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On the use of balancing scores and matching in
testing for exposure effect in case-control studies
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Balancing scores, especially the propensity score, are
widely used to adjust for measured confounders in prospec-
tive studies. In case-control studies, the distribution of the
exposure and outcome given the covariates is distorted
when there is an exposure effect, due to the selection pro-
cess. Therefore, it is less obvious how to estimate balanc-
ing scores. Extensive simulations revealed several interest-
ing findings on the use of estimated balancing scores in test-
ing for exposure effect. First, that with the aid of an esti-
mated balancing score obtaining matched sets with a low
absolute standardized difference in covariate means was far
easier than without the aid of an estimated balancing score.
Second, that the approach for estimating the balancing score
matters, and that several potential approaches result in an
inflation of the type I error probability. Third, that the strat-
egy by which we adjust for difference in estimated balancing
scores across groups can have a great effect on the power
of the test for exposure effect. In particular, in our sim-
ulations, the full matching strategy on cavariates and on
the estimated balancing score resulted in better power than
the strategy of covariate adjustment or inverse probability
weighting. We show the usefulness of full matching with the
aid of our recommended approach to estimating the balanc-
ing score in a case-control study.

AMS 2000 subject classifications: Primary 62P10.
Keywords and phrases: Hypothesis testing, Overt bias,
Propensity score, Retrospective studies, Stratification score.

1. INTRODUCTION

In observational studies, the distribution of covariates
may differ in exposed and unexposed subjects. Confound-
ing can be controlled by comparing exposed and unexposed
subjects with the same value of confounding covariates. If
there are many potential confounders, exact matching on
the covariates is difficult or impossible. However, matching
on the scalar propensity score (PS), i.e., the probability of
exposure given the covariates, is sufficient to remove bias
due to all observed covariates [15]. The PS is a balancing
score, i.e., upon conditioning on the PS covariates are in-
dependent of the exposure, and moreover it is the coarsest
balancing score [15].
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A widely used strategy for testing for exposure effect in an
observational study is as follows [17]. First, estimate a bal-
ancing score. Second, match exposed and unexposed people
that are close on the estimated balancing score, as well as
on the actual covariate values (see, e.g., Chapter 8 in [18] for
multivariate matching approaches). Third, check for covari-
ate balance by comparing the absolute standardized differ-
ence in covariate means of exposed and unexposed subjects.
If the balance is not satisfactory, revisit the first two steps
to improve balance. Finally, test the null hypothesis of no
association between exposure and outcome in matched sets.
The attractiveness of this strategy is that the analysis is
similar to the analysis in a blocked randomized experiment,
since the outcome is only used at the final testing stage.

In a case-control study, cases are deliberately over-
represented, and controls are under-represented. This de-
sign is commonly employed when the disease is rare [3].
Typically, all the cases are sampled, along with a subset
of controls chosen from a population of controls (possibly
using frequency matching on key covariates). Often, addi-
tional covariates are collected on the sampled individuals,
and exact matching is not possible unless the additional co-
variates are very few. However, due to the selection process,
the estimated PS may not correspond to the PS in the target
population [9, 1].

The above matching strategy can be used without the
aid of a balancing score (i.e., the starting point is the sec-
ond step where matching is done using the covariate values)
[19, 20]. However, few studies have found that using bal-
ancing scores in case-control studies for estimation of the
exposure effect can be useful [5, 9, 13]. In particular, the
estimated stratification score (SS), i.e., the estimated prob-
ability of the disease given the covariates, was suggested for
case-control genetic association studies [5]. The SS is a ret-
rospective balancing score for a case-control study [1], and
therefore it may play in case-control studies the role that
the PS plays in prospective studies. Reversing the roles of
exposure and outcome in the above strategy, results in an
approach in which the exposure is only used at the final
testing stage.

In this work we assess different potential tests for expo-
sure effect in case-control studies with the aid of estimated
balancing scores. We focus on the common setting in which
exact matching on the covariates measured only on the sam-
pled individuals is not possible. We report the results of sim-
ulation studies, from which we can draw several important
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conclusions for studies of typical size. We show the useful-
ness of our preferred test in a real data example from the
case-control study of [11], where a questionnaire was ad-
ministered to the sampled individuals in order to collect
additional covariates.

2. MATERIALS AND METHODS

2.1 Methods for estimating balancing scores
in retrospective studies

We use the following notation: E is the binary exposure
status, D is the binary disease status, �X is the vector of
covariates. The PS is e( �X) = P (E = 1 | �X). The SS is

d( �X) = P (D = 1 | �X). We denote A independent of B
conditional on C as A ⊥ B | C. Let S be the selection
indicator. We assume that the selection of cases and controls
depends on D only, so that S ⊥ (E, �X) | D. (One may
more generally assume that the selection also depends on
the covariates used for selecting the control sample.)

