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Abstract

A class of distribution-free tests is proposed for the independence of two
subsets of response coordinates. The tests are based on the pairwise dis-
tances across subjects within each subset of the response. A complete graph
is induced by each subset of response coordinates, with the sample points
as nodes and the pairwise distances as the edge weights. The proposed test
statistic depends only on the rank order of edges in these complete graphs.
The response vector may be of any dimensions. In particular, the number
of samples may be smaller than the dimensions of the response. The test
statistic is shown to have a normal limiting distribution with known expec-
tation and variance under the null hypothesis of independence. The exact
distribution free null distribution of the test statistic is given for a sample of
size 14, and its Monte-Carlo approximation is considered for larger sample
sizes. We demonstrate in simulations that this new class of tests has good
power properties for very general alternatives.

Keywords: Independence test, Random vectors, High-dimensional
response, Multivariate association.

1. Introduction

A high dimensional response vector is measured on a group of subjects.
Important applications examine whether there is a relationship between two

∗Corresponding author
Email addresses: ruheller@post.tau.ac.il (R. Heller),

gorfinm@ie.technion.ac.il (M. Gorfine), heller.yair@gmail.com (Y. Heller)

Preprint submitted to Journal of Statistical Planning and Inference May 31, 2012



subsets of response coordinates. In genomics, for example, it is of interest
to test for associations between the measured signal on genes or on sets of
genes. Moreover, it is often of interest to combine two platforms, and test
for associations between one signal coming from one platform (say Chip-seq)
and another signal coming from another platform (say gene expression) on
the same gene or set of genes.

Classical tests for independence for bivariate populations are the Pear-
son and Spearman test, among others see (Hollander and Wolfe, 1999). For
multivariate data, classical tests in Puri and Sen (1971) are not applicable if
the dimension exceeds the sample size. Related tests for higher dimensions
may be found in Taskinen et al. (2005). These methods base the tests on the
componentwise ranking, and are ineffective for testing non-monotone types
of dependence (Szekely et al., 2007).

A recent approach by Szekely and Rizzo (2009) suggests a test based on
distance correlation. The latter test stands apart from other tests in two
major ways. First, it is a consistent test against all alternatives. Specif-
ically, it has power against non-monotone relationship, as opposed to the
classical univariate tests and their multivariate extensions. Second, it is ap-
plicable in any dimensions. In particular, the number of samples may be
smaller than the dimensions of the response vectors being tested for inde-
pendence. The asymptotic null distribution of the test statistic suggested by
Szekely and Rizzo (2009) is that of a nonnegative quadratic form of centered
Gaussian random variables, with coefficients that depend on the distribution
of the two subsets of response coordinates. The asymptotic null distribution
for the test is not distribution free. An upper bound on the null distribution
is distribution free but typically too conservative, and therefore the authors
recommend using a permutation test instead.

We propose a new class of multivariate distribution-free test statistics
for independence using the graph structure of the sample points on the two
subsets of the multivariate response vector. We show how one can define
test statistics based on the ranks of the distances on the two graphs. As in
Szekely and Rizzo (2009), these tests are powerful against very general alter-
natives and can be applied in arbitrary dimensions. Moreover, our test statis-
tics under the null hypothesis have a known and easily calculable asymptotic
distribution and the exact distribution-free null distribution can be very well
approximated by Monte-Carlo sampling. The implications are that a look-up
table of the quantiles of the null distribution can be created before the study
is analyzed, and repeating the study several times will not require recom-
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puting the null distribution as long as the sample size is fixed. In contrast,
the permutation test of Szekely and Rizzo (2009) will require recomputing
the null distribution in every repetition of the study, since the null distribu-
tion depends on the observed data. The computational advantages of our
proposed test is further addressed in the Discussion Section.

Our proposed test will make use of a tree created from the two graphs of
sample points. Trees, especially minimal spanning trees have been used in the
literature for the purpose of comparing two groups, see Friedman and Rafsky
(1979). Relatedly, nearest neighbors tests have been used for comparing two
groups (Henze, 1988) or for testing goodness of fit Bickel and Breiman (1983).
We will use the proximity among the sample points in constructed trees to
weigh evidence against independence.

As an example, we consider the study of Sakaue-Sawano et al. (2008)
that followed two proteins from birth to division in Hela cells. We focused
on the question of independence between the two proteins. There were 62
measurements over time for each protein, for 20 independent cells. The
number of variables was three times larger than the sample size. There was
no reason to believe that the relationship is monotone between the protein
measurements, and therefore the concern was that a test targeted towards
finding monotone relationships may not reject the null hypothesis due to
the more complex nature of the relationship. We return to this example in
Section 6.

In Section 2 we present the problem. Section 3 presents the nonparametric
test and its null distribution. Section 4 discusses variations of the proposed
test. Section 5 shows the results of a simulation study comparing the power of
these tests and other tests. In particular, the simulated examples in Section 5
show the power advantage of our approach over the test in Szekely and Rizzo
(2009) for small sample sizes. In Section 7 we give final remarks and further
extensions.

