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ABSTRACT
Motivation: We address the problem of identifying differentially
expressed genes between two conditions in the scenario where the
data arise from an observational study, in which confounding factors
are likely to be present.
Results: We suggest to use matching methods to balance two
groups of observed cases on measured covariates, and to identify
differentially expressed genes using a test suited to matched data.
We illustrate this approach on 2 microarray studies: the first study
consists of data from patients with two cancer subtypes, and the
second study consists of data from AMKL patients with and without
Down syndrome.
Availability: R code (www.r-project.org) for implementing our
approach is included as supplementary material.
Contact: ruheller@wharton.upenn.edu

1 INTRODUCTION
The goal in microarray analysis is often to identify the genes that are
differentially expressed between two conditions. For this purpose,
randomized experiments are very useful. The random assignment
of cases to conditions practically ensures (in a large enough sample
of cases) that the two groups of cases differ only in the condition
assignment. However, in microarray studies, random assignment
is not always feasible. For example, the “conditions” may be
cancer and non-cancer tissues, or different types of cancer, so one
cannot control the assignment of cases to conditions. Potter (2003)
emphasizes that such a study is not an experiment because exposures
are not being assigned randomly.

In an observational study, the groups of cases from two conditions
may differ in aspects other than those defining the two conditions.
These differences may be mistaken for differential expression
between the two conditions. In Section 3 we give an example
where two subtypes of cancers are investigated for differential
expression but there is an imbalance in the distribution of sex
across the groups of cases (where a case is a patient). If a gene is
differentially expressed between the sexes, then without adjusting
for the imbalance in sex, it is not possible to attribute to the cancer
subtype an observed differential expression in that gene between
the cancer subtypes, even if the comparison is highly statistically
significant. However, the observed difference can be attributed to
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cancer subtype if the groups are first balanced on confounding
factors such as sex. As Potter (2003) remarks, in order to attribute
differences in gene expression to differences in disease state, it is
necessary to control for potential confounders such as age, sex,
genetic profile, histology and treatment of the person.

The group differences, other than those defining the groups, that
might affect the gene expression levels can be of two kinds: those
that have been accurately measured, calledmeasured confounders,
and those that have not been measured but are suspected to
exist, calledunmeasured confounders. Accounting for measured
confounders through adjustments and addressing uncertainty about
unmeasured confounders through a sensitivity analysis are central
statistical topics in the analysis of observational studies (see
Rosenbaum (2002)).

There are two main strategies for adjusting for measured
confounders: 1) including them in a regression model (Smyth
(2005), Hummel et al. (2008)), and 2) matching methods. The
second strategy has the following advantages over the first strategy
in an observational microarray study. First, it is easy to examine
the balance between the matched cases to understand the limits of
the analysis. In a regression framework, this balance is obscured.
Rubin (1979) demonstrates in simulation studies that if there is not
sufficient overlap in the covariates between the two groups, then
any comparison of the groups has to be based on an extrapolation
and is not generally reliable. Second, once the matching is done,
it is straightforward to test all genes for differential expression in a
nonparametric way. In the regression framework, on the other hand,
a different model may be appropriate for each gene. Examining
the fit of tens of thousands of regression models is impractical.
Thus, typically regression analysis assumes that a linear model
holds for each gene. This strong linearity assumption is not needed
in matching methods. Third, matching methods prevent explorations
of the data in such a way that the inference is ultimately invalidated
(Rubin (2007)). Adjustment by matching encourages the analyst
to focus on balancing the two groups rather than modeling the
relationship between the groups and the expression levels. In the
regression modeling framework, the temptation exists to explore
different models for each gene and then report the ones that yield the
most “interesting discoveries”. In large data sets with thousands of
genes, the analyst is bound to find models that discover interesting
genes even if there are no truly interesting genes. A strategy that
performs a large number of analyses and reports only the most
promising analysis would invalidate the resulting discoveries in the
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sense that they may not be reproducible. Matching methods donot
have this problem.

Our goal in this paper is to focus on measured confounders and
introduce applications of matching methods to microarray analysis.
These methods should be used when random assignment is not
feasible or ethical, and potential confounders have been measured.
In Section 2 we introduce the methods. In Sections 3 and 4 we apply
our approach to examples. In Section 5 we give final remarks.

