NPC notes

This lecture is about NP-
Completeness, and has three parts:
- Reductions,
- the Cook-Levin Theorem
- and NPC problems.

Let us now discuss inmore details how
to use reductions to bound problems'
complexities.

* How to link between
problems’ complexity, while
not knowing what they are
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+ Formalize the notion of "reductions”

+ Define karp reductions

+ Example: show HAMPATH < HAMCYCLE
« Closeness under reductions

+ Define Cook reductions

» Discuss Completeness =/

We'll discuss:

- Karp reductions,

- closeness of classes under
reductions,

- and mention also a more general type
of reductions.

Reductions

cannot be
radically harder
than

+ In other words:

an efficient procedure for A

is at least as
hard as

|

Recall that the general type of
reductions presented earlier, from a
problem A fo a problem B, required us
to show a procedure for A, which calls
on a procedure for B, and so that
assuming an efficient procedure for B,
the procedure for A is also efficient.
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Karp reductions -Definition

: | function f:z*—z* ;
\QXIS"’S a_ - s, 2 po\Y'“'“‘

W that outputs
. ) {lw) on input ¥
s.t. for | is a poly-time

every w WeA & f(w)eB | reduction of A to i
~ - N—————

Let us now define a special case of
these reductions, referred to as a

Karp reduction.

Inthis type of reduction, one
constructs an efficient reduction-
function, which translates an instance
of the problem A to an instance of the
problem B, while maintaining the two
outcomes are the same.

Karp Reductions -llustrated

Namely, the reduction-function
results, for any instance of the
language A, with an instance of the
language B; while for any input outside
the language A, the reduction returns
a string outside the language B.
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/
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*WEA g F(W)EB |1 oe reductions that, by defoult, would be of

ch is called:
‘weA g f(w)eB f";‘,:""""’,_ ¢ gty reduction

al-time Karp reduction

Polynomial-time many-one reductian

Hence, for a reduction of that type to ‘
be proper, one has to show it is
efficient and prove its soundness and

completeness.

All reductions we'll present in the
course, by default, will be of that

type.

Reductions and Efficiency

_ Polynomial-time algorithm for -

,,L Polynomial-time

P algorithm for
%

Let us now make sure that such a
reduction implies that an efficient
procedure for B entails an efficient
procedure for A:

Oninput W we apply the reduction-
function, then apply a procedure for B
on its output, and simply return the
outcome of that application.
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+ Is there a path in G, which goes through
every vertex exactly once?

Formally define Hamiltonian path.

D =

Hamiltonian Path

+ adirected graph 6=(V,E).

[EEET—

+ Is there a simple cycle
in G that paths
through each vertex
exactly once?

Formally define Hamiltonian cycle.
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9 HAMPATH < HAMCYCLE
4 B)-lr o @)

| Completeness:

* Given a Hamiltonian path (v,..,v,) in &,
(vo. -, Vp ) is a Hamiltenian cycle in &

- Soundness: §

* Given a Hamiltonian cycle (vo, ..., v, u) in
&', removing u yields a Hamiltenian path.

Let us now revisit the reduction, from —
Hamiltonian-path to Hamiltonian-cycle,
previously described.

We simply add to the graph an extra
vertex, which is adjacent to all other
vertexes.

The completeness proof as well as a
soundless proof are easy.

Check list

Come up with a reduction-function

ﬁ Show f is polynomial fime computable '

Prove f is a reduction, i.e., show:

v weHAMPATH wm— f(w)eHAMCYCLE
v - weHAMPATH —wm f(w)eHAMCYCLE

Let us now go over the checklists for
making sure the reduction is proper:

- We have described the simple
reduction function.

- Isit efficient? It clearly is.

- Wealso proved both its soundness
and completeness.
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Closeness Under Reductions: Definition

- L isreducibletol and L cC —>
L isalsoinc.

Now that we have formally defined the
notion of an efficient reduction, we
may consider classes that are closed
under such reductions.

