

- Discuss Optimization
- Introduce Approximation
- · Problems/Algorithms

Plan:

- <u>VERTEX-COVER</u>, <u>SET-COVER</u>
- · Greedy Algorithm
- · TSP

Network Power

with some links
between
components.
A link requires
power supply;
need to supply
power

so as to cover all links. Obviously, you'd like to power the 2 smallest number of nodes. Can you find such a set?

$C\subseteq V$ is a cover of G=(V, E) -VERTEX-COVER

· If ∀(u,v)∈E, u∈C or v∈C

Instance:

· An undirected 6=(V,E)

Minimization Problem:

· find a minimal cover ©

Instance:

· An undirected 6=(V,E), k

Decision Problem:

Is there a cover €, |€|=k?

Theorem:

· Min-V.C. is NP-hard

Proof:

 For a cover C, V\C is an <u>independent-set</u>

Optimization

problem
CLIQUE
3SAT
V.C.

Algorithm returns

 Best solution according to optimization parameter

· What to do if NP-hard?

Definition:

<u>Approximation</u>

An a-approximation algorithm
for a maximization/minimization
problem with an optimum solution
O, returns a solution that is
≥aO/≤aO

Note

 and may depend on the size of the input

COR(B) 523-524 VC - Approximation Algorithm 1 C ← ø begin while C not a cover 3 Pick $(u,v) \in E s.t. u,v \notin C$ C ← C ∪ {u,v} algorithm runs in 5 end while Theorem: poly-time 7 return C C ≤ 2 optimal is a Proof: **Edges** algorithm picks: Have no common vertexes Optimal V.C. must contain ≥1 end

Mass Mailing

You'd like to send some message to a large list of recipients (e.g. all campus)

Some mailing-lists are available, however, each list charges \$1 for each message sent

You'd like to find the smallest set of lists that covers all recipients

Instance:

SET-COVER

 a finite set U and a family F of subsets of U, which covers U

Minimization Problem:

· find a smallest family C=F that covers U

Theorem:

ET-COVER is NP-Hard

· SET-COVER is NP-Hard

Proof:

V.C. ≤_L SET-COVER

U

· 1 element for each edge

F

 1 set for each vertex, comprising adjacent edges

The Greedy Algorithm

11

Just:

 Described the greedy algorithm for SET-COVER

Next:

Analyze its approximation ratio in 3 distinct ways:
 lg₂ n, ln n, even better

How to prove an Approximation Ratio?

Need to:

 compare the size of the cover returned by the greedy algorithm to optimal

However

The optimal is unknown

Observation:

∃k-cover ⇒ any part of the universe has a k -cover!

Corollary:

 Each step of the greedy algorithm removes 1/k of elements

Observe:

 After k(=size of optimal S.C.) stages the algorithm covers at least \(\frac{1}{2} \) of \(\bullet \)

Proof:

By way of contradiction, assume are by k sets covered

The uncovered part of U intersects with a set in F in n/2k elements

Hence, all previous k stages have covered

>n/2k elements

And must have covered >kn/2k=n/2

It can be covered by k sets

Let

 S_1 , ..., S_n be the sequence of sets picked by the algorithm

Let

U be the set of elements not yet covered after i stages

Note

$$|U_{i+1}| = |U_i - S_{i+1}| \le |U_i|(1 - 1/k)$$

U_i can be covered by k sets

Hence

$$|U_{ik}| \le |U_o|(1-1/k)^{ik} \le |U|e^{-i}$$

and

Best Ratio-Bound

Lemma:

Greedy algorithm approximates
 the optimal set-cover to within
 a factor H(max{ |S|: S∈F })

$$H(n) = \sum_{k=1}^{n} \frac{1}{k} = \sum_{k=2}^{n} \frac{1}{k} + 1 \le \int_{1}^{n} \frac{1}{x} dx + 1 = \ln x + 1$$

Proof:

- Split the "cost of \$1", for set
 Spicked ith by the greedy algorithm, among newly covered
- Now, bound the sum paid, over any S∈F, by H(|S|)
- "Imagine" the optimal solution, and bound the total paid

Generalized Tour Problem

- · Each segment of the tour problem now has a cost
- · find a least-costly tour

Next:

- NP-hard optimization problems
- Approximate to within a certain factor
- NP-hard or in P?

Plan:

- Traveling Salesman Problem (TSP)
- · TSP is NP-hard
- Approximation algorithm for special cases
- Inapproximability result

Traveling Salesperson Problem

Instance:

A complete weighted undirected
 G=(V,E) (non-negative weights)

Minimization Problem:

 find a <u>Hamiltonian cycle</u> (traversal) of minimal cost

Theorem:

· TSP is NP-hard

By a simple reduction from Ham. cyc.

Next: show a 2-Approximation algorithm for TSP, in case the cost function satisfies the triangle inequality

 $\forall u, v, w \in V$: $c(u, v) + c(v, w) \ge c(u, w)$

> via Min Spanning Tree

<u>Approximation Algorithm</u>

- 1 Find a Minimum Spanning Tree (MST) T for 6
- 2 Traverse along DFS of T --- jump over visited

Observation

MST weight ≤ Cheapest Traversal

Observation

 Algorithm's traversal costs 2 weight MST

 Show it is NP-hard to approximate TSP -the general case- to within any factor h≥1

- · Introduce its gap version
- · Show it is NP-hard

Instance:

a complete weighted undirected graph G=(V,E)

GAP Problem: [IVI, hIVI]

distinguish between the following cases:

Yes

∃Hamiltonian cycle of cost ≤ |V|

No

The cost of ∀Hamiltonian cycle ≥h|V|

gap-TSP is NP-hard

Theorem:

· For any h≥1, HAM-CYCLE < gap-TSP[|V|, h|V|]

Proof:

•

Corollary:

· Approximating TSP to within any factor is NP-hard

Synopsis

Some NP-hard optimization problems can be efficiently approximated:

- · VERTEX-COVER (2)
- · SET-COVER (In n)
- · TSP[triangle ineq.] (2)

For some factors it may still be NP-

We've introduced GAP problems for that purpose

<u>Optimization</u>

Vertex Cover

Set Cover

WWindex

<u>Greedy</u> <u>Algorithm</u>

TSP

Hamiltonian Cycle

Spanning Tree

Minimum Spanning Tree

Independent
Set

<u>P</u>

NP-Hard

Clique

3SAT