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Using the Cross-Match Test to Appraise
Covariate Balance in Matched Pairs

Ruth HELLER, Paul R. ROSENBAUM, and Dylan S. SMALL

Having created a tentative matched design for an observa-
tional study, diagnostic checks are performed to see whether
observed covariates exhibit reasonable balance, or alternatively
whether further effort is required to improve the match. We
illustrate the use of the cross-match test as an aid to apprais-
ing balance on high-dimensional covariates, and we discuss its
close logical connections to the techniques used to construct
matched samples. In particular, in addition to a significance
level, the cross-match test provides an interpretable measure
of high-dimensional covariate balance, specifically a measure
defined in terms of the propensity score. An example from the
economics of education is used to illustrate. In the example,
imbalances in an initial match guide the construction of a bet-
ter match. The better match uses a recently proposed technique,
optimal tapered matching, that leaves certain possibly innocu-
ous covariates imbalanced in one match but not in another, and
yields a test of whether the imbalances are actually innocuous.

KEY WORDS: Multivariate matching; Observational study;
Propensity score; Seemingly innocuous confounding; Tapered
matching.

1. INTRODUCTION: MOTIVATING EXAMPLE;
NOTATION; A MULTIVARIATE MATCH

1.1 Covariate Balance in Matched Observational Studies

In experiments, random assignment of treatments tends to
create similar distributions of covariates in treated and con-
trol groups; that is, randomization tends to balance the distri-
butions of both observed and unobserved covariates. Random-
ization does not yield identical treated and control groups, but
rather groups which exhibit no systematic relationship with co-
variates. It is common in randomized trials to begin with a ta-
ble showing that randomization has been reasonably effective,
bringing important observed covariates into reasonable balance.
Observational or nonrandomized studies of treatment effects
are common in contexts where random assignment is unethical
or infeasible, and in these cases, multivariate matching is often
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used in an attempt to balance the observed covariates. In par-
allel, it is common in observational studies to begin with a ta-
ble showing that matching has brought observed covariates into
reasonable balance. Of course, unlike randomization, matching
for observed covariates cannot be expected to balance unob-
served covariates whose possible imbalances must be addressed
by other means, such as sensitivity analyses.

One might wish to match exactly for covariates, but when
there are many covariates this is not possible. For instance, with
20 covariates, there are 220 or about a million quadrants defined
by the medians of the 20 covariates, so with thousands of sub-
jects, it will typically be impossible to match a treated subject
to a control who is on the same side of the median for all 20
covariates. Instead of matching exactly for covariates, balanc-
ing many observed covariates is often quite feasible; see, for
instance, the work of Rosenbaum and Rubin (1985). Covari-
ate balance refers to the distribution of observed covariates in
treated and control groups, ignoring who is matched to whom;
specifically, observed covariates are independent of treatment
assignment. Given that exact matching is not possible, the co-
variate balance that would be found in a randomized experi-
ment is a useful benchmark for appraising a matched compari-
son. It is, however, just a recognizable benchmark. There is no
particular reason to expect that a matching algorithm will pro-
duce balance similar to a completely randomized experiment;
it may produce more in easy matching problems or less in dif-
ficult ones. Nonetheless, it is useful to know where a particular
matched comparison stands in relation to a recognizable bench-
mark.

In matching, examination of covariate balance is diagnostic.
We judge diagnostics by whether they accomplish what they are
intended to accomplish, in case of matching, whether they play
a constructive role in obtaining a better matched comparison.
As is generally true of diagnostic work, the process requires
exploratory analysis and judgment, but significance tests can
play a limited role, principally as an aid to appraising whether
an ostensible pattern could merely reflect the play of chance.
For instance, we would not reject a randomized experiment if
it exhibited the degree of covariate imbalance that randomiza-
tion is expected to produce. In a completely randomized experi-
ment, we expect one covariate in twenty to exhibit an imbalance
judged significant in a 0.05-level randomization test. See the ar-
ticles by Hansen and Bowers (2008) and Imai, King, and Stuart
(2008) for two views of the relative importance of exploratory
analysis, hypothesis tests, and judgement.

1.2 Outline: Using a Balance Diagnostic to Guide Design of
a Matched Comparison

In the current article, we illustrate the use of the cross-match
test (Rosenbaum 2005; Heller et al. 2010) as a diagnostic in
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appraising multivariate covariate balance. The cross-match test
momentarily forgets who is treated and who is control, pairing
subjects on the basis of covariates only; then, it counts the num-
ber of times a treated subject was paired with a control, that is,
it counts the cross-matches. If two multivariate distributions are
quite different, there will be few cross-matches. Section 2.4 dis-
cusses a new result relating the cross-match test to the propen-
sity score. The cross-match test also provides an estimate of the
magnitude of departure from covariate balance.

In a typical matched observational study, matched samples
are gradually improved until an acceptable match is obtained.
An acceptable match will balance observed covariates. Diag-
nostics play a role in judging whether the current match is ac-
ceptable or whether more effort is required. Because matching
uses only covariates and treatment assignments without exam-
ining outcomes, matching is part of the design of the study. That
is, the aspects of the data used in matching would be regarded
as fixed predictors if a conventional Gaussian covariance ad-
justment model were used instead.