2. The Problem

We have a random vectorY of dimensionM . Let sj = (sj1, . . . , sjm, . . . , sjM),
j ∈ {0, 1}, be an M-dimensional vector of 0’s and 1’s with at least one 1,
and let Y(sj) be the sub-vector of Y of dimension

∑M

m=1 sjm containing the
coordinates for which sjm = 1. We are interested in testing whether there is
a relationship between the outcomes represented by the two (disjoint) sub-
vectors Y(s0) and Y(s1). The null hypothesis states that the two subsets of
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response coordinates are independent,

H0 : L(Y(s0),Y(s1)) = L(Y(s0))L(Y(s1)),

where L refer to the ”law” or ”distribution”. We are interested in the general
alternative that the two sub-vectors are dependent,

H1 : L(Y(s0),Y(s1)) 6= L(Y(s0))L(Y(s1)).

There are N independent subjects and a multivariate response Yi is recorded
for each subject i. The dimension of Yi, M , may be much higher than N .
(Note that an equivalent formulation is the following: we have two random
vectors W1 ∈ <q and W2 ∈ <p and N independent copies from the joint
distribution of W1 and W2 for testing whether these random vectors are
independent. In our notation W1 = Y(s0) and W2 = Y(s1).)

The distance covariance test in Szekely and Rizzo (2009) may be com-
puted as follows. First, all pairwise Euclidean distances between sample val-
ues of one sub-vector and separately for the other sub-vector are computed:
akl = |Yk(s0)−Yl(s0)|∑M

i=1
s0i
, bkl = |Yk(s1)−Yl(s1)|∑M

i=1
s1i
, k, l = 1, . . . , N .

Then the resulting two distance matrices are centered:

Akl = akl −
1

N

N
∑

l=1

akl −
1

N

N
∑

k=1

akl +
1

N2

N
∑

k=1

N
∑

l=1

akl

and

Bkl = bkl −
1

N

N
∑

l=1

bkl −
1

N

N
∑

k=1

bkl +
1

N2

N
∑

k=1

N
∑

l=1

bkl.

Next, the componentwise product matrix of the two centered distance matri-
ces is averaged: 1

N2

∑N

l=1

∑N

k=1AklBkl. This is the squared distance covari-
ance between the two sub-vectors, called dCov, and it is their test statistic for
testing the independence null hypothesis. The dCov test is implemented in
the R package energy (R Development Core Team, 2011) as a permutation
test.

We suggest a new approach for testing for independence against very
general alternatives. Similar to Szekely and Rizzo (2009), this approach is
based on the distances between the outcomes of the N subjects on the two-
subvectors. In our approach, the distances used may be any similarity mea-
sure d(·) between two vectors of outcomes, so akl = d(Yk(s0),Yl(s0)), bkl =
d(Yk(s1),Yl(s1)), k = 1, . . . , N, l = 1 . . . , N . Moreover, the resulting test
statistics have a very simple form with a known null distribution.
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3. The graph approach to the test of independence

An edge weighted graph is a graph with a real number assigned to each
edge. A complete graph of the N sample data points on a sub-vector Y(s) is
an edge weighted graph with

(

N

2

)

edges linking all pairs of points. The weight
associated with each edge is the distance between the nodes (points) defining
it. We have a complete graph induced by {Yi(s0), i = 1, . . . , N} and a graph
induced by {Yi(s1), i = 1, . . . , N}. These graphs are fixed. Let U1, . . . , UN be
the node labels of the graph induced by the sub-vector s0 and W1, . . . ,WN be
the node labels of the graph induced by the sub-vector s1. These node labels
are a permutation of {1, . . . , N}. When the independence null hypothesis
is true, knowing the permutation U1, . . . , UN gives no information about the
permutation W1, . . . ,WN so all N ! permutations are equally likely.

3.1. The minimum spanning tree

A path between two prescribed nodes is an alternating sequence of nodes
and edges with the prescribed nodes as first and last elements, all other nodes
distinct, and each edge linking the two nodes adjacent to it in the sequence.
A connected graph has a path between any two distinct nodes. A tree is
a connected graph with no cycles. A minimal spanning tree (MST) of an
edge weighted graph is a spanning tree for which the sum of edge weights is
minimum.

MSTs have two important properties that make them appropriate for our
application. First, they connect all the nodes with N − 1 edges. Second, the
node pairs defining the edges represent points that tend to be close together
(ie with small distance or dissimilarity). We will use the MST based on one
of the sub-vectors, say the graph induced by {Yi(s0), i = 1, . . . , N}, to select
the edges in each step. In step 1 of the construction, we will select a node at
random and select an edge in the MST that starts from that node. In step
2, we will select another edge that is in the MST and connected to one of
the nodes already visited in step 1, and so forth.

