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Abstract. The cross-match test is an exact, distribution free test of no treatment e¤ect

on a high dimensional outcome in a randomized experiment. The test uses optimal

nonbipartite matching to pair 2I subjects into I pairs based on similar outcomes, and

the cross-match statistic A is the number of times a treated subject was paired with a

control, rejecting for small values of A. If the test is applied in an observational study

in which treatments are not randomly assigned, it may be comparing treated and control

subjects who are not comparable, and may therefore falsely reject a true null hypothesis

of no treatment e¤ect. We develop a sensitivity analysis for the cross-match test, and

apply it in an observational study of the e¤ects of smoking on gene expression levels. In

addition, we develop a sensitivity analysis for several multiple testing procedures using the

cross-match test and apply it to 1627 molecular function categories in Gene Ontology.
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1 The cross-match test for a randomly assigned treatment

1.1 An observational study of the e¤ects of smoking on gene expression levels

Does smoking cause changes in gene expression? If it does, what speci�c changes

does it cause? Spira et al. [41] compared expression levels in human airway epithelial

cells of 9968 genes in 34 current smokers and 23 never smokers. Analyses of data of

this sort typically emphasize the dimensionality of the response and the associated

problems of multiple testing; these are two important problems, but there are others.

The treatment, here smoking, is not assigned at random to some individuals and

denied to others, so smokers and nonsmokers may di¤er systematically in unmeasured

ways that a¤ect gene expression, so di¤ering expression levels may not be e¤ects

caused by smoking. To what extent are conclusions sensitive to small or moderate

departures from random treatment assignment? Would a high dimensional test

or multiple comparison procedure reach very di¤erent conclusions if the analysis

allowed for moderate departures from random assignment? We investigate this by

developing a sensitivity analysis for a multivariate permutation test, the cross-match

test, and for associated multiple-test procedures. In the study by Spira et al. [41],

some of the changes in expression levels turn out to quite insensitive to bias from

nonrandom assignment to smoking or control, but other changes are fairly sensitive.

In a randomized experiment, the cross-match test is a randomization test, and

§1 applies the test to the data from Spira et al. [41] to test the null hypothesis that

smoking does not a¤ect the 9968 gene expression levels, ignoring for a moment the

fact that people were not randomly assigned to smoke or not smoke. In §2, issues of
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multiple testing are addressed and the cross-match test is applied to 1627 hypotheses

about subsets of genes de�ned by Gene Ontology, continuing to ignore the absence

of random assignment. Then §3 introduces a sensitivity analysis for the cross-match

tests, asking about the magnitude of bias from nonrandom assignment that would

need to be present to alter the conclusions reached by the randomization test. The

sensitivity analysis is combined with corrections for testing many hypotheses in §4.

Uses, limitations and practicalities of the cross-match test are discussed in §5.

1.2 De�nition of the cross-match statistic

There are 2I subjects, ` = 1, 2, . . . , 2I, where subject ` is treated if Z` = 1 and is a

control if Z` = 0, and there are n =
P2I

`=1 Z` treated subjects and 2I�n controls in to-

tal. If subject ` receives the treatment, then this subject exhibits anM -dimensional

response yT` whereas if subject ` receives the control, then response yC` is observed

instead, so the response actually observed from subject ` isY` = Z` yT`+(1� Z`) yC`

and the e¤ect of the treatment on `, namely yT` � yC`, is not observed for any sub-

ject `; see Neyman [26] and Rubin [39]. Write F = f(yT`;yC`) ; ` = 1; 2; : : : ; 2Ig.

Fisher�s [10] sharp null hypothesis H0 of no treatment e¤ect says H0 : yT` = yC` for

` = 1, 2, . . . , 2I.

The cross-match test [35] is performed as follows. A 2I � 2I symmetric distance

matrix is de�ned, with row k and column ` giving a �distance� between Yk and

Y`. The 2I subjects are then paired into I non-overlapping pairs to minimize the

total of the I distances within pairs. For notational convenience, the subjects are

renumbered, j = 1; : : : ; 2I so that subject 2i � 1 and 2i are paired for i = 1; : : : ; I.
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The cross-match statistic A is the number of pairs containing a treated subject and

a control, that is:

A =
IX
i=1

Z2i�1 (1� Z2i) + (1� Z2i�1) Z2i. (1)

A small value of A suggests that the distribution of Y` is di¤erent for treated and

control subjects [35].

The optimal pairing of 2I subjects into I pairs to minimize the total distance

inside pairs is an �optimal nonbipartite matching;�see [4, 27] for a textbook discus-

sion, [8] for an algorithm with Fortran code, [5] for a literature review and C code,

and [14, 20, 21, 22] for several applications of nonbipartite matching in statistics.

In particular, Lu, et al. [22, 23] have made Derigs�[8] Fortran code available from

inside R.

If there is an odd number, 2I + 1, of subjects, then a pseudo-subject is added

to the distance matrix at zero distance from everyone else, I + 1 pairs are formed

as above, and the pair containing the pseudo-subject is discarded. In this way, the

least matchable subject is the discarded subject.