In statistics, as in medicine, accurate diagnosis is nice to
have, but it is genuinely valuable only if it leads to effective
action. To illustrate the value of a diagnostic, it is not sufficient
to show that it yields correct diagnoses; rather, one must trace
a path from accurate diagnosis to improved results. In match-
ing, this means that the diagnostic must identify a problem
with a first match, which leads to a second better match that
the diagnostic judges unproblematic. The article is organized
around one such path from an unsatisfactory initial match to a
much more satisfactory final match. This path will take differ-
ent forms in different observational studies depending upon the
pattern of covariates and treatment assignments. In the example
in the current article, the path leads to a tapered match as pro-
posed by Daniel et al. (2008), a technique we describe in detail.
In some other example with different problems, the diagnostic
might lead in a different direction.

We illustrate the cross-match test in a reanalysis of a study
by Cecilia Rouse (1995) which compared educational attain-
ment at two-year and four-year colleges in the United States. In
Section 1.3, her study is described. It has 20 observed covari-
ates, and some of these are quite out of balance before match-
ing. Although there are enough controls to match 3-to-1—that
is, three students at four-year colleges to each student at a two-
year college—use of the cross-match diagnostic in Section 2
strongly suggests a 1-to-1 match will balance covariates, but 2-
to-1 or 3-to-1 will not. This is, of course, disappointing, and
it raises the question: Is it possible to create a balanced 1-to-1
match in such a way that many controls not used in this match
find some other good use? Inspection of the first, disappointing
match reveals that one of the most imbalanced groups of vari-
ables is the region of the U.S., that is, the North-East, South,
Midwest, and West. Two-year colleges are more common in
some regions than in others; so, region is substantially out of
balance. How important is it to control for region once there
is control for educational test scores and socioeconomic mea-
sures? One might argue that being in a region that contains few
two-year colleges discourages attendance at a two-year college,
but aside from doing that it is an innocuous covariate, some-
thing that might safely be left unmatched. We answer both of

the two questions in this paragraph in Section 3 using opti-
mal tapered matching (Daniel et al. 2008) that optimally splits
the potential controls to form two optimally matched control
groups, one matched for all 20 covariates, the other matched
for the 17 covariates other than the three region indicators. In
particular, in Section 4, this matched design yields a test of the
hypothesis that the imbalances in region are actually innocuous
or else only seem so. To repeat, although the article follows a
circuitous path from a poor initial match to a better design, our
main goal is to show that the cross-match test is a useful guide
along such a path. As discussed in the summary in Section 5, we
repeatedly resort to the cross-match test to judge our progress
toward an acceptable match.

The most commonly used measures of covariate balance are
descriptive statistics, such as the difference in means in units of
the pooled standard deviation before matching, or two-sample
t -statistics computed after matching to compare with the bench-
mark of complete randomization. Imai, King, and Stuart (2008)
proposed quantile-quantile deviations for individual covariates
as more informative than t -tests, in part because their method
pays attention to the entire distribution, not just the means.
Hansen and Bowers (2008, section 4) suggested a single mul-
tivariate test on means similar in form to Hotelling’s T 2 statis-
tic, but with the statistic compared to a randomization distribu-
tion. In principle, the method of Hansen and Bowers comes in
two versions: one compares the balance obtained by matching
with the balance obtained by complete randomization; the other
looks at residual imbalances in covariates within pairs beyond
that expected in a randomized paired experiment. Each of these
several diagnostics is likely to be sensitive to differences the
others might miss; for instance, differences in means are com-
mon, and looking for one is likely to yield greater power if there
is a difference in means to be found, but distributions may dif-
fer in many ways besides their means. In diagnostic work, it is
helpful to have more than one diagnostic, because diagnostics
yield not conclusions but an improved match, so if one is going
to err it is better to err slightly on the side of excessive rather
than deficient improvement.

1.3 Total Educational Attainment of Students Who Begin
College at a Two-Year College

In an interesting study, Cecilia Rouse (1995) compared the
educational attainment of students who began college in a two-
year (or junior or community college) to that of students who
began college at a four-year college. Her study used data from
the High School and Beyond longitudinal study, which includes
a good test score from high school composed from subject area
tests. Although High School and Beyond includes students who
did not attend college, all students in the analysis here had some
college.

A student who sets out at a two-year or a four-year college
may not end up with two or four years of college. A student who
attends a two-year college may continue on to get a bachelor’s
degree at a four-year college, perhaps continuing on to graduate
or professional education. A student who attends either a two-
year or a four-year college may fail to complete the degree. It is
sometimes argued that the path to a BA degree starting in a two-
year college is more affordable, perhaps aided by living at home

2 Statistical Practice
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for two years, and hence perhaps easier to complete. Among
students whose academic preparation would permit attendance
at either a two-year or a four-year college, what is the effect
of this choice on educational attainment? Rouse compared the
total years of education completed by students who attended
two-year and four-year colleges.