We consider the following PS estimation approaches, sug-
gested in [9]:
Subcohort (method B in [9]) A subcohort is randomly cho-
sen from the complete cohort at the outset of the study, as
opposed to case-control studies in which a subset of controls
is chosen from the population of controls [14]. The PS is esti-
mated using only the subcohort, and therefore the estimated
PS is consistent if the PS model is correctly specified [9].
Weighted (method C in [9]) Estimating the PS from the
entire sample, giving the controls weights that are inversely
proportional to their sampling fraction. This method re-
quires that the sampling fraction of controls be known,
which is not true in many case-control studies. The esti-
mated PS is consistent if the PS model is correctly specified.
Control only (method D in [9]) Estimating the PS from the

sampled controls. When the null hypothesis that E ⊥ D | �X

is true, since S ⊥ (E, �X) | D, then P (E = 1| �X,D = 0, S =

1) = P (E = 1| �X), so the estimated PS is consistent if the
PS model is correctly specified. When the outcome is rare,
the covariate distribution of controls approaches that of the
entire population (even if the null is false), so this estimated
PS is nearly consistent.
Unweighted (method E in [9]) Estimating the PS from
all observations in the study, without using weights. When
the null hypothesis that E ⊥ D | �X is true, since S ⊥
(E, �X) | D, then P (E = 1| �X, S = 1) = P (E = 1| �X), so
the estimated PS is consistent if the PS model is correctly
specified.
Modeled-control (method F in [9], known as the expo-
sure score of Miettinen [12]) Estimating the PS from the
cases and controls using the following two stage algorithm.
First, fit a model for the probability of exposure given the
covariates and the outcome. Second, for each subject, the
estimated PS is the probability of exposure from the esti-
mated model coefficients, treating all subjects as controls.
When the null hypothesis that E ⊥ D | �X is true, since

S ⊥ (E, �X) | D, the coefficient of the outcome in the model
for the probability of exposure is equal zero if the model is
correctly specified, so the estimated PS is consistent. When
the outcome is rare, the estimated PS is nearly consistent
since it estimates the probability of exposure among the
noncases (even if the null is false).

We consider the following SS estimation approaches:
Unweighted The SS is estimated using all subjects in the
case-control study, by fitting a logistic regression model.
When the null hypothesis that E ⊥ D | �X is true, since

S ⊥ (E, �X) | D, then the estimated SS is consistent if the
data were generated from a logistic model [8].

DRS The disease risk score (DRS) is P (D = 1 | �X,E =
0) [13]. The exposure status and all potential confounding
variables are included as explanatory variables in a model
to predict the outcome. Then, the estimated SS is obtained
by setting the exposure status to zero in the fitted model.
When the null hypothesis that E ⊥ D | �X is true, since

S ⊥ (E, �X) | D, then P (D = 1| �X,E = 0, S = 1) = P (D =

1| �X, S = 1), so the estimated SS is consistent if the data
were generated from a logistic model [8].

2.2 Methods for testing using the estimated
balancing score

We considered the following methods.
Stratification For prospective studies, a common recom-
mendation is to stratify into quintiles of the estimated PS,
following the observation in [4] that under certain conditions
it removes 90% of the bias. For the study sizes considered in
our simulations, to remove the necessary bias for the prob-
ability of type I error to be controlled at the nominal level,
stratification into quintiles was not enough, but stratifica-
tion into 25 quantiles of the estimated balancing score by the
unweighted method was. The association between the expo-
sure E and the binary outcome D on strata formed using
the estimated balancing score was tested using the Mantel-
Haenszel test [10].
Covariate Adjustment The most common way the es-
timated PS is used in the analysis of observational stud-
ies in medical research is via covariate adjustment [2]. This
method adjusts for imbalances by using both the estimated
PS and exposure indicator (E) as explanatory variables in
the logistic regression with the disease status D as outcome.
The association between the exposure E and the binary out-
comeD was tested using the estimated regression coefficient.
IPTW This method adjusts for imbalances by using inverse
probability of treatment (i.e., exposure) weighting (IPTW)
in a logistic model for the outcome, including no predic-
tors for the outcome other than exposure. The weight for
a subject is E/ê( �X) + (1 − E)/(1 − ê( �X), where ê( �X) is
the estimated PS. The association between the exposure E
and the binary outcome D was tested using the estimated
regression coefficient.
Full Matching The most common matching procedure is
pair matching, and an optimal pair matching procedure
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pairs subjects with E = 1 (D = 1) with subjects with E = 0
(D = 0), so that the total distance within matched pairs is
minimized. We used the more general optimal full matching
algorithm, available from CRAN in the R package fullmatch
[7]. This algorithm minimizes the total distance, among all
possible partitions of the subjects to strata, so that in each
stratum there is exactly one subject with E = 1 (D = 1)
and at least one subject with E = 0 (D = 0), or exactly
one subject with E = 0 (D = 0) and at least one subject
with E = 1 (D = 1). Full matching was recommended in
[6] over other matching techniques for observational studies,
by showing that it was more successful in removing bias due
to observed covariates. Unlike in the stratification method,
the number of matched sets is determined by the data. Un-
like all previous methods, this method also uses the covari-
ates themselves, not just the balancing score. The pairwise
distance matrix required as input for the full-matching on
E (D) algorithm was computed as suggested in [18]:

1. Replaces each of the covariates, one at a time, by its

ranks, with average ranks for ties. Let
�̃
Xj denote the

vector of ranks of the covariates for the jth subject,
j = 1, . . . , N .

2. Premultiply and postmultiply the empirical covariance

matrix of
�̃
Xj , j = 1...N , by a diagonal matrix whose di-

agonal elements are the ratios of the standard deviation
of untied ranks, to the standard deviations of the tied
ranks of the covariates. Let Σ̂ be the resulting matrix.

3. The (i, j)th entry in the distance matrix, where the
rows are the subjects with E (D) value of one and the
columns are the subjects with E (D) value of zero, is

(
�̃
Xi − �̃

Xj)
T
∑̂−1

(
�̃
Xi − �̃

Xj).

