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Abstract. An observational or nonrandomized study of treatment e¤ects may be biased

by failure to control for some relevant covariate that was not measured. The design of

an observational study is known to strongly a¤ect its sensitivity to biases from covariates

that were not observed. For instance, the choice of an outcome to study, or the decision

to combine several outcomes in a test for coherence can materially a¤ect the sensitivity

to unobserved biases. Decisions that shape the design are, therefore, critically important,

but they are also di¢ cult decisions to make in the absence of data. We consider the

possibility of randomly splitting the data from an observational study into a smaller

planning sample and a larger analysis sample, where the planning sample is used to guide

decisions about design. After reviewing the concept of design sensitivity, we evaluate

sample splitting in theory, by numerical computation, and by simulation, comparing it to

several methods that use all of the data. Sample splitting is remarkably e¤ective, much

more so in observational studies than in randomized experiments: splitting 1000 matched

pairs into 100 planning pairs and 900 analysis pairs often materially improves the design

sensitivity. An example from genetic toxicology is used to illustrate the method.

Keywords: Coherence; multiple comparisons; permutation test; sensitivity analysis.

1 Introduction: Design to Reduce Sensitivity to Unobserved Bias

The design of an observational study entails choosing the circumstances in which the

study will be conducted and developing a protocol for its analysis (Rosenbaum 1999).
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Many features of the design of an observational study a¤ect its sensitivity to covari-

ates that were not measured, including the pattern and in�uence of doses, the way

doses are incorporated in the analysis, the use of coherent multivariate responses, the

heterogeneity of experimental material, and the strength of instrumental variables;

see Rosenbaum (2004, 2005) and Small and Rosenbaum (2008). Alas, these fea-

tures are often of uncertain form before data are obtained, so an analysis plan that

seeks improved design by making guesses about these features may guess incorrectly,

yielding an inferior design. This raises the possibility of splitting the sample, using

the �rst portion to plan the analysis based on the second portion.

In considering questions of this type, a useful tool is the design sensitivity (Rosen-

baum 2004). The design sensitivity is a number, e�, that evaluates the design of an
observational study, that is, a particular data generating process and planned proto-

col for analysis. Once data have been collected in an observational study, a sensitivity

analysis asks: How far would this study have to depart from a randomized experi-

ment to alter the qualitative conclusions? The design sensitivity, e�, anticipates the
outcome of a sensitivity analysis, in much the same way that the power of a test

anticipates the outcome of the test. A better design has a larger design sensitivity,e�; it is expected to be less sensitive to unobserved biases if the treatment is e¤ective
and biases are absent. The design sensitivity is a basis for appraising competing

designs for observational studies. The current paper considers the possibility of

using a split sample to make choices that increase the design sensitivity.

Cox (1975) used split samples to select one of several hypotheses to test in a

context, such as a randomized trial, in which e¢ ciency rather than bias is the central
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concern. He found that split samples ran a close second in terms of power to multiple

comparisons based on the Bonferroni inequality, but he observed that split samples

were more �exible, and perhaps more easily adapted to complex settings. When

thinking about sensitivity to unobserved biases, however, split samples outperform

multiple comparisons based on the Bonferroni inequality, as is seen in §3.

As an example, consider the following study in genetic toxicology. Masjedi, et al.

(2000) examined genetic damage from tuberculosis and the anti-tuberculosis drugs

used to treat it using I = 36 pairs of a patient and a healthy control matched for

age and gender. All were nonsmokers. As is common in genetic toxicology, they

evaluated genetic damage in lymphocyte cultures, using two measures, the number

of chromosome aberrations (CA), excluding gaps, per 100 cells, and the frequency

of micronuclei (MN) per 1000 cells. We focus on their comparison of patients to

controls. (They also compare tuberculosis patients before and after drug treatment,

to separate the e¤ects of drugs from the e¤ects of tuberculosis.)

Although subjects were matched for age, gender and smoking, there is little to

ensure that treated patients and untreated matched controls were similar in other

ways. If the treated patients and matched controls di¤ered in terms of a relevant

unmeasured covariate, then they might have di¤ering outcomes, di¤ering levels of

CA and MN, for reasons unrelated to tuberculosis and the anti-tuberculosis drugs

used to treat it. A sensitivity analysis asks what such an unobserved covariate

would have to be like to alter the qualitative conclusions of the study; see §2.2 for a

review of sensitivity analysis. In this rather simple example, one has three choices,

namely making CA or MN the primary outcome, or seeking a coherent multivariate
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pattern of associations of CA and MN jointly with treatment; see §4 for discussion of

coherence. Although this decision will a¤ect the study�s ultimate sensitivity to bias

from unmeasured covariates, it is not an easy decision to make in the absence of data.

One cannot perform a large number of analyses and report only the most promising

analyses; that strategy would give misleading conclusions even in a randomized trial.

In §5, we split the sample at random into a planning sample of 6 pairs and an analysis

sample of 30 pairs. The planning sample of 6 pairs guides the decision among the

three choices; then, the analysis sample of 30 pairs conducts a sensitivity analysis

with that choice. This works well in the small example, and more importantly,

the theoretical results in §3 and §4 suggest it ought to work increasingly well with

increasing sample size, and hence it is a useful strategy in the larger studies more

often encountered in practice. In §6, we discuss splitting for other design decisions.

2 Notation and Review

2.1 Randomized experiments and the e¤ects caused by treatments

There are I pairs, i = 1; : : : ; I, of two individuals, j = 1; 2, one treated, denoted

Zij = 1, the other control, denoted Zij = 0, so Zi1 + Zi2 = 1 for all i. Matching

has controlled an observed pretreatment covariate xij, so xi1 = xi2, but may fail to

control an unobserved covariate, uij, so typically ui1 6= ui2. The jth individual in pair

i has two potential K-dimensional vector responses, rTij = (rTij1; : : : ; rTijK)
T and

rCij = (rCij1; : : : ; rCijK)
T , where rTij is observed if this individual receives treatment,

Zij = 1, or rCij is observed if this individual receives control, Zij = 0, and the
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e¤ect of the treatment on this individual, rTij � rCij, cannot be calculated from

the observed treatment assignment, Zij, and observed response Rij = Zij rTij +

(1� Zij) rCij; see Neyman (1923) and Rubin (1974). In §1, I = 36, xij records

age and gender, and there are K = 2 outcomes, namely CA and MN. Write F =

f(rTij; rCij;xij; uij) ; i = 1; : : : ; I; j = 1; 2g, Z = (Z11; Z12; : : : ; ZI2)
T and Z for the

set of possible values of Z; i.e., z 2 Z if and only if zij = 0 or 1 and zi1 + zi2 = 1.

Write jAj for the number of elements in a �nite set A, so jZj = 2I .

