKN2B 1.12 [1.07, 1.17] [1.00, 1.25]
IGF2BP2 1.14 [1.11, 1.18] [1.06, 1.23]
SLC30A8 1.12 [1.07, 1.16] [1.01, 1.24]
TCF7L2 1.37 [1.31, 1.43] [1.23, 1.53]
KCNJ11 1.14 [1.10, 1.19] [1.03, 1.26]
PPARG 1.14 [1.08, 1.20] [1.00, 1.30]

(a) The type 2 diabetes study

In the study ‘Replication of genome-wide association signals in UK samples
reveals risk loci for type 2 diabetes’ by Zeggini et al. (2007), a UK sample of
type 2 diabetes (T2D) was compared with a control sample to reveal risk loci
(following the authors, we refer to it as the WTCCC1 study). The results were
combined with the results of three other studies: another one from the UK and two
others conducted previously by different organizations elsewhere (WTCCC2, DGI
and the Fusion studies), with the intention to reveal replicated associations. Ten
regions were identified as each having a large association as measured by the odds
ratio. The estimates of the odds ratios and their 95 per cent confidence intervals,
along with the p-values, estimated from different combinations of studies, are
reported by Zeggini et al. (replicated in part here in table 1). The p-values of the
associations reported for the WTCCC1 study range from 10−2 to 10−8. In their
combined re-analysis of the four studies, the reported p-values range from 10−6

to 10−48. No explicit adjustment was made in the new study or in the combined
analysis, neither for the fact that some 400 000 SNPs were scanned and only the
selected few are reported, nor for the fact that the search for signals took place
over four studies. Instead, 10−5 was used as a first cut-off, and a heuristic approach
to the prioritization of signals was developed using the information from other
studies to justify picking weaker signals in the new study. The heuristic approach
included the following:

(i) p-values between 10−2 and 10−5 in the primary GWA scan,
(ii) corroborating evidence for association with T2D in the companion

Diabetes Genetics Initiative (DGI) and Fusion scans,
(iii) biological candidacy of the gene, and
(iv) identification of multiple independent associations within the same locus

(defined as r2 < 0.4).

As the authors emphasize, ‘These criteria would have led to selection of SNPs
within both KCNJ11 and PPARG for second-wave replication despite the modest
evidence for association based on the original WTCCC scan. Indeed, despite
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concerns that differences in ethnic origin, ascertainment schemes, genotyping
platforms and analysis plans across the three studies would result in effect size
heterogeneity, the enhanced signals observed at known susceptibility variants
in KCNJ11 (p = 0.0013 in WTCCC, p ≈ 5.0 × 10−11 in combined analysis of
all studies) and PPARG (p = 0.0013 in WTCCC, p ≈ 1.7 × 10−6 in combined
analysis) provided encouragement that this approach would highlight additional
loci with high prior odds of association’.

There is quite a strong indication for some of the signals, but we cannot
quantify the uncertainty involved, as follows:

(i) What does 10−2 < p < 10−5 mean? With 400 000 tests, we expect about
4000 tests to reach significance at the 10−2 level, 400 at the 10−3 level and
four at the 10−5 level if no association is true.

(ii) Do the 10 reported 95 per cent confidence intervals still have 0.95
probability to cover their respective odds ratios?

(iii) Do p-values smaller than 10−6 in the combined analysis of the four
experiments indicate replicated signals? In what sense?

(b) Our goal

It is quite acceptable these days in genomic research to address question (i),
where a few significant results are selected out of a large pool of p-values, with the
aid of statistical methods that address the issue of multiplicity. We review the
false discovery rate (FDR) approach to this question, presenting the concept,
the methods and variations on these concepts and methods. We then address the
other two selective inference questions. The question about replicability has
surfaced only recently, with the rise of complex research that combines the
available datasets, and will become more and more essential as large consortia
that conduct this kind of selective meta-analysis are created. We offer a coherent
way of looking at this question, presenting ways to select discoveries with a
lower or higher level of replicability. The setting of confidence intervals on the
selected set has not been recognized until recently as a serious problem, but this
is changing as the number selected, relative to the size of the pool over which the
selection is conducted in a typical study, decreases. We discuss the false coverage
rate approach to this problem. For all three questions, the readers can take away
methods that can be immediately and directly implemented in their studies, even
if better ones will be found in the future.