Some classes are possibly not closed
under efficient reductions: It may be
the case that we are able to
efficiently reduce one language, not in
the class C, to another language, which
isin the class C.

Canyou think of a class for which this
could potentially happen?

Observation

« P, NP, PSPACE and EXPTIME are
closed under polynomial-time Karp
reductions

+ Do it yourself !l ‘&

Some of the classes we have defined
so far are closed under efficient
reductions.

Prove it
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function f:Z¥—ZI*
. functio : 2 tog-5p00%

M that
f(w) on input W

—Jwed & WWEEE i is a log-space —

reduction of A to I

«L, NL, P, NP, PSPACE and EXPTIME are closed

under log-space reductions. ;

We can consider an even more
efficient type of reductions, namely,
those that can be carried out using
only logarithmic size memory.

Canyou think of a reduction that
follows these guidelines?

Canyou show that even more classes
are closed under such reductions?
Isit clear that these reductions do
what we expect them to do?

How does such a reduction output its
outcome?

E Reductions: General
| Cook Reduction:

| N ”

* Assuming an efficient procedure that

decides B, construct one for A.
Karp isa special case
of Cook reduction:

an efficient procedure for A

using It allows only
an efficient procedure for <all fo B wh
+ who
- Outcome usts:e
OUtputted qg g

Karp reduction is a special case of the
general, Cook reduction. It insists that
the procedure for B is called only
once, and that the outcome is simply
returned as is.

Itisimporfant to note that from now
on we will use only that type of
reduction for our definitions!

Some of the notions we will introduce
do not make sense for the more
general case!
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Cook red. : HAMCYCLE->HAMPATH.

Let E'=E

If E'=0 reject

choose (any) <u, v> in E

If HAMPATH ( <VHw, 2}, E'H{<w,u>, <v,2>}> ) accept

E=E ~{<u v}

Go to step 2

Here is a simple example of a Cook
reduction, for the reduction inthe
other direction, from Hamiltonian
cycle to Hamiltonian path.

T EEsHpleTe Completeness

* For a class C of decision problems and =
language LeC, L is C-complete if:
L'eCe L' is reducible toL.

-~ -~

Ifﬂg' 1 E¢:Eomil p'e!e” !or classes C, C' u C=C'

. A“ Ianguages inC and in C' are reducible

to L, which is in both. Since both are closed
under reductions, they're the samem

- Any LeNPC, LeP = P=NP

Now we're ready to define what it
means for a problem to be complete
for a class. A problem is complete for
aclass, if all problems in that class can
be efficiently reduced to it.

Such a problem then becomes a
representative of that class, in
particular,if the problem is complete
to more than one class, those classes
must be the same.

It follows that: if any NP-complete
language turns out to be in P, then
NP=P!
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Summary

Discussed types of reductions:

+ Cook vs. Karp reductions =
* Poly-time vs. log-space t=

Defined:

- |
& kandC st |
IS C-complete

'/

|} “completeness”

Discussed a way to show:

LY cquality between complexity classes

The Cook/

Levin
theorem:

' SAT is NP-Complete:

We're now going to prove one of the
most basic Theorems of computer
science --- proved by S. Cook and
independently by L. Levin.

We're also going fo see our first NP-
complete problem.
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+ In the beginning...
of NP-Completeness

+ SAT - definition and examples
* The Cook-Levin Theorem
+ Look ahead

21

We'll define the SAT problem, and
then proceed to prove that it is NP-
complete.

Cook-

Levin Theorem

NP Completeness

/o

SAT TInstance:

* A Boolean formula.

|'Decision Problem:

+ Is the formula satisfiable?

f:
< Xl VAN —.x,
:_% (X VX, VX ) A—X ) VX, AX,)

N\ * SAT isin NP + Can verify an ass.
efficiently

SADN or

A SAT formula is a Boolean formula
over Boolean variables.

The decision problem corresponding to
itis, given such a formula as inpuft,
whether there exists an assignment to
the variables that causes the formula
to evaluate to true.

