Introduction Notes

This course is about complexity
theory, in which we categorize
computational problems to various
classes according to resources
required for their solution.

+ Introduce basic concepts in
Complexity Theory.

* Meet Celebrities and Computations
* Erowth Rate and Tractability

* Reducibility

CHRER 3 (s

This is the introductory lecture in
which we will consider the basic
motivations and methodology used in
the field.

Introduction Page 1

Problem:
- seat all guests around a table, so people
who sit next to each other get along.

Some History...

¢

Introduction Page 2

4

Say you're given a list of guests who

are to attend an event, and the goal is
to organize them so they get along
with each other. Youmay use a
computer for that purpose.

Here's an example. Every two guests
may or may not get along with each
other.

One can represent their relationship in
a table, which is essentially a 0,1
matrix.

How Can a Catastrophe be Avoided?

Here is one way fo organize guests so
that they get along. The question is
what could be an organized,
algorithmic method is to find such a
seating if it exists.

Introduction Page 3

Naive Algorithm

Observation:

* Given a seating one can efficiently
check if all guests get along with their
neighbors

For each seating arrangement:
Check if all guests are OK with neighbors
Stop if a good arrangement is found

|

L How much time would it take? (worse case)

Here is an algorithm for this problem:
itiseasy to check whether a seating
arrangement is a good onhe, one can go
over them one by one and check for
each if itis good.

Naive Algorithm

For each seating arrangement:
Check if all guests are OK with neighbors
Stop 1f a good arrangement is found

ju—

How much time would it take? (worse case)

" Say our compyter
'S capable of 1q10
Instructions
second, this yij)

still take ~ 3-10138

years!

How long would this process take? It
isa function of the number of guests.
For a tiny number it may still be OK.
For anything but tiny number of
guests, the number of possible seating
arrangements is huge.

Introduction Page 4

_ _TourProblem —
* Plan a trip that visits every location exactly once.

En;p)lrejs; e Building

Naive

Algorithm
Backtracking)

5 Try out all
' reachable sites
not yet visited

Backtrack &
andretry L]

Repeat the
process until
stuck

Introduction Page 5

Here is another problem: say you are

given a list of locations you need to
visit and a map indicating between
which locations there is a direct
connection.

| An algorithm for this problem would, in

every step, go to the next connected
location not yet visited. If none exists,
backtrack your steps and go to ayet
not visited location.

* Onacg
check 11,

The time it will take this algorithm to —
figure out whether a traversal exists
iseven longer than the previous one.

Is a Problem. Tractable?

that solves it

« and here's an efficlent algorithm i‘4-

t"-".'l’

- and 7 can prove &

+ and if neither is the case?

DEAD END

This brings us to the most

fundamental question you would like to
know regarding a given computation
pr'oblem: can it be efficiently solved?
The problem is that there are almost
no known techniques for proving that a
given problem cannot be efficiently
solved.

Introduction Page 6

It's quite clear that the time it takes
to solve a given problem is expected to
grow as the input size grows. Some
functions grow slowly as the input

timel nl =20(n1g n) grows, while other blowup very quickly.

/

input length

D Growth Rate: rough classification

The most fundamental classification
we would like to apply to any given
computational problemis the
distinction between problems whose
growth rate in terms of time is
polynomial and problems whose growth
rate is exponential.

Basic split in time-complexity

Maybe 50 Totally
reascnable ~ unreasonable
1 b ™

Introduction Page 7

) . Once we have established that the
Which is Harder? problem's complexity can be measured
by a function of the time it takes to
compute it for a given input size, we
can compare between problems’

complexity.

)
& SEATING

15

. Assume that we can come up with a
Relations Between Problems procedure for problem A that calls on

a procedure for a problem B, so that if

 assuming an efficient procedure for & B has an efficient procedure then so

there is an efficient procedure for A does A it must then be the case that
Ais not much harder than B, or

alternatively that B cannot be much
an efficient procedure for easier than A.

* A cannot be radically harder than £

16

Introduction Page 8

. . Here is how we denote such a notion:
9 Reductions we refer to it as "reduction"; the

| symbol we use to denote it is the "less
I S0l o el s | than', while the letter P implies the
harder than || reduction is efficient.

+ Inother words:

an efficient procedure for
using

. an efficient procedure for |
- |

. .[P is at least as hard
{ Notation J |as A

=
~
//

s

17

, - Here is a simple efficient reduction
Reduce Tour to SeGTmQ from the four problem to the seating
problem: think of every location as a
guest and now add an additional guest
that can be seated next to everyone.

Introduction Page 9

Reduce Tour to Seating

[—

« If there's a four, there's a way to seat
all the guests around the table.

* If there's a seating, we can easily find
a four path (no tour, no seating).