2. The false discovery rate approach

(a) The false discovery rate

The FDR was suggested by Benjamini & Hochberg (1995, hereafter BH) as an
appropriate intermediate way of controlling for the inflated type I error in large
studies. If one uses regular α-level testing in order to tag R discoveries (where
a discovery is a rejected null hypothesis) among the m tested, then the number
of false discoveries being made, denoted by V , may become very high. In fact, if
only a few of the tested potential discoveries are true discoveries (i.e. false null
hypotheses), m1, say, and the other m0 = m − m1 are false ones (i.e. true null

Phil. Trans. R. Soc. A (2009)



4 Y. Benjamini et al.

hypotheses), the expected number of false discoveries is αm0 ≈ αm. With 400 000
potential discoveries of associations in our example, working at the usual α = 0.05
results in E(V ) ≈ 20 000 even if m1 is in the thousands.

It is therefore clear that we need to use a stricter measure for declaring
significance in such studies. The trusted Bonferroni method, in which we use
αBON = α/m in order to call a discovery statistically significant, is at the other
extreme. It always assures that E(V ) ≤ α, and therefore also that the probability
of making even one error, namely the family-wise error rate (FWER), is not
larger than α, but the bar for making a call about a discovery is set very high: it
is 0.05/400 000 = 1.25 × 10−7 in our example.

The FDR takes a middle way by addressing the proportion of the false
discoveries among the discoveries. That is, if R discoveries are made, define the
proportion of false discoveries Q to be V/R if R > 0, and otherwise 0. Then the
FDR is the expected proportion of false discoveries

FDR = E(Q) = E
[(

V
R

)
I (R > 0)

]
,

where I (·) is the indicator function. We advocate to control the FDR at a
predefined level q in large studies.

What makes the FDR an attractive target in such studies? Screening m = 100
potential discoveries, making three false ones among 60 discovered is bearable;
making three false ones among four discovered is unbearable. So the FDR is
adaptive to the problem being faced, allowing more errors when the problem offers
more discoveries. Moreover, the same argument holds when inspecting 100 000
findings rather than 100, so the FDR is scalable to the size of the problem. Suppose
that nothing is real in the findings we screen, and we ensure that FDR ≤ q; it then
follows that the FWER is also bounded by the same q (and hence the tendency to
work with the traditional q = 0.05). However, if some findings are real, controlling
the FDR instead of the FWER allows more discoveries.

Finally, in screening studies such as the study we use as an example, the
discoveries are not the end of a story but rather the beginning of many. Each
discovery is followed up with more bioinformatic and ‘wet-lab’ efforts, with
high investment of time and money. The FDR naturally captures this effort,
by controlling

FDR = E
(

efforts wasted on chasing red herrings
total follow-up efforts

)
. (2.1)

From this perspective, one may sometimes choose to work with q’s higher than
the traditional 0.05. See Benjamini & Yekutieli (2005a) for a discussion of this
point that offers some guidelines in genomic research.

(b) Controlling the false discovery rate

The following method was shown in BH to control the FDR at or below
the desired level q under some conditions. Each hypothesis, as to whether a
specific finding is real or not, is tested and a p-value is calculated. Let H0i , i =
1, . . . , m, be the hypotheses, and pi , i = 1, . . . , m, be the corresponding p-values.
Sort the p-values as p(1) ≤ p(2) ≤ · · · ≤ p(m) and let p(k) be the largest value,
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so that p(k) ≤ kq/m. If no such k exists select no discovery as real. Otherwise,
reject the k hypotheses corresponding to p(1), . . . , p(k), declaring these findings
to be discoveries.

An alternative way of presenting the results of this procedure is by presenting
the adjusted p-values. The BH-adjusted p-values are defined as

PBH
(i) = min

((
min
j≥i

mp( j)/j
)

, 1
)

.

Then PBH
(i) ≤ q if and only if H(i) is among the discoveries when using the procedure

in BH at level q.

(c) Controlling the false discovery rate in the type 2 diabetes study

We demonstrate the procedure in BH using the WTCCC1 study. The first
column of table 2 carries the information about the p-values. Let us
assume for the sake of this demonstration that these are the most
extreme 10 among the approximately 400 000 over which the scan was
made. Sorting them we get the 10 sorted p-values: 6.7 × 10−13, 2.0 × 10−8,
5.4 × 10−6, 2.5 × 10−5, 3.2 × 10−4, 7.6 × 10−4, 1.7 × 10−3, 1.3 × 10−3, 1.3 ×
10−3, 2 × 10−2. Multiplying the ith p-value by 400 000 and dividing by i,
we get the sequence 2.7 × 10−7, 4.0 × 10−3, 7.2 × 10−1, 2.5, . . . , the other six
also being bigger than 1. Taking for each i, the minimum overall p(j),
such that j ≥ i and 1, we get the above three as the only BH-adjusted
p-values that are smaller than 1, all others being 1. At the conventional FDR
level of 0.05 only two discoveries have been made. For the DGI study using similar
analysis, we get four BH-adjusted p-values that are smaller than 1, and all these
are also smaller than 0.01. Thus, in this study, all four are statistically significant
at any reasonable level.