1.3 Example of computing the cross-match statistic

In the study by Spira et al. [41], Y` is the 9968-dimensional vector of logarithms of

expression levels. The distance matrix is the 57� 57 matrix of Euclidean distances

among the Y`. Because 34 + 23 = 57 is odd, a pseudo-subject is added at zero

distance from all 57 subjects, as discussed in §1.2, making a 58 � 58 matrix. The

58 subjects are paired to minimize the total distance within the 58 pairs, and the
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pair containing a pseudo-subject is discarded; in this case, the discarded subject is

a smoker. Then there are 2I = 56 subjects, n = 33 of whom are smokers, in I = 28

pairs.

Figure 1 depicts the calculations with the aid of a multidimensional scaling that

plays no role in the test itself but is helpful in seeing what is happening. For the

2I = 56 paired individuals, the 56 � 56 distance matrix was used in Kruskal�s non-

metric multidimensional scaling algorithm (isoMDS in the MASS package in R with

two dimensions and the default settings). Paired points are connected by a line.

The left-most pair is a cross-match, pairing a smoker with a nonsmoker. There are

A = 5 cross-matches and I � A = 28� 5 = 23 matches that are not cross-matches.

With expression levels, Y` has numeric coordinates, but this is not an essential

feature of the cross-match test. Instead, Y` might be a �word� consisting of a

sequence of �letters,�such as a DNA base sequence, with a suitable distance de�ned

between di¤erent �words�. Alternatively, Y` might record both numeric intensities

and geometric locations of those intensities, as in fMRI brain imaging, where two

individuals i and ` are close if they have similar intensities at neighboring locations.

Instead, Y` might record the dates and locations of the international travel of person

`, where two people i and ` are close if they were often in the same locations on the

same dates.

1.4 Null distribution of the cross-match statistic

Write Z = (Z1; : : : ; Z2I)
T where subject 2i� 1 is paired with subject 2i, i = 1; : : : ; I.

Write jSj for the number of elements in a �nite set S. In a randomized experiment,
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n of the 2I subjects would be picked at random for treatment, so there are
�
2I
n

�
possible values, z, of Z, namely the values in the set Z,

Z =
(
z = (z1; : : : ; z2I)

T :
2IX
j=1

zj = n; zj 2 f0; 1g ; j = 1; : : : ; 2I
)
;

so jZj =
�
2I
n

�
. To say that Z is picked at random from Z is to say that

Pr

 
Z = z

�����
2IX
j=1

Zj = n; F
!
=

1

jZj =
1�
2I
n

� for each z 2 Z. (2)

If Fisher�s sharp null hypothesis of no treatment e¤ect, H0 : yT` = yC` for ` = 1,

2, . . . , 2I, were true, then Y` = Z` yT` + (1� Z`) yC` = yC` is a function of F ,

so the matching is a function of F , and the randomization (2) determines the exact

null distribution of the cross-match statistic, A in (1). Alternatively, the same

null distribution of A may be obtained from the null hypothesis that the Y` are

independent and identically distributed independent of Z; see [35].

The null distribution Pr (A = a j F ) has a simple form. We must �rst determine

the support of this distribution. WriteAn;I for the possible values ofA with n treated

subjects and 2I � n controls. Clearly A � min (n; 2I � n), and A = min (n; 2I � n)

is possible. If there were a < min (n; 2I � n) cross-matches, then there must be a

pair i with Z2i�1 + Z2i = 2 and a pair i0 with Z2i0�1 + Z2i0 = 0; swapping Z2i and

Z2i0 increases the number of cross-matches by 2. If n is odd, then there must be

at least one cross-match, but if n is even, there can be 0 cross-matches. If n is

even and n � I, then An;I = f0; 2; 4; : : : ; ng, whereas if n is odd and n � I, then

An;I = f1; 3; 5; : : : ; ng. If n > I and n is even, then An;I = f0; 2; 4; : : : ; 2I � ng,
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Table 1: Exact null randomization distribution of the cross-match statistic, A, for
2I = 56 subjects in I = 28 pairs with n = 33 treated subjects.

a Pr(A = a) Pr(A � a)
1 0.00000023 0.00000023
3 0.00002705 0.00002728
5 0.00081143 0.00083871
7 0.00973713 0.01057583
9 0.05625895 0.06683478
11 0.17184552 0.23868030
13 0.29081550 0.52949580
15 0.27696714 0.80646294
17 0.14662966 0.95309261
19 0.04115920 0.99425181
21 0.00548789 0.99973970
23 0.00026030 1.00000000

whereas if n > I and n is odd then An;I = f1; 3; 5; : : : ; 2I � ng.

If there are a 2 An;I cross-matched pairs with Z2i�1 + Z2i = 1, then there are

(n� a) =2 pairs with Z2i�1 + Z2i = 2, and I � a� (n� a) =2 = I � (n+ a) =2 pairs

with Z2i�1+Z2i = 0, making a total of a+(n� a) =2+ I� (n+ a) =2 = I pairs withP2I
j=1 Zj = a + 2 (n� a) =2 = n treated subjects. Under the null hypothesis, the�

2I
n

�
values of z 2 Z are equally probable, so

Pr (A = a j F ) = � (a; n; I) =

8><>:
2a I!

(2In )a!(
n�a
2 )!(I�

n+a
2 )!

for a 2 An;I

0 for a =2 An;I
. (3)

Table 1 gives the randomization distribution of A for 2I = 56 subjects in I = 28

pairs with n = 33 treated subjects and 2I � n = 23 controls. If the study by Spria

et al. [41] had been a randomized experiment, with individuals randomly assigned

to their roles as smokers or never smokers, and if smoking did not a¤ect expression
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levels, the chance of A = 5 or fewer cross-matches is 0.000839, so the null hypothesis

would be rejected at the conventional 0.05 level.

