
In this lecture we study approximation
versions for optimization problems 

whose exact solution is NP hard.

We'll define optimization parameters

and what it means to approximate 

them, via several concrete problems.

Vertex Cover (1)

Vertex Cover (2)

Set Cover

TSP

Approximation Problems Notes 
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Consider a wired network, with various 

locations and some wiring. One needs 

to find a set of locations so that every 

wire has one of its ends covered. 

Naturally, one looks for the smallest 

possible set of locations.

This problem is the Vertex Cover:

Given a graph, find a smallest set of 

nodes that covers all edges. 

We can define the corresponding 

decision problem, where the question 

is whether there is such a cover whose 

size does not exceed some given 

threshold k.

This problem is clearly NP-hard: the 

complement of the Vertex Cover is an 

Independent Set, hence an exact 

solution to one implies an exact 

solution to the other.
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Let us recall some of the optimization 

problems we've discussed, both 

minimization and maximization, and 

identify the parameter optimized. 

Now, what do we do if it turns out 

that the problem is NP-hard?

Many times it suffices to come up with 

an approximated solution, namely one 

which is not optimal, however deviates 

from optimal by some known factor. 

This factor is called the approximation 
factor; it may be a constant or depend 

on the input size.

   Approximation Page 3    



Let us now describe a very simple 

approximation algorithm for Vertex 

Cover:

at every stage, pick an edge not yet 

covered and add both its ends to the 

cover.

The cover returned by this algorithm 

is at most twice as large as the 

optimal. 

To see that, note that the edges 

picked by the algorithm have no 

common vertexes. The optimal solution 

must contain one vertex for each of 

these edges, while we added both.

Now consider a different problem: 

You have a set of mail recipients, and 

some mailing lists. 
These mailing lists charge $1 for each 

use. 
Hence, when sending a message, one 

tries to find the minimal number of 

mailing lists that cover all recipients.
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Formally, in a Set Cover instance, we 

have the universe U and a family F of 

subsets of U. 

The goal is to find the smallest 

number of subsets in the family that 

cover the entire universe.

Set Cover is NP-hard. 

We prove this via direct reduction 

from Vertex Cover:
Each edge becomes an element of the 

universe, while each vertex becomes a 

subset comprising all of the edges 

that touch it.
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To approximate Set Cover, let us 

introduce a general scheme for simple 

approximation algorithms: the greedy 
strategy, which at every stage picks 

locally the most advantageous option.

For Set Cover, this means choosing a 

subset that covers the most out of 

the yet uncovered elements.

In the next few slides we look at the 

greedy algorithm, and analyze its 

performance in three different ways.
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The first point we need to realize is 

that we are going to compare the 

solution given by the Greedy 

Algorithm to the optimal solution, 

however, without any information 

about the optimal solution.
We will use the fact that if the 

optimal solution contains k subsets, 

any part of the universe ---in 

particular, the set of yet uncovered 

elements--- can be covered by k 

subsets. 
Hence, at each stage, the algorithm 

covers 1/k fraction of the remaining 

elements.

To prove the Greedy Algorithm 

approximates the optimal Set Cover to 

within a logarithmic factor (log base 

2), we show that every k stages cover 

half of the remaining elements.

This is true since, after k stages, a 

fraction of 1/k of the remaining 

elements must be covered in the next 

stage, and thus all previous stages 

must've covered at least that number 

of elements.
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To prove a tighter bound, where the 

log is the natural log, we notice that at 

every stage a fraction 1/k of the 

remaining elements is covered. Hence, 

the number of remaining elements 

after k * ln |U| stages is 1.

The best bound, which is ln of the size 

of the largest set in F, is obtained as 

followed:

Let us think of a price of the use of 

each mailing list being split among the 

recipients in the following manner. At 

each stage of the algorithm an 

additional $1 has to be paid, and it is 

split among those recipients just 

covered. 

