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ABSTRACT
Motivation: We address the problem of identifying differentially
expressed genes between two conditions in the scenario where the
data arise from an observational study, in which confounding factors
are likely to be present.
Results: We suggest to use matching methods to balance two
groups of observed cases on measured covariates, and to identify
differentially expressed genes using a test suited to matched data.
We illustrate this approach on 2 microarray studies: the first study
consists of data from patients with two cancer subtypes, and the
second study consists of data from AMKL patients with and without
Down syndrome.
Availability: R code (www.r-project.org) for implementing our
approach is included as supplementary material.
Contact: ruheller@wharton.upenn.edu

1 INTRODUCTION

The goal in microarray analysis is often to identify the genes that ard!

cancer subtype if the groups are first balanced on confounding
factors such as sex. As Potter (2003) remarks, in order to attribute
differences in gene expression to differences in disease state, it is
necessary to control for potential confounders such as age, sex,
genetic profile, histology and treatment of the person.

The group differences, other than those defining the groups, that
might affect the gene expression levels can be of two kinds: those
that have been accurately measured, cathedsured confounders,
and those that have not been measured but are suspected to
exist, calledunmeasured confounders. Accounting for measured
confounders through adjustments and addressing uncertainty about
unmeasured confounders through a sensitivity analysis are central
statistical topics in the analysis of observational studies (see
Rosenbaum (2002)).

There are two main strategies for adjusting for measured
confounders: 1) including them in a regression model (Smyth
(2005), Hummel et al. (2008)), and 2) matching methods. The
second strategy has the following advantages over the first strategy
an observational microarray study. First, it is easy to examine
the balance between the matched cases to understand the limits of

differentially expressed between two conditions. For this purpose

randomized experiments are very useful. The random assignmeme z_;malysis. ina regressior_1 frgmewqu, this_balance_ IS obspured.
of cases to conditions practically ensures (in a large enough samp@up'n (21979) dempnstrates |n_S|muIat|on studies that if there is not
of cases) that the two groups of cases differ only in the conditioreufficient overlap in the covariates between the two groups, then
assignment. However, in microarray studies, random assignmefty comparison of the groups has to be based on an gxtrqpolatlon
is not always feasible. For example, the “conditions” may bef"‘r_‘d is r!ot generally reliable. Second, once thg matchlng_ls QOne,
cancer and non-cancer tissues, or different types of cancer, so offds stralghtfqrward to test all genes for differential expression in a
cannot control the assignment of cases to conditions. Potter (Zooﬂon_;f)farametrlc W?y' kel regression frafmeworl;], on the other ha_md,
emphasizes that such a study is not an experiment because exposu?eg' _erent model may be appropriate or each gene. Exam|_n|ng
are not being assigned randomly. the fit of tens of thousands of regression models is impractical.

In an observational study, the groups of cases from two condition;—hus’ typically regression analysis assumes that a linear model

may differ in aspects other than those defining the two conditions_hOlds for each gene. This strong linearity assumption is not needed

These differences may be mistaken for differential expressioﬁn matching methods. Third, matching methods prevent explorations
between the two conditions. In Section 3 we give an exampIeOf the data in such a way that the inference is ultimately invalidated
where two subtypes of cancers are investigated for differentiafRUPIn (2007)). Adjustment by matching encourages the analyst

expression but there is an imbalance in the distribution of sex° chus on balancing the two groups rather thgn modeling the
across the groups of cases (where a case is a patient). If a generﬁs!at'on_smp be‘W?e“ the groups and the expression levels. In the
differentially expressed between the sexes, then without adjustingF3r¢sston modeling framework, the temptation exists to e_xplore
for the imbalance in sex, it is not possible to attribute to the cance |frerent modgls for_ each gene andthen report the ones that yield the
subtype an observed differential expression in that gene betwedf0St "interesting d|§cover|es". m large data sets \_N'th tho_usands_of
the cancer subtypes, even if the comparison is highly statisticall;genes' the analyst is bound to find models that discover interesting

significant. However, the observed difference can be attributed tgenes even if there are no truly interesting genes. A strategy that
performs a large number of analyses and reports only the most

promising analysis would invalidate the resulting discoveries in the

*to whom correspondence should be addressed

© The Author (2008). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions @ oxfordjournals.org 1



Heller et al

Edited by Foxit Reader
Copyright(C) by Foxit Software Company,2005-2008

For Evaluation Only.
sense that they may not be reproducible. Matching method®tio in thesen cases the more comparable the groups are in terms of sex

have this problem. within this matched set.