4. Let b( �X) denote the balancing score: ê( �X) if matching

on E, and d̂( �X) if matching on D. When the differ-

ence in balancing score b( �X) between subjects i and j
was greater than w, the (i, j)th entry in the distance
matrix was modified to be the original distance plus a
penalty (specifically, 1000× (|b(�xi)− b(�xj)| −w) in our
simulations). In order to assess the impact of the bal-
ancing scores in full matching, we compared w = 0 with
w > 0 (specifically, w was 5% of the standard deviation

of b( �X)). We call the procedure full-matching with es-
timated balancing score as a caliper when w > 0, and
full-matching with no caliper when w = 0.

On the resulting matched sets, the association between the
exposure E and the binary outcome D on strata formed
using the estimated balancing score was tested using the
Mantel-Haenszel test [10].

Stratification and Full Matching were considered using
either the PS or the SS as the balancing score, but Covari-
ate Adjustment and IPTW were only considered using the
PS as the balancing score. Although it is possible to use Co-
variate Adjustment and IPTW with the SS as the balancing
score, we did not consider this in our paper since these ad-
justment methods are not commonly used with the SS as

the balancing score, and in limited simulations (not shown)
Stratification and Full Matching using the SS score had far
better power.

2.3 Simulation design

We conducted a series of simulations of studies of typical
size to evaluate the performance, i.e., probability of type I
error and power, of the different tests. We had the follow-
ing main goals: to assess which balancing score estimation
approach result in a probability of type I error below the
nominal level, and has good power properties; to compare
the four methods for testing using the estimated balanc-
ing score (full matching, stratification, covariate adjustment,
and IPTW); with full matching, to compare the tests that
use the estimated balancing score as a caliper to the tests
with no caliper.

To simulate the cohort population we used a design sim-
ilar to that of [9]. The covariates for each subject, �Xi =
(X1i, . . . , X10i), were generated independently from the
standard normal distribution. Only the first p covariates
influenced the exposure or the outcome. The PS and proba-
bility of outcome data generation models for subject i were:

log

(
e( �Xi)

1− e( �Xi)

)
= αe +

p∑
j=1

βejXji,(1)

log

(
P (D = 1 | Ei, �Xi)

1− P (D = 1 | Ei, �Xi)

)
= αr +

p∑
j=1

βrjXji

+ log(OR)× Ei

where Ei is the exposure status of subject i, drawn as
an independent Bernoulli random variable with probabil-
ity of exposure e( �Xi). The odds ratio for the association
between exposure and outcome, OR, was set to the value of
one (the null case) or 1.5. In the simulation setting with
a more common (less rare) disease, similar to the simu-
lation setting of [9], the cohort size was 2,000, αe = 0,
αr = −log(9), βe = (0.2, 0.2, 0.2, 0.2, 0.2, 0, 0, 0, 0, 0), βr =
(a, a, a, a, a, 0, 0, 0, 0, 0) where a ∈ {−0.6,−0.3, 0.3, 0.6}.
In the simulation setting with a rare disease the co-
hort size was 20,000, αr = −log(99), αe ∈ {0,−log(4)},
βe = (a, a, a, a, a, a, 0, 0, 0, 0) and βr = (−a,−a,−a, a, a,
a, 0, 0, 0, 0) for a ∈ {−0.6,−0.3, 0.3, 0.6}.

After simulating the cohort population, all cases and a
random sample of controls from the non-cases comprised
the case-control sample. The sampling fraction of controls
was fixed at 20% in the more common disease setting, and
at 2% in the rare disease setting.

We conducted additional simulations to assess the sensi-
tivity of the different methods on test performance when the
data generation model had a nonlinear relationship with one
of the covariates, or an unobserved confounder. Specifically,
to the right hand side of both equations in (1), we added the
term mX2

1i or the unobserved confounder mUi, where the
Uis were generated independently from the standard normal
distribution, and m ∈ {±0.1,±0.2,±0.3}.
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Our results are based on 4,000 datasets generated for each
parameter setting.

2.4 The study on exposure to POP and
TGCTs

In [11] the effect of POP exposure on the risk of TGCTs
was examined using the data from the US Servicemen’s Tes-
ticular Tumor Environmental and Endochrine Determinants
(STEED) Study. To be eligible for the study, cases had
to be 45 years or younger at the time of diagnosis and to
have donated at least one serum sample between January 1,
1987 and December 31, 2002, to the Department of Defense
Serum Repository (DoDSR). Men with a serum sample in
the DoDSR who had not developed TGCT were eligible to
participate as controls. Each case was matched to all avail-
able potential control subjects on birth year (within 1 year),
ethnicity (white, black, other), and date of available serum
sample (within 30 days), using the computerized Defense
Medical Surveillance System (DMSS) database. From the
list of possible controls, four men were chosen at random as
the control set, and they were contacted sequentially so that
one control will be enrolled for each case (for some cases, the
sequential scheme of contacting potential controls resulted
in more than one control per case).

For illustration, we show here our analysis of the 927 con-
trols, and 318 cases of seminoma (one of the two histological
subgroup considered in [11]). We test for exposure effect of
the seven POPs considered in [11] on the risk of seminoma.
As in [11], we consider the subject exposed if it is in the
fourth quartile of the POP distribution, and unexposed if it
is in the first quartile of the POP distribution. As in [11],
we adjusted for age at blood donation, ethnicity, date of
serum draw, age at reference date, personal history of cryp-
torchism, family history of TGCT, height, and BMI. The
latter four covariates were collected on the sampled individ-
uals via questionnaires. Our caliper was the estimated SS,
d̂( �X), and it was re-estimated using logistic regression for
each POP.