SAT s clearly in NP.
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SIP 254-259

Cook/Levin
-

« SAT is NP-Complete

['Proof Outline: " 2

+ Given an NP machine M and an input w,
construct a Boolean formula ¢y ,
Qu.w Satisfiable < M accepts w.

Pt w
eSAT

SATis, moreover, NP hard, which isa -
much more fundamental statement.

Tt being both in NP and NP hard,
makes it NP-complete.

The proof proceeds by, givena TM M
and any input string W, constructing a
SAT formula (which depends on both

M and W) that is satisfied if and only
if the TM M accepts the string W.

Tableaux

machine’
s state

A computation of a (non deterministic)
TM can be described in a table, where
the i'th row corresponds to the
configuration of the machine after i
steps.

To describe a configuration, one
specifies the content of each cell, as
well as the machine's state, written (in
our convention) to the left of where
the machine's head is located.

For an NP TM, the size of the table is
polynomial in the size of the input.
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= 9091 Qeccept Greject) Example
= {0, 1}

ﬁ ) g@g%gg@

(8 [ [ [ [ [ |

ﬁ= {0, 1.) = g@@,gg

8(Ge1)={(y_R)} L8 [ | [ | o [ [

5(ay,1)={(q0,_R)}
5(q0,0)={(a_R)}
5(q,,0)={(q,,_R)}
5(0:)={(Gucor 0}
(9, )={(qrepr L)}

o

Let's see an example for a
configurations' table for a very simple
TM.

Canyou say what language this TM
accepts?

Go over this table and convince
yourself that it is indeed legal,
assuming the first configuration
correctly corresponds to a given input.

A (TUQUH)P

- (q()'q 1 'qoc«g': quacf)

= {0, 1}

={0. 1, }

=Y T 2
|
HEg
G
|

8(q0,1)={(q5,_R)} =1 Q m
5(qy,1)={(q0_R)} %% v iro-f o—
8(90.0)={(d0._R)} T iy
8(q,,0)={(qy,_R)} gm

(60 )={(Geo )
15(95,)={(qrepL)}

Let us concentrate for amoment ona
3 by 2 window of the configurations’
table.

Which of the listed examples is legal?
To figure that out systematically, one
should start from a legal combination
of five entries, and apply all possible
options for these cells in the next
configuration. If the machines head is
nowhere in those five entries, the
middle three entries should be copied
as is. Otherwise, apply all possible
transitions and register all possible
combinations for the middle three
entries.

Clearly,the description of a legal
computation would have all the local
windows legal.

You should convince yourself that a
table of which all local windows are
legal indeed corresponds to a legal
computation.
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Pp w Variables

A SAT formula however has Boolean
variables.

The Boolean variables of the formula
constructed in the reduction are as
follows:

each corresponds to an entry of the
table plus a potential value for that
entry.

Puw = (pM w
1 value to
each entry

input
consistent

locally legal transition

Al v
Ot s<on®| (%0501 518 %.1-%.052))

machine
accepts

accepting configuration

0%, json”

We are now ready to describe the
formula that results from the
reduction.

The first part of the formula verifies
that the value assigned to the Boolean
variables corresponds to an assignment
of one value to each entry of the
table.

The second part of the formula
verifies that the first row of the
tableis legal and moreover that it
corresponds to the input string W.
The third part of the formula verifies
that all local windows are legal.

The fourth and last part of the
formula verifies that the computation
enters an accepting state.

NPC Page 14




Py =

A (Cvﬁ)” QED

et T Qo)) Y,

G
i+

tsi et | se{Poagr)

Maos A-‘imh "'\1\2\., et -‘ilml.u;, Ao, A Ao Aot

A v A [X 3
0<i /:m‘l:,\w RO PR ;.\'\‘,[V'f“ 12,40, L S Ay ]:H

* Vi, transition is locally legal 4% tableau legal

“Corollary’ -
* @y« Satisfiable g Wel,

+ Size of ¢y ,, polynomial in |W|
29

To complete the proof, one needs to
make sure that the formula can be
satisfied if and only if the input is
accepted, and that it is of polynomial
size in the size of the input.