2 Testing multiple hypotheses of no treatment e¤ect

When Fisher�s sharp null hypothesis of no treatment e¤ect, H0 : yT` = yC` for ` = 1,

2, . . . , 2I, is rejected we will often wish to ask which coordinates of Y` are a¤ected.

Let s be an M -dimensional vector of 0�s and 1�s with at least one 1, and let Y`(s),

yT`(s), and yC`(s) be the sub-vectors of, respectively, Y`, yT`, and yC` of dimension

s+ =
PM

m=1 sm containing the coordinates for which sm = 1. The hypothesis Hs

asserts that the treatment does not a¤ect these s+ coordinates, Hs : yT`(s) = yC`(s)

for ` = 1, 2, . . . , 2I. Apply the cross-match test to Y`(s), count the number of

cross-matches, a(s), and let p(s) be the resulting P -value computed as in §1.4. In

a randomized experiment, each such P -value is a valid test of its null hypothesis, so

Pr fp(s) � �g � � if Hs is true.

There are 2M �1 hypotheses Hs, so one cannot test them all and reject whenever

p(s) � 0:05, because this would lead to a large number of false rejections. There are

many possible strategies; e.g., [9].

Bonferroni inequality. A simple familiar strategy is to test all 2M�1 hypotheses,

rejecting all hypotheses Hs with p(s) � �=
�
2M � 1

�
. Under this strategy, the

probability of falsely rejecting at least one true hypothesis (i.e., the family wise

error rate or FWER) is at most �, and the expected number of false rejections is

�. In many contexts, this strategy will be quite conservative.

Holm�s procedure. Holm�s [17] procedure involves a few more steps, but it also
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falsely rejects at least one true hypothesis with probability at most �, thereby

controlling the FWER. It is less conservative than the Bonferroni procedure.

Closed testing. In closed testing [24], one would follow the approach in [19],

rejecting Hs at level � if p(s0) � � for all s0 such that sm = 1 implies s0m = 1 for

all m. An advantage of this procedure is that all tests are done at level �, and yet

the probability of falsely rejecting at least one true hypothesis is at most �. The

procedure tends to be impractical for large M , but it is practical when M is small,

or whenM itself is large but a suitably restricted subset of hypotheses Hs is tested.

Benjamini-Hochberg procedure. The method of Benjamini and Hochberg [1]

has been shown to control the false discovery rate (FDR), or the proportion of

rejections that are false rejections, when the p(s)�s are independent and under cer-

tain other conditions. In these circumstances, the Benjamini-Hochberg procedure�s

more lenient standard typically rejects many more hypotheses than the Holm pro-

cedure. The Benjamini-Hochberg procedure appears to control the false discovery

rate in most circumstances that are not highly arti�cial [30, 44], but arti�cial excep-

tions are known to exist [13]; see also [40]. The p(s)�s produced by the cross-match

test are not independent, so use of the Benjamini-Hochberg procedure may be rea-

sonable but is not formally known to control the false discovery rate.

Complementary partitions. Suppose that the M coordinates of Y` can be par-

titioned into fM � M mutually exclusive sets of coordinates, ordered by priority,

where hypothesis eH(1) asserts that set 1 is una¤ected, H
(1)
asserts that the union

of the remaining fM � 1 sets, 2, 3, . . . , fM is una¤ected, eH(2) asserts that set 2 is

una¤ected, H
(2)
asserts that the union of the remaining fM � 2 sets, 3, 4, . . . , fM
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is una¤ected, and so on. Notice that, for the last hypothesis, H(
fM�1)

= eH(fM).
For instance, with fM = 2, eH(1) might refer to the expression levels of all known

oncogenes, and eH(2) might refer to all other genes. Let p(0) be the P -value from

the test of no e¤ect on Y` from §1.4, and let ep(k) and p(k) be the P -values when the
cross-match test is used to test eH(k) and H

(k)
, respectively. Test the hypothesis of

no e¤ect, H0, as done in §1.4 rejecting if p(0) � �; if H0 is rejected, test both eH(1)

andH
(1)
rejecting eH(1) if ep(1) � �, rejectingH

(1)
if p(1) � �; . . . if both ep(k) � � and

p(k) � �, then test both eH(k+1) and H
(k+1)

, rejecting eH(k+1) if ep(k+1) � �, rejecting

H
(k+1)

if p(k+1) � �; . . . . As discussed in [36, Proposition 3], the chance that this

procedure tests and rejects at least one true hypothesis is at most � because the

hypotheses

�
H0;

n eH(1); H
(1)
o
;
n eH(2); H

(2)
o
; : : : ;

� eH(fM�1); H
(fM�1)

��

form a sequentially exclusive sequence of hypotheses.

As this incomplete list of multiple testing procedures suggests, there is often an

advantage in lending some priority or structure to the 2M � 1 possible hypotheses.

For instance, in genomics, the molecular function categories within Gene Ontology

[11] provide one possible approach to (i) limiting the number of hypotheses, or (ii)

organizing the hypotheses.
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2.1 Application to the genomics study of e¤ects of smoking

We used the 1627 molecular function categories within Gene Ontology [11] that

contain at least 2 probe sets, to identify the functional categories where the smoking

has an e¤ect on the expression pro�le. That is, we did not use all 29968�1 hypotheses,

but rather the 1627 hypotheses Hs where the binary vector s picked out the genes

in a function category.

