
In this lecture we study approximation
versions for optimization problems

whose exact solution is NP hard.

We'll define optimization parameters

and what it means to approximate

them, via several concrete problems.

Vertex Cover (1)

Vertex Cover (2)

Set Cover

TSP

Approximation Problems Notes

 Approximation Page 1

onenote:Arora-Barak%20Textbook.one#Chapters%201-6§ion-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={7D1592D3-776D-4C1F-992E-DBFF25F3C246}&C&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote
onenote:Arora-Barak%20Textbook.one#Chapters%207-12§ion-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={3CC1D72C-19C2-43A6-B0D8-2BBD9E66D873}&object-id={029BD976-B11B-4CBB-A4CC-B94B57EAC67B}&A&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote
onenote:Arora-Barak%20Textbook.one#Chapters%2019-24§ion-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={6E9C9EBC-6A22-4EF6-971F-E4DF85B4D629}&object-id={45C58D4B-ABD2-4427-937F-B34E19297925}&A&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote
onenote:Arora-Barak%20Textbook.one#Chapters%201-6§ion-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={D2645603-B32C-4C56-A8CD-1D1EDD303C5D}&11&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote

Consider a wired network, with various

locations and some wiring. One needs

to find a set of locations so that every

wire has one of its ends covered.

Naturally, one looks for the smallest

possible set of locations.

This problem is the Vertex Cover:

Given a graph, find a smallest set of

nodes that covers all edges.

We can define the corresponding

decision problem, where the question

is whether there is such a cover whose

size does not exceed some given

threshold k.

This problem is clearly NP-hard: the

complement of the Vertex Cover is an

Independent Set, hence an exact

solution to one implies an exact

solution to the other.

 Approximation Page 2

Let us recall some of the optimization

problems we've discussed, both

minimization and maximization, and

identify the parameter optimized.

Now, what do we do if it turns out

that the problem is NP-hard?

Many times it suffices to come up with

an approximated solution, namely one

which is not optimal, however deviates

from optimal by some known factor.

This factor is called the approximation
factor; it may be a constant or depend

on the input size.

 Approximation Page 3

Let us now describe a very simple

approximation algorithm for Vertex

Cover:

at every stage, pick an edge not yet

covered and add both its ends to the

cover.

The cover returned by this algorithm

is at most twice as large as the

optimal.

To see that, note that the edges

picked by the algorithm have no

common vertexes. The optimal solution

must contain one vertex for each of

these edges, while we added both.

Now consider a different problem:

You have a set of mail recipients, and

some mailing lists.
These mailing lists charge $1 for each

use.
Hence, when sending a message, one

tries to find the minimal number of

mailing lists that cover all recipients.

 Approximation Page 4

Formally, in a Set Cover instance, we

have the universe U and a family F of

subsets of U.

The goal is to find the smallest

number of subsets in the family that

cover the entire universe.

Set Cover is NP-hard.

We prove this via direct reduction

from Vertex Cover:
Each edge becomes an element of the

universe, while each vertex becomes a

subset comprising all of the edges

that touch it.

 Approximation Page 5

To approximate Set Cover, let us

introduce a general scheme for simple

approximation algorithms: the greedy
strategy, which at every stage picks

locally the most advantageous option.

For Set Cover, this means choosing a

subset that covers the most out of

the yet uncovered elements.

In the next few slides we look at the

greedy algorithm, and analyze its

performance in three different ways.

 Approximation Page 6

The first point we need to realize is

that we are going to compare the

solution given by the Greedy

Algorithm to the optimal solution,

however, without any information

about the optimal solution.
We will use the fact that if the

optimal solution contains k subsets,

any part of the universe ---in

particular, the set of yet uncovered

elements--- can be covered by k

subsets.
Hence, at each stage, the algorithm

covers 1/k fraction of the remaining

elements.

To prove the Greedy Algorithm

approximates the optimal Set Cover to

within a logarithmic factor (log base

2), we show that every k stages cover

half of the remaining elements.

This is true since, after k stages, a

fraction of 1/k of the remaining

elements must be covered in the next

stage, and thus all previous stages

must've covered at least that number

of elements.

 Approximation Page 7

To prove a tighter bound, where the

log is the natural log, we notice that at

every stage a fraction 1/k of the

remaining elements is covered. Hence,

the number of remaining elements

after k * ln |U| stages is 1.

The best bound, which is ln of the size

of the largest set in F, is obtained as

followed:

Let us think of a price of the use of

each mailing list being split among the

recipients in the following manner. At

each stage of the algorithm an

additional $1 has to be paid, and it is

split among those recipients just

covered.