One might focus on a speci�c scalar aspect of the response, de�ned by a function

y : RK ! R speci�ed in advance of examination of the data. The null hypothesis

that this aspect is not a¤ected asserts Hy
0 : y (rTij) = y (rCij) ; 8i; j, or equivalently

Hy
0 : yTij = yCij 8i; j, if we write yTij = y (rTij) and yCij = y (rCij). Also, write

Yij = Zij yTij+(1� Zij) yCij, and Y = (Y11; Y12; : : : ; YI2)
T . For the moment, y (�) is

a function speci�ed in advance of the data, but we will soon be interested in splitting

the sample, picking y (�) based on one part of the sample, and testing Hy
0 using the

other part of the sample. In §1, three choices of y (�) were considered, one that

selects CA as the primary outcome, one that selects MN as the primary outcome,

and one that combines them into a coherent unidimensional summary.

In a randomized paired experiment, treatment assignments would be determined

by I independent �ips of a fair coin, so that Pr (Zi1 = 1 j F) = 1
2
, Zi2 = 1 � Zi1,

independently in distinct pairs. (All probabilities implicitly condition on the design

requirement, Z 2 Z, but the notation does not indicate this explicitly.) Random-

ization would form a basis for testing Hy
0 . Under H

y
0 , Yij = yTij = yCij is a function
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of F , and is therefore �xed by conditioning on F , so

Pr ft (Z;Y) � c j Fg = jfz 2 Z : t (z;Y) � cgj =2I : (1)

This yields the usual null distribution of Wilcoxon�s signed rank statistic, t (Z;Y) =PI
i=1 sgn f(Yi1 � Yi2) (Zi1 � Zi2)g rank (jYi1 � Yi2j) where sgn (w) = 1, 12 , or 0 as w >

0, w = 0, or w < 0 and rank (�) is ranking with average ranks for ties.

2.2 Observational studies and sensitivity to bias from an unobserved covariate

In an observational study, matching may fail to control a relevant unobserved co-

variate, so Pr (Zi1 = 1 j F) deviates from 1
2
. A simple model for sensitivity analysis

in an observational study asserts that the odds of treatment deviates from 1 by at

most a factor of � � 1,

1

�
� Pr (Zi1 = 1 j F) =Pr (Zi1 = 0 j F) � �, i = 1; : : : ; I; (2)

with independent assignments in distinct pairs. It is straightforward to show that

the family of models for treatment assignment permitted by (2) is the same as the

family of models with an unobserved uij, 0 � uij � 1, u = (u11; : : : ; uI2)T , such that

Pr (Z = z j F) =
IY
i=1

exp
�


P2

j=1 zij uij

�
exp (
 ui1) + exp (
 ui2)

for z 2 Z with u 2 U , (3)

where 
 = log (�) and U = [0; 1]2I is the 2I-dimensional unit cube, because (3)

straightforwardly implies (2), and if (2) holds with independence between pairs, then
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de�ne ui1 = log fPr (Zi1 = 1 j F) =Pr (Zi1 = 0 j F)g =
 and ui2 = 0 so that (3) holds;

see Rosenbaum (2002, §4) for details and extensions. For � = 1 or 
 = log (�) = 0,

(3) yields the randomization distribution, Pr (Z = z) = 2�I for z 2 Z, and the null

randomization distribution (1). For �xed � > 1 or 
 = log (�) > 0, the distribution

of treatment assignments Pr (Z = z j F) is unknown to bounded degree, from which

it is possible to produce bounds on Pr ft (Z;Y) � c j Fg and on associated inference

quantities, such as signi�cance levels, con�dence intervals and point estimates. A

sensitivity analysis computes these bounds for several values of �, thereby indicating

the degree to which conclusions might be altered by unobserved biases of various

magnitudes. For instance, under Hy
0 and (3), for each �xed � � 1, a critical

value, c�, may be determined such that maxu2U Pr ft (Z;Y) � c� j Fg = �, so if

t (Z;Y) � c� is observed, then a bias of magnitude � would not alter the conclusion

that Hy
0 is rejected at level �. For Wilcoxon�s signed rank statistic without ties,

c�
:
= �I (I + 1) =2+��1 (1� �)

p
� (1� �) I (I + 1) (2I + 1) =6 for large I where � =

�= (1 + �) and ��1 (�) is the inverse of the standard Normal cumulative distribution;

see Rosenbaum (1987; 2002, §4.3.3; 2005, §2.3). (In general, the critical value c�

may depend on F as well as �, but the notation does not indicate this. For many

rank statistics, such as Wilcoxon�s statistic, c� depends on I and � but not on F .)

For other sensitivity analyses, see Corn�eld, et al. (1959), Breslow and Day (1980,

§2.7), Rosenbaum and Rubin (1983), Gastwirth (1992), Marcus (1997), Lin, et al.

(1998), Robins, et al. (1999), Copas and Eguchi (2001), and Imbens (2003). For

applications, see Aakvik (2001), Diprete and Gangl (2004), and Silber, et al. (2005).
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2.3 Design sensitivity

Some designs for observational studies are more resistant to unobserved biases than

others, and it is useful to have a quantitative measure of this. The design and ana-

lytic protocol for an observational study may be evaluated in terms either of the power

of a sensitivity analysis or a simpler related quantity, the design sensitivity. For

�xed �, when Hy
0 is false and some speci�c alternative is true instead, the power of a

sensitivity analysis is the chance that t (Z;Y) � c�. In principle, the alternative hy-

pothesis might specify F in detail, in which case the power is Pr ft (Z;Y) � c� j Fg,

but it is conceptually and practically simpler to describe the alternative in terms of

a model that generates F , so the power becomes E [Pr ft (Z;Y) � c� j Fg], the ex-

pectation being taken over the model that generates F . For � = 1, this reproduces

the usual de�nition of the power of a randomization test.

If the situation were favorable, in the sense that the treatment was e¤ective and

there was no bias from unobserved covariates, then we would not know this from the

observed data. We would see that treated subjects had higher responses than con-

trols, but we would be uncertain whether this was an e¤ect caused by the treatment

or bias from some unobserved covariate. The best we could hope to report is the

ostensible e¤ect of the treatment is insensitive to small and moderate biases. The

chance that this hope is realized is the power of the sensitivity analysis computed

assuming this favorable situation. Under the favorable situation, the power of the

sensitivity analysis is the chance that t (Z;Y) � c� when Z is randomized under a

conventional model for a treatment e¤ect, such as independent and identically dis-

tributed sampling. In this case, the chance that t (Z;Y) � c� may be computed for
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Wilcoxon�s signed rank statistic using standard power computations (e.g., Lehmann

1975, §4.2) applied to the nonstandard critical value, c�. Speci�cs follow. Con-

sider the favorable situation with a treatment e¤ect and no bias from unobserved

covariates, with the additional assumption that the treated minus control di¤erences

Di = (2Zi1 � 1) (Yi1 � Yi2) are independent and identically distributed. De�ning

p = Pr (Di > 0), p
0
1 = Pr (Di +Dj > 0) and p

0
2 = Pr (Di +Dj > 0 ^Di +Dk > 0)

with i < j < k, Lehmann (1975, §4.2) shows the nonnull expectation �y and variance

�2y of the signed rank statistic t (Z;Y) are �y = I (I � 1) p
0
1=2 + Ip and

�2y = I (I � 1) (I � 2)
�
p
0

2 � p
0

1

2
�
+
I (I � 1)

2

�
2
�
p� p01

�2
+ 3p

0

1

�
1� p01

��
+Ip (1� p) ;

so that the central limit theorem yields the approximate power of a one-sided sensi-

tivity analysis as Pr ft (Z;Y) � c�g � 1� �
��
c� � �y

�
=�y
	
.