2 ANALYSIS METHOD
The framework is as follows. We have two groups of cases. For each
case, we have the expression levels on tens of thousands of genes
as well as measured covariates (typical covariates may be patient
characteristics such as sex and disease state). In Section 2.1 we
introduce a matching method for cases with respect to measured
covariates that is appropriate for a microarray study, taking into
account the fact that often some of the covariates have missing
values and the groups are of unequal size. After matching, the
groups can be compared and the expression data are used to test
every gene for differential expression. In Section 2.2 we describe
tests for differential expression on the matched sets.

2.1 Matching on Measured Covariates
In microarray studies there are often cases that have missing data
for some of their covariates. Based on the discussions in Rosenbaum
and Rubin (1984) and Hansen (2004) on how to handle missing data,
we suggest the following. If a case has missing information for a
covariate, then the average covariate value across cases with non-
missing information is assigned to this case. Categorical covariates
are first transformed into indicator functions. For example, the
covariate sex can be coded as 1 if the case is a male, 0 if the
case is a female, and the proportion of males out of the cases
with non-missing sex information if the case has missing sex
information. A dummy variable indicating missing cases foreach
covariate is created to be considered as an additional covariate when
matching. Thus, the matching will group together subjects that
are comparable in terms both of observed covariate values and of
“covariate missing-ness”.

The most common matching method matches pairs. However, this
method drastically reduces the sample size if one group is much
larger than the other. Therefore, we suggest using afull matching
method instead. This method was introduced in Rosenbaum (1991)
and is compared to common matching methods in Hansen (2004)
and Gu and Rosenbaum (1993). Full matching divides the casesinto
a collection of matched sets, each consisting of one case from one
group and a positive number of cases from the other group. In one
matched set the individual case matched to many cases may be from
the first group, but in another matched set the individual case may
come from the other group. To improve power, it may be helpfulto
put bounds on the number of cases allowed in a matched set (Hansen
(2004)).

The full matching method minimizes a measure of average
discrepancy within matched sets between the groups. We say that
a matching has improved comparability if the average discrepancy
within matched sets is smaller. For example for the covariate sex, if
a matched set consists of one male case from the first group matched
to n cases from the second group, the higher the proportion of males

in thesen cases the more comparable the groups are in terms of sex
within this matched set.

A typical discrepancy measure can be derived by the following
steps: (1) define a pairwise distance between cases, based onthe
measured covariates; (2) for each matched set, thematched set
discrepancy between the groups is the sum of the pairwise distances
between cases, within the matched set, that belong to different
groups; then (3) theaverage discrepancy is the average of the
matched set discrepancies.

For microarray data, an attractive distance function to usein step
(1) is the Mahalanobis distance on the ranks, which is calculated
as follows. First, replace each covariate value by its rank among all
cases. Letq1,q2 be the vectors of covariate ranks for two cases.
The distance between these cases is defined as the Mahalanobis

distanced(q1,q2) =

√

(q1 − q2)tΣ̂−1(q1 − q2), whereΣ̂ is an
estimated covariance matrix of the ranks, e.g. it could be estimated
by pooling within group covariance matrices. The attractiveness of
this distance function is that the ranks are robust to outliers, and
the Mahalanobis distance takes the correlation among the covariates
into account. Full matching using the above Mahalanobis distance
function will find an optimal matching in terms of theaverage
discrepancy.

Another goal of matching is to achievebalance, assessed here by
comparing thestandardized difference for each covariate before and
after matching, as suggested in Haviland et al. (2007). Specifically,
the standardized difference for a covariatex before matching is
the mean of that variable in group 1,x1, minus the mean of
that variable in group 2,x2, divided by

√

s2
1/2 + s2

2/2, where
s1 and s2 are the within group standard deviations of group 1
and group 2 respectively. Formally,dBefore(x) = x1−x2√

s2

1
/2+s2

2
/2

.

The standardized difference for a covariatex within I matched
sets is calculated by the following steps: (1) for each matched
set i compute the difference in the mean of the variable in
group 1 , x1i, minus the mean of the variable in group 2,x2i,
divided by

√

s2
1/2 + s2

2/2; and (2) compute the average values
from (1). Formally,dAfter(x) = 1

I

∑I
i=1(

x1i−x2i√
s2

1
/2+s2

2
/2

). A more

comprehensive discussion of balance can be found in Gu and
Rosenbaum (1993) and Rubin and Thomas (2000).