(d) Validity under dependency

If the test statistics from which the p-values are calculated are independent,
or positively dependent, the FDR is controlled by the above method at level
qm0/m ≤ q. For the exact conditions, see BH and Benjamini & Yekutieli (2001).
In particular, the condition for positive dependency addresses block dependencies
that result very naturally in association studies because of haplotypes. It was also
shown in the latter that, if the procedure in BH is used with q/(1 + 1/2 + · · · +
1/m), the FDR is always controlled at level qm0/m ≤ q. This result has sometimes
been interpreted as a warning that the method without the inflating factor does
not control the FDR at level q. This is definitely not the case, as many simulation
studies by other authors have shown.

The joint p-value distribution in which the FDR of the BH procedure reaches
its upper bound (Guo & Rao 2008) is an extremely unusual distribution. For
example, under the complete null hypothesis, the following holds: for j = 1, . . . , m,
with probability q/j , a randomly drawn subset of j p-values are set precisely
in the interval [q × (j − 1)/m, q × j/m], while the remaining m − j p-values
are set in [q, 1]. In this unusual case PBH

(j) and also the other FDR methods
described in the following sections fail to offer the right protection without the
correction factor.
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On the other hand, Reiner-Benaim (2007) showed, via a combination of
simulations and analytical results that, for normally distributed two-sided test
statistics under any correlation structure,

FDR ≤ qm0

m
×

(
1 + m0

m
(1 − m0/m)

)
≤ q. (2.2)

Since log odds ratios are approximately normally distributed, the method in BH
can be used to analyse the data from the T2D study in spite of the possible
dependencies.

(e) Other methods that control the false discovery rate

When using the procedure in BH, we actually control the FDR at a level
lower than what we are willing to accept, i.e. qm0/m instead of q. It is natural
to try to estimate m0, or equivalently the factor p0 = m0/m. Numerous efforts
have been made in this direction, both theoretical and empirical, plugging the
estimated p0 back into the procedure in BH, by replacing q by qm/m0. However,
such methods introduce more variability; hence assuring theoretically the FDR
control of such procedures is not easy to establish. Methods of this nature that
have proven control of the FDR, at least under independence, are the one by
Storey et al. (2003), others by Blanchard & Roquain (in press), the two-stage
procedure by Benjamini et al. (2006) and the multiple-stage one in Gavrilov
et al. (2009). The last two have also been shown via simulation studies to have
quite tight control of the FDR even in situations with strong positive dependency
(Romano et al. 2008).

Nevertheless, in complex research as in the example we use here, the number
of potential discoveries will usually be very small relative to the total number,
because the discoveries are not likely to be important if abundant in the extremely
large pool searched. With p0 ≈ 1 there is no advantage in estimating it, and in
fact the performance actually deteriorates because of the extra protection needed
to combat the estimation error. Hence, we shall not dwell further here on the
details of these procedures.

(f ) Other approaches to the false discovery rate

Two variations on the concept of FDR were discussed in BH, before adopting
the version we have presented. The first involves conditioning on making
any discovery, pFDR = E(V/R|R > 0), later emphasized as the positive false
discovery rate in Storey (2002); the other one is the ratio of expectations,
Fdr = E(V )/E(R). Much research has been devoted to these concepts because
they are natural in the Bayes and empirical Bayes frameworks. They are also often
encountered in the bioinformatic and biostatistical literature about the analysis
of microarray experiments, where they are presented within the framework of
a mixture model. In this model, each hypothesis about a gene’s expression
has p0 < 1 probability of being true with the distribution of the corresponding
p-value being uniform F0 ∼ U (0, 1), and probability 1 − p0 of being false with an
unknown continuous distribution F1. The practical differences among the three
concepts in large problems are not big, as we get FDR = pFDR = Fdr in the
asymptotic version of the model, where the number of genes m tends to ∞.
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However, with p0 = 1 being a real possibility, meaning there is no true result to
be discovered in the pool over which we search, only the control of FDR offers
a valid approach.

Efron and co-authors have expanded the family of FDR concepts further into
the Bayesian and empirical Bayesian territory by working with the local FDR,
fdr(z) = p0f0(z)/f (z), and offering methods that incorporate the estimation of the
density under the null f0(z), of the density under the mixture of the null with the
alternative f (z), and the estimation of p0. For a very interesting and accessible
review of these ideas, see the text and discussion of Efron (2008).