In the favorable situation, under mild conditions as I !1 with a �xed treatment

e¤ect, the power of the sensitivity analysis tends to 1 for small values of � � 1 and

to zero for large values of �; see Rosenbaum (2004, 2005). The transition from

limiting power 1 to limiting power 0 occurs at a value of �, say e�, called the design
sensitivity. This says that once sampling variability has been driven out by letting

I ! 1, a particular study design and treatment e¤ect can be distinguished from

all biases � < e� but not from biases � > e�. Other things being equal, one prefers

a design with a larger design sensitivity, e�. In the case of Wilcoxon�s signed rank

statistic, e� has a simple explicit form, namely e� = p01= �1� p01�; see §3.1 below. The
design sensitivity describes the limit as I !1, but like Pitman e¢ ciency, it tends to

provide an accurate relative ordering of situations for moderately large I; see Table
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4 in Rosenbaum (2004) and Tables 3-6 in Small and Rosenbaum (2008).

3 Split Samples and Design Sensitivity: Selecting an Outcome

3.1 Splitting reduces power, but does not reduce design sensitivity

Consider splitting the sample at random into two parts of size (1� �) I and �I,

0 < � < 1, using the planning sample of size (1� �) I as the basis for an empirical

choice of y (�) in §2.1, which is then used as the primary outcome in a sensitivity

analysis in the analysis sample of size �I. For instance, y (�) might focus attention

on one outcome or combine several outcomes into a single measure. Typically, y (�)

would be chosen with a view to increasing the design sensitivity, say by picking the

one outcome that appears most dramatically a¤ected in the planning sample. A

fair comparison of the full sample of I pairs and the analysis sample of �I must take

account of the possibility that the planning sample of (1� �) I pairs may yield a

better choice of y (�). Later sections consider various fair comparisons in simple,

stylized settings. However, in the current section we consider an unfair comparison;

speci�cally, we take y (�) as �xed, and compare using the same y (�) with samples of

size I or �I. As will be seen, for a given y (�), the switch from I to �I reduces the

power of the sensitivity analysis but leaves the design sensitivity unchanged.

As discussed in §2.3, as I ! 1, the power of the signed rank test applied

to y (R) = Y is approximately Pr ft (Z;Y) � c�g � 1 � �
��
c� � �y

�
=�y
	
where
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�
c� � �y

�
=�y is

=
�I (I + 1) =2 + ��1 (1� �)

p
� (1� �) I (I + 1) (2I + 1) =6� I (I � 1) p01=2� Ipr

I (I � 1) (I � 2)
�
p
0
2 � p

0
1
2
�
+ I(I�1)

2

n
2
�
p� p01

�2
+ 3p

0
1

�
1� p01

�o
+ Ip (1� p)

�
p
I
�
�� p01

�
2

q
p
0
2 � p

0
1
2
with � =

�

1 + �
, (4)

so Pr ft (Z;Y) � c�g ! 1 for � < e� = p
0
1=
�
1� p01

�
and Pr ft (Z;Y) � c�g ! 0

for � > e� = p
0
1=
�
1� p01

�
. If the number I of pairs is reduced to �I, 0 < � < 1,

then
��c� � �y�� =�y is reduced in magnitude by approximately a factor of p�, so

when � � p01 < 0 or equivalently � < e�, the power 1 � ���c� � �y� =�y	 of the
sensitivity analysis is reduced, but the limiting behavior as I ! 1, and hence

the numerical value e� of the design sensitivity are unchanged. For instance, if

the planning sample is 1 � � = 1=10 of the total, then
��c� � �y�� =�y is reduced by

approximately a factor
p
� = 0:949, whereas if 1�� = 1=3 then

p
� = 0:82. However,

as I ! 1, for both the full sample of I pairs and the analysis sample of �I pairs,

the power tends to 1 for � < e� and to 0 for � > e�.
The planning sample is used to pick a good y (�) in the hope of increasing the

design sensitivity e� when the analysis is performed on the analysis sample. The key
conclusion of the current section is that, as I ! 1, even a modest increase in the

design sensitivity e� by an improved choice of y (�) will ultimately dominate use of
the entire sample with a slightly inferior choice of y (�), because the power function,

viewed as a function of �, is tending to a step function with a single step at e�. As
I !1, the location of e� is all important.
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With L choices for the function y (�), an alternative to sample splitting is to use

all I pairs and correct for multiple testing using the Bonferroni inequality or a related

procedure. In (4), this means replacing � by �=L. From (4), replacing � by �=L

a¤ects the power but does not alter the design sensitivity, e�. Although we compare
the power of splitting and Bonferroni in §3.3 and §4.3, the two approaches are not

completely comparable. In the current context, use of the Bonferroni inequality

yields a test of the global null hypothesis that none of the outcomes are a¤ected, H0,

while splitting is selecting one hypothesis to test, Hy
0 .

In short, a good choice of y (�) can yield a larger design sensitivity, e�; however, the
design sensitivity is the same numerical value for: (i) picking y (�) based on a priori

considerations, (ii) picking the same y (�) based on sample splitting, and (iii) picking

the same y (�) using all of the data and correcting using the Bonferroni inequality.

For �nite I, the powers of these three procedures are di¤erent. In an experiment,

with � = 1, this is analogous to saying that all three procedures yield consistent

tests, but their powers are di¤erent. In §3.2 and §3.3, the numerical power of a

sensitivity analysis with � � 1 is determined in simple settings. In §3.2, sample

splitting is contrasted with an a priori guess in choosing between two possible y (�)�s.

In §3.3, sample splitting is contrasted with the Bonferroni inequality.

3.2 Sample splitting versus an a priori choice: two outcomes

In the current section, there are K = 2 outcomes, the investigator will choose one

primary outcome, and will perform a sensitivity analysis for the primary outcome

using the signed rank statistic. Two strategies are contrasted. In the �rst strategy,
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the investigator splits the sample at random in fractions (1� �) I and �I, 0 < � < 1,

picks the outcome with the larger estimated design sensitivity in the (1� �) I frac-

tion, and applies the sensitivity analysis to that outcome in the remaining �I sample.

In the second strategy, without splitting the sample, the investigator guesses which

outcome is best, guessing correctly with probability �, incorrectly with probability

1 � �, and performs the analysis on the full sample of I pairs using the guessed

outcome. Without loss of generality, it is assumed that the �rst outcome has the

larger design sensitivity, but of course the investigator does not know this.