3.2. Construction of the test statistic

To explain and illustrate the construction method for our proposed test,
we first consider a toy example with N = 5 sample data points. Figure 1
top are the distance weighted complete graphs G0 and G1 induced by Y(s0)
and Y(s1), respectively. If the two sub-vectors are independent, there is
no reason to expect that sample points connected by edges with low weight
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in the left graph also have low weight edges in the right graph. Therefore,
under the null assumption of independence, we expect that if we choose some
edges based on information from G0 only, and then look at their ranks in G1,
these ranks will be randomly distributed. Under the alternative we expect
that given the MST of G0, displayed in Figure 1 bottom, the weight of these
edges in G1 will be small.

We now traverse the edges matching the MST in G1 in the following way.
We start, for example, from vertex a and look at edge (a,d) - note that it
was chosen only based on information from G0 (Figure 1 bottom). The rank
of edge (a,d) among all the edges coming out of a is 1 since it is shortest
of all the 4 edges. We now go to d (we could also have stayed in a if a had
more edges coming out of it). The edge (d, e) (also chosen only based on
information from G0) is the second shortest among the 3 edges coming out
of it and going to new edges (i.e. we ignore the edge (d, a)) so its rank is 2.
We now continue to the vertex e. Yet again it is the shortest between itself
and (e, c) so its rank is 1 (out of 2). In summary, in this example we got
ranks lower than expected so it seems possible that there is some dependency
between Y(s0) and Y(s1).

More generally, we consider the MST based on G0. We select a random
traversal of the tree, where at each step we start at a node already visited,
and move forward to a new node. Therefore, the tree is traversed in N − 1
steps. The traversal may be represented by {vj1, vj2 : j = 1, . . . N − 1}, where
vj1 and vj2 denote the index of the first and second node selected at step j,
and vj1 ∈ {v11, v12, v22, . . . , vj−1

2 } and vj2 /∈ {v11, v12, v22, . . . , vj−1
2 } . We compute

the following:

Step 1 The rank of the weight of edge e1 = (v11, v
1
2) in the subgraph of Y(s1)

among the N − 1 weights of the edges connecting v11 with the N − 1
other nodes, call this rank R1 (R1 ∈ {1, . . . , N − 1}).

Step 2 The rank of the weight of edge e2 = (v21, v
2
2) in the subgraph of Y(s1)

among the edges connecting v21 with {v22, . . . , vN−1
2 }, call this rank R2

(R2 ∈ {1, . . . , N − 2}).
...

Step j The rank of the weight of edge ej = (vj1, v
j
2) in the subgraph of Y(s1)

among the edges connecting vj1 with {vj2, . . . , vN−1
2 }, call this rank Rj

(Rj ∈ {1, . . . , N − j}).
...
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Figure 1: A toy example: G0 (top left), G1 (top right), the MST based on G0 (bottom).
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Step N-2 The rank of the weight of edge eN−2 = (vN−2
1 , vN−2

2 ) in the subgraph of
Y(s1) among the edges connecting vN−2

1 with {vN−2
2 , vN−1

2 }, call this
rank RN−2 (RN−2 ∈ {1, 2}).

The null distribution of the N−2 ranks is given in the Lemma 3.1 below.
Moreover, the proposition states that these ranks are independent. The
independence of the N − 2 ranks will be exploited in the construction of a
powerful test statistic.

Lemma 3.1. Under the null hypothesis of no association, Ri is uniformly

distributed on {1, 2, . . . , N − i}, i = 1, . . . , N − 2. Moreover, R1, . . . , RN−2

are mutually independent.

The proof of lemma 3.1 is provided in Appendix Appendix A for the more
general construction of a tree that includes the MST as a special case, see
Lemma Appendix A.1.

The construction method results in N − 2 ranks, R1, . . . , RN−2. How
can we combine the N − 2 ranks (R1, . . . , RN−2) into a test statistic? Many
methods have been suggested to combine p-values, and it was shown that the
combining method materially affects the power but that the optimal combin-
ing method depends on the distributions of the p-values under the alternative
(Loughin, 2004). Fisher’s method takes the product of the p-values as the
combined evidence against the null. This combining method was investigated
to have good power properties for a broad family of alternative distributions,
e.g. Wallis (1942), Loughin (2004), Benjamini and Heller (2008).

We can view the N−2 steps in the construction as N−2 tests against the
null hypothesis of independence. The p-value at step j is therefore Pj =

Rj

N−j
.

Fisher’s combining method results in the test statistic FN = −2
∑N−2

j=1 logPj .
This test statistic has the desired property that when N is large, it is enough
that only one of the ranks is very small for the test statistic to be large and
highly significant.

3.3. The exact, asymptotic and Monte-Carlo approximate tail probabilities

The null expectation and variance of FNj = −2 log
Rj

N−j
are

E0(FNj) = 2 log[
N − j

((N − j)!)
1

N−j

], V ar0(FNj) =
4

N − j

N−j
∑

k=1

[log
k

((N − j)!)
1

N−j

]2.
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Table 1: The exact (column 2), normal approximated (column 3) andMonte-Carlo (column
4) p-values for a sample size of N=14.