Yekutieli (2009) explains the role of selection in controlling the occurrence
of false discoveries in Bayesian analysis, and argues that selection may also
affect Bayesian inference, and especially Bayesian inference based on subjective
priors. He further introduces selection-adjusted Bayesian methodology based
on the conditional posterior distribution of the parameters given selection. In
particular, he shows that the local FDR and positive FDR can be expressed
as selection-adjusted Bayesian inference for the two-group mixture model.
The above approaches using the mixture model essentially cope with the
selection problem by avoiding a subjective p0 in the model via the empirical
estimation of p0.

As a final note, while differences exist, the common theme of all the efforts
discussed in this section is that the issue of selective inference should be addressed.
Just as we formally address the uncertainty involved in estimation or in the testing
of a single hypothesis, with the aid of well-defined statistical methods, so should
we make use of a fully specified method in order to cope with the problems posed
by selective inference.

3. Confidence intervals for selected parameters

(a) The coverage problem

Too often the decisions as to what clues to follow with expensive research are
based on significance only, rather than on estimated effect sizes. Our example
study takes the better route, reporting the estimated odds ratio and its confidence
interval associated with each of the few selected locations on the genome.
They follow the practice of reporting the intervals of the selected set at their
marginal (nominal, unadjusted) level. Unfortunately, it is common practice to
ignore multiplicity when it comes to multiple confidence intervals, even though
adjusting the testing of hypotheses for multiplicity has become widespread (but
not mandatory as our example testifies).

Benjamini & Yekutieli (2005b) demonstrate that confidence intervals
constructed for selected parameters cannot ensure nominal coverage probability.
They suggest the false coverage-statement rate (FCR) as the appropriate
criterion for capturing the error for confidence intervals constructed for selected
parameters. The false coverage rate is defined in a way that parallels the definition
of the FDR. Let R now be the number of confidence intervals constructed, and
let V be the number of confidence intervals that do not manage to cover their
respective parameters. Then V/R is the proportion of the intervals made that
fail to cover (where again V/R = 0 when R = 0), and FCR = E[(V/R)I (R > 0)].
Phil. Trans. R. Soc. A (2009)
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Figure 1. Simulated example—scatter plot of (yi , θi). The observations shown in black are the
58 level 0.05 BH procedure discoveries. The solid lines are the 0.95 confidence intervals. The dashed
lines are the 0.05 FCR-adjusted confidence intervals.

Note that, when requiring that FCR ≤ q, we do not require that the confidence
intervals have simultaneous coverage of 1 − q, a much stronger requirement. We
merely require coverage-on-the-average, but the average is taken over the selected
intervals only.

Figure 1 displays a simulated example of 400 000 realizations of (θi , Yi),
where θi are i.i.d. receiving the values ± exp(3) with equal probability and
Yi|θi ∼ N (θi , 1). One can consider θi as the association log-odds ratio and Yi
as its estimator. The observations shown in black are the R = 58 discoveries
produced by the level 0.05 BH procedure, applied to the two-sided p-values
pi = 2 × {1 − Φ(|Yi|)}; the remaining observations are shown in grey. The
solid lines are the marginal 0.95 confidence intervals Yi ± Z1−0.05/2; they cover
0.949 of all 400 000 θi realizations, but only six of the 58 BH discoveries;
thus V /R = 0.90.

(b) Constructing false discovery rate-controlling confidence intervals

Benjamini and Yekutieli (2005b) set the following framework for discussing
the false coverage rate. They assume that there are m parameters θ1, . . . , θm ,
with corresponding estimators T1, . . . , Tm , and the goal is to construct valid
confidence intervals for the parameters selected by a given selection criterion
that may depend on the value that the estimators can take, S̃(T1, . . . , Tm) ⊆
{1, . . . , m}. Let R be the number of selected parameters, i.e. R = |S̃ |. As a
general method for ensuring FCR ≤ q for any selection criterion, they suggest
constructing marginal 1 − R × q/m confidence intervals for each of the R
selected parameters.

Phil. Trans. R. Soc. A (2009)



10 Y. Benjamini et al.

When using the procedure in BH to select the parameters of interest, by way
of testing whether each θi equals its null value θ0

i versus the alternative θi �= θ0
i ,

as demonstrated here for the T2D study (where each odds ratio was tested as to
whether or not it is 1), we get a very desirable property: for each selected θi , the
level-q FCR-adjusted confidence interval will not cover θ0

i . This property does
not always hold, as it also relies on the fact that the confidence intervals for the
log-odds ratios are symmetric about the estimated log-odds ratios. Whenever this
fact holds, so does the desirable connection between FDR testing using BH and
FCR confidence intervals.