3. RESULTS

3.1 Simulation results

3.1.1 Results on the probability of type I error

Table 1 shows the significance level for the different tests
considered. Applying the full matching algorithm is not
enough for removing overt bias if a caliper is not used, since
the probability of type I error is far above the nominal 0.05
level in some settings (rows 1 and 8). However, if the true
PS or SS caliper is used, the nominal 0.05 level is controlled
(rows 2 and 9). This suggests that applying the full matching
algorithm may be enough also if the PS or SS are estimated
from the data.

Interestingly, when applying the full matching algorithm,
the only estimation method which resulted in a valid test,

i.e., a test with probability of type I error at most the nom-
inal level, was the unweighted method (rows 6 and 10). Es-
timating the caliper from the entire dataset with weighting
or using the modeled controls or DRS approach resulted in
a small inflation of the type I error probability (rows 4, 7,
and 11). A larger inflation was observed when estimating
the caliper by a subsample, i.e. by the subcohort or controls
only (rows 3 and 5). While this inflation was smaller than
without using any caliper, it was still high, reaching above
0.1 in some of the settings.

When stratifying on the true PS or SS, there was a small
inflation of the type I error probability when adjusting by
5 strata in the less rare disease scenario (rows 12 and 19),
but no inflation when adjusting by 25 strata. We further
considered the validity of the tests when stratifying into 25
strata on the estimated PS or SS. As with the full-matching
adjustment method, the only estimation method which re-
sulted in a valid test, was the unweighted method (rows 17
and 21). The other methods resulted in inflations similar in
magnitude to those observed with the full-matching adjust-
ment method.

With covariate adjustment and IPTW, there was no in-
flation of the type I error probability when adjusting for
the true PS (rows 23 and 29), or the PS estimated by the
unweighted method (rows 27 and 33). All other estimation
methods resulted in inflations, which were typically higher
than the inflations for the same estimation methods ob-
served when adjusting by full-matching or stratification.

An informal diagnostic check that the overt bias has been
controlled is through examination of whether balance was
achieved in all covariates [18]. Table 2 counts the number of
datasets that were unbalanced, where a dataset is counted as
unbalanced if the absolute standardized difference in covari-
ate means is greater than 0.25 for at least one covariate. We
see that the worst balance by far is when matching without a
caliper. Using estimated balancing scores we achieve better
covariate balance than using the true balancing scores. This
is because adjusting for the estimated score removes both
systematic and chance imbalances, while adjusting for the
true balancing score removes only systematic imbalances, as
noted by [9]. The balance based on the estimated PS was
typically better than the balance based on the estimated
SS, because the overlap between the estimated PS of ex-
posed and non-exposed was larger than the overlap between
the estimated SS of the cases and controls. The threshold of
0.25 may be too liberal for part of the estimation methods,
which appear balanced although they are not. Specifically,
although it looks like the balance achieved by the modeled-
control method is only slightly worse than by the unweighted
method, the difference in balance between the methods for
large |a| is manifest when using a lower threshold than 0.25
(not shown).

3.1.2 Results on test power

In Table 3 we show the subset of methods that controlled
the 0.05 significance level. Among the oracle procedures,
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Table 1. In the null case, the probability of type I error for adjustment methods: Full Matching (Rows 1–11), Stratification
(Rows 12–22), Covariate Adjustment (Rows 23–28), and IPTW (Rows 29–34) (Standard Error ≤ 0.0034). The simulation

parameters were: in columns 4–7 cohort size 2,000, sample fraction of controls 20%, αe = 0, αr = −log(9),
βe = (0.2, 0.2, 0.2, 0.2, 0.2, 0, 0, 0, 0, 0), βr = (a, a, a, a, a, 0, 0, 0, 0, 0); in columns 8–11 cohort size 20,000, sample fraction of

controls 2%, αr = −log(99), αe = 0, βe = (a, a, a, a, a, a, 0, 0, 0, 0) and βr = (−a,−a,−a, a, a, a, 0, 0, 0, 0)

Disease less rare, a = Disease more rare, a =
Row Adjustment method Caliper −0.6 −0.3 0.3 0.6 −0.6 −0.3 0.3 0.6

1 Full matching on E None 0.000 0.002 0.365 0.782 0.053 0.046 0.052 0.060
2 Full matching on E True PS 0.037 0.040 0.047 0.042 0.044 0.043 0.047 0.049

3 Full matching on E P̂S Subcohort 0.021 0.028 0.074 0.094 0.093 0.059 0.056 0.098

4 Full matching on E P̂S Weighted 0.028 0.028 0.062 0.075 0.089 0.055 0.054 0.096

5 Full matching on E P̂S Controls only 0.020 0.026 0.081 0.143 0.102 0.058 0.054 0.107

6 Full matching on E P̂S Unweighted 0.036 0.038 0.045 0.042 0.028 0.036 0.038 0.029

7 Full matching on E P̂S Modeled control 0.045 0.043 0.053 0.057 0.075 0.056 0.056 0.083
8 Full matching on D None 0.000 0.004 0.257 0.806 0.047 0.045 0.049 0.057
9 Full matching on D True SS 0.035 0.039 0.048 0.042 0.040 0.049 0.048 0.051