A bound the total amount paid, will

give us a bound on the number of

subsets the greedy algorithm outputs.

We now look at any subset S of F, and

bound the total amount its members

pay by ln |S|.

This will end the proof, as we can

consider the optimal cover of k

subsets (not really knowing what it is)

and see that each of its subsets pay

at most ln of its size --- altogether at

most k*ln|S| for the largest S in the

optimal cover.

Now for an arbitrary set, in whichever

stage of the algorithm, if m of its

members are not yet covered, the

greedy algorithm chooses a subset

that covers at least m elements, hence

each will pay at most 1/m of $1.
The members of the set S will pay the

most, if they are covered one by one,

and in each stage the set chosen

covers exactly m elements, which will

result with the harmonic series, which

sums up to ln of S's size.

 Approximation Page 8

• Each segment of the tour problem now has a cost

• find a tour

$2

$5

$4

$3 $1

$4

$6

$5

$2

Now we go back to a problem we

mentioned early in the course, namely,

the tour problem where segments have

a price that may vary.

This is the Traveling Salesperson

Problem (TSP): we will analyze the

complexity of the general variant as

well as a more restricted variant.

We will show an approximation

algorithm in the special case, and

prove an NP-hardness result,

introducing a technique that will help

us prove such results for

approximation problems later on.

 Approximation Page 9

Formally, a TSP instance is a graph

with non-negative weights, and the

goal is to find a traversal (a

Hamiltonian cycle) that is of the

smallest sum of weights.

We immediately see that the

optimization exact solution is NP-hard,

via a simple reduction from

Hamiltonian cycle (edges become

edges of weight 1; non-edges become

edges of larger weight).

Now, we move to a special ---more

interesting--- case of TSP, where the

weights satisfy the triangle inequality.

In this case we are able to come up

with an Approximation Algorithm,

utilizing a procedure for finding the

Minimum Spanning Tree (MST).

 Approximation Page 10

The algorithm starts by finding a MST

of the graph, then follows a DSP to

traverse the tree. While doing so

some vertexes have already been

visited, but due to the triangle

inequality the traverse can simply

jump to the next yet unvisited vertex,

paying at most the sum of edges along

the way.
To see this approximates TSP to

within a factor of 2, note first that

the minimal traversal bounds from

above the weight of the MST, while

the algorithm returns a traversal

which is at most twice the MST

weight.

We are now prepared to show our

first NP-hardness result for an

approximation problem.

We will define for that purpose Gap

Problems (which give us the closest

version to a decision problem) and see

how to prove NP-hardness of a Gap

Problem, and how to obtain from that

an NP-hardness result for the

corresponding approximation problem.

 Approximation Page 11

A Gap Problem takes an optimization

problem and defines two thresholds.

For a minimization problem, the good

instances are those whose

optimization parameter is below the

low threshold, while the bad instances

are those for which this parameter

turns out to be higher than the high

threshold. The instances whose

parameter is in between are the

"don't care" part.

In TSP case, we define the Gap

Problem to have the number of

vertexes as the low threshold, while h

times that to be the high threshold ---

this for an arbitrary h.

An algorithm for a Gap Problem must

accept all good instances, must reject
all bad instances, and can

accept/reject all the "don't care"
instances.

An efficient algorithm that

approximates the problem to within a

factor h, can be used to efficiently

solve the Gap Problems where the

thresholds are C and hC, for any C:

simply apply it and accept all instances

for which the solution returned lets

the optimization parameter be smaller

than hC.
No bad instances can be accepted,

while no good instance will be rejected

as the approximation factor is h.

 Approximation Page 12

 Approximation Page 13

Optimization•

Vertex Cover•

Greedy Algorithm•

Spanning Tree•

Set Cover•

Minimum Spanning Tree•

Independent Set•

P•

NP-Hard•

Hamiltonian Cycle•

TSP•

Clique•

3SAT•

 Approximation Page 14

http://en.wikipedia.org/wiki/Optimization_(computer_science)
http://en.wikipedia.org/wiki/Vertex_cover_problem
http://en.wikipedia.org/wiki/Greedy_algorithm
http://en.wikipedia.org/wiki/Spanning_tree_(mathematics)
http://en.wikipedia.org/wiki/Set_cover_problem
http://en.wikipedia.org/wiki/Minimum_spanning_tree
http://en.wikipedia.org/wiki/Independent_set
http://en.wikipedia.org/wiki/P_(complexity)
http://en.wikipedia.org/wiki/NP-hard
http://en.wikipedia.org/wiki/Hamiltonian_path
http://en.wikipedia.org/wiki/Traveling_salesman_problem
http://en.wikipedia.org/wiki/Clique_problem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