We look at students with test scores above 55, which was
the median test score of students who attended a four-year col-
lege. In terms of test scores, a student with a score above 55
who attended a two-year college could plausibly have been
admitted to a four-year college instead, so it is not unreason-
able to ask what might have happened had she done so. There
were L = 1818 students with test scores above 55, denoted
� = 1, . . . ,L, and of these m = 429 attended two-year colleges,
denoted Z� = 1, and L−m = 1389 attended four-year colleges,
denoted Z� = 0.

Unsurprisingly, these students attending two- or four-year
colleges looked quite different in high school; see Table 1.
In particular, compared to students at four-year colleges, the
group attending tw- year colleges had relatively fewer blacks
and more Hispanics, had lower test scores (by about half a stan-
dard deviation) despite the cutoff at 55, and their parents had
less education and less income. Moreover, the group attending
two-year colleges had relatively more students from the West
and fewer from the Midwest, fewer from an urban area, and

more from high schools with a lower percentage of white stu-
dents. Denote by x� the vector of covariates in Table 1 for the
�th of the L = 1818 students.

Region of the United States is out of balance in Table 1. Two-
year colleges are more common in some regions than in others,
and presumably the relative ease of attending a two- or four-
year college affects decisions about which college to attend. An
investigator might be tempted to view region of the U.S. not as
a covariate, but rather as an innocuous nudge toward or away
from attending a two-year college, a nudge that is ignored by
many students but is decisive in some instances. There is, of
course, a concern that region may not be innocuous, that it may
be directly related to outcomes apart from college choices, per-
haps because it is related to social and economic factors, some
not measured, that vary from region to region. Mississippi and
Oregon differ in the availability of two-year colleges, but they
differ in other ways as well. An “innocuous covariate” is de-
fined formally in (3) of Section 4. Our final matched sample
uses region in both of its potential roles: as a covariate con-
trolled by matching, and as a possibly innocent source of seem-
ingly innocuous, uncontrolled variation in the availability of the
treatment; see the book by Rosenbaum (2010, section 18.2).
Moreover, in Section 4, there will be a statistical test of this
seeming innocence, that is, a test of a logical consequence (4)
of condition (3).

Table 1. Baseline covariates for students with test scores in high school of 55 or above (the median for students who attended a four-year
college). The p-value is from a t-test. The pooled standard deviation (Pooled SD) is the square root of the equally weighted average of the
sample variances in the two-year and four-year groups, and the standardized difference (st-dif) is the difference in means divided by this
standard deviation.

Two-year college Four-year college
n = 429 n = 1389

Covariate Mean Mean p-value Pooled SD st-dif

Student
Female % 50 51 0.76
Black % 6 10 0.00
Hispanic % 14 10 0.04
Test score 59.26 60.92 0.00 3.45 −0.48

Dad’s education
Missing % 13 12 0.52
Vocational school % 9 7 0.12
Some college % 15 11 0.09
BA degree % 21 35 0.00

Mom’s education
Missing % 7 4 0.03
Vocational school % 10 9 0.54
Some college % 16 16 0.98
BA degree % 14 25 0.00

Family
Family income 1980 $ 24,303 28,265 0.00 17,181 −0.23
Family income missing % 5 6 0.43
Own’s home % 82 84 0.30

Neighborhood
% White in HS 75.96 79.18 0.03 26.2 −0.12
Urban % 17 22 0.01

Region
Midwest % 24 31 0.01
South % 28 23 0.04
West % 32 15 0.00

The American Statistician, ???? 2010, Vol. 64, No. 4 3
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1.4 Notation: Outcomes, Treatment Assignments, Observed
and Unobserved Covariates

The outcome is the total number of years of education. Each
student � has two potential values of the outcome, rT � if the
student is ‘treated,’ that is, attends a two-year college, and rC�

if the student is ‘a control,’ that is, attends a four-year college;
see the works of Neyman (?n22) and Rubin (1974). A studentref:n22?>

who would complete an associate’s degree at a two-year col-
lege, transfer to a four-year college, and receive a bachelor’s
degree after two more years would have rT � = rC� if the stu-
dent would also have completed the bachelor’s degree starting
in a four-year college. Similarly, a student who would complete
the associate’s degree in two years at a two-year college and
stop would have rT � = rC� if the student would have dropped
out of a four-year college after two years of study. A student
who completes a college’s degree program in the expected time
and stops would have rT � + 2 = rC�. For student �, rT � is
observed if the student attends a two-year college, Z� = 1,
and rC� is observed if the student attends a four-year college,
Z� = 0, so R� = Z�rT � + (1 − Z�)rC� and Z� are observed,
but the effect, rT � − rC�, is not observed for any student. Write
F = {(rT �, rC�,x�), � = 1, . . . ,L}, noting that F does not in-
clude Z�. In a completely randomized experiment, a fair coin
is independently flipped to determine the L treatment assign-
ments. To say the coin is fair is to say that Pr(Z� = 1|F ) is
constant for � = 1, . . . ,L, so Pr(Z� = 1|F ) does not vary with
(rT �, rC�,x�).