Figure 1 further displays the FCR-adjusted confidence intervals. The dashed
lines are the 0.05 FCR-adjusted confidence intervals Yi ± Z1−R×0.05/(2×400 000); they
cover 57 of the 58 θi and yield V /R = 0.017. Note that the remedy offered by the
FCR-adjusted confidence intervals, as well as the lack of coverage by the standard
95 per cent confidence intervals, persists even when ‘no hypothesis is true’, in the
sense that θi �= θ0

i for all i.

(c) Selected confidence intervals in the type 2 diabetes study

Zeggini et al. (2007) highlighted 10 locations associated with T2D. Odds
ratio estimates based on the joint analysis of the four studies, as well as 0.95
confidence intervals, are given there. Table 1 reproduces these results in the first
three columns. Since 10 parameters are chosen out of 400 000, the 0.05 FCR-
adjusted confidence intervals are the marginal 1 − 10 × 0.05/400 000 intervals,
given in the last column of the table. They are expected to offer approximately
by 0.95 coverage probability for each selected odds ratio. None of the FCR-
adjusted odds ratio confidence intervals covers 1, though two are close enough
to be indistinguishable.

4. Selecting replicable results

(a) The conjunction approach to replicability

Consider the search for replicable results across n studies. The approach taken in
the T2D study is to combine the data of a single location across the studies, and
analyse them jointly as if they were a single meta-study. In principle, we end up
with m analyses for m locations, each summarized by a p-value and an estimate of
the size of the effect. From these the best results are selected. The results of this
meta-study regarding all 10 locations on the genome reported in Zeggini et al.
(2007, table 1) were found to be statistically significant even after adjusting for
the selection effect using the procedure in BH.

Nevertheless, this fact does not imply that the findings are replicable. The
strongest scientific statement about the replicability of a discovery would be to
establish that the discovery was repeated in all the studies examining it, even
though the studies might have differed in terms of the populations (different
cohorts), the diagnostic methods, the laboratory methods or the statistical
methods used. This is at the heart of the experimental scientific dogma: two
different experiments showing the same result, each having 1000 cases, are a
better evidence than a single experiment with 2000 cases showing the same result,
because they offer evidence that the result is replicable.
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(b) The partial conjunction approach to replicability

The partial conjunction hypothesis, introduced in Benjamini & Heller (2008),
sets a framework for discussing replicability. With m research questions all studied
in each of n studies, we define the null hypothesis that discovery regarding g is
not true in study j to be H0j(g). If we try to show that the discovery is true in at
least u studies, with 1 ≤ u ≤ n, we may test the complementary statement as our
null hypotheses: test whether at most n − u + 1 individual null hypotheses are
true. We can phrase this hypothesis differently: let k be the (unknown) number
of true discoveries (false null hypotheses); then the partial conjunction null is
written as H u/n(g) : k < u. Rejecting this hypothesis implies that the discovery
regarding g has been replicated in at least u studies.

In the T2D study, the investigators actually tested the global null at each
location—that the tested hypotheses are true in all studies ∩n

i=1H0i(g). This
hypothesis is actually H 1/n(g), i.e. u = 1, meaning that rejecting this null
hypothesis implies that the discovery is true in at least one study. However, it does
not imply that the discovery is true in more than one study, as the global null may
be rejected just because the finding was extremely significant in only one study.
For example, in the T2D study small p-values in the test of the global null may
be due to only one cohort (or study) having highly significant associations with
diabetes. Nevertheless, the association might have failed to appear in more than
one study—rejecting the global null does not at all indicate a replicable discovery.

Ideally, we would have liked to show that the discovery can be observed in
all studies in order to claim that it is replicable. That is, we would like to be
able to reject the null hypothesis of the full conjunction with u = n, namely
H n/n(g). Because of the differences in the many factors affecting the results in
each particular study, this may not be feasible. It is also possible that we may
simply lack power to support such a strong statement even if it is true across
all studies.

Instead, we allow increasingly weaker replicability statements stating that
the discoveries were real in at least all but one study, all but two studies, etc.
That is, we can test the partial conjunction hypotheses H u/n(g), with u = n, n − 1,
n − 2, . . . , 2, offering increasingly weak replicability results. The largest u we can
still reject is the strongest statement we can make.