Test statistic Exact p-value Normal approximation Monte-Carlo approximation

F 1− CDF0(F ) 1− Φ( F−E0(F )√
var0(F )

)
∑

10
6

b=1
I[F (b)≥F ]

106

31.710259 0.000308 0.000098 0.000304
29.038958 0.002122 0.000986 0.002044
25.777678 0.014430 0.009985 0.014331
25.147138 0.019896 0.014684 0.019741
23.886213 0.036750 0.029935 0.036622
23.330950 0.046785 0.039968 0.046721
22.892610 0.056676 0.049687 0.056455
22.499919 0.067333 0.059916 0.067054

As N → ∞ for j = o(N), FNj goes in distribution to a chi-squared ran-
dom variable with 2 degrees of freedom, so the expectation and variance of
FNj go to 2 and 4 respectively. From Lemma 3.1 it follows that the test

statistic FN =
∑N−2

j=1 FNj is the sum of N − 2 independent (non-identically
distributed) random variables, with null expectation and variance E0FN =
∑N−2

j=1 E0(FNj) = 2
∑N−1

j=2 log j

(j!)1/j
and V ar0FN =

∑N−2
j=1 V ar0(FNj). More-

over, the asymptotic null distribution is normal.

Theorem 3.1. When the null hypothesis of independence is true, L(FN−E0FN√
V ar0FN

) →
N(0, 1) as N → ∞.

The proof is given in Appendix Appendix B.
How good is the tail normal approximation? Specifically, when the ap-

proximate p-value is at most 0.0001, 0.001, 0.01,0.02,0.03,0.04, or 0.05, Table
1 shows the exact computation along with the asymptotic approximation for
N = 14. The normally approximated p-values (column 3) are smaller than
the exact p-values (column 2). The greatest relative errors of the normal
approximation are for small p-values in the extreme tail, where the approxi-
mated p-value may be more than three times smaller than the actual p-value.

It is not computationally feasible to compute the exact distribution for
N > 14 on a personal computer. However, it is possible to produce with
a modern computer a supposedly endless flow of random variables from
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Figure 2: For N = 50, the tail distribution of the p-value based on the normal approxima-
tion (solid line) and Monte-Carlo approximation (dashed line) respectively. Left and right
panels show the entire distribution and a zoom on the relevant range of large F values
respectively.

the distribution of the test statistic F = FN by sampling from the rele-
vant discrete uniform distributions. Using standard Monte-Carlo method in
R (R Development Core Team, 2011) producing 106 random variables from
the exact distribution for N = 14 is extremely fast, see code in Appendix
Appendix C. For a test statistic F and a Monte-Carlo sample F (1), . . . , F (B),

the Monte-Carlo p-value is
∑B

b=1
I[F (b)≥F ]

B
. Table 1 shows that the Monte-Carlo

p-values (column 4) based on 106 samples are very close to the exact p-values
even in the extreme tail.

Figure 2 shows the tail distribution of the p-value for N = 50, based
on the normal approximation (solid line) and Monte-Carlo approximation
(dashed line) respectively. The agreement between these two approximations
is very good, except possibly at the far tails. The 0.010 and 0.050 tail area
of the test statistic based on the normal approximation are 106.5254 and
99.1266, respectively. These values correspond to a tail area of 0.013 and
0.0544 respectively using the Monte-Carlo approximation. For N = 100, for
a test statistic F = 204.63, the p-value based on the normal approximation
is 0.0500 and the p-value based on the Monte-Carlo approximation is 0.0540.

Since the Monte-Carlo approximation can be made arbitrary close to
the exact distribution for finite N , and since computing the Monte-Carlo
approximation is very fast, in all our computations henceforth we use the
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Monte-Carlo approximation to the exact null distribution of the test statis-
tic. Note that contrary to permutation methods, where the null distribution
is obtained by conditioning on the observed sample, the Monte-Carlo approx-
imation is based on random draws from the null distribution of the ranks and
thus is the same for all observed samples of fixed size N .

Other large sample approximations that give closer or more conservative
estimates than the normal approximation may be derived. For example, since
the null distribution of our test statistic is skewed, more accurate results
may be obtained by using a chi-squared approximation, as noted by Hall
(1983). However, since for most practical applications (in particular, the
ones considered in this manuscript) the Monte-Carlo approximation can be
easily computed, we chose to use it and omit any further developments on
the large sample approximation of our test statistic.

4. Another construction of the tree

The MST is just one of the possible ways to select short edges. More
generally, we could select some of the edges based on G0 and look at their
rank in G1 and some of the edges based on G1 and look at their rank in G0.
The most general form is given in Appendix Appendix A.