A good summary of the overall balance is the standardized
difference on the log odds propensity scores (Rubin (2007)). The
propensity score of a case is defined as the conditional probability
that the case will be in the first group rather than in the second
group given a set of covariates used to predict to which groupthe
case belongs. Propensity scores are not known in practice, but can
be estimated from the data by logistic regression. The propensity
score for each covariate vectorx (corresponding to a case),e(x),
is estimated from the logistic regression model,ê(x). The log
odds estimated propensity score vector,log( 1−ê

ê
), has components

log( 1−ê(x)
ê(x)

), where x varies across the covariate vectors. The
standardized difference of the log odds propensity scores before
and after matching isdBefore(log( 1−ê

ê
)) and dAfter(log( 1−ê

ê
))

respectively.
To achieve both good distance and balance, Rosenbaum and

Rubin (1985) suggest to add apropensity score caliper. The
‘propensity score caliper with Mahalanobis metric matching’
method minimizes the sum of the matched set discrepancies with
a propensity score caliper that guarantees the estimated propensity
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scores are not too far apart within matched sets. In the example
in Section 3, if the difference in the log odds propensity scores
between two cases from different groups is larger than 0.2 standard
deviations of the estimated propensity scores, the distance between
the cases is set tod(q1,q2) + 100000.

Other methods can be used to achieve both good distance and
balance. Gu and Rosenbaum (1993) give some guidance based on
simulations. When the number of covariates is small (say 5),they
suggest matching using the Mahalanobis distance with a propensity
score caliper. When the number of covariates is large (say 20), they
suggest matching using a distance function based on propensity
scores.

How small should the summary of the overall balance be in order
for the matching to be considered successful? Imai et al. (2008)
suggest that it should be as small as possible subject to efficiency
constraints (such as the number of cases allowed in a matchedset).
Hansen (2004) suggests comparing full matching with efficiency
constraints to the full matching without constraints, and choosing
the matching with efficiency constraints that results in close overall
balance to that of full matching without constraints. Having a
standardized absolute difference of the log odds propensity scores
below 0.05 is reassuring, but there is no universal threshold in the
literature above which the matching is considered unacceptable.

2.2 The test
Once the cases are matched, each gene is tested for differential
expression. In this section we describe how to test each gene.

The expression data for a gene in a group are not necessarily
normal and may be contaminated by outliers, so nonparametric tests
that operate on the ranks have been suggested for testing whether a
gene is differentially expressed between groups of cases (see e.g.
Troyanskaya et al. (2002) and Neuhauser and Senske (2004)).For
unmatched data, a popular test is theWilcoxon rank sum test (also
called the Mann-Whitney test, Ewens and Grant (2005) page 142).
For paired data, theWilcoxon signed rank test can be used (Ewens
and Grant (2005) page 143).

Since the full matching yields matched sets with more than
two cases we need a suitable test. Hodges and Lehmann (1962)
introducedthe aligned rank test. We explain this test by an example.
Suppose the expression levels of two groups of sizes 3 and 7 are
to be compared, where each case from the first group is matched
to either 3 or 2 cases from the second group. Table 1 shows the
expression levels of the cases from each group within the matched
sets. The first step in the computation of the test statistic is to
bring the cases in each matched set into alignment with one another
by subtracting from each observation the mean observation in the
matched set to which it belongs. In Table 1, the residual dataafter
alignment is shown in the last two columns. Once the observations
are aligned they are ordered and ranked without regard to their set
assignment, see Table 2.

The test statistic is the sum of the ranks of the observationsthat
are labeled to come from the first group: 1 + 3 + 5 = 9.

Under the null hypothesis, the assignment of group labels is
done at random within each matched set. The null distribution
can be calculated by computing the test statistic for all possible
permutations within matched sets, or a Monte Carlo sample thereof.
Specifics follow. Letwi be the sum of the ranks after alignment
of matched seti for group 1. Then the test statistic isw = w1 +

Table 1. An example of expression data for a gene for testing the differential expression
between two groups that are matched into 3 sets.