(c) Testing of partial conjunction hypotheses at a fixed u

For a location on the genome g, let p(1)(g) ≤ · · · ≤ p(n)(g) be the ordered p-values
from n studies. Benjamini & Heller (2008) introduced p-values for testing the
partial conjunction hypothesis. We present first one version based on the Fisher
test, which is valid when the p-values across studies are independent,

pu/n(g) = P(χ2
2(n−u+1) ≥ −2

n∑
i=u

log p(i)(g)), (4.1)

where χ2
ν denotes a chi-squared random variable on ν d.f.

For testing a large family of partial conjunction hypotheses, H u/n
0 (g),

g = 1, . . . , m, Benjamini & Heller (2008) suggested the following procedure: first
combine the n p-values for every g as appropriate for testing H u/n

0 (g), and
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then use an FDR controlling procedure on the partial conjunction p-values
pu/n(g), g = 1, . . . , m. (The number of studies combined per location, n, may vary
from one location to the next, so a more precise yet cumbersome notation for the
partial conjunction p-value at g is pu/n(g)(g).)

Other choices of p-values for partial conjunction hypotheses that are discussed
there combine the same n + 1 − u largest p-values using Bonferroni, Simes
or other tests, and the choice is guided by the joint distribution of the
p-values at g.

(d) Testing of partial conjunction hypotheses at all levels of u

It is not clear as to what value of u should be chosen in order to establish
replicability. In practice, instead of predefining u, it is possible to test in order
the partial conjunction hypotheses with u = 1, 2, . . . , n. The following procedure
can be applied to get a lower bound on the true number of true discoveries for
every g that has been rejected.

Step 1. For each gene g, g = 1, . . . , m compute the global null p-value p1/n(g).
Step 2. Apply the BH procedure at level q on {p1/n(g) : g = 1, . . . , m}. Let R

be the number of rejected hypotheses.
Step 3. For each of the R units where the global null hypothesis has

been rejected, test sequentially the partial conjunction hypotheses
u = 2, 3, . . . , n at level Rq/m:

umax(g) =
(

arg min
u>1

{
pu/n(g) >

Rq
m

})
− 1.

The results of this procedure can be presented in terms of the adjusted
p-values as follows: for u = 1 the ith largest adjusted p-value is p̃1/n

(i) =
min(minj≥i mp1/n

(j) /j , 1), and for u > 1 the adjusted p-value is

p̃u/n
(g) = m∑m

g=1 I [p̃1/n
(g) ≤ q]p

u/n(g).

Then, H u/n(g) is among the discoveries if and only if p̃u/n
(g) ≤ q.

The following theorem shows that, by applying the above procedure, we expect
only a fraction q of the lower bounds to be larger than the true number of studies
where the findings are true.

Theorem 4.1. If the test statistics across units g ∈ {1, . . . , m} are independent,
then the expected proportion of lower bounds that exceed the number of false null
hypotheses (umax(g) > k(g), where k(g) is the number of false null hypotheses), out
of all R units rejected, is q.

The proof is in appendix A. See Benjamini & Heller (2008) and Heller et al.
(2009) for related results.
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Table 3. For each gene, the lower bound umax on the number of studies in which it was found to
be associated with T2D for the procedure in §4d with q = 0.05, as well as the associated p-value
and adjusted p-value. The genes are sorted first by decreasing umax, then by increasing pumax/n .

gene ID umax pumax/n p̃umax/n

TCF7L2 3 1.4 × 10−8 7.0 × 10−4

CDKN2B 2 7.5 × 10−8 0.00375
CDKAL1 2 4.2 × 10−7 0.021
FTO 2 5.0 × 10−7 0.025
IGF2BP2 1 1.3 × 10−13 5.2 × 10−8

KCNJ11 1 7.2 × 10−10 0.000144
HHEX 1 1.9 × 10−9 0.00025
SLC30A8 1 1.9 × 10−7 0.019

So far, the control over false-positive lower bounds has been established
theoretically only for partial conjunction p-values that are independent across
locations. Still, the results about the stability of the procedure in BH under
dependency encourage us to advocate its use in settings similar to those of the
T2D study. Further verification of the validity of the procedure in settings with
SNP-type dependence is a direction for future research.

(e) Replicable findings in the type 2 diabetes studies

Table 2 shows in columns 2–5 the p-values in the four cohorts that correspond
to the genes judged to be associated with T2D in Zeggini et al. (2007), and
in columns 6–9 the Fisher-based partial conjunction p-values for u = 1, . . . , 4,
respectively. Note that the ranking of the genes based on partial conjunction
p-values changes with the choice of u. Specifically, the three most significant
p-values are as follows (in order): for u = 1, TCF7L2, IGF2BP2, CDKN2B; for
u = 2, TCF7L2, CDKN2B, CDKAL1. As discussed above, the ranking based on
u = 2 makes more sense than the ranking based on u = 1 if the goal is to establish
the replicability of the finding.

