

This course is about complexity

theory, in which we categorize

computational problems to various

classes according to resources

required for their solution.

This is the introductory lecture in

which we will consider the basic

motivations and methodology used in

the field.

Introduction Notes

 Introduction Page 1

• seat all guests around a table, so people
who sit next to each other get along.

Say you're given a list of guests who

are to attend an event, and the goal is

to organize them so they get along

with each other. You may use a

computer for that purpose.

Here's an example. Every two guests

may or may not get along with each

other.

 Introduction Page 2

One can represent their relationship in

a table, which is essentially a 0,1

matrix.

Here is one way to organize guests so

that they get along. The question is

what could be an organized,

algorithmic method is to find such a

seating if it exists.

 Introduction Page 3

For each seating arrangement:

Check if all guests are OK with neighbors

Stop if a good arrangement is found

Here is an algorithm for this problem:

it is easy to check whether a seating

arrangement is a good one, one can go

over them one by one and check for

each if it is good.

For each seating arrangement:

Check if all guests are OK with neighbors

Stop if a good arrangement is found

How much time would it take? (worse case)

Can you do
better?

How long would this process take? It

is a function of the number of guests.

For a tiny number it may still be OK.

For anything but tiny number of

guests, the number of possible seating

arrangements is huge.

 Introduction Page 4

Stuyvesant Tn.

World Trade Center

Rockefeller Center

Empire State Building

• Plan a trip that visits every location exactly once.

Times Square

Here is another problem: say you are

given a list of locations you need to

visit and a map indicating between

which locations there is a direct

connection.

For each site
Try out all

reachable sites
not yet visited

Backtrack
and retry Repeat the

process until
stuck

An algorithm for this problem would, in

every step, go to the next connected

location not yet visited. If none exists,

backtrack your steps and go to a yet

not visited location.

 Introduction Page 5

The time it will take this algorithm to

figure out whether a traversal exists

is even longer than the previous one.

This brings us to the most

fundamental question you would like to

know regarding a given computation

problem: can it be efficiently solved?

The problem is that there are almost

no known techniques for proving that a

given problem cannot be efficiently

solved.

 Introduction Page 6

10n

n2

2n

n! =2O(n lg n)

input length

time

It's quite clear that the time it takes

to solve a given problem is expected to

grow as the input size grows. Some

functions grow slowly as the input

grows, while other blowup very quickly.

The most fundamental classification

we would like to apply to any given

computational problem is the

distinction between problems whose

growth rate in terms of time is

polynomial and problems whose growth

rate is exponential.

 Introduction Page 7

Once we have established that the

problem's complexity can be measured

by a function of the time it takes to

compute it for a given input size, we

can compare between problems'

complexity.

If

Then

an efficient procedure for A
using

an efficient procedure for
B

an efficient procedure for A
using

Assume that we can come up with a

procedure for problem A that calls on

a procedure for a problem B, so that if

B has an efficient procedure then so

does A; it must then be the case that

A is not much harder than B, or

alternatively that B cannot be much

easier than A.

 Introduction Page 8

• In other words:

Here is how we denote such a notion:

we refer to it as "reduction"; the

symbol we use to denote it is the "less

than", while the letter P implies the

reduction is efficient.

Find someone who can seat next to everyone

Here is a simple efficient reduction

from the tour problem to the seating

problem: think of every location as a

guest and now add an additional guest

that can be seated next to everyone.

 Introduction Page 9

If there exists a tour, seat guests

accordingly and seat the extra guest

between the two ends of the tour. The

other side of the proof, is proved in

the counter positive form. To prove

that no tour implies no seating, we

prove that a seating implies a tour.

Given a seating, simply ignore the

extra guest.

We have encountered some problems

whose complexity is quite unclear,

nevertheless, we have managed to

show a relationship between their

(unknown) complexities.

 Introduction Page 10

Can
you?

If we also show the reduction in the

other direction, it would bound the

complexity of the two to be roughly

the same. It turns out that there is

the class of problems whose

complexity is bound to the complexity

of these two.

We can now informally introduce two

important classes of computational

problems: the class P that consist of

all problems that can be efficiently

computed, and the class NP, for which

finding a solution can be very difficult

however checking the solution can be

done efficiently. The $1,000,000

question is whether the two classes

are in fact the same.

 Introduction Page 11

Within the class NP, we may consider

the class of what seemingly are the

hardest problems, whose complexities

are all bound together: this class is

referred to as NP-complete

Resolving it would bring you great honor…

The P vs. NP problem is the most

fundamental question of computer

science, but it is also one of the most

important open questions in

mathematics. It is also a very deep

philosophical question, as if P is equal

to NP most human activities

considered creative may become

mechanical. It is also possible that

some natural phenomena utilized so far

in computers suffer this distinction,

however, other natural phenomena may

avoid this distinction.

 Introduction Page 12

• we’ll review basic
questions explored
through the course.

Let us now briefly mention some other

issues we will study in the course.

Generalized Tour Problem

$2

$5

$4

$3 $1

$4

$6

$5

$2

We can generalize the tour problem

assuming every direct connection has a

price attached to it. One would like to

find the least expensive tour. If

that's impossible, one would be

content with a tour that is not much

more expensive than the least

expensive one. These types of

problems are called approximation

problems.

 Introduction Page 13

So far we've measured the complexity

of problems only according to the time

it takes for their computation. We will

consider other resources, in

particular, the size of memory it takes

to solve them.

Players take turns
choose a word whose
first letter matches
other player’s last

Apple

Egg Girl

Ear

LordDog

Red

Here's an interesting example: we're

given the rules of a game between two

players and are asked to decide which

of the players wins.

 Introduction Page 14

Can one compute a winning strategy?

How much time would it take?

How much space?

Egg Girl DogApple Ear LordRed

GirlEgg EarDog DogLord Girl Red

Lord Lord

Dog

Dog

Girl

Lord

Dog Girl

Lord

Girl Girl Red Lord Dog Lord Dog Girl

One can solve such a problem by

computing the game tree. The size of

that tree however is potentially

exponential in the number of steps it

takes to get to the end of the game.

This is prohibitive! Is there another

way to solve this problem?

 Introduction Page 15

•Approximation

•Space-bounded
computations

Complexity
Theory

Computations Completeness

Hamiltonian
Path

Growth Rate

Complexity
Classes

NPC

P NP

Exponential
Time

www.claymath.org Approximation

Reducibility

Completeness

Soundness

Complexity Theory•

Computations•

Completeness•

Hamiltonian Path•

Growth Rate•

Complexity Classes•

NPC•

P•

NP•

Exponential Time•

www.claymath.org•

Approximation•

Reducibility•

Completeness•

Soundness•

 Introduction Page 16

http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Theory_of_computation
http://en.wikipedia.org/wiki/Complete_(complexity)
http://en.wikipedia.org/wiki/Hamiltonian_path
http://en.wikipedia.org/wiki/Scalability
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/P_(complexity)
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/Exponential_time
http://www.claymath.org/
http://en.wikipedia.org/wiki/Approximation
http://en.wikipedia.org/wiki/Reduction_(complexity)
http://www.cs.princeton.edu/theory/complexity/NPchap.pdf
http://en.wikipedia.org/wiki/Soundness_theorem