SAT is NPC

S

AVSN
o ONYY

We have just shown
SAT is NP-hard,as

any NP language can
be reduced to =7

AR

2.8
)2 (o

1 AN

30

We have just shown that any language
in NP can be efficiently reduced to
SAT. This implies SAT is NP hard.
Since we have already shown SAT isin
NP, we conclude that SAT is NP-
complete.
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P, NP, co-NP and NPC

SATisour first NP-complete language.

Ifitturns out to beinP, then the
class NP and the class P are the same
(and so is a class coNP).

If however SAT turns out nhot to bein
the class P, it must be that the class P
is different than the class NP.

The class coNP in that case must be
different than the class P, however it
could still be the same as the class NP!

Henceforth, to show
a problem A is NP
lhard, it suffices to

peduce SAT 1o 4

Now that we have shown SAT is NP
hard, to show other problems are NP
hard, we may Karp-reduce SAT to
them. We don't have fo repeat this
proof for every problem we wish to
show NP-hard.

What would happen if we replace Karp-
reduction to a more general case?
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Furthermore, once
we've shown A is NP
hard, we can reduce
from it to show other
pr‘oblcms NP-hare

This is true in general:

If we have proven some language to be
NP hard, we may Karp-reduce it to
other languages, to show them tfo be
NP hard as well.

Summary

to proceed and show other
problems are NF-hard
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+ introduce some additional
NP-Complete problems.

CLIQUE & INDEPENDENT -

We're now ready to prove some more
problems are NP-complete:

We'll begin with the 3SAT problem,
defined below.

Then go over CLIQUE and
Independent-Set.

SET 3
Independent Set
yose 4 v o Recall that a language is NP-complete
R SAT and NPC if it is in NP and is also NP-hard,

* L NP-hard - via Karp-reduction

| So far we only showed one such problem:

+ which, however, is not up for the tasks ahead

| Next we show a special case of g

‘ *LInNP

* 3SAT
= e onjunctive jormal Form -
« 3CNF formula 3 |ifel‘ﬂ‘5 in each clause
5 —)
A 5 )oYV
D o (xvyv " e
« Is it satisfiable? g (xvx v ;

We've shown SAT is NP-hard,
however, for forthcoming reductions
such general formulas are not
adequate.

For that purpose, we introduce a
special case of SAT, namely that of
3SAT:

A 3SAT formula takes the form of
CNF (= Conjunctive normal form, or in
other words, an AND of OR clauses).
Itis further restricted so as to bea
3CNF, namely, allow only 3 literals in
every OR clause.

The language 3SAT consists of all such
formulas that have an assignment that
satisfies them.
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(SIP 259 260, 3SAT is NPC
SRR\ is a special
+ 3SAT € NPe case of SAT.
- 3SAT e NP-hard Does
) Proot: 3 this
- amend our SAT formula, so it becomes 3CNF uffice?

* First make it a CNF: use DNF—-CNF on 3™ line

Puw =

A AV \‘“i‘i A (X, V \‘“)l‘
1si gsant | \sedTQode)) e e ] )
Maar A Yarg, \u:u, A9 \ﬂn'lu” A A Mg Mosias
- What is
A |: Y |: A [.\'M s H the size
Ost p<cn’| (39 0% ,1 0,08 1 82,04, JeAy | F=0,1.2.7'=0,1
Y of new
o '.,r.\l/“u S {""ﬂlllln/
. e 2 L
CNF—>3CNI
(XVY)A(X VXV VXA
replication split
(xvyvx)
(% v X3 v €33 IN(~C11V X5 VE12 A Al / Xy gVy)
fa) is | w
)
¢

Com
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'35ATis clearly in NP as there exists a

witness of membership that can be
efficiently verified (even more
generally, being a special case of SAT,
it must be in NP).

To prove that 3SAT is NP-hard, it
suffices to efficiently alter the SAT
formula we had obtained previously
into the proper form.