Some locations were not tested in the WTCCC2 study, so we continued our
analysis by conservatively assuming that the missing p-values are 1. Applying
the BH procedure on the partial conjunction p-values p2/n , g = 1, . . . , 400 000, at
level q = 0.05 resulted in two discoveries: TCF7L2 and CDKN2B. Applying the
BH procedure on the partial conjunction p-values p3/n , g = 1, . . . , 400 000 resulted
in one discovery: TCF7L2.

It is quite possible that applying the partial conjunction approach, which makes
use of the p-values in the individual studies (and is therefore much easier to carry
out for all), would have yielded more replicable results.

Next, we applied the procedure in §4d at level q = 0.05. The BH procedure
on the p-values for testing the global null p1/n , g = 1, . . . , 400 000 resulted in
R = 8 discoveries, and subsequent tests were performed at level α = Rq/m =
8 × 0.05/400 000 = 10−6. Table 3 shows the following results: the association
between TCF7L2 and T2D was discovered in at least three studies; for
three genes an association with T2D was discovered in at least two studies; for
four genes an association with T2D was discovered in at least one study.
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5. Other developments and future directions

(a) Using weights

One objection to our structured approach to selective inference may be that it is
too formal, and it fails to incorporate outside information other than the marginal
p-values. For example, in the T2D study, the authors claim that they have also
considered two other factors when making their choice: the biological candidacy
of the gene and the identification of multiple independent associations within
the same locus.

This possible objection is unfounded. Both Benjamini & Hochberg (1997) and
Genovese et al. (2006) employ weights to differentiate between the hypotheses
tested within the FDR framework. The weights may incorporate differing
importance of the hypotheses (in the first approach), where the weighted FDR is
defined as

FDR = E

(∑m
i=1 wiVi∑m
i=1 wiRi

I

(
m∑

i=1

wiRi > 0

))
,

Vi and Ri being a false rejection and a rejection of an individual hypothesis
i, respectively, and wi its weight. In the study discussed here, the weights can
reflect both the biological importance of the association between a SNP and the
disease, information that is available prior to conducting the analysis, and the
consistency of the association across nearby SNPs, information which is available
from the analysis. The use of the second type of information does not increase
the selection problem because it is statistically independent from the significance
of the association at a SNP.

The weights can alternatively reflect different prospects for showing effects (in
the second approach). Now the definition of the FDR remains unchanged, but
the procedure is different, offering more power to reject a hypothesis that was
assigned a higher weight, without an increase in the FDR. Thus, the two available
studies (DGI and Fusion) can be used to define the weights, these in turn being
used to explore the two UK studies.

Finally, given that some studies may be more reliable or important than
others, different weights may be assigned a priori to these studies. A testing
strategy that takes the weights into account may be more powerful and more
reproducible. The partial conjunction tests will be more general than the tests
introduced in §4c, by allowing different studies to be weighted differently
when combined. Moreover, the power of the test may increase as well as the
reproducibility of the finding. Specifics follow. Since the partial conjunction
null hypothesis is the union of all

( n
n−u+1

)
intersection hypotheses of size

n − u + 1, ∩n−u+1
k=1 Hjk {j1, . . . , jn−u+1} ⊂ {1, . . . , n}, the weighted Fisher method

(Hedges & Olkin 1985) can be used to test for partial conjunction hypotheses
as follows. Let Pw = ∏n−u+1

i=1 U
wji
i , where U1, . . . , Un−u+1 are independent

U (0, 1) random variables, and let pw = ∏n−u+1
i=1 p

wji
ji be the test statistic

for the intersection hypothesis. The p-value is therefore f (pj1 , . . . , pjn−u+1) =
Pr(Pw ≤ pw). The partial conjunction p-value is the largest of the

( n
n−u+1

)
intersection hypotheses p-values, pu/n = max{j1,...,jn−u+1} ⊂ {1,...,n} f (pj1 , . . . , pjn−u+1).
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It is straightforward to show that this is a valid p-value, i.e. Pr(Pu/n ≤ α) ≤ α
if H u/n is true. For unit weights, the partial conjunction p-values coincide with
the p-values in §4c.

(b) False discovery rate-controlled hierarchical search

When confronted with complex research problems, with very few potential
discoveries, one can benefit from a hierarchical search strategy. This can be in
the form of first testing some screening hypotheses, and then focusing attention
on a promising subset of the original pool of hypotheses. Alternatively, it can
be achieved by collecting hypotheses in sets in which they are likely to be true
together, or false together. Testing first the sets, and thereby increasing the
signal-to-noise ratio, one can follow with tests within the promising sets. For the
general theoretical formulation of such a selection process, see Yekutieli (2008),
and for a practical implementation in a very large study involving the associations
between gene expression in brain regions and measures of exploratory behaviour,
see Reiner-Benaim et al. (2007).