Our goal in this paper is to focus on measured confounders and A typical discrepancy measure can be derived by the follgwin
introduce applications of matching methods to microarraglysis.  steps: (1) define a pairwise distance between cases, basi on
These methods should be used when random assignment is noteasured covariates; (2) for each matched set,ntiehed set
feasible or ethical, and potential confounders have beeasuned.  discrepancy between the groups is the sum of the pairwise distances
In Section 2 we introduce the methods. In Sections 3and 4 plg ap between cases, within the matched set, that belong to eliffer
our approach to examples. In Section 5 we give final remarks. groups; then (3) theaverage discrepancy is the average of the

matched set discrepancies.

For microarray data, an attractive distance function toinstep
2 ANALYSIS METHOD (1) is the Mahalanobis distance on the ranks, which is caledl
as follows. First, replace each covariate value by its ran&ray all
cases. Lefy1, q2 be the vectors of covariate ranks for two cases.
The distance between these cases is defined as the Mahalanobi
distanced(qi, q2) = \/(ql —q2)'S"1(q1 — qz2), whereX is an
estimated covariance matrix of the ranks, e.g. it could tienased
by pooling within group covariance matrices. The attragi®ss of
account the fact that often some of the covariates have mgissi this distance function is that the ranks are robust to asfliand
values and the groups are of unequal size. After matching, ththe®Mahalanobis distance takes the correlation among triates
groups can be compared and the expression data are used to &40 account. Full matching using the above Mahalanobigadce
every gene for differential expression. In Section 2.2 wecdbe ~ function will find an optimal matching in terms of theverage

tests for differential expression on the matched sets. discrepancy. o _
Another goal of matching is to achiebalance, assessed here by

21 Matching on Measured Covariates comparing thestandardized difference for each covariate before and
' after matching, as suggested in Haviland et al. (2007). iSpeity,

In microarray studies there are often cases that have misita  the standardized difference for a covariatebefore matching is

for some of their covariates. Based on the discussions ieffi@IM  the mean of that variable in group I;, minus the mean of

and Rubin (1984) and Hansen (2004) on how to handle missiag da that variable in group 27, divided by V/s2/2 + 3/2, where

we suggest the following. If a case has missing informatimnaf 5, and s, are the within group standard deviations of group 1
covariate, then the average covariate value across ca#fe®ovi-  and group 2 respectively. Formallyiperore (z) = ——ei=t2

missing information is assigned to this case. Categorwaliates The standardized difference for a covariatewithin }%{‘;;?:?fed
are first transformed into indicator functions. For exampiee

covariate sex can be coded as 1 if the case is a male, 0 if th%ets is calculated by the following steps: (1) for each medch

case is a female, and the proportion of males out of the case%et ! comEute the difference in the mean Of. the variable in
roup 1 ,71;, minus the mean of the variable in group 2,

with non-missing sex information if the case has missing sexy. . .
information. A dummy variable indicating missing cases dach divided by \/s1/2 + 53/2; and (12) clomputigltih;‘average values
covariate is created to be considered as an additionaliatwavhen oM (1) Formally,daseer(z) = 7 Zi:l(ﬁ)' A more
matching. Thus, the matching will group together subjebit t comprehensive discussion of balance can be found in Gu and
are comparable in terms both of observed covariate valueoBn Rosenbaum (1993) and Rubin and Thomas (2000).
“covariate missing-ness”. A good summary of the overall balance is the standardized
The most common matching method matches pairs. Howevsr, thidifference on the log odds propensity scores (Rubin (200Mg
method drastically reduces the sample size if one group ishmu propensity score of a case is defined as the conditional probability
larger than the other. Therefore, we suggest usifiglanatching that the case will be in the first group rather than in the sécon
method instead. This method was introduced in Rosenbau@1)19 group given a set of covariates used to predict to which gibep
and is compared to common matching methods in Hansen (2004)ase belongs. Propensity scores are not known in practicean
and Gu and Rosenbaum (1993). Full matching divides the dtatges be estimated from the data by logistic regression. The msipe
a collection of matched sets, each consisting of one casedree  score for each covariate vectar(corresponding to a case)(x),
group and a positive number of cases from the other groupnén o is estimated from the logistic regression modé{x). The log
matched set the individual case matched to many cases magrbe f odds estimated propensity score veclog,( 1? ), has components
the first group, but in another matched set the individuat caay log(lgé;‘)), where = varies across the covariate vectors. The
come from the other group. To improve power, it may be helful  standardized difference of the log odds propensity scoedsré
put bounds on the number of cases allowed in a matched ses¢Han and after matching iSlgesore (1Og(1%é)) and dAfter(log(%é))
(2004)). respectively.
The full matching method minimizes a measure of average To achieve both good distance and balance, Rosenbaum and
discrepancy within matched sets between the groups. Wehsay t Rubin (1985) suggest to add jgropensity score caliper. The
a matching has improved comparability if the average digamey  ‘propensity score caliper with Mahalanobis metric matghin
within matched sets is smaller. For example for the covasak, if  method minimizes the sum of the matched set discrepancits wi