We consider below a construction that is based on optimal pairing. Sup-
pose that there are N = 2I nodes and a distance dij between node i and
node j. A minimum distance nonbipartite matching pairs the nodes into I
non-overlapping pairs to minimize the total distance within pairs. For no-
tational convenience, the nodes are renumbered after pairing so that in the
new order subject 2i − 1 and subject 2i are paired for i = 1, ...., I. The
nonbipartite matching has minimal distance if

∑I

i=1 d(2i−1,2i) is smallest over
all possible pairings. The minimum distance nonbipartite matching problem
is a standard combinatorial problem that can be solved in O(I3) operations,
implemented in the R package nbpMatching, see Lu and Beck (2011). The
distance matrix {dij : i = 1, . . . , 2I, j = 1, . . . , 2I} has to be symmetric and
positive, but need not satisfy the triangle inequality. For an odd number of
subjects, a pseudo subject is added with distance 0 from all other subjects
and the one actual subject who is paired with the pseudo subject is discarded.

The basic idea behind the construction of the tree based on the optimal
pairings is that we alternate between taking edges that are the optimal pairs
based on Y(s0) and based on Y(s1). We do however have to be careful not
to create a cycle (ie an alternating sequence of nodes and edges were a node
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is repeated) therefore we do the following. In step 1 of the construction, we
will select the shortest edge among the I edges that form the optimal pairing
based on Y(s0). In step 2, if the edge selected in step 1 is also optimally
paired based on Y(s1) (i.e. a cycle is formed if we choose this edge again),
then in step 2 we select a vertex from step 1 and choose the shortest edge
based on the graph of Y(s1) among the N − 2 edges starting from it that
have not yet been selected, i.e. that go to a new vertex. Otherwise, we select
an edge among the I edges that form the optimal pairing based on Y(s1)
that starts in a vertex used in step 1. In step j, for j odd (even), if we
can choose an edge from the optimal pairing based on Y(s0) (Y(s1)) that
starts in an edge we already visited and goes to an edge that we have not
yet visited, we do so. Otherwise in order to avoid a cycle, we select a vertex
we already visited and pick the shortest edge from it to a new vertex based
on the graph of Y(s0) (Y(s1)).

As an illustration, consider the toy example in Figure 1. An optimal
pairing based on Y(s0) is edges (e,b) and (a,d). An optimal pairing based
on Y(s1) is (b, c) and (a,d). We construct the tree as follows: we start for
example from vertex e and select edge (e,b) since it is the shortest optimally
paired edge based on G0. The rank of edge (e,b) among all 4 edges coming
out of e in G1 is one since it is the shortest of all the 4 edges. We now go
to b. The edge (b, c) is selected based on the optimal pairing of G1. In G0

this edge is the shortest among the 3 edges coming out of b, excluding edge
(e,b). Therefore its rank is 1 out of 3. Finally, we need to select based on G0

an edge that starts from e,b, c excluding the 3 edges between these nodes.
Since there is no optimal pair not yet visited to be selected, we can instead
select the shortest edge out of all possible ones in G0. The shortest such edge
is edge (e,d). It is the same distance as (e, a) in G1 so its rank is 1.5.

5. Simulations

In all simulations, the dCov test was applied by calling the function
dcov.test implemented in the R package energy (Szekely and Rizzo, 2009)
with 10000 permutation samples.

5.1. Bivariate Distributions

We consider first the six simulated examples of unusual bivariate distribu-
tions in Newton (2009). These examples mimic those at the wikipedia.org
page on Pearson correlation. For N = 100 sample points the relations are
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Figure 3: Six simulated examples of unusual bivariate distributions; a sample of size N=100
from each distribution.

already manifest by eye, as can be seen from the example data in Figure 3.
The example of 4 independent clouds is an example of a null distribution.
Table 2 shows the power comparison between the following tests: Pearson’s
correlation test, Spearman’s correlation test, dCov, the proposed test that
uses optimal pairing in the construction, and the proposed test that uses
MST in the construction. All tests maintain the correct size for the example
of 4 independent clouds. In the other examples, while the power of the tests
based on Pearson and Spearman correlations remain small, the power of the
tests based on dCov, optimal pairing and MST increases towards 1 as the
sample size increases. Large differences can be observed for smaller sample
sizes. The most pronounced difference is observed for the circle relation,
where at N = 100 the power of the tests based on optimal pairing and MST
are 0.81 and 0.54 respectively, whereas dCov had no power to detect this
relation.

5.2. Multivariate Distributions

Szekely et al. (2007) considered the following example of a nonlinear rela-
tion, where none of the likelihood ratio type of tests they considered performs
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Table 2: The power (SE), based on 10000 repetitions, for a test at level 0.05 per sample size
from the joint distributions that generate the unusual bivariate relation in wikipedia.org

page on Pearson correlation for various sample sizes. The tests compared are Pearson’s
correlation test (column 3), Spearman’s correlation test (column 4), the distance correla-
tion test dCov (column 5), the proposed test that uses optimal pairing in the construction
(column 6) , and the proposed test that uses MST in the construction (column 7).