To speak about what happens in large samples, L → ∞, it
is convenient to assume that the L vectors (rT �, rC�,Z�,x�)

were independently sampled from an infinite population, and
to let the omission of a subscript, say x, signify that refer-
ence is made to the distribution of a quantity in that population.
One consequence of random assignment is that the probability
distributions of covariates are balanced in treated and control
groups, Pr(x|Z = 1) = Pr(x|Z = 0), but Table 1 strongly sug-
gests Pr(x|Z = 1) �= Pr(x|Z = 0) in this nonrandomized com-
parison. The propensity score e(x) is the conditional probability
of treatment given the observed covariates, e(x) = Pr(Z = 1|x),
and conditioning on e(x) balances the observed covariates x in
the sense that Pr{x|e(x),Z = 1} = Pr{x|e(x),Z = 0}, although
it cannot be expected to balance an unobserved covariate u; see
the article by Rosenbaum and Rubin (1983). Treatment assign-
ment is said to be ignorable given x if Pr(Z = 1|rT , rC,x) =
Pr(Z = 1|x) with 0 < Pr(Z = 1|x) < 1 for all x, and in this
case: (i) matching exactly for the high-dimensional x suffices to
estimate expected treatment effects, such as E(rT − rC |Z = 1),
but (ii) so does matching on the scalar propensity score, e(x);
see, again, the article by Rosenbaum and Rubin (1983). Be-
cause the propensity score depends on Z and x, it can be esti-
mated from observed data, perhaps with the aid of a model such
as a logit model for Pr(Z = 1|x).

2. TESTING COVARIATE BALANCE USING THE
CROSS-MATCH TEST

2.1 Three Layered Matched Samples

For the 429 students attending a two-year college, we con-
struct three nonoverlapping matched control groups of students

attending four-year colleges, each matched control group con-
taining 429 students. The control groups are layered: the first
control group is an optimal pair matching; the second is an op-
timal pair matching from the unused controls; the third is an
optimal pair matching from the still unused controls. Together,
the three control groups include 3 × 429 = 1287 controls or
1287/1389 = 93% of the available controls. As in the article by
Smith (1997), we examine the degree of covariate imbalance
with one, two, or three matched controls.

The matched control groups were formed using calipers of
0.2 standard deviation on an estimated propensity score based
on a logit model, one standard deviation on the test score,
and optimal matching within calipers using the Mahalanobis
distance. See the works of Bergstralh, Kosanke, and Jacobsen
(1996), Bertsekas (1981), Hansen and Klopfer (2006), Hansen
(2007), Rosenbaum and Rubin (1985), Rosenbaum (1989), and
Rubin (1980) for discussion of various aspects of such a match,
and see the book by Rosenbaum (2010, chapter 8) for an
overview.

Table 2 and Figure 1 describe the three resulting matched
samples. In Table 2 and Figure 1, the first match is C-1, the
second is C-2, and the third is C-3; each contains 429 con-
trols. Viewed informally, the first match appears to be quite
successful at balancing the observed covariates, and the third
match is terrible. For the third match, the difference in mean
test scores in high school is 80% of the standard deviation be-
fore matching, with a t -statistic of −12.4: the C-3 controls had
much higher test scores than the students in two-year colleges.
Also, the C-3 controls had wealthier, better educated parents. In
the final panel of Figure 1, the upper quartile of the estimated
propensity score in the third control match is well below the
lower quartile in the treated group, so in a multivariate sense
these groups barely overlap.

It is useful to pause for a moment to think about the value
added, if any, by the third control match, C-3, in Table 2 and
Figure 1, and in particular to connect our technical thoughts
about this subject with our everyday experiences with col-
leges and college admissions in the United States. Compared to
the students in two-year colleges, the C-3 controls have much
higher test scores in high school and parents with more educa-
tion and more income. Think about the U.S. in all its complex-
ity, think about these two groups of students, their childhoods
at home, the colleges they attended. It is easy to imagine certain
students thoughtfully deciding between a two-year and a four-
year college, while it is very difficult to imagine certain other
students spending even a moment on the decision. Presumably,
a student with ample financial resources who attended Harvard
or Stanford or MIT spent very little time considering the pos-
sibility of attending a two-year college instead, and had such a
student attended a two-year college she would have stood out
as quite unusual in several respects. Would such a C-3 student,
with her high test scores and ample finances, play a useful role
in estimating the effect of two-versus-four-year colleges? If one
could have total faith in the extrapolations of a parametric re-
gression model, such as a Gaussian linear model, then yes, of
course, she would help us fit that model, and the model would
predict what would have happened if she, an MIT undergrad,
had instead attended a two-year college, even though the model

4 Statistical Practice
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Table 2. Covariates in three layered matched comparisons. For continuous covariates, both the mean and the mean difference in units of the
pooled standard deviation (st-dev) are given using the standard deviation before matching from Table 1.