Let Tk1, Tk2, and Tk� be, respectively, the signed rank statistics from the (1� �) I

split, the �I split, and the full sample of size I, for outcome k. It is easy to verify

that the �rst outcome is estimated to have larger design sensitivity if T11 � T21 > 0,

and in that case the �rst strategy uses T12; otherwise, it uses T22. Under very mild

conditions, as I ! 1, the distributions of the six signed rank statistics tend to

Normal distributions with expectation and variance given by the expressions parallel

to those for �y and �
2
y in §2.3, but with I replaced appropriately by (1� �) I or

�I. The Normal approximation is used in computing the power of the sensitivity

analysis. Write H = 1 if T11 � T21 > 0, H = 2 otherwise, and bT = TH;2, sobT is the signed rank statistic in the analysis sample for the outcome chosen by

the planning sample. In parallel, write eT for T1� or T2�, picking independently

of (T1�; T2�) the outcome with the larger true design sensitivity, namely outcome 1,

with probability �, and outcome 2 with probability 1 � �. For a �xed � and

� = �= (1 + �), the �rst strategy has approximate power Pr
�bT � c�;�� where c�;� :=

��I (�I + 1) =2+��1 (1� �)
p
� (1� �) �I (�I + 1) (2�I + 1) =6, whereas the second
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strategy has power Pr
�eT � c�� = �Pr (T1� � c�)+(1��)Pr (T2� � c�) where c� =

c�;1 was de�ned in §2.2.

The limiting case, as I ! 1, is elementary and reinforces the discussion in

§3.1. Write e�1 and e�2 for the design sensitivity for T1� and T2�, respectively. For

1 � � < min
�e�1; e�2�, the power of the sensitivity analysis tends to 1 for all 0 < � < 1

and 0 < � < 1, whereas for � > max
�e�1; e�2� � 1, the power of the sensitivity

analysis tends to 0 for all 0 < � < 1 and 0 < � < 1. If e�1 > � > e�2 � 1, then the
choice of outcome matters for the limiting power, and as I !1, Pr

�bT � c�;��! 1

whereas Pr
�eT � c�� ! �. This happens because bT is very likely to choose the

correct outcome for su¢ ciently large (1� �) I, but eT chooses the right outcome with
probability�, yielding limiting power 1, or the wrong outcome with probability 1��,

yielding limiting power 0. The case e�1 > � = e�2 = 1, is just slightly di¤erent, with
Pr
�bT � c�;�� ! 1 and Pr

�eT � c�� ! � + (1��)�, because in this case there

is still an � chance of rejection when the better outcome is not chosen. Despite

winning as I !1, splitting a¤ects power for �nite I, which we now investigate.

Write Vik = (Ri1k �Ri2k) (Zi1 � Zi2) for the treated-minus-control di¤erence for

outcome k in pair i, and Vi = (Vi1; : : : ; ViK)
T . To examine power for �nite I, the

K = 2 outcomes will be independent of each other with additive e¤ect !k� k, so

rTijk = rCijk + !k� k, with Vik = !k� k + (rCi1k � rCi2k) (Zi1 � Zi2) �iid N (!k� k; !2k),

so that � k is the magnitude of the e¤ect in units of the standard deviation !k of the

matched pair di¤erence. By invariance, the power for this model is the same as the

power for the special case !k = 1, Vik � N (� k; 1), k = 1; 2. In Table 1, � 1 = 1
2
and

� 2 =
1
4
or � 2 = 0, the sample size is I = 50 or 100 or 500 or 1000, and the guesses
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Table 1: Power by Splitting or Guessing, � = 2=3. Values are power for (bT ; eT ).
(� 1; � 2) � � I = 50 I = 100 I = 500 I = 1000�
1
2
; 0
�

9/10 1 (0:74; 0:66) (0:86; 0:68) (0:99; 0:68) (1:00; 0:68)
1.5 (0:47; 0:44) (0:76; 0:61) (0:99; 0:67) (1:00; 0:67)
2.5 (0:09; 0:08) (0:16; 0:13) (0:60; 0:43) (0:87; 0:60)
3.5 (0:02; 0:02) (0:02; 0:01) (0:01; 0:00) (0:00; 0:00)�

1
2
; 0
�

2/3 1 (0:81; 0:66) (0:97; 0:68) (1:00; 0:68) (1:00; 0:68)
1.5 (0:45; 0:44) (0:77; 0:61) (1:00; 0:67) (1:00; 0:67)
2.5 (0:09; 0:08) (0:15; 0:13) (0:49; 0:43) (0:76; 0:60)
3.5 (0:03; 0:02) (0:02; 0:01) (0:01; 0:00) (0:00; 0:00)�

1
2
; 1
4

�
9/10 1 (0:78; 0:82) (0:92; 0:93) (1:00; 1:00) (1:00; 1:00)

1.5 (0:43; 0:48) (0:67; 0:67) (0:93; 0:81) (0:98; 0:89)
2.5 (0:08; 0:09) (0:13; 0:13) (0:53; 0:43) (0:83; 0:60)
3.5 (0:02; 0:02) (0:01; 0:01) (0:01; 0:00) (0:00; 0:00)

are correct with probability � = 2
3
. When � 2 = 0, the treatment has no e¤ect on

the second outcome. The design sensitivity for outcome k = 1 is e�1 = 3:17 with

� 1 =
1
2
; for outcome k = 2, e�2 = 1:76 for � 2 = 1

4
or e�2 = 1 for � 2 = 0. When � 1 = 1

2

and � 2 = 0, it is easier to identify the better outcome and more important to do so,

whereas when � 1 = 1
2
and � 2 = 1

4
, it is harder to identify the better outcome but

slightly less important to do so. Two splits are considered, � = 9
10
and � = 2

3
, so in

both cases, most of the data is saved for use in analysis.

The limiting cases as I ! 1 are consistent with the numerical values in Table

1. In all cases, by the basic property of design sensitivity, the power tends to zero

as I ! 1 for � = 3:5 > 3:17 = e�1 = max
�e�1; e�2�. When (� 1; � 2) =

�
1
2
; 0
�
,

the choice of outcome a¤ects the power even in a randomization test (� = 1): for

I = 1000, � = 1, the powers are, to two decimals, 1.00 for bT with � = 9
10
or 2

3
, and

0.68 for eT , where 0:68 = �+(1��)� = 2
3
+
�
1� 2

3

�
�0:05. In Table 1, the spitting
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procedure with � = 9
10
does well compared to guessing correctly � = 2

3
of the time.

For I = 100, this means using (1� �) I = 10 observations to select the outcome and

�I = 90 observations in analysis, as opposed to guessing correctly � = 2
3
of the time

and using I = 100 observations in analysis.

What happens if Vik �iid N (� k; 1), k = 1; 2, but with positive correlation? Pos-

itive correlation between Vi1 and Vi2 yields a positive correlation between the signed

rank statistics in the planning sample, T11 and T21, without altering their expecta-

tions and variances which depend only on the marginal distributions. As I ! 1,

T11�T21 is approximately Normal, with the same expectation as the case of indepen-

dent outcomes, but with smaller variance, so the probability of selecting the correct

outcome, T11 � T21 > 0, is increased, and the power of the split sample procedure is

somewhat better than in Table 1. Negative correlation has the opposite e¤ect.