N DistributionPearson Spearman dCov optimal Pair-
ing

MST

50 W 0 (0) 0 (0) 0.8480
(0.0036)

0.1165
(0.0032)

0.9969
(0.0006)

Diamond 0.0029
(0.0005)

0.0139
(0.0012)

0.0446
(0.0020)

0.1852
(0.0039)

0.0782
(0.0027)

Parabola 0.0045
(0.0007)

0.0019
(0.0004)

0.9718
(0.0017)

0.5694
(0.0050)

0.7645
(0.0042)

Hyperbola 0.1537
(0.0036)

0.1397
(0.0035)

0.2975
(0.0046)

0.6310
(0.0048)

0.9446
(0.0023)

Circle 0 (0) 0 (0) 0 (0) 0.4060
(0.0049)

0.2281
(0.0042)

4 clouds 0.0492
(0.0022)

0.0491
(0.0022)

0.0487
(0.0022)

0.0495
(0.0022)

0.0518
(0.0022)

100 W 0 (0) 0 (0) 1 (0) 0.4599
(0.0050)

1 (0)

Diamond 0.0019
(0.0004)

0.0134
(0.0011)

0.1395
(0.0035)

0.3112
(0.0046)

0.1012
(0.0030)

Parabola 0.0044
(0.0005)

0.0023
(0.0005)

1 (0) 0.8447
(0.0036)

0.9464
(0.0023)

Hyperbola 0.1380
(0.0034)

0.1294
(0.0034)

0.9535
(0.0021)

0.9100
(0.0029)

0.9973
(0.0005)

Circle 0 (0) 0 (0) 0.0001
(0.0001)

0.8120
(0.0039)

0.5367
(0.0050)

4 clouds 0.0476
(0.0021)

0.0486
(0.0022)

0.0473
(0.0021)

0.0516
(0.0022)

0.0473
(0.0021)

well. Using our notation, the distribution of Y(s0) is standard multivariate
normal with 5 dimensions, and Y(s1) is log(Y2(s0)). Table 3 shows the
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Table 3: The power (SE) of a test at level 0.05 per sample size from the joint distribution
that generates Example 3 in Szekely et al. (2007): Y(s0) is standard multivariate normal
with 5 dimensions and Y(s1) = log(Y2(s0)).

dCov Optimal pairing MST
n=20 0.159 (0.012) 0.279 (0.014) 0.488 (0.016)
n=30 0.296 (0.014) 0.493 (0.016) 0.854 (0.011)
n=40 0.443 (0.016) 0.720 (0.014) 0.980 (0.004)
n=50 0.636 (0.015) 0.871 (0.011) 0.999 (0.001)
n=60 0.750 (0.014) 0.939 (0.008) 1.000 (0.000)
n=70 0.910 (0.009) 0.994 (0.002) 1.000 (0.000)
n=80 0.955 (0.007) 0.997 (0.002) 1.000 (0.000)

power of a test at level 0.05 for each of the following tests: dCov, the test
using optimal pairing in the construction, and the test using MST in the
construction. The proposed test based on MST has excellent power even
for samples of size 30, and the proposed test based on optimal pairing has
very good power when the sample size is at least 60. Both tests are clearly
superior to the dCov test in this example.

6. Example

Sakaue-Sawano et al. (2008) followed the fluorescense level of two fluores-
cent proteins, one that labels G1 phase nuclei in red and the other that labels
S/G2/M phase nuclei in green, from birth to division in HeLa cells. We an-
alyzed a subset of the data, kindly provided to us by Sivan Pearl from the
research group of Professor Nathalie Questembert-Balaban at the Hebrew
university. Our subset consisted of the time series of the two proteins in a
sample of 20 independent cells. Examination within cell of the fluorescense
of these two proteins will give a strong association because the expression of
both proteins depends on cell cycle progression. However, by examination of
the time curves across cells, we can ask whether changes in the expression
curve (over cell progression) in one protein is predictive of changes in the
expression curve of the other protein. In other words, by examination of the
time curves across cells, we can test for independence between the expression
curves (from birth to division of the cell) of the two proteins.
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For simplicity, the data included only the first 62 time points, since this
was the length of the life cycle of the shortest of the 20 cells. The proposed
test that uses optimal pairing and MST in the construction resulted in p-
values of 0.12 and 0.01 respectively. The dCov test of independence resulted
in a p-value of 0.08. This analysis suggests that there is some evidence of
dependence, as reflected in the fairly small p-value of the test that uses MST
in the construction.

We further considered the test of independence after standardizing each
time series to have mean zero and a standard deviation of one. The stan-
dardization had a remarkable effect. After standardization of the data, the
three tests of independence suggest strongly that the two random vectors are
dependent, so that relative changes in the expression curve of one protein
are reflected in relative changes in the expression curve of the other protein.
The proposed test that uses optimal pairing and MST in the construction
resulted in p-values of 0.0002 and 0.0015 respectively. The dCov test of inde-
pendence resulted in a p-value of 0.00001. Since the choice of role of the two
random vectors in the construction was arbitrary, we reversed their roles and
received corresponding p-values of 0.0002 and 0.0016. Clearly, the choice of
role in the construction was not relevant in this particular example.