Matched set ID Group 1 Group 2 Mean Resid Group 1 Resid Group 2

1 5.3 5.7, 5.9, 6.3 5.8 -0.5 -0.1, 0.1, 0.5
2 6.5 7.6, 9.6 7.9 -1.4 -0.3, 1.7
3 3.4 3.1, 4.8 3.7 -0.2 -0.6, 0.8

Table 2. The sorted residuals and their ranks.

Resid -1.4 -0.6 -0.5 -0.3 -0.2 -0.1 0.1 0.5 0.8 1.7
Rank 1 2 3 4 5 6 7 8 9 10

w2 + . . . + wI whereI is the number of matched sets. Letmi

be the number of cases in group 1 in seti and Ni be the total
number of cases ini. Then there are

(

Ni

mi

)

possible permutations for

computingWi and
∏I

i=1

(

Ni

mi

)

possible permutations for computing
W . Thep-value for a one sided test is the proportion of times that
the permuted test statistic is larger (or smaller) than the observed
test statistic. Note that forI reasonably large,W is approximately
normally distributed, since it is the sum ofI independent random
variables, and thus thep-value computation can be based on
the normal approximation as follows. Denote theNi ranks in
matched seti by rij . The expectation and variance ofWi are
E(Wi) = mi

Ni

∑Ni

j=1 rij andvar(Wi) = mi(Ni−mi)
Ni−1

[ 1
Ni

∑

r2
ij −

( 1
Ni

∑

rij)
2], so the (one sided)p-value is approximated by1 −

Φ[(w −
∑I

i=1 E(Wi))/
√

∑I
i=1 var(Wi)].

We conclude with three remarks about this test. First, note that
the alignment is necessary to remove the effect of the matched sets:
if there is a large set effect, then without alignment, one set can
have systematically larger ranks than another set and therewill be no
power to detect differences between the group labels. Second, note
that the method of alignment and the choice of test statisticmay
be adjusted to the problem (see Podgor (1994) for a comparison
of various tests). Third, note that for paired samples, the aligned
rank test is not identical to the Wilcoxon signed rank test but they
are equivalent for large enough samples (see Hodges and Lehmann
(1962) for details).

Given a microarray study, the unadjustedp-values from the
aligned rank test for each gene need then to be adjusted by applying
a multiple comparisons procedure. For example, theBH procedure
in Benjamini and Hochberg (1995) can be applied to control the
FDR at levelq.

We implemented in R the aligned rank test. The code is available
as supplementary material. The R code to run the example in
the next section 3 (including the multiple comparisons procedure)
is also available as supplementary material. The matching was
performed using the functionfullmatch of the R-package
optmatch (Hansen et al. (2008)).
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Table 3. Distribution of measured covariates in cases from B-cell and T-cell ALL. For indicator
variables the entries are the proportion of 1s.

Covariate Description B-cell type T-cell type

age age (years) mean 33, sd 15 mean 30, sd 11
sex 1=male, 0 = female 59/93 24/32

mdr 1= multi-drug resistant, 0 otherwise 18/93 6/32

stage 1=stage of cell differentiation< 3, 0 otherwise 55/90 16/28

kinet 1 = chromosome number> 46, 0 otherwise 20/90 7/31

3 A COMPARISON OF TWO CANCER SUBTYPES
We analyzed the data set by Chiaretti et al. (2004), available in the
Bioconductor ALL package atwww.bioconductor.org. The
data set was collected to identify genes that distinguish subgroups
of leukemia patients. 128 patients are split into 95 with B-cell
and 33 with T-cell type acute lymphoblastic leukemia (ALL).The
data consist of 12625 expression profiles from the HGU95aV2
Affymetrix chip for each patient.

Information was available for the following additional covariates:
age, sex, multi drug resistance (mdr), the stage of cell differentiation
(stage), and an indicator of whether the chromosome number was
larger than 46 (kinet). Table 3 shows the distribution of these
variables in cases from the T-cell type and B-cell type.

As discussed in Section 2.1, we assigned the mean value of a
variable in the cases where this variable is missing, and we included
a dummy variable indicating missing cases of each variable,so the
matching balances both the observed data and the pattern of missing
data.

We dealt with missing values as suggested in Section 2.1.
Propensity scores were estimated by logistic regression. We used
full matching based on the Mahalanobis distance of ranks between
each pair using a propensity score caliper of 0.2.