We applied the Holm and Benjamini-Hochberg procedures with � = 0:05 to

the 1627 P -values, p(s), from the cross-match test. Using the Holm procedure,

30 hypotheses were rejected, corresponding to the functional categories where at

most 3 cross-matches were observed. Using the Benjamini-Hochberg procedure, 83

hypotheses were rejected, corresponding to the functional categories where at most

5 cross-matches were observed. Figure 2 displays the sorted P -values, as well as

the adjusted P -values from the Holm and the Benjamini-Hochberg procedures. The

appearance of Figure 2 re�ects the discrete nature of the statistic A in (1). Here, the

adjusted P -values for a hypothesis Hi is the smallest nominal level of the multiple

testing procedure at which Hi would be rejected, given the value of all test statistics

involved; see [43].

The analyses just presented acted as if the study by Spira et al. [41] had been a

randomized experiment, with individuals randomly assigned to their roles as smok-

ers or never smokers. Of course, individuals are not randomly assigned to smoke or

not; indeed, smokers and nonsmokers di¤er in various ways. Could the signi�cant

di¤erences in gene expression found above be due to small biases from nonrandom

treatment assignment? Or would it take very large departures from random assign-
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ment to produce these di¤erences?

3 Sensitivity analysis for the cross-match test

3.1 Sensitivity to nonrandom treatment assignment

In point of fact, subjects were not randomly assigned to their roles as smokers and

never smokers, so the randomization distribution in (2) that would be applicable in

a randomized experiment is not applicable in the study by Spira, et al. [41]. What

magnitude of departure from random assignment in (2) would need to be present

to alter the conclusion that smoking causes changes in expression levels in human

airway epithelial cells?

The sensitivity model [31, 33, 34] builds a family of distributions on Z in two

steps: �rst, the treatment assignments, Zj, given F are independent with unknown

probabilities,

Pr (Zj = 1 j F ) = �j;

then, the distribution of Z is returned to Z by conditioning on
P2I

j=1 Zj = n,

Pr

 
Z = z

�����F ;
2IX
j=1

Zj = n

!
=

Q2I
j=1 �

zj
j (1� �j)

1�zjP
b2Z

Q2I
j=1 �

bj
j (1� �j)

1�bj
for z 2 Z. (4)

Following in the spirit of [6], the magnitude of the departure from random assignment

is measured by a parameter, � � 1, such that two subjects may di¤er in their odds

11



of treatment by at most a factor of �:

1

�
� �j (1� �k)

�k (1� �j)
� �; 8j; k: (5)

If � = 1, then �j = �k 8j; k, and (4) equals the randomization distribution (2). For

�xed � > 1, the distribution (4) is unknown but deviates from random assignment by

a bounded magnitude. A sensitivity analysis considers, for several values of � � 1,

the range of possible inferences, say the interval of possible signi�cance levels.

The model (4) may be rewritten in terms of a logit model involving an unmeasured

covariate uj with uj 2 [0; 1] 8j; speci�cally, set  = log (�) � 0,

�j =
exp (�+ uj)

1 + exp (�+ uj)

so that

Pr

 
Z = z

�����F ;
2IX
j=1

Zj = n

!
=

exp
�
zTu

�P
b2Z exp (b

Tu)
, u 2 [0; 1]2I : (6)

(To see that this representation is always possible, set � = minj log f�j= (1� �j)g

and uj = [log f�j= (1� �j)g � �] = for  > 0 or uj = 0 for  = 0; then the odds ratio

in (5), namely �j (1� �k) = f�k (1� �j)g, becomes e� � exp f (uj � uk)g � e for

8j; k implying uj 2 [0; 1].)
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3.2 Bounds on the signi�cance level for �xed �

For �xed u 2 [0; 1]2I , the distribution of the cross-match statistic under model (6)

and the null hypothesis H0 of no e¤ect is

Pr

 
h (Z) � a

�����F ;
2IX
j=1

Zj = n

!
=

P
z2Z � fh (z) � ag exp

�
zTu

�P
b2Z exp (b

Tu)
(7)

where

h (z) =

IX
i=1

z2i�1 (1� z2i) + (1� z2i�1) z2i (8)

and � (E) = 1 if event E occurs and � (E) = 0 otherwise. Of course, (7) is unknown

because u is unknown. For each �xed � � 1, the following proposition places an

upper bound on (7) and hence an upper bound on the P -value from the cross-match

statistic. Proposition 1 is proved in the appendix.

Proposition 1 For �xed  = log (�) � 0, the probability (7) is maximized for u 2

[0; 1]2I by a vector u with uj = 0 or uj = 1 for every j, and with u2i�1 = u2i for at

least I � 1 pairs.

In Proposition 1, the fewest cross-matches occur for a u such that at least I � 1

pairs have u2i�1 = u2i, that is, paired subjects have the same uj. Because h (z) in

(8) is symmetrical in the I pairs, the bound on (7) may be obtained at a u with

uj = 0 or uj = 1 for all j and u1 � u2 � � � � � u2I , so the number of candidate

u�s is of order O (I). Proposition 2 in the next section gives a practical method for

computing the probability (7).
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3.3 Sensitivity Distribution of the Cross-match Statistic

In light of Proposition 1, we evaluate (7) with u2i�1 = u2i for all I pairs; a single

pair has negligible e¤ect on (7) for moderate I. The following proposition gives an

explicit form for the bounding distribution.