A bound the total amount paid, will 

give us a bound on the number of 

subsets the greedy algorithm outputs.

We now look at any subset S of F, and 

bound the total amount its members 

pay by ln |S|.

This will end the proof, as we can 

consider the optimal cover of k 

subsets (not really knowing what it is) 

and see that each of its subsets pay 

at most ln of its size --- altogether at 

most k*ln|S| for the largest S in the 

optimal cover.

Now for an arbitrary set, in whichever 

stage of the algorithm, if m of its 

members are not yet covered, the 

greedy algorithm chooses a subset 

that covers at least m elements, hence 

each will pay at most 1/m of $1.
The members of the set S will pay the 

most, if they are covered one by one, 

and in each stage the set chosen 

covers exactly m elements, which will 

result with the harmonic series, which 

sums up to ln of S's size.
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• Each segment of the tour problem now has a cost

• find a tour
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Now we go back to a problem we 

mentioned early in the course, namely, 

the tour problem where segments have 

a price that may vary.

This is the Traveling Salesperson 

Problem (TSP): we will analyze the 

complexity of the general variant as 

well as a more restricted variant.

We will show an approximation 

algorithm in the special case, and 

prove an NP-hardness result, 

introducing a technique that will help 

us prove such results for 

approximation problems later on.
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Formally, a TSP instance is a graph 

with non-negative weights, and the 

goal is to find a traversal (a 

Hamiltonian cycle) that is of the 

smallest sum of weights.

We immediately see that the 

optimization exact solution is NP-hard, 

via a simple reduction from 

Hamiltonian cycle (edges become 

edges of weight 1; non-edges become 

edges of larger weight).

Now, we move to a special ---more 

interesting--- case of TSP, where the 

weights satisfy the triangle inequality.

In this case we are able to come up 

with an Approximation Algorithm, 

utilizing a procedure for finding the 

Minimum Spanning Tree (MST).
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The algorithm starts by finding a MST 

of the graph, then follows a DSP to 

traverse the tree. While doing so 

some vertexes have already been 

visited, but due to the triangle 

inequality the traverse can simply 

jump to the next yet unvisited vertex, 

paying at most the sum of edges along 

the way.
To see this approximates TSP to 

within a factor of 2, note first that 

the minimal traversal bounds from 

above the weight of the MST, while 

the algorithm returns a traversal 

which is at most twice the MST 

weight.

We are now prepared to show our 

first NP-hardness result for an 

approximation problem. 

We will define for that purpose Gap 

Problems (which give us the closest 

version to a decision problem) and see 

how to prove NP-hardness of a Gap 

Problem, and how to obtain from that 

an NP-hardness result for the 

corresponding approximation problem.
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A Gap Problem takes an optimization 

problem and defines two thresholds. 

For a minimization problem, the good 

instances are those whose 

optimization parameter is below the 

low threshold, while the bad instances 

are those for which this parameter 

turns out to be higher than the high 

threshold. The instances whose 

parameter is in between are the 

"don't care" part.

In TSP case, we define the Gap 

Problem to have the number of 

vertexes as the low threshold, while h 

times that to be the high threshold ---

this for an arbitrary h.

An algorithm for a Gap Problem must 

accept all good instances, must reject
all bad instances, and can 

accept/reject all the "don't care"
instances.

An efficient algorithm that 

approximates the problem to within a 

factor h, can be used to efficiently 

solve the Gap Problems where the 

thresholds are C and hC, for any C: 

simply apply it and accept all instances 

for which the solution returned lets 

the optimization parameter be smaller 

than hC. 
No bad instances can be accepted, 

while no good instance will be rejected 

as the approximation factor is h.
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Optimization•

Vertex Cover•

Greedy Algorithm•

Spanning Tree•

Set Cover•

Minimum Spanning Tree•

Independent Set•

P•

NP-Hard•

Hamiltonian Cycle•

TSP•

Clique•

3SAT•
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