3.3 Sample splitting versus a Bonferroni adjustment: K outcomes

Suppose that instead of two independent outcomes, as in §3.2, there are K � 2

independent outcomes, with signed rank statistics Tk1, Tk2, and Tk, for outcome k,

k = 1; : : : ; K, in the (1� �) I = I1 split, the �I split, and the full sample of size I. In

the current section, outcome k = 1 is positively a¤ected by treatment, with E (T11) =

�11 and var (T11) = �
2
11 de�ned in §2.3, but outcomes k = 2; : : : ; K are una¤ected,

so that E (Tk1) = �k1 = I1 (I1 + 1) =4 and var (Tk1) = �
2
k1 = I1 (I1 + 1) (2I1 + 1) =24

for k = 2; : : : ; K. The �rst outcome has the highest estimated design sensitivity if

and only if T11 > Tk1, k = 2; : : : ; K, which occurs with probability approximated by

PCS =
R1
�1�

K�1 f(v � �k1) =�k1g � f(v � �11) =�11g =�11 dv where � (�) and � (�)
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are the standard Normal density and cumulative distribution, and this formula for

the probability of a correct selection (PCS) is essentially due to Bechhofer (1954).

Figure 1 plots PCS against (1� �) I for (1� �) I = 10; : : : ; 200, for K = 2, 4,

8, 25 and 100 independent outcomes, where the treated-minus-control di¤erence Vik

in pair i for outcome k = 1 is N
�
1
2
; 1
�
and for outcomes k = 2; : : : ; K are N (0; 1).

In Figure 1 a planning sample of size (1� �) I = 50 is su¢ cient to yield a high

probability of selecting the correct outcome.

The top of Table 2 gives the power of the two stage procedure, in which one of the

K outcomes is selected on the basis of (1� �) I = I1 observations, and the sensitivity

analysis is performed for that outcome using the remaining �I observations. The

triple (0:86; 0:70; 0:54) in the upper left cell is for K = 2, 4, or 8 outcomes, and the

power for K = 8 outcomes is 0.54, rather than 0.86 for K = 2 outcomes because it

is more di¢ cult to identify the one a¤ected outcome when there are 8 outcomes.

As I ! 1, the power is tending to a step function with a step down of size

1 at the design sensitivity for outcome k = 1, namely e�1 = 3:17. This limiting

behavior is seen quite clearly for I = 500 or I = 1000 in Table 2. For I = 100, a

planning sample of size 10 for � = 9=10 is too small, and better power is achieved

with � = 2=3, because there is a material chance of selecting the wrong outcome.

For I = 100, the power is lower when K is higher, but for I = 500 or I = 1000, the

number of outcomes, K, barely a¤ects the power of the splitting procedure, because

correct identi�cation is highly probable, consistent with Figure 1.

The bottom of Table 2 gives the power of the Bonferroni procedure, in which

rejection for outcome k = 1 requires a signi�cance level less than or equal to �=K =

17



Table 2: Power by Splitting When Selecting from Among 1 A¤ected Outcome and
K � 1 Una¤ected Outcomes. The three values are power for K = 2; 4; 8, where the
case of K = 2 is identical to Table 1.
(� 1; � k) � � I = 100 I = 500 I = 1000�
1
2
; 0
�

9/10 1 (0:86; 0:70; 0:54) (0:99; 0:98; 0:96) (1:00; 1:00; 1:00)
1.5 (0:76; 0:61; 0:46) (0:99; 0:98; 0:96) (1:00; 1:00; 1:00)
2.5 (0:16; 0:13; 0:09) (0:60; 0:59; 0:58) (0:87; 0:87; 0:87)
3.5 (0:02; 0:01; 0:01) (0:01; 0:01; 0:01) (0:00; 0:00; 0:00)�

1
2
; 0
�

2/3 1 (0:97; 0:93; 0:88) (1:00; 1:00; 1:00) (1:00; 1:00; 1:00)
1.5 (0:77; 0:74; 0:69) (1:00; 1:00; 1:00) (1:00; 1:00; 1:00)
2.5 (0:15; 0:14; 0:13) (0:49; 0:49; 0:49) (0:76; 0:76; 0:76)
3.5 (0:02; 0:02; 0:02) (0:01; 0:01; 0:01) (0:00; 0:00; 0:00)�

1
2
; 0
�

Bonferroni 1 (1:00; 1:00; 0:99) (1:00; 1:00; 1:00) (1:00; 1:00; 1:00)
1.5 (0:85; 0:76; 0:65) (1:00; 1:00; 1:00) (1:00; 1:00; 1:00)
2.5 (0:11; 0:07; 0:04) (0:51; 0:39; 0:28) (0:82; 0:73; 0:63)
3.5 (0:01; 0:00; 0:00) (0:00; 0:00; 0:00) (0:00; 0:00; 0:00)

0:05=K, using all I pairs, as described in §3.1. For a randomization test, � = 1 with

I = 100 pairs, the Bonferroni procedure has higher power than split samples, which

is consistent with Cox�s (1975) �ndings, despite some di¤erences in the models and

methods. For a sensitivity analysis with � = 2:5 < e�1 = 3:17 and I = 500 or I =
1000 pairs, the situation is reversed: with 1�� = 1

10
, split samples have higher power

than the Bonferroni procedure, particularly with K = 8 outcomes, for instance, 0.58

versus 0.28 for I = 500. As one would expect from the asymptotic calculations, for

both procedures, for I = 500 and I = 1000, the power is near 1 for all procedures

for � � 1:5� e�1 = 3:17 and the power is near zero for � = 3:5 > e�1 = 3:17.
Figure 2 plots the power for the split sample and Bonferroni procedures for several

sample sizes I and several e¤ects (� 1; � k). Figure 2 contains a single curve for the

split sample procedure, because in this case (1� �) I = 100 pairs in the planning
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sample su¢ ce to determine, with negligible probability of error, the outcome with

the largest design sensitivity. As I !1, all of the curves in Figure 2 tend to a step

function with a single step down at the design sensitivity, e�, but the split sample
procedure is slightly ahead, particularly for larger values of K. As emphasized in

Table 2, the relative performance actually reverses for � = 1, but the power near

� = 1 in Figure 2 is close to 1 in all cases. If the power is not close to 1 for � = 1,

then the study is likely to be sensitive to small biases.

4 Split Samples and Design Sensitivity: Coherence

4.1 What is coherence?

The association between a treatment and outcomes is coherent if it is compatible with

a mechanism through which the treatment is thought to produce e¤ects. Campbell

(1988, p. 33) wrote: �inferential strength is added when each theoretical parameter is

exempli�ed in two or more ways, each mode being as independent as possible of the

other, as far as the theoretically irrelevant components are concerned;�see also Hill

(1965), Breslow & Day (1980, §3.2), Trochim (1985), and Reynolds & West (1987).

The coherent signed rank test combines signed rank tests for individual outcomes

and permits a straightforward sensitivity analysis (Rosenbaum 1997). If the coherent

prediction is correct, the results may be less sensitive to unobserved biases than for

most or all of the component tests. In its simplest form, for several outcomes of

known orientation of e¤ect, the coherent signed rank statistic is simply the sum of

the separate signed rank statistics. Instead of choosing one outcome, the coherent
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signed rank statistic could use any subset of the outcomes. The planning sample

determines the subset. With K outcomes, there are 2K � 1 subsets, or 28� 1 = 255

subsets for K = 8. The current section considers sample splitting in relation to

coherence, with theoretical calculations in a simpli�ed case in §4.2, and practical

calculations based on simulation in §4.3.