10 Full matching on D ŜS Unweighted 0.038 0.036 0.048 0.047 0.028 0.034 0.039 0.032

11 Full matching on D ŜS DRS 0.039 0.040 0.050 0.046 0.069 0.050 0.056 0.075
12 Stratifying into 5 true PS 0.026 0.032 0.060 0.064 0.041 0.040 0.046 0.044
13 Stratifying into 25 true PS 0.038 0.041 0.045 0.043 0.041 0.041 0.046 0.044

14 Stratifying into 25 P̂S Subcohort 0.020 0.030 0.072 0.102 0.092 0.058 0.053 0.101

15 Stratifying into 25 P̂S Weighted 0.023 0.030 0.064 0.080 0.086 0.054 0.051 0.096

16 Stratifying into 25 P̂S Controls only 0.018 0.024 0.086 0.156 0.101 0.057 0.056 0.110

17 Stratifying into 25 P̂S Unweighted 0.034 0.037 0.047 0.040 0.018 0.038 0.034 0.020

18 Stratifying into 25 P̂S Modeled control 0.044 0.041 0.052 0.058 0.068 0.054 0.054 0.075
19 Stratifying into 5 true SS 0.026 0.033 0.060 0.064 0.035 0.042 0.048 0.046
20 Stratifying into 25 true SS 0.038 0.042 0.045 0.043 0.035 0.044 0.046 0.047

21 Stratifying into 25 ŜS Unweighted 0.039 0.037 0.048 0.046 0.019 0.035 0.034 0.026

22 Stratifying into 25 ŜS DRS 0.041 0.040 0.053 0.049 0.064 0.052 0.054 0.072
23 Covariate adjustment True PS 0.044 0.050 0.056 0.045 0.050 0.050 0.053 0.055

24 Covariate adjustment P̂S Subcohort 0.079 0.052 0.060 0.082 0.145 0.072 0.065 0.150

25 Covariate adjustment P̂S Weighted 0.065 0.051 0.058 0.071 0.141 0.073 0.064 0.140

26 Covariate adjustment P̂S Controls only 0.126 0.060 0.073 0.127 0.163 0.076 0.066 0.163

27 Covariate adjustment P̂S Unweighted 0.038 0.044 0.049 0.044 0.016 0.038 0.033 0.018

28 Covariate adjustment P̂S Modeled control 0.059 0.052 0.058 0.062 0.108 0.064 0.066 0.110
29 IPTW True PS 0.051 0.044 0.050 0.053 0.052 0.047 0.051 0.054

30 IPTW P̂S Subcohort 0.086 0.060 0.061 0.080 0.147 0.072 0.080 0.145

31 IPTW P̂S Weighted 0.066 0.057 0.055 0.071 0.138 0.072 0.078 0.139

32 IPTW P̂S Controls only 0.156 0.078 0.078 0.151 0.159 0.074 0.082 0.159

33 IPTW P̂S Unweighted 0.022 0.038 0.038 0.021 0.023 0.035 0.039 0.028

34 IPTW P̂S Modeled control 0.092 0.062 0.063 0.096 0.101 0.062 0.068 0.100

Average number of cases 313 232 231 314 511 260 258 510
Average number of controls 337 354 354 337 389 396 394 389

which assume the true PS or true SS is known, the full
matching on E and stratification into 25 strata using the
true PS had highest power (rows 1 and 5). The full matching
on D and stratification into 25 strata using the true SS had
less power in the more rare disease scenario (rows 3 and
7). Covariate adjustment and IPTW also had lower power
(rows 9 and 11).

Using the unweighted estimation method, the covariate
adjustment and IPTW methods (rows 10 and 12) had lower

power than full-matching (rows 2 and 4) and stratification
(rows 6 and 8).

Full-matching and stratification, using the unweighted es-
timation method, had similar power, and this power was
lower than the power of the tests that use the true (yet un-
known in practice) balancing score in some of the settings
in the rare disease simulation. The reduction in power was
by at most 20% by using the estimated balancing score in-
stead of the true balancing score. The loss of power is due
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Table 2. The number of unbalanced datasets out of 4000, when the odds ratio is 1, for the two adjustment methods: Full
Matching (rows 1–11) and Stratification (rows 12–22). The simulation parameters were: in columns 4–7 cohort size 2,000,

sample fraction of controls 20%, αe = 0, αr = −log(9), βe = (0.2, 0.2, 0.2, 0.2, 0.2, 0, 0, 0, 0, 0),
βr = (a, a, a, a, a, 0, 0, 0, 0, 0); in columns 8–11 cohort size 20,000, sample fraction of controls 2%, αr = −log(99), αe = 0,

βe = (a, a, a, a, a, a, 0, 0, 0, 0) and βr = (−a,−a,−a, a, a, a, 0, 0, 0, 0)

Disease less rare, a = Disease more rare, a =
Row Adjustment method Caliper −0.6 −0.3 0.3 0.6 −0.6 −0.3 0.3 0.6

1 Full matching on E None 1859 2192 1984 1498 4000 3805 3804 4000
2 Full matching on E True PS 38 71 69 39 636 119 123 622

3 Full matching on E P̂S Subcohort 4 3 4 4 805 49 58 839

4 Full matching on E P̂S Weighted 0 3 1 1 785 43 55 784

5 Full matching on E P̂S Controls only 17 11 17 18 881 53 56 844

6 Full matching on E P̂S Unweighted 0 0 0 0 263 5 8 259

7 Full matching on E P̂S Modeled control 0 1 0 0 285 6 10 283
8 Full matching on D None 4000 3108 3041 4000 4000 3382 3385 4000
9 Full matching on D True SS 1379 153 187 1339 1688 87 77 1620