MatchTwo-year Four-year Four-year Four-year
college match C-1 match C-2 match C-3 C-1 C-2 C-3

n = 429 n = 429 n = 429 n = 429 2-sample t-statistic

Covariate Mean Mean Mean Mean t t t

Student
Female % 50 52 49 52 −0.6 0.2 −0.5
Black % 6 5 8 16 0.6 −1.5 −4.9
Hispanic % 14 14 9 8 −0.1 2.1 2.7
Test score (mean) 59.26 59.36 59.93 62.03 −0.5 −3.1 −12.4
Test score (st-dif) −0.03 −0.19 −0.80

Dad’s education
Missing % 13 12 11 14 0.6 0.8 −0.5
Vocational school % 9 9 10 3 0.2 −0.3 3.9
Some college % 15 16 13 7 −0.4 0.6 3.8
BA degree % 21 22 25 46 −0.5 −1.5 −7.9

Mom’s education
Missing % 7 6 5 2 0.7 0.9 3.8
Vocational school % 10 9 10 8 0.3 −0.1 1.0
Some college % 16 16 16 18 0.0 0.1 −0.7
BA degree % 14 16 15 33 −0.8 −0.2 −6.6

Family
Family income (mean) 24,303 23,641 26,346 31,194 0.6 −1.8 −5.4
Family income (st-dif) 0.04 −0.12 −0.40
Family income missing 5 5 5 7 0.0 −0.2 −1.4
Own’s home % 82 84 84 85 −0.6 −0.7 −1.0

Neighborhood
% White in HS (mean) 76 76 79 81 −0.2 −1.7 −2.6
% White in HS (st-dif) −0.01 −0.11 −0.18
Urban % 17 13 23 30 1.3 −2.2 −4.6

Region
Midwest % 24 26 33 35 −0.6 −3.0 −3.5
South % 28 30 29 14 −0.7 −0.3 5.2
West % 32 30 14 3 0.8 6.4 12.0

has never seen such a student attend a two-year college, and so
is extrapolating its parametric form into regions where there are
no data. If one had less than complete faith in the extrapolations
of a parametric model, then the contribution of a C-3 student to
the study of two-year colleges is, at best, less clear. Matching at-
tempts to compare people who received one treatment to other
people who received a different treatment but otherwise look
similar in terms of observed covariates. Matching diagnostics—
the elementary ones in Table 2 and the cross-match test in the
current article—raise objections when an attempt is made to
compare groups that are visibly very different prior to treat-
ment.

Descriptive statistics and informal examination of t -statistics
for the 20 covariates viewed one at a time suggest the first
layer is balanced. Nonetheless, we should ask: Could it be that
the distributions of the 20-dimensional x in Table 2 are differ-
ent in treated and control groups, though the marginal means
look similar? Conversely, the second layer exhibits a few large
t -statistics among 20 t -statistics. With 20 t -statistics testing
covariate balance in a completely randomized experiment, it
would not be surprising to see one or two t ’s significant at the
0.05 level by chance alone. Would a single test applied to all
20 covariates reinforce the view that the second layer exhibits

more imbalance than would be expected in a completely ran-
domized experiment? In Section 2.3, the cross-match test will
provide an answer to these questions.

2.2 Missing Values for Some Covariates

In Table 2 and in matching generally, missing values of an
observed covariate are viewed as an observable aspect of the
covariate, to be balanced in treated and control groups along
with other observables. That is, a missing value of mother’s ed-
ucation is an observable category of mother’s education, which
is in reasonable balance for the C-1 controls in Table 2 and sub-
stantially out of balance for the C-3 controls. For the contin-
uous variable, ‘family income,’ there is a supplemental binary
indicator covariate, ‘family income missing,’ which is also in
balance for the C-1 controls at 5% in both treated and control
groups. Obviously, balancing the observable pattern of missing
data does not imply that the unobservable missing data are also
balanced, but matching is targeted at observables, and should
be judged by what it can realistically be expected to do. See the
work of Rosenbaum and Rubin (1984, appendix) and Rosen-
baum (2010, section 9.4) for details and specifics. The cross-
match test handles missing covariate values in the same way,
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Figure 1. Boxplots of “continuous” covariates for the treated group (T) of 429 students in two-year colleges and three layered matched control
groups of 429 students in four-year colleges (C-1 = first, C-3 = last), and 102 unmatched potential controls (Not-M). Family income is given in
seven levels, which is the reason for the gaps in the boxplot.

judging whether observable covariate values and patterns of
missing covariate values are in balance in treated and control
groups.

2.3 Can the Treated and Control Groups Be Rediscovered
From the Covariates Alone?

Suppose that we ignored who is treated and who is con-
trol, and who is matched to whom, and suppose that we paired
subjects based on the covariates alone. Would we tend to pair
treated subjects to treated subjects and controls to controls? Or
would the pairing be unrelated to the treatment group? In a com-
pletely randomized experiment, treatment assignment is inde-
pendent of covariates, so apart from chance, pairing subjects
based on covariates would fail to identify the treatment group.
If the covariate distributions were very different in treated and
control groups, then the pairing would, more often than chance,
pair individuals in the same group.