Proposition 2 Suppose that

�j =
e�+

1 + e�+
, j = 1; : : : ; 2m, �j =

e�

1 + e�
for j = 2m+ 1; : : : 2I.

Then for a 2 An;I

Pr

 
h (Z) = a

�����F ;
2IX
j=1

Zj = n

!

=

min(2m;n)X
k=max(0;n+2m�2I)

�
2m
k

��
2I�2m
n�k

�
exp (k)Pmin(2m;n)

`=max(0;n+2m�2I)
�
2m
`

��
2I�2m
n�`

�
exp (`)

�
X

b2Ak;m

� (b; k;m) � (a� b; n� k; I �m)

where � (�; �; �) is de�ned in (3).

Proof. Before conditioning on
P2I

j=1 Zj = n, the quantity
P2m

j=1 Zj is the number of

treated subjects among the m pairs with �j = e�+= (1 + e�+), so
P2m

j=1 Zj is bino-

mial with 2m trials and probability of success e�+= (1 + e�+); similarly,
P2I

j=2m+1 Zj

is an independent binomial with 2I�2m trials and probability of success e�= (1 + e�).

Then the conditional probability is given by the extended hypergeometric distribu-
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tion,

Pr

 
2mX
j=1

Zj = k

�����
2IX
j=1

Zj = n

!
=

�
2m
k

��
2I�2m
n�k

�
exp (k)Pmin(2m;n)

`=max(0;n+2m�2I)
�
2m
`

��
2I�2m
n�`

�
exp (`)

.

Conditionally, given (
P2m

j=1 Zj = k,
P2I

j=1 Zj = n), the
�
2m
k

�
possible values of

(Z1; : : : ; Z2m) are equally probable, so the conditional probability of b cross-matches

in the �rst m pairs is � (b; k;m) for b 2 Ak;m. In parallel, conditional on (
P2m

j=1 Zj =

k,
P2I

j=1 Zj = n), the
�
2I�2m
n�k

�
possible values of (Z2m+1; : : : ; Z2I) are equally proba-

ble, so the chance of a� b cross-matches is � (a� b; n� k; I �m). Moreover, these

two events are conditionally independent. Therefore, conditional on (
P2m

j=1 Zj = k,P2I
j=1 Zj = n), the chance of a 2 An;I cross-matches is

X
b2Ak;m

� (b; k;m) � (a� b; n� k; I �m) ;

proving the proposition.

3.4 Application to the genomics study of e¤ects of smoking

Table 2 presents the sensitivity analysis. The table gives the upper bound on the

P -value for a bias of size � when, as in §1.3, there are A = 5 cross-matches in a

study of this size. Again, the parameter � measures the magnitude of the departure

from random assignment. A bias of magnitude � = 10 is enormous: two subjects

may di¤er in their odds of smoking by a factor of 10 � one may be ten times more

likely to smoke than the other because of an unmeasured covariate with very strong

association with gene expression levels. At the conventional 0.05 level, the null
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Table 2: Sensitivity analysis for the cross-match test when applied to all 9968 expres-
sion levels. The table shows the maximum possible P -value from the cross-match
test for departures from random assignment of various magnitudes, �.

� 1 2 5 8 10
maxu Pr(A1 � 5) 0.00084 0.00142 0.00931 0.02877 0.04799

hypothesis would be rejected even if the bias � was of size 10.

For comparison, one of the least sensitive conclusions from an observational study

is that heavy cigarette smoking is a cause of lung cancer. Hammond�s [15] study

of smoking and lung cancer, for instance, becomes sensitive at about � = 6; see [34,

§4]. Moreover, this is true despite the smaller sample size and many outcomes in

the study by Spira, et al. [41]. Table 2 exhibits far less sensitivity to unmeasured

bias: much more bias would be needed to explain the results found by Spira, et

al. [41] than the results found by Hammond [15], even though Hammond�s study

is insensitive to large unmeasured biases. In thinking about this, one should keep

in mind that Hammond [15] matched for many covariates, while Table 2 compares

unmatched groups, so larger biases may be plausible in Table 2; see Heller et al. [16]

for discussion of matching in genomics.

In a nonrandomized study of treatment e¤ects, if a conclusion is sensitive to small

departures from random assignment, for instance � = 1:1, then the conclusion should

not be dismissed but should be viewed with greater caution. See Rosenbaum (2002,

2010) for discussion with numerous examples.
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4 Sensitivity analysis for testing multiple hypotheses

The method illustrated in §3.4 su¢ ces to examine sensitivity to bias in testing one

hypothesis. We now turn to the issues that arise when, as in §2, multiple hypotheses

are tested. Many of these issues are discussed in [37], and so are only sketched here.

For each hypotheses Hs in §2, for each speci�c value of � � 1, and for each

value of the unobserved covariate u 2 [0; 1]2I , there is a P -value, say p�;u (s), from

the cross-match test, and the computations in §3 provide a sharp upper bound, say

p� (s), on p�;u (s), so p�;u (s) � p� (s) for all u 2 [0; 1]
2I .

In principle, there is one true value of the unobserved covariate, u, and we would

like to use the corresponding p�;u (s) in a multiple testing procedure, perhaps one of

the procedures in §2. We cannot do this because we do not know u.