10 Full matching on D ŜS Unweighted 412 2 1 413 632 3 4 628

11 Full matching on D ŜS DRS 420 2 1 415 661 2 6 650
12 Stratifying into 5 true PS 68 122 144 85 572 176 184 514
13 Stratifying into 25 true PS 90 188 195 125 831 249 242 849

14 Stratifying into 25 P̂S Subcohort 7 5 14 20 1231 90 104 1238

15 Stratifying into 25 P̂S Weighted 2 5 6 6 1164 81 95 1153

16 Stratifying into 25 P̂S Controls only 44 28 56 80 1300 99 109 1300

17 Stratifying into 25 P̂S Unweighted 0 0 1 0 184 5 9 167

18 Stratifying into 25 P̂S Modeled control 0 1 0 0 285 6 10 283
19 Stratifying into 5 true SS 915 265 257 941 1271 186 194 1227
20 Stratifying into 25 true SS 1337 308 312 1310 1328 242 232 1333

21 Stratifying into 25 ŜS Unweighted 265 3 0 247 384 3 2 398

22 Stratifying into 25 ŜS DRS 253 3 1 246 418 1 1 423

Table 3. The power when the odds ratio is 1.5, for: Full Matching (rows 1–4), Stratification (rows 5–8), Covariate Adjustment
(rows 9–10), IPTW (rows 11–12). The simulation parameters were: in columns 4–7 cohort size 2,000, sample fraction of

controls 20%, αe = 0, αr = −log(9), βe = (0.2, 0.2, 0.2, 0.2, 0.2, 0, 0, 0, 0, 0), βr = (a, a, a, a, a, 0, 0, 0, 0, 0); in columns 8–11
cohort size 20,000, sample fraction of controls 2%, αr = −log(99), αe = 0, βe = (a, a, a, a, a, a, 0, 0, 0, 0) and

βr = (−a,−a,−a, a, a, a, 0, 0, 0, 0). (Standard Error ≤ 0.008)

Disease less rare Disease more rare
Row Adjustment method Caliper a = −.6 a = −.3 a = .3 a = .6 a = −.6 a = −.3 a = .3 a = .6

1 Full matching on E True PS 0.650 0.687 0.700 0.658 0.725 0.762 0.754 0.732

2 Full matching on E P̂S Unweighted 0.644 0.686 0.693 0.652 0.568 0.692 0.686 0.569
3 Full matching on D True SS 0.641 0.683 0.692 0.664 0.623 0.716 0.708 0.637

4 Full matching on D ŜS Unweighted 0.640 0.685 0.688 0.646 0.558 0.688 0.676 0.555
5 Stratifying into 25 true PS 0.660 0.700 0.704 0.664 0.732 0.770 0.765 0.740

6 Stratifying into 25 P̂S Unweighted 0.643 0.685 0.700 0.647 0.526 0.696 0.678 0.536
7 Stratifying into 25 true SS 0.660 0.698 0.704 0.659 0.530 0.676 0.668 0.546

8 Stratifying into 25 ŜS Unweighted 0.666 0.698 0.711 0.661 0.536 0.690 0.680 0.528
9 Covariate adjustment True PS 0.583 0.637 0.630 0.596 0.660 0.713 0.698 0.664

10 Covariate adjustment P̂S Unweighted 0.564 0.622 0.626 0.570 0.423 0.611 0.601 0.431
11 IPTW True PS 0.544 0.622 0.635 0.517 0.544 0.622 0.635 0.517

12 IPTW P̂S Unweighted 0.470 0.583 0.584 0.407 0.470 0.583 0.584 0.407

Average number of cases 356 272 282 368 618 321 320 620
Average number of controls 329 345 344 327 387 394 394 387
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Table 4. The number of unbalanced datasets out of 4000, when the odds ratio is 1.5, for the two adjustment methods: Full
Matching (rows 1–4), and Stratification (rows 5–8). The simulation parameters were: in columns 4–7 cohort size 2,000,

sample fraction of controls 20%, αe = 0, αr = −log(9), βe = (0.2, 0.2, 0.2, 0.2, 0.2, 0, 0, 0, 0, 0),
βr = (a, a, a, a, a, 0, 0, 0, 0, 0); in columns 8–11 cohort size 20,000, sample fraction of controls 2%, αr = −log(99), αe = 0,

βe = (a, a, a, a, a, a, 0, 0, 0, 0) and βr = (−a,−a,−a, a, a, a, 0, 0, 0, 0)

Disease less rare Disease more rare
Row Adjustment method Caliper a = −.6 a = −.3 a = .3 a = .6 a = −.6 a = −.3 a = .3 a = .6

1 Full matching on E True PS 76 134 189 113 857 242 241 825

2 Full matching on E P̂S Unweighted 0 0 0 0 225 5 2 240
3 Full matching on D True SS 1193 104 150 1413 1531 53 52 1563

4 Full matching on D ŜS Unweighted 285 3 0 425 538 3 3 545
5 Stratifying into 25 true PS 76 134 189 113 857 242 241 825

6 Stratifying into 25 P̂S Unweighted 0 0 0 0 141 3 3 184
7 Stratifying into 25 true SS 1164 226 274 1308 1206 188 198 1222

8 Stratifying into 25 ŜS Unweighted 172 2 6 285 356 5 4 371

Table 5. The probability of type I error when the data generation model is misspecified. Specifically, to the right hand side of
both models in equation (1), we added the term mX2