amatched set consists of one male case from the first groughetht  a propensity score caliper that guarantees the estimatgemsity
ton cases from the second group, the higher the proportion afsnal

The framework is as follows. We have two groups of cases. &cin e
case, we have the expression levels on tens of thousandse$ ge
as well as measured covariates (typical covariates may tienpa
characteristics such as sex and disease state). In Secfione2
introduce a matching method for cases with respect to medsur
covariates that is appropriate for a microarray study, ngknto
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scores are not too far apart within matched sets. In the eléﬁbbal- An example of expression data for a gene for testing therdifgal expression

in Section 3, if the difference in the log odds propensityreg§tween two groups that are matched into 3 sets.
between two cases from different groups is larger than @uadstrd
deV|at|ons_of the estimated propensity scores, the disthatween ;i hed set ID Groupl Group2 Mean ResidGroupl Resid Group 2
the cases is set t(q1, g2) + 100000.

Other methods can be used to achieve both good distance and

- . 5.3 57,5.9,63 5.8 -0.5 -0.1,0.1,0.5
balance. Gu and Rosenbaum (1993) give some guidance based on, 6.5 7696 79 14 0317
simulations. When the number of covariates is small (saygy 3 34 3.1: 48 37 0.2 -0.6: 08

suggest matching using the Mahalanobis distance with sepsity
score caliper. When the number of covariates is large (spyti28y
suggest matching using a distance function based on pribpens
scores.

How small should the summary of the overall balance be inrorde
for the matching to be considered successful? Imai et aD§R0  Table2. The sorted residuals and their ranks.
suggest that it should be as small as possible subject tieeffic
constraints (such as the number of cases allowed in a maseted Resid -14 -06 -05 -03 -02 -01 01 05 08 17
Hansen (2004) suggests comparing full matching with efiigje Rank 1 2 3 4 5 6 7 8 9 10
constraints to the full matching without constraints, ahdasing
the matching with efficiency constraints that results irseloverall
balance to that of full matching without constraints. Hayia
standardized absolute difference of the log odds propessiires
below 0.05 is reassuring, but there is no universal threshothe
literature above which the matching is considered unaabtépt wz + ... + wr where is the number of matched sets. Let;
be the number of cases in group 1 in seind N; be the total
number of cases inh Then there aréjxi) possible permutations for

2.2 Thetes ) . computingW; andl‘[f:1 (le) possible permutations for computing
Once the cases are matched, each gene is tested for diiérentyy; The-value for a one sided test is the proportion of times that
expression. In this section we describe how to testeach gene  he permuted test statistic is larger (or smaller) than theeoved

The expression data for a gene in a group are not necessaripgst statistic. Note that faF reasonably largel}’ is approximately
normal and may be contaminated by outliers, so nonparasmesis  normally distributed, since it is the sum &findependent random
that operate on the ranks have been suggested for testirthevize variables, and thus the-value computation can be based on
gene is differentially expressed between groups of Cas#5€9.  the normal approximation as follows. Denote the ranks in
Troyanshkaéle(tj etal. (2002|) and I\l_emuser andkSenske (%G’}M))- matched set by ri;. The expectation and variance of; are
unmatched data, a popular test is thiécoxon rank sum test (also N ma NN Ny — miWNi—mg) 1 2 _
called the Mann-Whri)tnF;y test, Ewens and Grant (2005) pagj 14 EEWZ) RS j:ﬁ " and?;w(Wz)l_ it .[Ni %;”

For paired data, thelcoxon signed rank test can be used (Ewens (77 27i3)"], so the (one sided)-value is approximated by —
and Grant (2005) page 143). Ol(w— L, E(Wy) /S var(W:)].