The standardized absolute differences of the log odds propensity
scores before and after matching were 0.26 and 0.45 respectively,
indicating that the matching failed to balance the propensity
scores. The distribution of log odds propensity scores in figure
1 shows that two cases in the B-cell group are not comparable
to any cases in the T-cell group. These cases have missing age
information. Consequently we removed these two cases and limited
our inferences to cases that have age information. Repeating the
matching, the standardized absolute difference of the log odds
propensity scores before and after matching were then 0.37 and
0.04 respectively, indicating that the matched sets are balanced on
the propensity scores. Table 4 compares the standardized absolute
difference between the covariates on the subset of 126 casesbefore
and after matching.

Examination of the number of cases per matched set revealed that
two of the sets have at least 8 B-cell cases matched to one T-cell
case, whereas others have only one B-cell case matched to oneT-cell
case. To increase power without introducing imbalance, we repeated
the matching on the 126 cases with an additional constraint,that the
ratio of matches between the two groups in any matched set be at
most 1 to 6. The standardized difference of the log odds propensity
score was only slightly higher, 0.05. Had we chosen 5 insteadof 6
as a bound, the standardized difference of the log odds propensity
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Fig. 1. Boxplots of the estimated log odds propensity score for typeT and
type B Leukemia patients.

Table 4. The standardized absolute difference between measured covariates before and
after matching the 126 cases, as well as after matching the 126 cases with a constraint
on the ratio between the two groups in the matched sets.

Covariate Before Matching After Matching After constraintmatching

age 0.18 0.05 0.02
sex 0.19 0.06 0.07
mdr 0.02 0.09 0.00
stage 0.06 0.03 0.03
kinet 0.00 0.07 0.08

log odds 0.37 0.04 0.05
propensity score

scores would have been higher, 0.12. The last column in Table4
shows the standardized absolute difference between the variables
on the subset of 126 cases after matching with this constraint.

Once the measured covariates were successfully balanced and the
ratio of cases between the groups in matched sets was restricted,
we turned to the analysis of the expression data. To calculate an
unadjustedp-value for each gene we used the aligned rank test. To
control the FDR at the 0.01 level on the 12625 genes tested, the BH
procedure was applied at the 0.01 level on the unadjustedp-values.
1684 genes were discovered.

For comparison, we performed a typical analysis that did not
control for measured confounders by calculating thep-values from
the Wilcoxon rank sum test without matching. Applying the BH
procedure at the 0.01 level, 1931 genes were discovered. Outof
these discovered genes, 1600 genes were also discovered using our
procedure.
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Although we discovered fewer genes than the unmatched
analysis, we have more confidence that the differential expression
of the discovered genes can indeed be attributed to the difference
between T-cell and B-cell ALL.

To reinforce this point, we further did the following comparison.
An unmatched analysis for the effect of sex on differential
expression using the Wilcoxon rank sump-values and a BH
procedure at the 0.01 level discovered 12 genes. Two of the gene
discoveries had also been discovered in the matched set analysis.
Although there was an imbalance of sex between the groups (75%
males in T-cell ALL and 63% males in B-cell ALL), since sex was
matched upon in the latter analysis, we can exclude sex as thesole
explanation of the differential expression for these two genes.

4 A COMPARISON OF AMKL PATIENTS WITH
AND WITHOUT DOWN SYNDROME

We analyzed the data set by Bourquina et al. (103), availablein
ftp://ftp.ncbi.nih.gov/pub/geo/DATA/SeriesMatrix/
GSE4119/. The goal was to identify genes that distinguish
between acute megakaryoblastic leukemia (AMKL) patients with
and without Down syndrome (DS). There were 21 DS and 38 non-
DS AMKL samples. Among the available covariates was the age
of the patients. The age distribution was extremely imbalanced
between the two groups: in the DS group all patients were toddlers
between 8 and 36 months old, with a median of 18 months; in
the non-DS group 24 patients were toddlers between 0.03 and 38
months old, with a median of 14 months, but the remaining 14
patients range from 4.25 years to 76 years in age with a medianof
42.5 years. The expression data consist of 22283 expressionprofiles
from the U133A Affymetrix chip for each subject.