- seating is at least as hard as tour

If there exists a tour, seat guests
accordingly and seat the extra guest
between the two ends of the tour. The
other side of the proof, is proved in
the counter positive form. To prove
that no tour implies no seating, we
prove that a seating implies a tour.
Given a seating, simply ignore the
extra guest.

So Far

« find an efficient algorithm for
problems

* prove they are

intractable
J

v

bID between their complexity

* to show a very sirong correlation

A4

20

We have encountered some problems
whose complexity is quite unclear,
nevertheless, we have managed to
show a relationship between their
(unknown) complexities.

Introduction Page 10

Inieresinglys
WESCAn dISoed ICesHE!
L RproblemEosine
YOUF 99924l Can

' you?

there is a whole class

of problems, which can
be

to each other.

If we also show the reduction in the
other direction, it would bound the
complexity of the two fo be roughly
the same. It turns out that there is
the class of problems whose
complexity is bound to the complexity
of these two.

21

« Efficiently
computable

NP and P

We can now informally infroduce two
important classes of computational
problems: the class P that consist of
all problems that can be efficiently
computed, and the class NP, for which
finding a solution can be very difficult
however checking the solution can be

* Solution
efficiently

I
l
! verifiable

done efficiently. The $1,000,000
| question is whether the two classes

arein fact the same.

22

Introduction Page 11

algorithms

lefficient algorithms

Within the class NP, we may consider
the class of what seemingly are the
hardest problems, whose complexities
areall bound together: this class is
referred to as NP-complete

How can Complexity make you a Millionaire?

NID!

question is the |

|Reso|ving it would bring you great honor-...

] as well as significant fortune... www.claymath.org/ |

* Human ingenuity is redundani!
+ S0 would mathematicians bell

[‘_r-; nature nondeterministicy

24

The P vs. NP problem is the most
fundamental question of computer
science, but it is also one of the most
important open questions in
mathematics. It is also a very deep
philosophical question, as if P is equal
to NP most human activities
considered creative may become
mechanical. It is also possible that
some natural phenomena utilized so far
in computers suffer this distinction,
however, other natural phenomena may
avoid this distinction.

Introduction Page 12

What's Ahead?

- we'll review basic
questions explored

through the course.
/

25

Let us now briefly mention some other
issues we will study in the course.

Generalized Tour Problem
* Each segment of the tour problem now has a cost
- find a least-costly tour

o g
Aot *
iV A Approximate
|
54
T
3

We can generalize the four problem
assuming every direct connection has a
priceattached to it. One would like to
find the least expensive tour. If
that's impossible, one would be
content with a tour that is not much
more expensive than the least
expensive one. These types of
problems are called approximation
problems.

Introduction Page 13

Is Running

Time the
_ only
. Resource?

27

So far we've measured the complexity
of problems only according to the time
it fakes for their computation. We will
consider other resources, in
particular, the size of memory it takes
to solve them.

Games

Players take turns
choose a word whose
 first letter matches ’
other player'slast -

Here's an interesting example: we're

given the rules of a game between two
playersand are asked to decide which
of the playerswins.

Introduction Page 14

[Cun one compute a winning strategy?

[How much time would it take?

[How much space?

- -- -----
-- ------

| One can solve such a problem by
| computing the game tree. The size of
| that tree however is potentially

exponential in the number of steps it
takes to get fo the end of the game.
This is prohibitive! Is there another
way fo solve this problem?

summary

4 N
We have introduced two problems:

"3 1. Seating = HAMILTONIAN-CYCLE
S 2. Tour = HAMILTONIAN-PATH

I\

Unable to settle their complexity
we, nevertheless, showed strong
-correlations between them

v
S

These problems are representatives of
alarge class of problems:

NPC

30

Introduction Page 15

Prognosis

* Approximation
- Space-bounded
A computations

Topics to be

31

. o Complexity Theor
_p_yC%f Computations Compliajeness Mﬂdex . Comp!]]|;u1'aTTi\c/ms Y
» Completeness
W Growth Rate || Completeness e Hamiltonian Path
o —— « Growth Rate
Reducibility Soundness : ij%l’gDICXITY Classes
Complexity p ‘ NP ‘ ® E
Classes - — « NP
» Exponential Time
NPC o www.claymath.org
e Approximation
Q”T‘fi“:\—:m' www.clayma‘rh.or‘qé Approximation » Reducibility
—— ' » |* Completeness
» Soundness

Introduction Page 16

http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Theory_of_computation
http://en.wikipedia.org/wiki/Complete_(complexity)
http://en.wikipedia.org/wiki/Hamiltonian_path
http://en.wikipedia.org/wiki/Scalability
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/P_(complexity)
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/Exponential_time
http://www.claymath.org/
http://en.wikipedia.org/wiki/Approximation
http://en.wikipedia.org/wiki/Reduction_(complexity)
http://www.cs.princeton.edu/theory/complexity/NPchap.pdf
http://en.wikipedia.org/wiki/Soundness_theorem