All of the procedures in §2 are monotone in the 2M � 1 possible P -values: if Hs

is not rejected by a given set of P -values, then making some of the P -values larger

while making none of them smaller will not lead to rejection of Hs. It follows that

if Hs is rejected by using p� (s) in place of p�;u (s), then it would also be rejected by

the correct but unknown p�;u (s)�s.

In other words, it is safe to assume that the multiple testing procedure would

reject Hs at the true u if it does reject Hs with the upper bounds, with p� (s), used

in place of the unknown p�;u (s). Is the converse true as well? Is it safe to assume

that the multiple testing procedure would accept Hs for some u 2 [0; 1]2I if it accepts

Hs with the upper bounds, p� (s) used in place of the unknown p�;u (s)? The answer

depends upon the multiple testing procedure. The issue is developed precisely and

in detail in [37], so it will only be sketched brie�y here.
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Although each bound p�;u (s) � p� (s) is sharp, being attained for some u 2

[0; 1]2I , there may be no one u 2 [0; 1]2I such that p�;u (s) = p� (s) for all s. The

unobserved covariate u that most disrupts the inference about Hs is unlikely to be

the same as the unobserved covariate u0 that most disrupts the inference about Hs0.

For instance, with just two hypotheses, s and s0, one might have p�;u (s) = 0:025

and p�;u (s
0) = 0:05, so Holm�s procedure would reject both hypotheses at this

u, and one might have p�;u0 (s) = 0:05 and p�;u0 (s
0) = 0:025, so Holm�s proce-

dure would also reject both hypotheses at this u0, yet p� (s) � 0:05 = p�;u0 (s) and

p� (s
0) � 0:05 = p�;u (s

0), so Holm�s procedure rejects neither hypothesis with the

upper bounds, p� (s), used in place of the unknown p�;u (s). In other words, Holm�s

procedure might reject Hs for a given � for all u 2 [0; 1]2I , but Holm�s procedure

applied to the upper bounds, p� (s) might accept Hs. Applying Holm�s procedure to

the bounds p� (s) is valid but conservative: the family-wise error rate is controlled,

but some hypotheses that would be rejected by checking the u�s one at a time may

not be rejected by the bounds, p� (s).

In [37], it is shown that the situation is di¤erent for the method of complementary

partitions in §2: that procedure and other instances of testing in order [36] are not

conservative. That is, if Hs is rejected by the upper bounds, the p� (s
0)�s, then

it is rejected for every u 2 [0; 1]2I and if Hs is not rejected by the upper bounds,

the p� (s
0)�s, then there exists a u 2 [0; 1]2I for which Hs is not rejected. Certain

procedures, including the ones mentioned in this paragraph, are stopped by one

large P -value, and these are the procedures for which the sensitivity analysis is not

conservative; see [37] for speci�cs.
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Table 3: Sensitivity analysis with � = 1, � = 5, or � = 10. The case � = 1 is
the usual randomization inference. The left side of the table indicates the number
of hypotheses that were rejected at the 0.05 level by the three methods of multiple
testing. The right side of the table gives the value of the cross-match statistic, A,
required for rejection.

Number of rejected null hypotheses Value of A required for rejection
� Bonferroni Holm Benjamini Bonferroni Holm Benjamini

Hochberg Hochberg
1 30 30 83 3 3 5
5 6 6 30 1 1 3
10 0 0 6 Not possible Not possible 1

4.1 Example of sensitivity analysis for multiple testing

Continuing the analysis from §3.4 of Spira et al.�s [41] data, we performed the sensi-

tivity analysis for multiple testing with � = 5 and � = 10. Table 3 shows the results,

including results considered previously using the randomization test for which � = 1.

As in §3.4, the results for several molecular function categories are remarkably insen-

sitive to unmeasured biases, comparable to the studies linking heavy smoking with

lung cancer.

Table 4 displays the six least sensitive molecular function categories, with rejected

null hypotheses by the Holm procedure at � = 5 and by the Benjamini-Hochberg

procedure at � = 10. As indicated in Table 3, the six rejected sets are those where

the observed number of cross-matches was 1, its smallest possible value in a data

set with n odd. Figure 3 parallels Figure 1, but refers only to the 92-dimensional

cross-match test for molecular function category GO:0016616; here, there is A = 1

cross-match.

How does this analysis compare to the analysis performed by Spira et al.[41]?
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Table 4: The six molecular function categories identi�ed in Table 3 with � = 10.
Gene Set ID Description
GO:0004033 Aldo-keto reductase activity.

GO:0004601 Peroxidase activity.

GO:0016614 Oxidoreductase activity,
acting on CH-OH group of donors.

GO:0016616 Oxidoreductase activity, acting on the CH-OH
group of donors, NAD or NADP as acceptor.

GO:0016903 Oxidoreductase activity, acting on the aldehyde
or oxo group of donors.

GO:0016684 Oxidoreductase activity,
acting on peroxide as acceptor.

They found 97 genes to be di¤erentially expressed between never smokers and cur-

rent smokers. A signi�cant molecular function category in the GO ontology was then

determined by overrepresentation in that category of the 97 signi�cant genes, where

the judgement of overrepresentation depended on an assumption that the genes are

independent. There are several di¤erences between the analyses. Of course, our

paper has emphasized a sensitivity analysis, addressing the possibility that the di-

vision of people into smokers and nonsmokers is not random, but rather is related

to unmeasured attributes of these people. In addition to this, when performing

a cross-match test in a GO category, we do not assume these genes are indepen-

dent. Assuming independent expression levels for genes that share a GO category

is, perhaps, not the most comfortable of assumptions.