Our goal in this example is to compare a matching based analysis
to a regression based analysis. For simplicity, we analyze the data
adjusting just for one covariate, age, but in practice the additional
measured covariates need to be adjusted for.
Matching based analysis We used pair matching on age. Every
DS patient was matched to a non-DS patient that is of similar age.
Since we had 21 DS patients and 38 non-DS patients, pair matching
resulted in 21 pairs. The distribution of log odds propensity scores
in figure 2 shows that two non-DS cases were not comparable to
any cases in DS group. These cases have ages 51 and 72 months.
Consequently we removed these cases and limited our inferences to
toddlers aged 7 months to 38 months. We had 21 DS and 19 non-
DS toddlers, so pair matching resulted in 19 pairs. On this subset
of toddlers, the standardized absolute difference for age before and
after matching was 0.09 and 0.03 respectively, indicating that the
matched sets are balanced on age. For each of the 22283 genes,
the differential expression between the 19 matched pairs was tested
using the Wilcoxon signed rank test, and adjusted for multiplicity
using the BH procedure for FDR control at level 0.05. 1628 genes
were discovered.
Regression based analysis We used the packagelimma (Smyth
(2005)), available in Bioconductor, for the regression based
analysis. A linear regression analysis of the log expression levels on
the group and on age, on the 21 DS and 38 non-DS patients, yielded
3469 gene discoveries (using the BH procedure for FDR control at
level 0.05), 1494 of them discovered also in the matching based
analysis. However, these results cannot be trusted due to a large
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Fig. 2. Boxplots of the estimated log odds propensity score for DS and non-
DS AMKL patients.

extrapolation of the linear model inferences, since the DS group
consists solely of toddlers, yet only 60% of the non-DS groupare
toddlers and in the remaining 40% most patients are grown-ups.

The matching based analysis guided us to the subset of patients
with similar age information: toddlers aged 7 months to 38 months.
Restricting the regression to this subset of 21 DS and 19 non-
DS patients, 1715 genes were discovered (using the BH procedure
for FDR control at level 0.05). 1208 of these genes were also
discovered in the matching based analysis. The regression analysis
assumes that the relationship of age with the log expressionvalues
is linear. Moreover, it assumes there are no outliers. Figure 3
shows the residual plot from the regression, as well as the scatter
plot of log expression on age, for 2 genes that were discovered
by the regression based analysis but not by the matching based
analysis. The linearity assumption is questionable in boththese
genes, and there are outliers in the data. Similar plots on many other
genes, not illustrated, show deviations from linearity andoutliers.
The matching based analysis, on the other hand, does not assume
linearity, is robust to outliers, and indicates how balanced the data
are so there is no danger of extrapolation.

5 DISCUSSION
In a microarray experiment a procedure that controls for an error
measure such as the FDR is typically applied to identify differential
expression between two groups. Thus some of the discoveries
may be false, but there is a limit on the proportion of false
discoveries among all discoveries. In an observational microarray
study, discoveries may in addition be false due to bias. In order
to remove bias, the groups need to be balanced for measured
confounders. We introduced matching methods to balance the
groups before testing for differential expression. We illustrated by
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Fig. 3. For two genes that were discovered by the regression based analysis
but not by the matching based analysis: the residual plot from the regression
of log expression on age and group (top), and a scatter plot oflog expression
by age (bottom), including the locally-weighted polynomial regression
curve.

examples that many discoveries are still made after balancing the
covariates. Moreover, the confidence that these discoveries are true
discoveries is far greater than in an analysis that does not first
attempt to balance the groups. This added confidence is due to
the fact that after matching, the groups are comparable in terms
of measured covariates and therefore, if we find a differential
expression between the groups, it cannot be due to these covariates.

In order to remove bias it may be necessary to restrict the analysis
to a subpopulation. In Section 4, the DS group was comprised solely
of toddlers but the non-DS group included older children andadults
as well, therefore to achieve balance on age between the groups it
was necessary to restrict the analysis that compares the DS group to
the non-DS group to toddlers. Thus our inference is valid only for
toddlers, and the genes that were found to be associated withDS in
toddlers may or may not be associated with DS in other age groups.

In this paper we focused on measured confounders. Methods for
addressing the possible effects of unmeasured confounders(see e.g.
Rosenbaum (2002)) may be considered for observational microarray
studies in future work.
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