The cross-match test pairs subjects based on covariates and
takes as the test statistic A1 the number of times a treated sub-
ject was paired with a control, rejecting the hypothesis of equal
distributions for small values of the statistic; see the article

by Rosenbaum (2005). As in that article, a rank-based Maha-
lanobis distance is computed between every pair of subjects,
and subjects are divided into pairs to minimize the total distance
within pairs, using Derigs’s (1988) algorithm, as made avail-
able in R as nbpMatching by Lu et al. (?Lu09). An R package <ref:Lu09?>

crossmatch to perform the cross-match test is available from the
first author’s web page or CRAN; it calls the R package by Lu
et al. If 858 = 429 + 429 subjects are paired into 429 pairs,
then E(A1) = 214.75 cross-matches are expected by chance
when the distributions of covariates are the same, with variance
var(A1) = 107.38, and {A1 − E(A1)}/√var(A1) converges in
distribution to the standard Normal as the sample size increases;
see propositions 1 and 2 in the article by Rosenbaum (2005).

Table 3 presents the cross-match test comparing the treated
group to each of the three control groups, and comparing the
control groups to each other. Although comparisons in terms of
individual covariates in Table 2 are essential, Table 3 sharpens
these comparisons, making it clear that the imbalances in the
second layer are not artifacts of having performed 20 compar-
isons, and also providing no sign of a multivariate imbalance in
the first layer hiding amid balance on the marginal means of the
20 covariates.

6 Statistical Practice
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Table 3. Cross-match test results for the layered match comparing
matched groups two at a time. In a completely randomized experiment
with two groups of equal size ϒ = 1/2 with smaller values indicating
greater separation of the covariate distributions.

Estimate of ϒ

Match Cross-matches A1 A1/429 p-value

T versus C-1 219 0.51 0.66
T versus C-2 177 0.41 0.00013
T versus C-3 93 0.22 3.6 × 10−32

C-1 versus C-2 195 0.45 0.028
C-1 versus C-3 107 0.25 1.3 × 10−25

C-2 versus C-3 127 0.30 1.2 × 10−17

The cross-match test may be applied to compare the treated
group to the union of several layered control groups. For in-
stance, if it is applied to the union of the treated group and the
union of the three layered matched control groups, it produces
295 cross-matches when 321.94 are expected by chance, yield-
ing a p-value of 0.0071.

The largest imbalances in the second layer refer to region of
the United States. Two-year colleges are more common in some
regions than in others. Perhaps imbalances in region are not so
worrisome as imbalances in educational or socioeconomic co-
variates. Might the second layer be used in some manner ignor-
ing the imbalances in region? If the cross-match test is applied
to the second layer for just the 17 covariates excluding region,
there are 187 cross-matches, with 214.75 expected by chance,
yielding a deviate of −2.68 and a p-value of 0.0037, so the
remaining 17 covariates in the second layer are more imbal-
anced than would have been expected if the treated group and
the second layer had been formed by complete randomization.
Of these 17 covariates, most worrisome for college success is
the imbalance in Table 2 in test score from high school.

Guided by these comparisons, another match is constructed
in Section 3.

2.4 The Cross-Match Test and the Propensity Score

With π = Pr(Z = 1), define the quantity

ϒ = 2
∫

π(1 − π)Pr(x|Z = 1)Pr(x|Z = 0)

π Pr(x|Z = 1) + (1 − π)Pr(x|Z = 0)
dx. (1)

The parameter ϒ is discussed by Henze and Penrose (1999,
theorem 2); it is a transformation of one of Györfi and Nemetz’s
measures of distributional separation. Clearly, ϒ = 2π(1 − π)

if Pr(x|Z = 1) = Pr(x|Z = 0). By Bayes’s theorem,

ϒ = 2E
[
e(x){1 − e(x)}]. (2)

So ϒ has the following simple interpretation: if a value of x is
picked at random and two subjects are sampled with this value
of x, then ϒ is the probability that one subject will be treated
and the other control, so that they might be paired to form a
treatment-versus-control pair. In a completely randomized ex-
periment with π = 1/2, the probability is ϒ = 2π(1 − π) =
1/2.

The quantity A1/I in Table 3 is an estimate of ϒ ; see the
article by Rosenbaum (2005, section 3.4 where N

.= 2I ). More
precisely, matching alters the distribution Pr(x|Z = 0) of ob-
served covariates x among controls with Z = 0, and Table 3 is

estimating ϒ for this altered distribution. When ϒ is computed
for treated/control matched pairs, success or covariate balance
is ϒ = 1/2, and failure is ϒ much less than 1/2. In Table 3, the
treated group and third control group exhibit substantial separa-
tion: pick an x at random from the matched distribution of x and
then pick two subjects at random with that x, and it is estimated
that 78% of the time they will come from the same group, both
treated or both control.

