
 

This course is about complexity 

theory, in which we categorize 

computational problems to various 

classes according to resources 

required for their solution.

 

This is the introductory lecture in 

which we will consider the basic 

motivations and methodology used in 

the field.

Introduction Notes 

   Introduction Page 1    



 

• seat all guests around a table, so people 
who sit next to each other get along.

Say you're given a list of guests who 

are to attend an event, and the goal is 

to organize them so they get along 

with each other. You may use a 

computer for that purpose.

 

Here's an example. Every two guests 

may or may not get along with each 

other.
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One can represent their relationship in 

a table, which is essentially a 0,1 

matrix.

 

Here is one way to organize guests so 

that they get along. The question is 

what could be an organized, 

algorithmic method is to find such a 

seating if it exists.
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For each seating arrangement: 

Check if all guests are OK with neighbors

Stop if a good arrangement is found

 

Here is an algorithm for this problem: 

it is easy to check whether a seating 

arrangement is a good one, one can go 

over them one by one and check for 

each if it is good.

For each seating arrangement: 

Check if all guests are OK with neighbors

Stop if a good arrangement is found

How much time would it take? (worse case)

 

Can you do 
better?

How long would this process take? It 

is a function of the number of guests. 

For a tiny number it may still be OK. 

For anything but tiny number of 

guests, the number of possible seating 

arrangements is huge.

   Introduction Page 4    



 

Stuyvesant Tn.

World Trade Center

Rockefeller Center

Empire State Building

• Plan a trip that visits every location exactly once.

Times Square

Here is another problem: say you are 

given a list of locations you need to 

visit and a map indicating between 

which locations there is a direct 

connection.

  

For each site
Try out all 

reachable sites
not yet visited

Backtrack
and retry Repeat the 

process until 
stuck

An algorithm for this problem would, in 

every step, go to the next connected 

location not yet visited. If none exists, 

backtrack your steps and go to a yet 

not visited location.
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The time it will take this algorithm to 

figure out whether a traversal exists 

is even longer than the previous one.

  

This brings us to the most 

fundamental question you would like to 

know regarding a given computation 

problem: can it be efficiently solved? 

The problem is that there are almost 

no known techniques for proving that a 

given problem cannot be efficiently 

solved.
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It's quite clear that the time it takes 

to solve a given problem is expected to 

grow as the input size grows. Some 

functions grow slowly as the input 

grows, while other blowup very quickly.

  

The most fundamental classification 

we would like to apply to any given 

computational problem is the 

distinction between problems whose 

growth rate in terms of time is 

polynomial and problems whose growth 

rate is exponential.
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Once we have established that the 

problem's complexity can be measured 

by a function of the time it takes to 

compute it for a given input size, we 

can compare between problems' 

complexity.

If 

Then 

an efficient procedure for A
using 

an efficient procedure for
B

an efficient procedure for A
using 

  

Assume that we can come up with a 

procedure for problem A that calls on 

a procedure for a problem B, so that if 

B has an efficient procedure then so 

does A; it must then be the case that 

A is not much harder than B, or 

alternatively that B cannot be much 

easier than A.
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• In other words:

Here is how we denote such a notion: 

we refer to it as "reduction"; the 

symbol we use to denote it is the "less 

than", while the letter P implies the 

reduction is efficient.

  

Find someone who can seat next to everyone

Here is a simple efficient reduction 

from the tour problem to the seating 

problem: think of every location as a 

guest and now add an additional guest 

that can be seated next to everyone.
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If there exists a tour, seat guests 

accordingly and seat the extra guest 

between the two ends of the tour. The 

other side of the proof, is proved in 

the counter positive form. To prove 

that no tour implies no seating, we 

prove that a seating implies a tour. 

Given a seating, simply ignore the 

extra guest.

  

We have encountered some problems 

whose complexity is quite unclear, 

nevertheless, we have managed to 

show a relationship between their 

(unknown) complexities.
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Can 
you?

If we also show the reduction in the 

other direction, it would bound the 

complexity of the two to be roughly 

the same. It turns out that there is 

the class of problems whose 

complexity is bound to the complexity 

of these two.

  

We can now informally introduce two 

important classes of computational 

problems: the class P that consist of 

all problems that can be efficiently 

computed, and the class NP, for which 

finding a solution can be very difficult 

however checking the solution can be 

done efficiently. The $1,000,000 

question is whether the two classes 

are in fact the same.
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Within the class NP, we may consider 

the class of what seemingly are the 

hardest problems, whose complexities 

are all bound together: this class is 

referred to as NP-complete

Resolving it would bring you great honor…

  

The P vs. NP problem is the most 

fundamental question of computer 

science, but it is also one of the most 

important open questions in 

mathematics. It is also a very deep 

philosophical question, as if P is equal 

to NP most human activities 

considered creative may become 

mechanical. It is also possible that 

some natural phenomena utilized so far 

in computers suffer this distinction, 

however, other natural phenomena may 

avoid this distinction.
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• we’ll review basic 
questions explored 
through the course.

  

Let us now briefly mention some other 

issues we will study in the course.

Generalized Tour Problem
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We can generalize the tour problem 

assuming every direct connection has a 

price attached to it. One would like to 

find the least expensive tour. If 

that's impossible, one would be 

content with a tour that is not much 

more expensive than the least 

expensive one. These types of 

problems are called approximation 

problems.
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So far we've measured the complexity 

of problems only according to the time 

it takes for their computation. We will 

consider other resources, in 

particular, the size of memory it takes 

to solve them.

Players take turns
choose a word whose 
first letter matches 
other player’s last

  

Apple

Egg Girl

Ear

LordDog

Red

Here's an interesting example: we're 

given the rules of a game between two 

players and are asked to decide which 

of the players wins.
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Can one compute a winning strategy?

How much time would it take?

How much space?

  

Egg Girl DogApple Ear LordRed

GirlEgg EarDog DogLord Girl Red

Lord Lord

Dog

Dog

Girl

Lord

Dog Girl

Lord

Girl Girl Red Lord Dog Lord Dog Girl

One can solve such a problem by 

computing the game tree. The size of 

that tree however is potentially 

exponential in the number of steps it 

takes to get to the end of the game. 

This is prohibitive! Is there another 

way to solve this problem?
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•Approximation

•Space-bounded 
computations

  

  

Complexity 
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Computations Completeness
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