Theorem [Immerman/Szelepcseny]: NL = coNL

January 10, 2009

Our aim is to show (s, t)-NON-CONNECTIVITY is in NL, which implies the theorem. Let us start with some definitions.

Definition 1. For any directed graph G = (V, E) and a vertex $s \in V$ designated as the start vertex of G, denote

$$reachable(G) \doteq \{ v \in V | s \rightarrow v \}$$

where " \rightarrow " denotes a directed path in G.

Assume $t \in V$ is the designated target vertex in G, and define $G_{-t} = (V, E - V \times \{t\})$ namely, the graph that results from removing from G all edges leading to t. Of course, the above definition applies to it too: reachable (G_{-t}) is the set of all vertexes in G reachable from s without passing through t.

Now, let $reachable_l(G) \doteq \{v \in V | s \mapsto_l v\}$ where " $u \mapsto_l v$ " denotes there is a path from u to v in G of length $\leq l$.

Claim 0.1. For any directed graph G = (V, E) and a designated start vertex s and target vertex t, reachable $(G_{-t}) \subseteq reachable(G)$.

Proof. For $v \in reachable(G_{-t})$, by definition, there is a path $s \rightarrow v$ in G_{-t} , which is also a path in G.

Lemma 0.2. For any graph G,

 $|reachable(G_{-t})| \neq |reachable(G)|$ iff $s \rightarrow t$ in G

Proof. First, note that by definition of G_{-t} , $t \notin reachable(G_{-t})$.

If $s \to t$ then $t \in reachable(G)$ and by the claim $|reachable(G_{-t})| < |reachable(G)|$. If $|reachable(G_{-t})| = |reachable(G)|$ it must be that $t \notin reachable(G)$ as well.

Therefore, to demonstrate there is no path $s \rightarrow t$ in G, it is enough to show that

$$|reachable(G_{-t})| = |reachable(G)|$$

Hence, to show that our problem is in NL, it is enough to give an NL-witness to this fact. Recall that an NL-witness is one that can be verified by an L TM, which reads the witness bit by bit

(cannot go back on the witness tape). Consequently, it suffices to show how to construct an NLwitness for reachable(G) = r for a general G and for the appropriate r. The NL-witness for the above claim can first attest that reachable(G) = r and then that $reachable(G_{-t}) = r$ —for the same r. (An L TM can easily read the graph G however work as if seeing G_{-t}). The L TM can register r from the first part of the witness, and compare it with the second part of the witness. Our remaining goal is to exhibit such an NL-witness to the fact that reachable(G) = r.

Observe that $reachable_{|V|}(G) = reachable(G)$.

The Witness

The NL-witness is constructed inductively: assuming $W \# r_l \#$ is an NL-witness that $reachable_l(G) = r_l$, extend that witness to become an NL-witness attesting that $reachable_{l+1}(G) = r_{l+1}$.

Note that throughout, W, W_i and W_j are variables for presentation purpose (not to be read as actual letters), each representing a string.

Base case: #1# is a trivial proof that $reachable_0(G) = 1$.

Induction step: To extend $W \# r_l \#$ into an NL-witness for l+1, append to it |V| strings, each of the form

 $b_i W_i$

where $b_i = 1$ is interpreted as $i \in reachable_{l+1}$ while 0 that it is not (we assume the set of vertexes is $\{1, \ldots, |V|\}$). Each W_i should be a string representing a witness that b_i indicates correctly whether i is or is not reachable by at most l + 1 steps from s.

In case $b_i = 1$: W_i is simply a path of length $\leq l + 1$ from s to i (represented according to whichever convention as a 0/1 string).

In case $b_i = 0$: W_i is constructed by appending |V| strings, each of the form

 $c_j * Z_j *$

 c_j is a 0/1 bit where c_j should be 1 iff $s \mapsto_l j$ (namely, $j \in reachable_l$). Z_j is then interpreted as a witness that c_j is the correct indication as to whether j is reachable from s within l steps.

If $c_j = 1$: again, Z_j can simply be a path of length $\leq l$ from s to j. Note however that if there is an edge in G from j to i, then $s \mapsto_l j$ implies $s \mapsto_{l+1} i$ and the witness is not well-constructed (recall it is trying to prove b_i indeed should be 0).

It is however not a good idea to proceed, in case $c_j = 0$, recursively, as this would blowup the size of the witness to being exponential in the size of the graph.

Instead, in case $c_i = 0$, Z_i is an empty string.

How can then the L TM verifier make sure all b_j 's are correct? Here is the crux of the entire construction and proof: It only needs to count the number of j's for which $b_j = 1$, and verify it is correct. It can do that by comparing that number to r_l !

Let us now describe the L TM verifier. Note that read-letter, read-bit, read-number and verify-path are procedure calls that either read a character, a bit, a log(|V|)-bit number, or verify a path between s to a vertex of some given length. They all reject unless their input is well constructed and valid, and read the witness bit-by-bit as necessary.

```
verify()
rl=1
for (1=1..|V|)
  if (read-letter() <> '#') reject
  if (read-number() <> rl) reject
  if (read-letter() <> '#') reject
  r=0
  for (i=1..|V|)
  bi = read-bit()
   if (read-letter() <> '$') reject
   if (bi=1)
    verify-path(l+1, i)
     increase r by 1
   else verify-no-path(1, i, rl)
   if (read-letter() <> '$') reject
  end
  rl=r
 end
return(accept)
verify-no-path(l, i, rl)
rl' = 0
for (j=1..|V|)
  ci = read-bit();
  if (read-letter() <> '*') reject
  if (cj=1) then
    if (edge (j, i) in G) reject
    verify-path(l, j);
    increase rl' by 1
  if (read-letter() <> '*') reject
 end
 if rl' <> rl reject
return(accept)
```