3. A TAPERED MATCH

In an optimal tapered match, a single control group is op-
timally divided and optimally paired with treated subjects so
that each treated subject is paired with two controls which meet
different matching criteria in such a way that the total distance
within pairs is minimized. Optimal tapered matching for two or
more controls was proposed by Daniel et al. (2008) who proved
that the simple steps described later in the current paragraph
produce the optimal tapered match. Here, one level of the taper
(C-1) will match essentially as in Section 2.1 for all 20 covari-
ates, the other level (C-2) will match for 17 covariates exclud-
ing region, with the algorithm optimally dividing the controls
among levels to minimize the total covariate distance across
both matches. The distances were essentially the same as be-
fore, except one distance used 20 covariates, the other distance
used 17 covariates, and there were two propensity scores, one
with 17 covariates, the other with 20 covariates, with only the
former used in the 17-covariate match, and both scores used in
the 20-covariate match. In addition, some of the caliper widths
were adjusted. Call these two distance matrices for 17 and
20 covariates d17 and d20; each matrix has one row for each
treated subject and one column for each potential control. The
standard optimal assignment algorithm pairs rows and columns
of a distance matrix to minimize the total distance within pairs
(e.g., Bertsekas 1981, 1991; Cook et al. 1998; Dell’Amico and
Toth 2000). In R, the pairmatch(·) function of Hansen’s (2007)
optmatch package solves the optimal assignment problem. The
algorithm of Daniel et al. (2008) produces the optimal tapered
match by solving this familiar optimal assignment problem for
an augmented distance matrix. The augmented distance matrix
has two rows for each treated subject and one column for each
potential control, and one of the two rows for a treated subject
records the first distance for 20 covariates, the other records the
second distance for 17 covariates; in R, the augmented distance
matrix is rbind(d17,d20). So in R, having defined d17 and d20,
you install and load optmatch, and obtain the optimal tapered
match as pairmatch(rbind(d17,d20)). Given the structure of the
augmented distance matrix, that optimal assignment will pair
each treated subject to two different controls, one selected for
proximity on the first distance, the other selected for proxim-
ity on the second. So the steps required are easy to describe,
and only a little more work is required to prove that these steps
do indeed produce an optimal tapered match; see the article by
Daniel et al. (2008). Also, with very minor changes, there can
be more than one control selected at each level of the taper, and
there can be more than two levels of the taper; again, see the
work by Daniel et al. (2008). For a very different approach to
matching with more than one matching criterion, see the article
of Rubin and Stuart (2006).
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Table 4. Imbalance in region in the tapered match.

MatchTwo-year Four-year Four-year Four-year
college match 1 match 2 unmatched C-1 C-2 Unmatched

n = 429 n = 429 n = 429 n = 429 2-sample t-statistic

Covariate Mean Mean Mean Mean t t t

Midwest % 24 29 32 32 −1.5 −2.6 −2.7
South % 28 31 17 21 −1.0 3.8 2.6
West % 32 29 8 9 1.0 9.4 9.2

The C-1 match intended to balance all 20 covariates, while
the C-2 match intended to allow the three regional covariates
to be imbalanced while balancing the remaining 17 covariates.
Did this happen? Table 4 shows that the C-1 match is fairly well
balanced for region, but the C-2 match is not. Table 5 applies
the cross-match test to all 20 covariates, to the 17 covariates
excluding region, and to groups of covariates. The C-2 match is
clearly very different from the treated group in terms of region,
but otherwise the covariates look balanced. The C-1 controls
look balanced except perhaps for some imbalance in the family
variables. Figure 2 depicts the imbalances in four continuous
covariates. Unlike Figure 1, the C-2 match appears acceptable
for the covariates in Figure 2. Figure 3 compares the layered
and tapered matches for 20 covariates and 17 covariates—in
the tapered match, imbalances in the second group of controls
are largely confined to the three region indicators.

4. IS REGION INNOCUOUS?

Write x = (x, x̃) where x contains the covariates controlled at
both levels of tapered matching, and x̃ contains the covariates
controlled at the first level of the taper but not the second. In
Section 3, x̃ contains the three region indicators and x contains
the remaining 17 covariates. Dawid (1979) wrote A ⊥⊥ B|C for
“A is conditionally independent of B given C,” and he made
a general argument that scientific assumptions are often best
expressed in terms of conditional independence rather than in
terms of parametric models which may have scientifically ex-
traneous features. In that spirit, we say x̃ is innocuous given x

if x̃ is related to treatment assignment Z but not to response
(rT , rC) given x—that is, in Dawid’s (1979) notation, if

(rT , rC) ⊥⊥ (Z, x̃)|x. (3)

If treatment assignment were ignorable given x = (x, x̃), and if
x̃ were innocuous, then treatment assignment would be ignor-
able given x alone, that is, Pr(Z = 1|rT , rC,x) = Pr(Z = 1|x)

with 0 < Pr(Z = 1|x) < 1 and (3) together imply Pr(Z = 1|
rT , rC,x) = Pr(Z = 1|x) with 0 < Pr(Z = 1|x) < 1. In this
case, either or both of the C-1 and C-2 matches in Section 3
would provide consistent estimates of treatment effects.

Importantly, in a tapered match which controls x = (x, x̃) at
one level of the taper and only x at the other, condition (3) to-
gether with ignorable assignment given x has a testable conse-
quence; it implies

rC ⊥⊥ x̃|(x,Z = 0), (4)

so in the C-1 versus C-2 pairs matched for x with Z = 0, the
observable distribution of responses rC to control among the
C-1 and C-2 controls is unaffected by also matching for x̃. If (3)
were true, then among controls matched for x, differences in x̃
would not predict the response rC among controls Z = 0.