4.2 Theoretical results for a simpler statistic

A simpler form of coherence statistic applies the usual signed rank statistic to a

scalar function y (�) of the multivariate response Rij. The advantage of this simpler

statistic is that its design sensitivity e� = p
0
1=
�
1� p01

�
follows immediately from

the calculation in §2.3, and the e¤ects of sample splitting on its design sensitivity

follow immediately from considerations similar to §3.1. The disadvantage of this

simpler form is that it is impractical: it is rarely if ever possible to give an a priori

speci�cation for the scalar function y (�), because even if one wanted to give equal

weights to the K coordinates of Rij, some form of robust standardization of the

coordinates would be required. The coherent signed rank test in §4.1 is practical,

but the design sensitivity calculations require simulation, as developed in §4.3.

The simplest function y (�) is y (Rij) = �TRij for �xed �, in which case Di =

(2Zi1 � 1) (Yi1 � Yi2) = �T (2Zi1 � 1) (Ri1 �Ri2) = �TVi, from which p
0
1 and e� =

p
0
1=
�
1� p01

�
are determined. If Vi � NK (� ;�), then Di � N

�
�T� ; �T��

�
, and

p
0

1 = Pr (Di +Dj > 0) = Pr

�
Di +Dj � 2�T�p

2�T��
>

�2�T�p
2�T��

�
= �

 p
2�T�p
�T��

!
.

(5)
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Table 3: Design Sensitivity with K Equally A¤ected, Equally Correlated Outcomes,
with E¤ect � = 0:5 and Correlation �.

K = 1 K = 2 K = 4 K = 8
� = 0 3.17 5.30 11.71 42.96
� = 1

4
3.17 4.39 6.02 7.78

� = 1
2

3.17 3.83 4.39 4.78
� = 1 3.17 3.17 3.17 3.17

By a familiar result (Rao 1973, 1f.1(i), p. 60), sup
�
�T�=

p
�T�� = � T��1� is

attained at � / ��1� , so the design sensitivity e� is maximized for this �. Insight is
provided by the simple case in which � = (� ; : : : ; �)T and � has 1s on the diagonal

and � o¤ the diagonal, so ��1� / � = (1; : : : ; 1)T and there are K equally a¤ected

outcomes, given equal weights, all with unit standard deviation and intercorrelation

�. Then, in (5),
p
2�T�=

p
�T�� =

p
2K�=

q
K + 2

�
K
2

�
�. Table 3 gives this design

sensitivity e� for � = 0:5, K = 1; 2; 4; 8 outcomes and several ��s; a similar calculation

was done for the strati�ed rank sum statistic in Rosenbaum (2004). In Table 3, there

is markedly less sensitivity to unobserved bias with K = 8 uncorrelated, equally

a¤ected outcomes, but the gains from coherence are reduced for � = 1=2.

Table 4 considers the bivariate case,K = 2, with correlation � and Vik � N (� k; 1),

k = 1; 2, displaying the optimal � = ��1� rescaled to integer weights and the design

sensitivity e� for these weights. In Table 4, when � = 1
2
and (� 1; � 2) =

�
1
2
; 1
4

�
, the

second outcome is ignored by the best weights, � = (1; 0)T , and this is also true for

� = 0 and (� 1; � 2) =
�
1
2
; 0
�
. Notable in Table 4 are some negative weights. For

instance, � = (4;�3)T for � = 3
4
and (� 1; � 2) =

�
1
2
; 0
�
, yielding e� = 6:02 which is

almost twice the design sensitivity for Vi1 alone, namely e� = 3:17. In this case,

attaching a negative weight to a correlated but una¤ected outcome yields reduced
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Table 4: The Optimum Weights and the Associated Design Sensitivity With Bivari-
ate Normal Matched Pair Di¤erences. For display, the weights are scaled to yield
integer values.

(� 1; � 2)
�
1
2
; 1
2

� �
1
2
; 1
4

� �
1
2
; 0
�

� = 0
� = (1; 1)Te� = 5:30 � = (2; 1)Te� = 3:66 � = (1; 0)Te� = 3:17

� = 1
4

� = (1; 1)Te� = 4:39 � = (7; 2)Te� = 3:30 � = (4;�1)Te� = 3:30
� = 1

2

� = (1; 1)Te� = 3:83 � = (1; 0)Te� = 3:17 � = (2;�1)Te� = 3:83
� = 3

4

� = (1; 1)Te� = 3:45 � = (5;�2)Te� = 3:45 � = (4;�3)Te� = 6:02
sensitivity to unobserved bias; see Rosenbaum (1992) for related issues.

4.3 Sample Splitting Evaluated By Simulation

4.3.1 Structure of the Simulation

The simulation compares two versions of sample splitting to two feasible methods

that use all of the data, and an infeasible oracle that knows with certainty some

of the information we hope to discover in the �rst part of the split sample. For

I = 100 and I = 1000 pairs, the initial sample was, respectively, 33 pairs or 100

pairs. For I = 48 pairs, planning samples were either 8 or 16 pairs. Results for

I = 500 and (1� �) = 1=10 were similar to I = 1000, and are not presented. The

K = 8 outcomes were Vi = (Vi1; : : : ; Vi8)
T � N8 (� ;�). The �ve methods were as

follows.

Split samples with coherence: In the planning sample, the coherent signed rank

test in Rosenbaum (1997) was applied to the 28 � 1 = 255 subsets of the eight
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responses, and one subset was selected that produced the smallest maximum p-

value for � = 2. That subset was used in the analysis sample.

Oracle: The oracle knew what the investigator does not, namely the true value of

� and �, and the oracle made the best choice of subset. It discarded the planning

sample. One expects the oracle to be uniformly better than sample splitting,

because it has, in e¤ect, a planning sample of in�nite size and an analysis sample

of the same size.

Split samples selecting one outcome: This method selected the one outcome

with the largest Wilcoxon signed rank statistic in the planning sample, and used

that one outcome in the analysis sample. One expects it to be better than split

samples with coherence when, in fact, only one outcome is a¤ected.

Bonferroni: The Bonferroni method used all I pairs, applying the Bonferroni

adjustment to the one of 8 outcomes with the smallest maximum p-value. One

expects the Bonferroni method to perform well when only one outcome is a¤ected

and to perform poorly when many outcomes are a¤ected.

Coherence: The coherence method applied the coherent signed rank test to all

K = 8 outcomes for all I pairs. One expects the coherence method to perform

well when all outcomes are strongly a¤ected and to perform poorly when only one

outcome is a¤ected. The coherence method should be better than the oracle when

all outcomes are equally a¤ected, because the oracle performs the analysis with �I

pairs while the coherence method uses I pairs.

The simulation estimated the power of a sensitivity analysis for several values of

�, in one thousand replications. With one thousand replications, a proportion has a
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Table 5: Power of the Sensitivity Analysis for I = 1000 Pairs and � = 2:5. The
planning sample is 100 of the 1000 pairs. Based on simulation of one thousand
samples. Excluding the oracle, the highest power is in bold.