Since the full matching yields matched sets with more than We conclude with three remarks about this test. First, node t
two cases we need a suitable test. Hodges and Lehmann (196&)e alignment is necessary to remove the effect of the mdtebies:
introducedhe aligned rank test. We explain this test by an example. if there is a large set effect, then without alignment, orecsa
Suppose the expression levels of two groups of sizes 3 ané 7 ahave systematically larger ranks than another set andwikiz no
to be compared, where each case from the first group is matchgubwer to detect differences between the group labels. Secarte
to either 3 or 2 cases from the second group. Table 1 shows thihat the method of alignment and the choice of test statintig
expression levels of the cases from each group within thehmdt be adjusted to the problem (see Podgor (1994) for a compariso
sets. The first step in the computation of the test statistitoi  of various tests). Third, note that for paired samples, figned
bring the cases in each matched set into alignment with oohen  rank test is not identical to the Wilcoxon signed rank testthay
by subtracting from each observation the mean observaticthei  are equivalent for large enough samples (see Hodges anddmehm
matched set to which it belongs. In Table 1, the residual dti&a (1962) for details).

alignment is shown in the last two columns. Once the obsenst Given a microarray study, the unadjustpevalues from the
are aligned they are ordered and ranked without regard togbe  aligned rank test for each gene need then to be adjusted byirapp
assignment, see Table 2. a multiple comparisons procedure. For example,BHeprocedure

The test statistic is the sum of the ranks of the observatioats in Benjamini and Hochberg (1995) can be applied to contrel th
are labeled to come from the first group: 1 + 3+ 5=09. FDR at levelg.

Under the null hypothesis, the assignment of group labels is We implemented in R the aligned rank test. The code is availab
done at random within each matched set. The null distributio as supplementary material. The R code to run the example in
can be calculated by computing the test statistic for allsiipbs  the next section 3 (including the multiple comparisons pdage)
permutations within matched sets, or a Monte Carlo sampletf. is also available as supplementary material. The matching w
Specifics follow. Letw; be the sum of the ranks after alignment performed using the functiori ul | mat ch of the R-package
of matched set for group 1. Then the test statisticis = w1 + opt mat ch (Hansen et al. (2008)).
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Table 3. Distribution of measured covariates in cases from B-cell @wtell ALL. For indicator
variables the entries are the proportion of 1s.

15

Covariate Description B-cell type T-cell type
age age (years) mean 33,sd 15 mean 30, sd 11
sex 1=male, 0 = female 59/93 24/32
mdr 1= multi-drug resistant, 0 otherwise 18/93 6/32 ¢ 24
stage 1=stage of cell differentiation 3, 0 otherwise 55/90 16/28 ‘z
kinet 1 = chromosome number 46, 0 otherwise 20/90 7/31 2
a

3 A COMPARISON OF TWO CANCER SUBTYPES

We analyzed the data set by Chiaretti et al. (2004), availabthe ‘ ‘ , ‘ ‘
Bioconductor ALL package atmww. bi oconduct or. or g. The od T 1 1

data set was collected to identify genes that distinguistyaups : ‘

of leukemia patients. 128 patients are split into 95 with efi-c type T type B

and 33 with T-cell type acute lymphoblastic leukemia (ALLhe
data consist of 12625 expression profiles from the HGU95aV2
Affymetrix chip for each patient.
Information was available for the following additional esiates: ~ Fig. 1. Boxplots of the estimated log odds propensity score for fyzad
age, sex, multi drug resistance (mdr), the stage of cebudifftiation ~ type B Leukemia patients.
(stage), and an indicator of whether the chromosome numbsr w

larger than 46 (kinet). Table 3 shows the distribution ofsthe
variables in cases from the T-cell type and B-cell type. Table4. The standardized absolute difference between measuradates before and

As discussed in Section 2.1, we assigned the mean valu@fa" glatching the 126 cases, as well as after matching thedses with a constraint
variable in the cases where this variable is missing, andaladed”” the ratio between the two groups in the matched sets.
a dummy variable indicating missing cases of each variaodhe

matching balances both the observed data and the patterisgihqy  Covariate Before Matching ~ After Matching  After constrainatching
data.