1i (columns 4–10) or the unobserved confounder mUi (columns 11–16),
where the Uis were generated independently from the standard normal distribution, and m ∈ {±0.1,±0.2,±0.3}. The caliper
was estimated using the unweighted method. The other simulation parameters were: cohort size 20,000, sample fraction of

controls 2%, αr = −log(99), αe = 0, βe = (0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0, 0, 0, 0) and
βr = (−0.3,−0.3,−0.3, 0.3, 0.3, 0.3, 0, 0, 0, 0)

Adjustment method, Nonlinear covariate term mX2
1i Unobserved confounder term mUi

and Caliper -0.3 -0.2 -0.1 0.1 0.2 0.3 -0.3 -0.2 -0.1 0.1 0.2 0.3

Full matching on E,P̂S 0.092 0.057 0.040 0.042 0.058 0.097 0.090 0.066 0.051 0.052 0.108 0.340

Full matching on D,ŜS 0.095 0.060 0.042 0.042 0.059 0.089 0.104 0.067 0.051 0.048 0.094 0.281

Stratifying into 25,P̂S 0.087 0.051 0.036 0.036 0.048 0.087 0.085 0.060 0.046 0.045 0.104 0.323

Stratifying into 25,ŜS 0.086 0.051 0.038 0.036 0.052 0.084 0.088 0.060 0.046 0.044 0.102 0.310

to the fact that when the OR > 1, the estimated balanc-
ing score using the unweighted method is biased because of
the case-control sampling. Therefore, the evidence of asso-
ciation between D and E within the strata or matched sets
defined by this biased estimate is weaker than the evidence
if defined by the true balancing score.

Table 4 show the number of unbalanced datasets for the
valid tests. We see that the number of unbalanced datasets
is significantly smaller when using the estimated balancing
score (by the unweighted method), instead of the true bal-
ancing score.

3.1.3 Sensitivity of type I error probability to model mis-
specification and an unobserved confounder

Table 5 shows the results for the unweighted estimation
method of the balancing score, testing using stratification or
full-matching with the estimated balancing score as caliper.
The probability of the type I error was at most the nomi-
nal level for |m| = 0.1, but it was inflated for |m| > 0.1.
As expected, the further m is from zero the greater the
inflation, since the bias of the estimated balancing score
increases with |m|. Out of 4000 datasets, at most 7, 9,
9, 8, 18, and 61 datasets were unbalanced when m was

−0.3,−0.2,−0.1.0.1, 0.2, and 0.3, respectively, clearly indi-
cating that the standard diagnostic check of covariate bal-
ance we employed cannot account for misspecification by
addition of a quadratic term, nor can it account for bias
due to an unobserved covariate (as expected). More elabo-
rate diagnostic tests (which do not only check mean differ-
ences), would be able to identify the misspecification due to
the added term mX2

1i, and a sensitivity analysis is neces-
sary in order to assess the sensitivity of a significant result
to unobserved confounding.

3.2 The study on exposure to persistent
organochlorine pesticides (POP) and
testicular germ cell tumors (TGCTs)

Table 6 shows the P values using three testing methods.
After Bonferroni correction at level 0.05: full matching with-
out caliper resulted in three significant findings (an exposure
effect of Cis-nonachlor, p, p′-DDE, and Trans-nonachlor);
full matching with caliper (our recommended method) re-
sulted in two findings (an exposure effect of Cis-nonachlor
and Trans-nonachlor); stratification resulted in one finding
(an exposure effect of Cis-nonachlor). Table 7 shows that
the balance is better for exposures Cis-nonachlor, p, p′-DDE,
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Table 6. The P value of the Mantel-Haenszel test of asscociation of Seminoma with each exposure (exposed if in fourth
quartile, unexposed if in first quartile, of the POP Level) for the two adjustment methods: Stratification on the estimated SS
by the unweighted method (column 1), and Full-Matching (Column 2 with estimated SS as caliper, column 3 without caliper)

Exposure Stratifying into 25 Full matching

(Q4 vs Q1) ŜS Unweighted caliper ŜS Unweighted no caliper
Cis-nonachlor 0.0043 0.0028 5e-04

p, p′-DDE 0.0426 0.0205 0.0015
p, p′-DDT 0.2136 0.1682 0.1007

HCH 0.6212 0.513 0.0658
Mirex 0.5059 0.6334 0.3545

Oxychlordane 0.0463 0.034 0.0097
Trans-nonachlor 0.0102 0.0031 0.0052

Table 7. The standardized difference in covariate mean between the cases and controls after adjustment by
matching/stratification, for three exposures and the three adjustment methods: Stratification using the estimated SS by the

unweighted method, Full-Matching using the estimated SS as caliper, Full-Matching without caliper

Exposure Adjustment age at bl- age of ref height bmi is is crypt. family history
method ood draw serum age (inches) white black history missing yes unknown