Three of the six least sensitive functional categories found by our analysis, namely

GO:0004033, GO:0004601, and GO:0016616, were also determined to be signi�cantly
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over-represented by the Spira et al. analysis. Our analysis strengthens their con-

clusion about these three categories by adding the observation that only large biases

from nonrandom treatment assignment could explain this pattern of expression levels.

In agreement with Spira et al., we found that an additional category, �glucuronosyl-

transferase activity�category (GO:0015020), was over-expressed when judged as if

from a randomized experiment (� = 1), but with A = 5 cross-matches, this �nding is

sensitive to biases of moderate size from nonrandom treatment assignments. Another

category, �transferase activity, transferring hexosyl groups�category (GO:00016758)

was found to be signi�cantly overrepresented by Spira et al. (they quote a P -value

of 0), but was not signi�cant by our analysis, even in a randomization test (� = 1)

because the number of cross-matches was 7. Obviously, the discrepancy here is not

due to the sensitivity analysis, because it is present even in the randomization test

(� = 1), so it re�ects some di¤erence in the judgements of the two testing procedures,

possibly the reliance on independent genes in their analysis.

5 Discussion

The cross-match test judges whether treated and control groups di¤er on a high

dimensional responseY` by pairing individuals with similar values ofY` and counting

the number of times, A, that treated individuals are paired with controls. If A is

small, then the hypothesis of no e¤ect of the treatment on Y` is rejected. Previous

work [35] considered the behavior of the cross-match statistic A in a randomized

experiment, but many applications, for instance in genomics, are not experiments,

so the behavior of A may be a¤ected by some unmeasured way that treated and
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control subjects are not comparable. Spira et al.�s [41] study of gene expression

levels in smokers and nonsmokers is not an experiment: people are not randomly

assigned to smoke or not, and they may di¤er in ways that have not been recorded.

Here, we have proposed a sensitivity analysis for the cross-match test, which asks

about the magnitude of bias from unmeasured covariates that would need to be

present to alter the rejection of the null hypothesis. In Spira et al.�s [41] study, the

magnitude � of the departure from randomized assignment needed to alter certain

conclusions is quite large, greater even than the magnitude required to alter the

conclusion in [15] that heavy smoking causes lung cancer, one of the least sensitive

conclusions found in an observational study. We also showed how the statistic may

be used in conjunction with multiple testing procedures to isolate a¤ected parts of

Y`.

The cross-match test is an omnibus test. It is one appropriate test when the

investigator does not know the nature of the e¤ect of the treatment on the coordinates

of Y`. So far as we know, it is currently the only omnibus nonparametric test for

which a sensitivity analysis is available. An omnibus test should not be used if one

is interested only in focused alternatives to the hypothesis of no e¤ect, such as shifts

in location. If the investigator knew, for instance, the direction of the e¤ect for

every coordinate of Y`, then multivariate tests that exploit this knowledge would

have much greater power. One such test would orient the M coordinates of Y` in

the anticipated direction, calculate the M separate Wilcoxon rank sum statistics,

and take the sum of these M statistics as the test statistic [32]. This is actually

a univariate rank test with scores summed over the M coordinates of Y`, so the
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method of sensitivity analysis for univariate rank tests in [31] may be used. Also,

this test may be applied to test each subhypothesis Hs involving a subset of the

coordinates of Y`, so it may be combined with multiple testing procedures along the

lines illustrated here for the cross match test.

The behavior of the cross-match test is a¤ected by the choice of distance function

used to judge whether Yi is close Y`. We used the Euclidean distance applied to

the log of expression levels. An advantage of the Euclidean distance is that it is

not estimated from the data, so the distance between Yi and Yj is not a¤ected if

Y` is an outlier. Some further properties of the Euclidean distance are: (i) the

distance between Yi and Yj may be strongly a¤ected by a single coordinate of Yi

or Yj, (ii) the coordinates of Y` must be in commensurate units, because they are

combined without further standardization, and (iii) no account is taken of covariances

among the coordinates of Y`. These properties may be judged to be advantages

or disadvantages depending upon the context. The Mahalanobis distance would

address (ii) and (iii), but can be strongly distorted by a single outlier and, at the

least, it requires care when 2I �M .

6 Appendix I: Proof of Proposition 1

In Proposition 1, the proof that (7) is maximized with uj = 0 or uj = 1 for every

j, is exactly parallel to the proof of Proposition 2 in [31, page 495] and is omitted.

So for the remainder of the proof, we assume uj 2 f0; 1g. To complete the proof, it

must additionally be shown that (7) is maximized with u2i�1 = u2i for at least I � 1

pairs. If  = 0, there is nothing to prove; therefore, as � � 1 and  = log (�), we
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may restrict attention to  > 0.

For i = 1; : : : ; I, let Vi = Z2i�1+Z2i, so that Vi 2 f0; 1; 2g, the Vi are independent,

Vi = 1 for a cross match, A is the number of 1�s among the Vi, and
PI

i=1 Vi =
P2I

j=1 Zj.

So Pr
�
A � a

���P2I
j=1 Zj = n

�
in (7) equals the probability of a or fewer 1�s among

the Vi given
PI

i=1 Vi = n.