In other gene-expression studies, the approach is referred to as gene-enrichment
analysis where the clustering of genes into sets is based on external information
regarding the pathways involved. This need not be the only way to partition the
hypotheses. In brain-imaging experiments, for example, the clusters of hypotheses
about brain regions, not necessarily of same size or shape, can be based on a
pilot study (Benjamini & Heller 2007). The partitioning can also be based on
thresholding or on a moving window (see also Pacifico et al. 2007).

The essence of this approach should be clear. When the tested parameters
have further structure, in the sense that we have a grasp of in which sets
the hypotheses are going to be true together and false together (correlated
parameters), hierarchical analysis is of great potential: in many cases not only is
the signal-to-noise ratio increased but the multiplicity problem can be reduced.

We should add a warning, however. The hierarchical search should be so
structured as to allow control of the FDR. It is not merely enough to partition
the hypotheses into sets and to control the FDR separately in each set, as is
sometimes advocated.

(c) Final remarks

The selective inference issue is extremely important in large and complex
studies. We have emphasized the FDR approach, which has turned out to be
inherently scalable, in the sense that it has stood up to the challenges of searching
for a few discoveries from among hundreds of thousands and even millions
of hypotheses. The FDR approach is relevant—possibly because of its triple
Frequentist/Empirical Bayes/Bayes interpretation.

We expect that the original tools developed along with the FDR approach
will continue to evolve. Just as the need to address replicability came to the fore
only very recently, and the effect of selection on confidence intervals was not well
recognized formerly, we expect that the practical challenges in future applications
will continue to shape the methodologies we offer. Still, we already have enough
statistical tools to cope effectively with selective inference problems, so that a
study cannot be considered valid without addressing these issues.

Phil. Trans. R. Soc. A (2009)



16 Y. Benjamini et al.

This research was partly funded by grants from the US National Institute of Health, the German
Israel Fund and the Israel Science Foundation.

Appendix A

Proof of theorem 4.1

Let I0 ⊂ {1, . . . , m} be the index set for units that have at least one true null
hypothesis, so that H n/n is true. Let k(g) be the true number of studies that
show an effect for unit g, and let umax(g) be the result of the procedure in §4d.
Let V (g) = 1 if umax(g) > k(g), i.e. the lower bound exceeds the true number of
studies that show an effect, and 0 otherwise. Let R(g) = 1 if H 1/n(g) is rejected and
0 otherwise. Let Q = ∑m

g=1 V (g)/
∑m

g=1 R(g) if at least one unit g was discovered
and 0 otherwise. Q is the proportion of units with false lower bounds out of all
units discovered. We are interested in the quantity E(Q), where

E(Q) =
m∑

g=1

m∑
l=1

1
l
Pr

(
V (g) = 1 ∩

m∑
i=1

R(i) = l

)

=
∑
g∈I0

m∑
l=1

1
l
Pr

⎛
⎝V (g) = 1 ∩

m∑
i=1,i �=g

R(i) = l − 1

⎞
⎠

=
∑
g∈I0

m∑
l=1

1
l
Pr

(
V (g) = 1 ∩ C (g)

l

)
,

where C (g)

l is the event that p(g)

(l−1) ≤ lq/m, p(g)

(l) > (l + 1)q/m, . . . , p(g)

(m−1) > q, in

which p(g)

(1) ≤ · · · ≤ p(g)

(m−1) are the ordered coordinates of the vector �p(g) of p-values
for testing the global null excluding that of g. Continuing, we have

E(Q) =
∑
g∈I0

m∑
l=1

1
l
Pr

(
V (g) = 1 ∩ C (g)

l

)

=
∑
g∈I0

m∑
l=1

1
l
Pr

(
P (k(g)+1)/n(g) ≤ lq

m
∩ C (g)

l

)

=
∑
g∈I0

m∑
l=1

1
l
Pr

(
P (k(g)+1)/n(g) ≤ lq

m

)
Pr(C (g)

l ),

where the last equality follows since the p-values are independent. Since
H (k(g)+1)/n(g) is a null hypothesis, Pr(P (k(g)+1)/n(g) ≤ lq/m) ≤ lq/m. The result
follows:

E(Q) ≤
∑
g∈I0

m∑
l=1

1
l

× lq
m

× Pr(C (g)

k ) =
∑
g∈I0

q
m

≤ q.

�
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