Expressed in a different way, if one thought the regional indi-
cators were innocuous, one might estimate the treatment effect
by the average difference in education between the treated sub-
jects (T) and the average of their two matched controls (T ver-
sus the average of C-1 and C-2), whereas if one doubted that
the regional indicators were innocuous, one would estimate the
effect by the mean of difference between the treated subjects

Table 5. Cross-match test results for the tapered match.

Covariates Estimate of ϒ

Match (number of covariates) Cross-matches A1 A1/429 p-value

T versus C-1 All 20 219 0.51 0.66
T versus C-2 All 20 165 0.38 0.00000079
T versus C-1 17 without region 203 0.47 0.13
T versus C-2 17 without region 203 0.47 0.13
T versus C-1 Student (4) 221 0.52 0.73
T versus C-2 Student (4) 215 0.50 0.51
T versus C-1 Parents education (8) 217 0.51 0.59
T versus C-2 Parents education (8) 229 0.53 0.92
T versus C-1 Family (3) 197 0.46 0.043
T versus C-2 Family (3) 209 0.49 0.29
T versus C-1 Neighborhood (2) 207 0.48 0.23
T versus C-2 Neighborhood (2) 211 0.49 0.36
T versus C-1 Region (3) 203 0.47 0.13
T versus C-2 Region (3) 175 0.41 0.000063
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Figure 2. Boxplots of continuous covariates for the tapered match. Control group C-1 is matched for all 20 covariates, while control group C-2
is matched for 17 covariates excluding the three region indicators. The unmatched controls are Not-M. The treated group and the C-2 match
differ substantially in terms of region, but not in terms of other covariates. The match uses two propensity scores, but only the 17 covariate score
is displayed. Not seen here, but as expected, the propensity score with 20 covariates looks similar for the C-1 controls, but different for the C-2
controls.

and their first controls (T versus C-1) matched for all of x. The
difference of these two estimates is the basis for the simplest
form of a Hausman (1978) test, and it is proportional to the dif-
ference between the means of the two matched controls (C-1
versus C-2). In a Hausman test, an assumption is tested by the
difference in two parameter estimates, where only one of the
estimates requires the assumption for consistency.

Figure 4 shows the results. As one might anticipate, the me-
dian years of education is 14 years for a two-year college and
16 for a four-year college, but there is considerable variation.
The median difference, two-year versus four-year college, is
−1 year of education, and a quarter of the students attending
two-year colleges had at least as many years of education as
their matched controls at four-year colleges. The C-1 and C-2
controls look similar in terms of years of education, so one ob-
tains similar estimates of effect whether one restricts attention
to comparisons within the same region or compares ostensibly
similar students in regions that differ in terms of the availability
of two-year colleges.

The attraction of the C-1 controls is that ostensibly similar
students in the same region are compared. However, we do not
know why, in the same region, two ostensibly similar students
made different college choices. The attraction of the C-2 con-
trols is that part of the variation in college choice presumably
reflects the differing availability of two- and four-year colleges
in different regions, and perhaps that source of variation in col-
lege choice is innocuous, that is, not much related to important
unmeasured attributes of the students. However, the C-2 con-
trols do not resemble the treated group in terms of region. In
Figure 4, the two controls, C-1 and C-2, give similar impres-
sions of the treatment effect, perhaps somewhat reducing the
reasonable concerns about each group on its own.

5. SUMMARY: THE CROSS-MATCH TEST AS A
GAUGE OF PROGRESS

The use of the cross-match test in appraising covariate bal-
ance has been illustrated. In a preliminary analysis, the cross-
match test suggested that covariate balance on all 20 observed
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Figure 3. Comparison of absolute t-statistics in the layered and tapered matched comparisons, for all 20 covariates and for the 17 covariates
excluding Region. Only the C-1 controls in the layered match are balanced with respect to observed covariates. In the tapered match, the C-1
controls are balanced with respect to all 20 observed covariates, and the C-2 controls are balanced for the 17 covariates excluding Region.

covariates was possible with 1-to-1 matching, but not with 1-
to-2 matching. Tapered matching then created a 1-to-1 match
for all 20 covariates, and an additional 1-to-1 match for 17 of
the 20 covariates, the latter permitting the possibly innocuous
‘region of the U.S.’ to remain unmatched. The cross-match test
indicated the first tapered control group had created reasonable
balance on the 20 observed covariates, while the second con-
trol group had balanced all observed covariates except region,
with region substantially out of balance. It seems reasonable to
conjecture that the availability of two-year colleges in differ-
ent regions was one aspect of the college choices in the second
control group. In the example, similar estimates of effect were
obtained from comparisons within and between regions.

Again, diagnostics are judged by what diagnostics are in-
tended to do, in the case of matching, to produce a better
matched design. Arguably, the second tapered match is a better
use of the available data than any of the layered matched de-
signs, and the cross-match test played a useful role in the steps
leading to an improved design.

[Received October 2009. Revised August 2010.]
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