
Theorem[Immerman/Szelepcseny]: NL = coNL

January 10, 2009

Our aim is to show (s, t)-NON-CONNECTIVITY is in NL, which implies the theorem.
Let us start with some definitions.

Definition 1. For any directed graph G = (V,E) and a vertex s ∈ V designated as the start
vertex of G, denote

reachable(G) .= {v ∈ V |s � v}

where “ � ” denotes a directed path in G.
Assume t ∈ V is the designated target vertex in G, and define G−t = (V,E − V × {t}) —

namely, the graph that results from removing from G all edges leading to t. Of course, the above
definition applies to it too: reachable(G−t) is the set of all vertexes in G reachable from s without
passing through t.

Now, let reachablel(G) .= {v ∈ V |s �l v} where “u �l v” denotes there is a path from u to v
in G of length ≤ l.

Claim 0.1. For any directed graph G = (V,E) and a designated start vertex s and target vertex
t, reachable(G−t) ⊆ reachable(G).

Proof. For v ∈ reachable(G−t), by definition, there is a path s � v in G−t, which is also a path
in G.

Lemma 0.2. For any graph G,

|reachable(G−t)| 6= |reachable(G)| iff s � t in G

Proof. First, note that by definition of G−t, t 6∈ reachable(G−t).
If s � t then t ∈ reachable(G) and by the claim |reachable(G−t)| < |reachable(G)|.
If |reachable(G−t)| = |reachable(G)| it must be that t 6∈ reachable(G) as well.

Therefore, to demonstrate there is no path s � t in G, it is enough to show that

|reachable(G−t)| = |reachable(G)|

Hence, to show that our problem is in NL, it is enough to give an NL-witness to this fact. Recall
that an NL-witness is one that can be verified by an L TM, which reads the witness bit by bit

1

(cannot go back on the witness tape). Consequently, it suffices to show how to construct an NL-
witness for reachable(G) = r for a general G and for the appropriate r. The NL-witness for the
above claim can first attest that reachable(G) = r and then that reachable(G−t) = r —for the
same r. (An L TM can easily read the graph G however work as if seeing G−t). The L TM can
register r from the first part of the witness, and compare it with the second part of the witness.
Our remaining goal is to exhibit such an NL-witness to the fact that reachable(G) = r.

Observe that reachable|V |(G) = reachable(G).

The Witness

The NL-witness is constructed inductively: assuming W#rl# is an NL-witness that reachablel(G) =
rl, extend that witness to become an NL-witness attesting that reachablel+1(G) = rl+1.

Note that throughout, W , Wi and Wj are variables for presentation purpose (not to be read
as actual letters), each representing a string.

Base case: #1# is a trivial proof that reachable0(G) = 1.

Induction step: To extend W#rl# into an NL-witness for l +1, append to it |V | strings, each
of the form

biWi

where bi = 1 is interpreted as i ∈ reachablel+1 while 0 that it is not (we assume the set of
vertexes is {1, . . . , |V |}). Each Wi should be a string representing a witness that bi indicates
correctly whether i is or is not reachable by at most l + 1 steps from s.

In case bi = 1: Wi is simply a path of length ≤ l + 1 from s to i (represented according to
whichever convention as a 0/1 string).

In case bi = 0: Wi is constructed by appending |V | strings, each of the form

cj ∗ Zj∗

cj is a 0/1 bit where cj should be 1 iff s �l j (namely, j ∈ reachablel). Zj is then interpreted as
a witness that cj is the correct indication as to whether j is reachable from s within l steps.

If cj = 1: again, Zj can simply be a path of length ≤ l from s to j. Note however that if there
is an edge in G from j to i, then s �l j implies s �l+1 i and the witness is not well-constructed
(recall it is trying to prove bi indeed should be 0).

It is however not a good idea to proceed, in case cj = 0, recursively, as this would blowup the
size of the witness to being exponential in the size of the graph.

Instead, in case cj = 0, Zj is an empty string.
How can then the L TM verifier make sure all bj ’s are correct? Here is the crux of the entire

construction and proof: It only needs to count the number of j’s for which bj = 1, and verify it
is correct. It can do that by comparing that number to rl!!

Let us now describe the L TM verifier. Note that read-letter, read-bit, read-number and
verify-path are procedure calls that either read a character, a bit, a log(|V |)-bit number, or verify
a path between s to a vertex of some given length. They all reject unless their input is well
constructed and valid, and read the witness bit-by-bit as necessary.

2

verify()
rl=1
for (l=1..|V|)
if (read-letter() <> ’#’) reject
if (read-number() <> rl) reject
if (read-letter() <> ’#’) reject
r=0
for (i=1..|V|)
bi = read-bit()
if (read-letter() <> ’$’) reject
if (bi=1)

verify-path(l+1, i)
increase r by 1

else verify-no-path(l, i, rl)
if (read-letter() <> ’$’) reject
end
rl=r

end
return(accept)

verify-no-path(l, i, rl)
rl’ = 0
for (j=1..|V|)
ci = read-bit();
if (read-letter() <> ’*’) reject
if (cj=1) then
if (edge (j, i) in G) reject
verify-path(l, j);
increase rl’ by 1

if (read-letter() <> ’*’) reject
end
if rl’ <> rl reject
return(accept)

3