� �I
�
1
2
; 0; : : : ; 0

� �
1
2
; 1
2
; 1
10
; 0; : : : ; 0

� �
1
2
; 1
2
; 2
5
; 0; : : : ; 0

� �
1
4
; 1
4
; : : : ; 1

4

�
Oracle 900 0.863 1.000 1.000 1.000

Split, coherence 900 0.615 0.999 0.997 0.989
Split, select one 900 0.860 0.861 0.750 0.000
Bonferroni 1000 0.623 0.850 0.837 0.000
Coherence 1000 0.000 0.031 0.892 1.000

standard error of at most
q

1
2

�
1� 1

2

�
=1000 = 0:016. The power is the probability

that the upper bound on one-sided p-value level is less than 0.05.

4.3.2 Results of the Simulation

For I = 100 or I = 1000, the upper part of Figure 3 displays the results for� equal to

the identity matrix, so the eight outcomes are independent, with � =
�
1
2
; 0; : : : ; 0

�
in

which the best subset is f1g, � =
�
1
2
; 1
2
; 1
10
; 0; : : : ; 0

�
in which the best subset is f1; 2g,

� =
�
1
2
; 1
2
; 2
5
; 0; : : : ; 0

�
in which the best subset is f1; 2; 3g, and � =

�
1
4
; 1
4
; : : : ; 1

4

�
in

which the best subset is f1; 2; : : : ; 8g. Again, the oracle knows which subset is best.

On the upper left are plots for I = 100 pairs, on the upper right are plots for I = 1000

pairs. The lower portion of Figure 3 concerns I = 48 pairs, with larger e¤ects, � ,

and planning samples of either 16 or 8 pairs.

Not surprisingly, the coherence method is best when the best subset is f1; 2; : : : ; 8g,

for it uses this best subset and all I pairs, but it is the worst method when the best

subset is f1g. Two methods select one outcome, namely the Bonferroni method and
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Table 6: Power of the Sensitivity Analysis for I = 48 Pairs and � = 3:5. The
planning sample is 16 of the 48 pairs. Based on simulation of one thousand samples.
Excluding the oracle, the highest power is in bold.

� �I (1; 0; : : : ; 0)
�
1; 1; 1

5
; 0; : : : ; 0

� �
1; 1; 4

5
; 0; : : : ; 0

� �
1
2
; 1
2
; : : : ; 1

2

�
Oracle 32 0.554 0.975 0.997 0.972

Split, coherence 32 0.333 0.704 0.864 0.629
Split, select one 32 0.540 0.532 0.488 0.019
Bonferroni 48 0.208 0.366 0.392 0.002
Coherence 48 0.000 0.087 0.399 1.000

split samples using one outcome; they do well when the best subset is f1g, but in

other cases they often perform poorly. For I = 1000, split samples with coherence

is never bad; it loses in particular cases only to methods that �know�what it tries to

learn from the planning sample. Table 5 gives the estimates of power for I = 1000

and � = 2:5 where (1� �) I = 100 pairs are used for planning and �I = 900 pairs

are used for analysis. The Bonferroni and Coherence methods do not split and use

1000 pairs for analysis. In Table 5, split samples with coherence and the oracle are

the only methods that have meaningful power in all four situations, and of course

the oracle is not a feasible method.

Table 6 is similar to Table 5, except there are I = 48 pairs, (1� �) I = 16 pairs

used for planning, � = 3:5, and the e¤ects are larger. The pattern is qualitatively

similar to Table 5, except that in Table 5 the best feasible method was close to

the oracle, while in Table 6 the best feasible method is sometimes inferior to the

oracle. That is, with (1� �) I = 16 pairs used for planning, mistakes in planning

are sometimes made. For instance, in the last column of Table 6, it is best to use
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Table 7: Power of the Sensitivity Analysis Using Split Samples for Coherence for
I = 1000 Pairs with Various Patterns of Correlation. Based on simulation of one
thousand samples.

� 1 1.5 2.5 3.5
Uncorrelated 1.000 1.000 0.974 0.689
Symmetric 1.000 0.999 0.093 0.000

Scattered Positive 1.000 1.000 0.987 0.795
Scattered Mixed 1.000 1.000 0.994 0.833

all eight outcomes in a coherent statistic. Knowing this, the oracle has power 0.972

even though it uses 32 rather than 48 observations, but split-coherence does not

know this and has power 0.629.

Table 7 considers the impact of dependence among the K = 8 treated-minus-

control di¤erences,Vi = (Vi1; : : : ; Vi8)
T . Throughout Table 7, � =

�
1
3
; 1
3
; 1
3
; 1
3
; 0; 0; 0; 0

�
.

In all cases, the eight di¤erences have standard deviation one, so � has ones on the

diagonal. For uncorrelated outcomes, the o¤ diagonals of � are zero, whereas for

the case of symmetric correlation, the o¤-diagonals are 1
2
. In the case of scattered

positive correlations, Vik and Vi;k+4 have correlation 1
2
for k = 1; 2; 3; 4 with all other

correlations equal to zero. In the case of mixed scattered correlations, Vik and Vi;k+4

have correlation 1
2
for k = 1; 2, while Vik and Vi;k+4 have correlation �1

2
for k = 3; 4

with all other correlations equal to zero. As in §4.2, the symmetrically correlated

case has substantially reduced power. Although not shown in Table 7, the results for

the other methods � split samples selecting one outcome, Bonferroni and coherence

on all I pairs � are easy to summarize in the case of � = 3:5. There were four situa-

tions, three methods, and one thousand samples, so there were 4�3�1000 = 12; 000

opportunities to reject when � = 3:5, and there was only one rejection.
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5 Example: Genetic Damage and Anti-Tuberculosis Drugs

To illustrate split samples in sensitivity analysis, we divide the sample in §1 into a

planning sample of (1� �) I =
�
1� 5

6

�
36 = 6 observations and an analysis sample of

�I = 30 observations, and we use the planning sample to decide between a primary

analysis that focuses on MN, on CA, or on their combination using the coherent

signed rank statistic. In actual practice, one would use one random split. However,

to examine the stability of the analysis, we repeated it for 30 independent random

splits. We used the method called �split samples with coherence� in §4.3; that is,

of the three choices, MN, CA or their combination, we selected the one that had

the smallest maximum p-value for � = 2 in the planning sample. Figure 4 shows

the 30 planning samples of size six. Of the 30 random splits, 19 select chromosome

aberrations, 11 select the coherent statistic, and none select micronuclei.

Figure 5 shows the results for the 30 analysis samples of size �I = 30. In

each of the 30 samples, we calculate the maximum over u 2 U of all possible p-

value for � = 6. The boxplots display the 30 maximum p-values. The four boxplots

refer to micronuclei (MN), chromosome aberrations (CA), their coherent combination

(Coherence), and the method selected by the planning sample (Selected). The

broken lines show the three upper bounds using all I = 36 pairs. For the 30 analysis

samples, none of the 30 upper bounds for MN is below 0.05, whereas all 90 of the

other upper bounds for CA, Coherence and Selected are below 0.05. A similar

pattern is seen when all I = 36 pairs are used. The important decision was to avoid

use of MN alone, and each of the 30 samples of size 6 correctly guided that decision.