We dealt with missing values as suggested in Section 2.1. pge 0.18 0.05 0.02
Propensity scores were estimated by logistic regressian.uyéd sex 0.19 0.06 0.07
full matching based on the Mahalanobis distance of ranksd®t mdr 0.02 0.09 0.00
each pair using a propensity score caliper of 0.2. stage 0.06 0.03 0.03

The standardized absolute differences of the log odds psitye kinet 0.00 0.07 0.08
scores before and after matching were 0.26 and 0.45 regplgeti 09 odds 0.37 0.04 0.05

indicating that the matching failed to balance the propgn&foPensity score

scores. The distribution of log odds propensity scores iaorég

1 shows that two cases in the B-cell group are not comparable

to any cases in the T-cell group. These cases have missing age

information. Consequently we removed these two cases aniie i

our inferences to cases that have age information. Regetiten  scores would have been higher, 0.12. The last column in Table

matching, the standardized absolute difference of the lddso shows the standardized absolute difference between thebles

propensity scores before and after matching were then 87 a on the subset of 126 cases after matching with this constrain

0.04 respectively, indicating that the matched sets am@nloald on Once the measured covariates were successfully balandegtean

the propensity scores. Table 4 compares the standardizadugd  ratio of cases between the groups in matched sets was tedjric

difference between the covariates on the subset of 126 bafe®  we turned to the analysis of the expression data. To cakwaat

and after matching. unadjustedgp-value for each gene we used the aligned rank test. To
Examination of the number of cases per matched set reveaed t control the FDR at the 0.01 level on the 12625 genes testedlth

two of the sets have at least 8 B-cell cases matched to oné T-ceprocedure was applied at the 0.01 level on the unadjystedues.

case, whereas others have only one B-cell case matchedTeamile 1684 genes were discovered.

case. To increase power without introducing imbalance gpeated For comparison, we performed a typical analysis that did not

the matching on the 126 cases with an additional constithisitthe  control for measured confounders by calculating ghealues from

ratio of matches between the two groups in any matched set be ¢he Wilcoxon rank sum test without matching. Applying the BH

most 1 to 6. The standardized difference of the log odds misipe  procedure at the 0.01 level, 1931 genes were discoveredofOut

score was only slightly higher, 0.05. Had we chosen 5 insté&d  these discovered genes, 1600 genes were also discovengdousi

as a bound, the standardized difference of the log odds psitge  procedure.
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Although we discovered fewer genes than the unmatched

analysis, we have more confidence that the differentialesgion
of the discovered genes can indeed be attributed to theretifte
between T-cell and B-cell ALL.

To reinforce this point, we further did the following comjsam.
An unmatched analysis for the effect of sex on differential
expression using the Wilcoxon rank sumvalues and a BH
procedure at the 0.01 level discovered 12 genes. Two of the ge °
discoveries had also been discovered in the matched segtsanal
Although there was an imbalance of sex between the grougs (75
males in T-cell ALL and 63% males in B-cell ALL), since sex was
matched upon in the latter analysis, we can exclude sex aothe
explanation of the differential expression for these twoege

1.0

0.8

0.6

Logit Propensity Score

0.4

4 A COMPARISON OF AMKL PATIENTS WITH
AND WITHOUT DOWN SYNDROME

We analyzed the data set by Bourquina et al. (103), available non-DS DS

ftp://ftp.ncbi.nih.gov/pub/geo/ DATA/ Seri esMatri x/

GSE4119/. The goal was to identify genes that distinguish

between acute megakaryoblastic leukemia (AMKL) patienits w

and without Down syndrome (DS). There were 21 DS and 38 non¥ig. 2. Boxplots of the estimated log odds propensity score for Di5ram-

DS AMKL samples. Among the available covariates was the age®S AMKL patients.