Cis- before 0.40 -0.00 0.40 0.20 0.10 0.10 -0.10 0.10 -0.00 0.20 0.10

nonachlor strat.ŜS 0.02 -0.07 0.03 0.03 0.02 -0.01 0.03 0.05 0.02 -0.01 -0.01

fullmatch ŜS 0.06 -0.07 0.04 0.06 0.00 -0.08 0.14 0.01 -0.01 0.00 0.02
fullmatch no 0.18 -0.02 0.20 0.12 0.01 -0.07 0.06 -0.01 -0.16 0.09 0.02
caliper

p, p′- before 0.40 -0.20 0.40 0.30 0.10 -0.00 -0.20 0.00 0.10 0.10 0.10

DDE Strat.ŜS -0.02 -0.03 -0.01 0.06 0.07 0.01 0.02 0.01 -0.04 -0.05 0.04

fullmatch ŜS -0.04 0.00 -0.01 0.01 0.05 -0.05 0.03 0.02 0.02 -0.05 0.05
fullmatch no 0.18 -0.09 0.21 0.16 0.04 -0.11 0.01 -0.07 -0.05 0.02 0.03
caliper

trans- before 0.30 -0.10 0.40 0.20 0.10 0.10 -0.10 0.20 -0.00 0.20 0.20

nonachlor strat.ŜS 0.06 -0.06 0.05 0.02 -0.01 0.01 -0.04 0.01 0.03 -0.04 0.04

fullmatch ŜS 0.09 -0.10 0.09 -0.04 -0.04 0.00 0.04 0.01 -0.04 -0.09 0.10
fullmatch no 0.12 -0.00 0.13 0.09 0.01 -0.06 0.05 0.12 -0.06 0.04 0.02
caliper

and Trans-nonachlor when the estimated SS is used for ad-
justment, than with full-matching without caliper. In par-
ticular, for exposure p, p′-DDE, the full-matching without
caliper results in imbalances above 0.15 for the age at ref-
erence date, date of serum draw, and height, yet the full-
matching with estimated SS as caliper result in imbalances
of at most 0.05.

Using our recommended method of full-matching with
caliper, we can conclude that increased exposure to Cis-
and Trans- nonachlor may increase the risk of seminoma. A
sensitivity analysis should be conducted in order to assess
how robust these conclusions are to (hidden) bias, see [16]
for a useful approach.

4. DISCUSSION

Our work was motivated by the fact that while testing
with the aid of estimated balancing scores is a highly useful
strategy in prospective studies, there is lack of consensus on
whether this strategy should be used in case-control studies,
and if so how. Consistent estimation of the PS and the SS is

possible if there is no exposure effect. For testing for expo-
sure effect in case-control studies, we reached the following
conclusions about the role of the PS and of the SS, based
on our empirical investigations.

Our first conclusion is that an estimated balancing score
is useful for stratifying, or matching, the observations prior
to testing. Applying the full matching algorithm without
the use of a balancing score, the significance level was very
high in some of the simulation settings. When we allowed
the matching algorithm to omit a certain fraction of the
data, the imbalances were smaller, and the significance level
was closer to the nominal level (results not shown). How-
ever, these improvements were minor compared to the ex-
cellent balance and control of the probability of type I error
at the nominal level we were able to achieve using the full
matching algorithm with the balancing score caliper esti-
mated using the unweighted method. With the aid of the
estimated balancing score caliper, the full matching algo-
rithm becomes an approach aimed at achieving balance.
Alternatively, it is possible to consider algorithms that di-
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rectly aim at achieving balance without the aid of a bal-
ancing score, as suggested in [20] for sparse nominal covari-
ates.

Our second conclusion is that the estimation method of
the balancing score matters, and the preferred method is the
one that takes all the data into account when estimating the
balancing score, i.e., the unweighted method. This method is
consistent when there is no effect. Other methods, which are
also consistent when there is no effect, nevertheless failed to
maintain the nominal significance level. The reason, pointed
out in [9], is that using the unweighted method there is no
artifactual effect modification. Using all other estimation
methods, when the exposure does not affect the outcome,
an artifactual association within the strata or matched sets
of the estimated balancing score may be present, and lead
to an inflated probability of type I error. To understand this
artifactual association, [9] considered the simplified setting
of the PS being fixed (i.e., not varying with covariates, as
in a randomized trial). Then by estimating the PS using
controls only, in the lowest (highest) stratum of estimated
PS, the fraction of exposed within controls will be lower
(higher) than the true PS, yet within cases it will be on
average equal to the true PS.

Our third conclusion is that full matching with the esti-
mated balancing score as caliper has some advantages over
stratification on the estimated balancing score, covariate ad-
justment, or IPTW. The performance of full matching and
stratification (into 25 strata) was very similar, and their
power was superior to that of covariate adjustment and
IPTW. Stratification has a limitation that the number of
strata should be decided prior to testing, and it is not clear
what the best number is with relation to sample size: if the
number of strata is too small, the probability of the type
I error may be inflated, and if the number of strata is too
large power may be reduced. Full matching has two main
advantages over stratification: the number of matched sets
is determined by the data, and subjects are matched based
on the distance between covariate values in addition to prox-
imity in the estimated balancing score.

In summary, for typical study sizes considered in this pa-
per, we have demonstrated that assuming the only bias is
overt bias, a test with probability of type I error at most
the nominal level can be obtained if we use the full match-
ing algorithm with the balancing score estimated using the
unweighted method as caliper. We also showed that the
other estimation methods resulted in tests with inflated type
I error probabilities. Even though the unweighted method
does not consistently estimate the balancing score when the
null hypothesis is false, the power loss from using the es-
timated balancing score instead of the true balancing score
was small. In the real data example, we achieved a far better
balance in the covariates of matched sets with the aid of the
estimated balancing score than without using the balancing
score in the full matching algorithm.

In our simulation settings, when the null hypothesis of no
effect of exposure on outcome is true, the task of estimating

the propensity score was similar in difficulty to the task of
estimating the stratification score. In practice, it may be
easier to estimate one of the balancing scores. For example,
in genetic association studies, estimating the stratification
score is easier than estimating the propensity score [1], and
matching on D is more natural than matching on E.
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