Other issues, including the loss of six observations for planning, had minor e¤ects.
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6 Discussion

The design of an observational study strongly a¤ects the degree to which its con-

clusions are sensitive to biases from unmeasured covariates. Aspects of design that

a¤ect sensitivity to unobserved biases include: (i) choice of a primary outcome, (ii)

coherent predictions among several outcomes (Rosenbaum 1997, 2004), (iii) the pat-

tern and magnitude of doses of treatment (Rosenbaum 2003, 2004), (iv) the strength

and biases of instrumental variables (Small and Rosenbaum 2008), (v) the trade-o¤

between the heterogeneity of experimental material and the available sample size

(Rosenbaum 2005), and (vi) uncommon but dramatic treatment e¤ects and the use

of analytic strategies intended to detect them (Rosenbaum 2007). Unfortunately,

it is typically di¢ cult to make wise decisions about design in the absence of empir-

ical data. If one performed many analyses and reported the analysis that is least

sensitive to bias, then one risks capitalizing on chance and thereby substantially ex-

aggerating the degree to which the study is insensitive to bias. In some contexts,

data from earlier studies may guide design. Here, we have considered the possibility

of randomly splitting the current data set into a small planning sample and a large

analysis sample, where the planning sample guides decisions about design and is then

discarded.

Biases addressed by a sensitivity analysis do not diminish in magnitude as the

sample size, I, increases. In consequence, it may be advantageous to sacri�ce a small

part of the sample size in such a way that these biases are partially addressed. This

is formalized using the design sensitivity, e�, which is not a¤ected by the sacri�ce of
a small fraction of the sample, but which may improve with better decisions about
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design. In �nite samples, there is a loss of power when part of the sample is discarded,

and this must be weighed against possible gains; however, in simple contexts in §3

and §4, the gains were large and the losses small.

What splitting cannot do. Splitting will not make a study insensitive to unob-

served biases. Rather, if there are design decisions that would make the study

less sensitive to unobserved biases, sample splitting may guide those decisions.

For splitting, the important situations are the easy situations. To say that

there is some design decision that would make the study substantially less sensitive

to unobserved biases is to say that the situation, when framed in the proper way,

is not marginal or ambiguous. It is in such a situation, and perhaps only in such a

situation, that examination of a small planning sample can provide useful guidance.

What is not marginal or ambiguous has some hope of being clearly visible even

in a small planning sample. In §5, the CA measure was much less sensitive to

bias than the MN measure, and this was seen without much ambiguity in every

one of thirty subsamples of size six. If the study would be extremely sensitive

to unobserved biases no matter how it was conducted, then sample splitting has

nothing to o¤er, but implicitly no other strategy can o¤er much either. Concisely:

splitting won�t work if nothing works, but then nothing works.

Raising e� rather than getting closer to e�. Generally, an increase in sample

size in an observational study has only a limited e¤ect on the sensitivity of the

study to unobserved biases, that limit being the design sensitivity, e�. In contrast,
splitting � that is, discarding a small part of the sample size to improve the study

design � holds the realistic prospect of making the study less sensitive to unob-
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served biases, that is, of increasing e�. In a moderately large observational study,
the sample size is being wasted if it is used only to reduce sampling variability,

and not used to improve design, because reduced sampling variability has only a

very limited impact on a key source of uncertainty, namely bias from unmeasured

covariates. This situation in observational studies is not analogous to experiments

where unobserved bias is avoided by randomization.

Exploratory uses of splitting. We have used split samples in a regimented

manner. Unlike many other methods, however, splitting can be used in the

planning sample in an exploratory manner to generate unanticipated insights.

Cross-validation and repeated splitting. Sections 3 and 4 evaluated the perfor-

mance of a single, random split, whereas the example in §5 compared 30 distinct

random splits. In the example, it was comforting to learn that, to a certain ex-

tent, the speci�c split did not much matter, with similar sensitivity to bias in all

cases, although the split did matter in the sense that some tests were based on

coherence and others on CA alone. When choices are sharply de�ned and made

in a mechanical manner, as in §5, the use of repeated splits is an option. There is

less opportunity here than in some other contexts to combine the many splits into

one analysis, because the split selects the hypothesis to test, so the meaning of

rejection varies from one split to the next; nonetheless, repeated splits give some

indication of the stability of the result. In complex studies, the choices may be

less sharply de�ned, and much may be gained from exploratory analysis of the

planning sample; however, repeated splits are not practical in this case.

Other contexts. In the current paper, we focused on a particularly simple problem,
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the best use of several outcomes in matched pairs. However, similar considerations

apply in other contexts. For instance, design sensitivity for matching with multiple

controls di¤ers from pair matching only in technical details (Rosenbaum 2004). In

the current paper, we have not illustrated aspects (iii) to (vi) above, but in each

case there are planning decisions that (a) a¤ect the design sensitivity, e�, (b) are
di¢ cult decisions to make without data, (c) yet the limiting design sensitivity,e�, is unchanged by sacri�cing a small portion of the data to a planning sample,
suggesting that sample splitting will be advantageous in moderately large samples.

Would some appropriate use of available doses reduce sensitivity to unobserved

biases? Would an analysis that looks for dramatic responses among a small

fraction of treated subjects be less sensitive to unobserved biases than an analysis

that looks for a constant e¤ect? With some data, perhaps the data from a small

planning sample, these questions can be answered with straightforward analyses.
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Figure 1:  For various sample sizes between 10 and 200, with K independent normal 
outcomes, N(mk,1), with m1= ½ and mk=0, k=2,…,K, the curves give the probability that 
the largest Wilcoxon signed rank statistic will be for outcome k=1.  The horizontal line is 
at 0.95. 
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Figure 2:  Power of the sensitivity analysis as a function of G, with I=1000, 2500 or 4000 
pairs, (1-z)=10% of pairs used in the planning sample, with K=2, 4, 8, 16 independent 
outcomes, where matched pair difference k=1 is N(t1, 1) for t1 =.5, .333, .25, 
respectively, and outcomes k=2,…,K are N(0,1).  In all cases displayed, the split sample 
is nearly certain to identify the affected outcome, namely outcome k=1. 
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Figure 3:  Power of the Sensitivity Analysis as a Function of G with Eight Independent 
Normal Differences with Expectation t and I Matched Pairs.  Based on simulation of 
1000 samples from N8(t,I).  The analysis sample has zI matched pairs. 
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Figure 4:  Micronuclei and Chromosome Aberrations in 30 Random Planning Splits of 
Size (1-z)I = 6 Pairs from the I=36 Pairs.  Of the 30 random splits, 19 select chromosome 
aberrations, 11 select the coherent statistic, and none select micronuclei.   
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Figure 5:  Upper Bounds on 30 P-values Testing No Treatment Effect with G = 6 for the 
30 Analysis Samples of Size zI=30.  The boxplots are for micronuclei (MN), 
chromosome aberrations (CA), the coherent statistic (Coherence), and the method 
selected by the planning sample (Selected).  The broken lines indicate the upper bounds 
on the p-values using all I=36 observations.  The solid line is at the conventional 0.05 
level.  The large gain comes from not using MN alone; the other differences, including 
the loss of six observations to the planning sample, are small by comparison.  