We start by converting it to a CNF
formula. The only problematic part is
the one that corresponds to the local
windows.

Still, since for each window the
formula size is constant, we can apply
the DNF to CNF general (albeit with a
potentially exponential blowup)

translation, and be fine.

Now we need to franslate a general

CNF to 3CNF.

For that purpose, one needs to replace
each clause with asimple set of 3-wide
clauses utilizing some extra variables,
while maintaining satisfiability of the
original clause.

This transformation is fairly simple

This completes the proof that 3SAT is
NP-complete.



CLIQUE instance:
+ A graph 6=(V,E) and a threshold k

B | Decision problem:

+ Is there a set of nodes
C={v,,..., vJcV, s.t. Vu,veC: (u,v)eE

Observation:
- CLIQUE e NP

* Given C, verify all inner edges are in &

Now let us consider the CLIQUE
problem.

The basic question is simple: given a
graph, what is the largest set of
vertexes whose induced sub-graph is
complete?

CLIQUE is clearly in NP: the proof of
membership is simply a set of vertexes
constituting a clique, which can be
easily verified.

To show the CLIQUE problem is NP-
hard, we'll reduce 3SAT to it.

The set of vertexes consists of one
vertex for every occurrence of every
variablein the formula.

Vertexes that correspond to the same
clause are regarded as inconsistent,
hence there are no edges between
them.

The only other edges missing from the
graph correspond to two different
literals of the same variable.

The threshold for the size of the
CLIQUE, Kk, is set to be the number of
clauses of the 3SAT formula.
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SAT <, CLIQUE: proof
. s each triple
| avhwy disconnected
3 k-clique has 1
xvovs

vertex in each

| Completeness:
+ Let A be a satisfying assignment to ¢, C(A)
contains 1 v, s.t. A(v,) for every clause

Soundness:
* Inaclique Cin & of size k, each variable
has <1 of its literals-vertex in C
+ extend to a satisfying assignment to ¢

Since there are no edges between a
triplet,a CLIQUE of size k must
comprise one vertex in each triplet.

If there exists a satisfying
assignment, one can pick one vertex
for each clause, insisting it
corresponds to a literal satisfied by
the assignment.

These vertexes form a CLIQUE and
they are all consistent (exactly one
vertex for each triplet, and never a
variableand its negation).

If there exists a CLIQUE of size k in
the graph, every variablehas at most
one of its literals occurring in the
CLIQUE. Assignhing the variables so
that those literals are TRUE (and
assighing arbitrary values to all other
variables) satisfies the 3SAT formula.

INDEPENDENT-SET is NPC

* A graph 6=(V,E) and a threshold k

[ Decision problem:

+ Is there a set of nodes

Observation: Clique=ls on

< IS isNP-hard ~ €©mplement grap,

Let us now consider the problem of
independence set:

Given any graph, what is the largest
set of vertexes for which the induced
sub-graph is empty?

The problemiis clearly in NP and, in
fact, also clearly NP-hard.

Itisin fact the same as the CLIQUE
problemonly on the complement graph.
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Reductions

wees|  WWindex

EXPTIME

- | .
L= W Hamilton, William
” | ‘* Rowan
Completeness | >

J

D

|
@M

B\ Cook, Stephen
i Arthur

\

43

e Reductions

e Polynomial Time Reductions
 Completeness

» Hamiltonian Path

* Log Space Reductions
e Complexity Classes

- P

* NP

* co-NP

+ EXPTIME

°L

e NL

» PSPACE

» Completeness
Hamilton, William Rowan

e Karp,Richard
* Cook, Stephen Arthur

Cook-Levin
Theorem

Cook-Levin
Theorem
-

Clique

Independent
Set

Subset Sum

CNF

NP Hard

WWindex

4

* SAT

e Cook-Levin Theorem
e Cook-Levin Theorem
« NPC

* Clique

e Subset Sum

* CNF

e NP Hard

e Independent Set

e 35AT
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