7. Discussion

We proposed two distribution-free tests of independence based on graphs.
In our tests, the distance or similarity measure can be very general and the
dimensions of the response vector may be larger than the sample size. More-
over, the null distribution of our test statistics is known and easily approx-
imated for large sample size. We showed that our tests have good power
properties even when the sample size is small for non-linear relationships
between the two subsets of response coordinates tested for independence.
We recommend using these tests when the subsets of the response vector of
interest are suspected to have complex, non-monotone relationships. We ob-
serve that the choice of method of construction of the tree matters, but the
better choice performance-wise depends on the alternative. The test using
optimal pairing in the construction treats both sub-vectors similarly, so the
test results may differ only slightly if the roles of the two sub-vectors are
reversed.

Having an easily calculable distribution-free test of the null hypothesis is
very important computationally in multiple testing settings. Consider the fol-
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lowing example from Genomics research. In microarray studies, the signal in
many genes is simultaneously measured, and it may be of interest to test the
independence between various groups of genes, called gene sets. Suppose we
have M (in the order of hundreds or thousands) gene sets and

(

M

2

)

hypothe-
ses of independence between the gene sets. In order to adjust for multiplicity,
the significance at the far tail of the null distribution needs to be calculated.
A permutation test, such as the one described in Szekely and Rizzo (2009),
will require O(M2) permutations for each test to be in the O(1/M2) tail
of the null distribution. Note that it is necessary to be this far in the tail
for most popular multiplicity correction methods, not only the conservative
Bonferroni correction but also for the corrections advocated by Benjamini
and Hochberg (Benjamini and Hochberg, 1995), when the fraction of true
findings is small. Thus O(M4) permutations are necessary for all tests. For
a sample of size N , the cost of computing the test statistic is O(N2) (this is
the cost of computing the N ×N distance matrix, or of multiplying the en-
tries of two N ×N distance matrices), and therefore the total computational
complexity is O(M4×N2). To apply our test, a look-up table can be created
for the null distribution of a sample of size N with a computational cost of
order O(M2 ×N) in advance for N small, or the asymptotic approximation
may be used for N large. The computational complexity is therefore only
O(M2×N2), where O(N2) is the cost of computing the distance matrix and
the minimal spanning tree (Seth and Vijaya (2002)), and this is a substan-
tial reduction in computational cost when testing several hundred or several
thousands gene sets for pairwise independence.
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Appendix A. The general construction of the test statistic

In the construction method below, let vj1 and vj2 denote the index of the
first and second node selected at step j, from the possible values {1, . . . , N}.

Step 1 Begin at any node v11. From v11 using only information from Y(si1)
(i1 ∈ {0, 1}) choose a new node v12. Calculate the rank of the weight
of edge e1 = (v11, v

1
2) in the subgraph of Y(s1−i1) that connects v

1
1 with

the N − 1 other nodes, call this rank R1 (R1 ∈ {1, . . . , N − 1}).

Step 2 Go to node v21 ∈ {v11, v12} and use only information from Y(si2) (i2 ∈
{0, 1}) to choose a new node v22 that we have not visited yet, ie v22 /∈
{v11, v12} . Calculate the rank of the weight of edge e2 = (v21, v

2
2) in the

subgraph of Y(s1−i2) that connects v
2
1 with the N − 2 other nodes we

have not visited yet, call this rank R2 (R2 ∈ {1, . . . , N − 2}).

...

Step j Go to node vj1 ∈ {v11, v12, v22, . . . , vj−1
2 } and use only information from

Y(sij) (ij ∈ {0, 1}) to choose a new node vj2 that we have not visited

yet, ie vj2 /∈ {v11, v12, v22, . . . , vj−1
2 }. Calculate the rank of the weight of

edge ej = (vj1, v
j
2) in the subgraph of Y(s1−ij) that connects vj1 with

the N − j other nodes we have not visited yet, call this rank Rj (Rj ∈
{1, . . . , N − j}).

...

19



Step N-2 Go to node vN−2
1 ∈ {v11, v21, v22, . . . , vN−3

2 } and use only information from
Y(siN−2

) (iN−2 ∈ {0, 1}) to choose a new node vN−2
2 that we have not

visited yet, ie vN−2
2 /∈ {v11, v21, v22, . . . , vN−3

2 } . Calculate the rank of the
weight of edge eN−2 = (vN−2

1 , vN−2
2 ) in the subgraph of Y(s1−iN−2

) that
connects vN−2

1 with the 2 other nodes we have not visited yet, call this
rank RN−2 (RN−2 ∈ {1, 2}).

The null distribution of the N−2 ranks is given in the Lemma 3.1 below.
Moreover, the proposition states that these ranks are independent. The
independence of the N − 2 ranks will be exploited in the construction of a
powerful test statistic.

Lemma Appendix A.1. Under the null hypothesis of no association, Ri

is uniformly distributed on {1, 2, . . . , N − i}, i = 1, . . . , N − 2. Moreover,

R1, . . . , RN−2 are mutually independent.