Because conditioning on
P2I

j=1 Zj = n eliminates � in (6), we may set � to any

arbitrary number without changing the distribution on Z. Write � = =2. It is

tidy to set � = �=2 = ��, as the interval of �j�s is then symmetric about 12 ,

�j 2
�

e�=2

1 + e�=2
;

e=2

1 + e=2

�
=

�
e��

1 + e��
;

e�

1 + e�

�
=

�
1

1 + e�
;

e�

1 + e�

�
:

In light of this and using uj 2 f0; 1g we have

�j 2
�

e�

1 + e�
;

1

1 + e�

�
for every j (9)

with the consequence that

Pr (Vi = 1) = �2i�1 (1� �2i) + �2i (1� �2i�1)

=
2e�

(1 + e�)2
if �2i = �2i�1

=
e2� + 1

(1 + e�)2
if �2i 6= �2i�1

so the unconditional probability of a cross-match, Pr (Vi = 1), is larger for �2i 6= �2i�1

than for �2i = �2i�1.

Now every �j satis�es (9). Suppose there are two pairs, say i and k, such that
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�2i 6= �2i�1 and �2k 6= �2k�1. To simplify notation without loss of generality, suppose

the pairs are i = 1 and k = 2 and

�1 = �3 =
e�

1 + e�
; �2 = �4 =

1

1 + e�
(10)

We will show that swapping �2 and �3 does not decrease Pr
�
A � a

���P2I
j=1 Zj = n

�
.

If such swaps are pursued for as many pairs, i and k, as possible, one obtains the

bounding u described in the statement of Proposition 1, thereby proving the result.

So to complete the proof, it su¢ ces to show that swapping �2 and �3 does not

decrease Pr
�
A � a

���P2I
j=1 Zj = n

�
.

Because (V1; V2) j j (V3; : : : VI) it follows that

(V1; V2) j j (V3; : : : VI)
�����
 
V1 + V2;

IX
i=3

Vi

!
;

see [7]. In particular, if Ag;h =
Ph

i=g Z2i�1 (1� Z2i) + (1� Z2i�1) Z2i, then A =

A1;2 + A3;I and

A1;2 j j A3;I

�����
 
V1 + V2;

IX
i=3

Vi

!
; (11)

so that, continuing to use
PI

i=1 Vi =
P2I

j=1 Zj,

Pr

 
A � a

�����
2IX
j=1

Zj = n

!
= Pr

 
A1;2 + A3;I � a

�����
IX
i=1

Vi = n

!
(12)

= E

(
Pr

 
A1;2 + A3;I � a

�����
2X
i=1

Vi;

IX
i=3

Vi

! �����
IX
i=1

Vi = n

)
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Combining (V1; V2) j j (V3; : : : VI), (11) and (12), Pr
�
A � a

���P2I
j=1 Zj = n

�
would

be made larger (i.e., not smaller) for all a if Pr
�
A1;2 � c

��P2
i=1 Vi = m

�
were made

larger (i.e., not smaller) for all (c;m).

Now given V1 + V2 = m,

A1;2 = Z1 (1� Z2) + (1� Z1) Z2 + Z3 (1� Z4) + (1� Z3) Z4

=

266666664

0 if m = 0

1 if m = 1

1 if m = 3

0 if m = 4

whereas if m = 2 then Pr (A1;2 = 0jV1 + V2 = 2) = 	= ( +	) and

Pr (A1;2 = 2jV1 + V2 = 2) = 1� Pr (A1;2 = 0jV1 + V2 = 2) =  = ( +	)

where

	 = Pr f(V1; V2) = (2; 0) or (V1; V2) = (0; 2)g

= �1�2 (1� �3) (1� �4) + �3�4 (1� �1) (1� �2)

and

 = Pr f(V1; V2) = (1; 1)g

= f�1 (1� �2) + �2 (1� �1)g f�3 (1� �4) + �4 (1� �3)g .
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If (10) is true then

Pr (A1;2 = 0jV1 + V2 = 2) =
2e2�

fe2� + 1g fe2� + 1g+ 2e2�

but if �2 and �3 are interchanged, then this probability increases to

Pr (A1;2 = 0jV1 + V2 = 2) =
e4� + 1

fe2� + 1g fe2� + 1g+ 2e2� :

It follows that the swap of �2 and �3 (or of Z2 and Z3) does not decrease Pr
�
A � a

���P2I
j=1 Zj = n

�
,

proving Proposition 1.
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Figure 1:  A two-dimensional representation of the 9968-dimensional cross-match test.  
Paired subjects are connected by a line.  The two dimensions are from a multidimensional 
scaling of the 56×56 distance matrix for the 56 subjects who were paired.  The 
multidimensional scaling is for graphical purposes only; it plays no role in the test.  
Because there are five instances in which a circle is connected to a triangle, the cross-
match statistic is A=5. 
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Figure 2:  The raw p-values, as well as the adjusted p-values from the Holm and the 
Benjamini-Hochberg procedures. At the 0.05 level, 30 and 83 hypotheses are rejected 
using the Holm and the Benjamini-Hochberg procedure respectively. 
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Figure 3:  A two-dimensional representation of the 92-dimensional cross-match test of 
the molecular function GO:0016616. Because there is only 1 instance in which a circle is 
connected to a triangle, the cross-match statistic is A=1. 