of the patients. The age distribution was extremely imbzddn

between the two groups: in the DS group all patients werelé¢osid

between 8 and 36 months old, with a median of 18 months; inextrapolation of the linear model inferences, since the D&y

the non-DS group 24 patients were toddlers between 0.03 &nd 3consists solely of toddlers, yet only 60% of the non-DS graup

months old, with a median of 14 months, but the remaining 14toddlers and in the remaining 40% most patients are groven-up

patients range from 4.25 years to 76 years in age with a median ~ The matching based analysis guided us to the subset of fsatien

42.5 years. The expression data consist of 22283 exprgsififes  with similar age information: toddlers aged 7 months to 3éiths.

from the U133A Affymetrix chip for each subject. Restricting the regression to this subset of 21 DS and 19 non-
Our goal in this example is to compare a matching based dsalys DS patients, 1715 genes were discovered (using the BH puoeed

to a regression based analysis. For simplicity, we analygedaita  for FDR control at level 0.05). 1208 of these genes were also

adjusting just for one covariate, age, but in practice thditexhal discovered in the matching based analysis. The regresaaigsis

measured covariates need to be adjusted for. assumes that the relationship of age with the log expressilues

Matching based analysis We used pair matching on age. Every is linear. Moreover, it assumes there are no outliers. Eighir

DS patient was matched to a non-DS patient that is of simdar a shows the residual plot from the regression, as well as tatiesc

Since we had 21 DS patients and 38 non-DS patients, pair ingtch plot of log expression on age, for 2 genes that were discdvere

resulted in 21 pairs. The distribution of log odds propensitores by the regression based analysis but not by the matchingdbase

in figure 2 shows that two non-DS cases were not comparable tanalysis. The linearity assumption is questionable in bbtse

any cases in DS group. These cases have ages 51 and 72 montenes, and there are outliers in the data. Similar plots aymtaer

Consequently we removed these cases and limited our iiesén  genes, not illustrated, show deviations from linearity andiers.

toddlers aged 7 months to 38 months. We had 21 DS and 19 norFhe matching based analysis, on the other hand, does nahassu

DS toddlers, so pair matching resulted in 19 pairs. On thilssu  linearity, is robust to outliers, and indicates how balahtiee data

of toddlers, the standardized absolute difference for @ferb and  are so there is no danger of extrapolation.

after matching was 0.09 and 0.03 respectively, indicativeg the

matched sets are balanced on age. For each of the 22283 genes,

the differential expression between the 19 matched paisstesied

using the Wilcoxon signed rank test, and adjusted for miidttp 5 DISCUSSION

using the BH procedure for FDR control at level 0.05. 1628egen In a microarray experiment a procedure that controls for raore

were discovered. measure such as the FDR is typically applied to identifyedéhtial

Regression based analysis We used the packagémma (Smyth expression between two groups. Thus some of the discoveries

(2005)), available in Bioconductor, for the regression s may be false, but there is a limit on the proportion of false

analysis. A linear regression analysis of the log expredsieels on  discoveries among all discoveries. In an observationaloaicay

the group and on age, on the 21 DS and 38 non-DS patientseglield study, discoveries may in addition be false due to bias. teor

3469 gene discoveries (using the BH procedure for FDR cbatro to remove bias, the groups need to be balanced for measured

level 0.05), 1494 of them discovered also in the matchingdas confounders. We introduced matching methods to balance the

analysis. However, these results cannot be trusted duedoga | groups before testing for differential expression. Westitated by
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curve.

examples that many discoveries are still made after baignitie
covariates. Moreover, the confidence that these discevaretrue
discoveries is far greater than in an analysis that does rgit fi
attempt to balance the groups. This added confidence is due
the fact that after matching, the groups are comparablerinste
of measured covariates and therefore, if we find a diffeaénti
expression between the groups, it cannot be due to theseatega
In order to remove bias it may be necessary to restrict thigsina
to a subpopulation. In Section 4, the DS group was comprisietlys
of toddlers but the non-DS group included older children adalts
as well, therefore to achieve balance on age between th@gibu
was necessary to restrict the analysis that compares thedd$ tp
the non-DS group to toddlers. Thus our inference is valig doit
toddlers, and the genes that were found to be associated®ith
toddlers may or may not be associated with DS in other agepgrou
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