Proof. The proof of the lemma is by induction. For k = 1, since all permu-
tations of the nodes 1, 2, 3, . . . , N are equally likely on the graph Y (s1−i1),
then once we fix v11 and v12 using information on the subgraph Y (si1), then the
weight of e1 = (v11, v

1
2) in the subgraph of Y (s1−i1) may be any of the possible

weights with equal probability under the null hypothesis of independence. In
particular, fixing v11 in the subgraph Y (s1−i1), then the weight of e1 = (v11, v

1
2)

in the subgraph of Y (s1−i1) may be any of the N − 1 possible weights with
equal probability. So R1 is uniformly distributed on {1, . . . , N−1} (assuming
no ties).

For k = 2, note that v21 is already fixed in both subgraphs. We choose
v22 /∈ {v11, v12} using information on the subgraph Y (si1).Therefore, under the
null hypothesis of independence the weight of e2 = (v21, v

2
2) in the subgraph

of Y (s1−i1) may be any of the N − 2 possible weights (excluding the weight
of e1) with equal probability, regardless of the value of R1. Therefore, R2 is
uniformly distributed on {1, 2, . . . , N − 2} and independent of R1.

Assuming that the lemma is true of i < j, then for k = j, note that
vj1 is already fixed in both subgraphs. We choose vj2 /∈ {v11, v12, v22, . . . , vj−1

2 }
using information from Y (sij). The weight of ej = (vj1, v

j
2) in the subgraph

of Y (s1−ij) can be any of the N − 1− (j− 1) possible weights (excluding the

weights on the edges connecting vj1 with the nodes already visited, ie with
{v11, v12, v22, . . . , vj−1

2 }/vj1) with equal probability, regardless of the values of
R1, . . . , Rj−1. Therefore, Rj is uniformly distributed on {1, . . . , N − j} and
independent of R1, . . . , Rj−1.
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Appendix B. Proof of Theorem 3.2

Proof. From Lemma Appendix A.1 it follows that FNj, j = 1, . . . , N − 2
are independent non-identically distributed random variables. It is straight-
forward to show that for a fixed j, E0(FNj) ≤ 2 and V ar0(FNj) ≤ 4. It
therefore follows that V ar0F ≤ 4N , but we now show that in addition,
V ar0F = O(N):

V ar0FN = 4
N−1
∑

n=2

[(
1

n

n
∑

x=1

(log x)2)− (
1

n2
(logn!)2)] ≥

4

N−1
∑

n=
√
N

[(
1

n

n
∑

x=1

(log x)2)− (
1

n2
(log n!)2)] =

4

N−1
∑

n=
√
N

[(2− 2

n
− 2 logn+ (logn)2)− (logn− 1)2) + o(1)] =

4

N−1
∑

n=
√
N

[1 + o(1)] = O(N).

The Lindeberg-Feller central limit theorem states that if the following
condition is satisfied

lim
N→∞

1

V ar0FN

N−2
∑

j=1

E0[(FNj−E0FNj)
2I((FNj−E0FNj)

2 > ε2V ar0FN ] = 0 ∀ε > 0

(B.1)
then FN−E0FN√

V ar0FN
converges in distribution to a standard normal random variable

as N → ∞. Therefore it remains to prove (B.1) above. Since

(FNj − E0(FNj))
2 = (2 log(N − j)− 2 logRj − E0(FNj))

2 ≤ (2 logN)2,
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it follows that

1

V ar0FN

N−2
∑

j=1

E0[(FNj −E0FNj)
2I((FNj −E0FNj)

2 > ε2V ar0FN ] ≤

1

V ar0FN

N−2
∑

j=1

E0[(2 logN)2I((FNj − E0FNj)
2 > ε2V ar0FN ] ≤

(2 logN)2

V ar0FN

N−2
∑

j=1

V ar0(FNj)

ε2V ar0FN

=

(2 logN)2

V ar0FN

1

ε2

where the last inequality is a direct application of Markov’s inequality. Since

V ar0FN = O(N), it follows that limN→∞
(2 logN)2

V ar0FN

1
ε2

= 0 and thus condition
(B.1) is satisfied.

Appendix C. Monte-Carlo approximation of the null distribution

The R code for computing the Monte-Carlo p-value in Table 1.

c=3; n=14; m=n-c; B=1000000;

bmat = matrix(NA,nrow=B,ncol=n-c)

for (i in1:(n-c)){

Ri = rwilcox(B,1,(n-i-1))+1

bmat[,i]=-2*log(Ri/(n-i))

}

T=apply(bmat,1,sum)

c(sum(T>=31.710259)/B,sum(T>=29.038958)/B,sum(T>=25.777678)/B,...

sum(T>=25.147138)/B,sum(T>=23.886213)/B,sum(T>=23.330950)/B,...

sum(T>=22.892610)/B,sum(T>=22.499919)/B)
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