
In this lecture we discuss the 

complexity of approximation problems, 

and show how to prove they are NP-

hard.

We will show how one can prove such 

results and then apply this technique 

to some approximation problems.

PCP Theorem

PCP Notes
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Let us start with a general definition 

of promise problems: these are 

problems in which the algorithm is 

required to accept some inputs and 

reject others, however, unlike in 

algorithm for languages, some inputs 

are "don't care", and the algorithm 

may return whatever answer. 

The problem is therefore easier, and 

showing such a problem is NP-hard 

implies all languages that agree with it 

on the good and bad inputs are NP-

hard as well. 

Gap problems are a special case of 

promise problems.

Let us recall the general framework of 

optimization problems --- either 

minimization or maximization problems. 

These problems allow some type of 

solution and measures those solutions 

according to the optimization 
parameter.

The goal is to find the best solution 

according to the parameter --- one 

which either minimizes or maximizes 

the parameter.

An approximation algorithm is 

guaranteed to find a solution which, 

although not optimal, is nevertheless 

within the approximation factor from 

optimal.
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Gap problems partitions the input 

instances into 3 categories according 

to the optimized parameter of their 

best solution. 

It introduces two thresholds. 

If the optimal solution is better than 

the good threshold, the input is good. 

If it is worse than the bad threshold 

the input is bad. 

In the in between ---gap--- the input is 

a "don't care" input.

An approximation algorithm whose 

factor of approximation is better than 

the ratio between the two thresholds
can be easily adapted to solve the gap
problem. Hence, if the gap problem is 

NP-hard then so is the approximation 

problem.

As much as 3SAT is the grandparent 

of all NP-complete problems, the gap 

3SAT problem can serve the same role 

for gap problems. 

The good threshold is 1, namely, the 

same as in 3SAT all formulas that are 

completely satisfiable. 

Bad inputs are those for which only 

7/8+fraction of the clauses can be 

satisfied by any given assignment. 

We will next see why we chose the 7/8 

fraction.
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In general, any 3SAT instance that 

has clauses with exactly 3 independent 

literals, has an assignment that 

satisfies 7/8 of the clauses.

To show that, we apply a very simple 

probabilistic method argument: we 

show the probability, over a random 

assignment to the variables, to satisfy 

7/8 of clauses, is positive, hence there 

must be such an assignment.

What is the average, uniformly over all 

assignments, of the fraction of clauses 

satisfied? 

We show it is 7/8.

To see that, assume a variable Yi that 

is 1 if clause Ci is satisfied and 0 

otherwise. 

For any i, the average value of Yi is 

7/8, as 7 of all 8 possible assignments 

to its 3 variables satisfy it.
Now look at the average number of 

clauses satisfied: it is the same as the 

sum of averages (by linearity of 

expectation or in simple terms change 

of order of summation) --- that sum is 

of course simply 7/8 of the number of 

clauses.

Now, by the law of averages, there 

must be at least one assignment that 

achieves this average.
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Now, let us go back to gap-3SAT and 

state one of the versions of the PCP 

theorem, which is that the problem is 
NP-hard. That is, any NP problem can 

be Karp-reduced to a 3CNF instance, 

so that if the input is good the 

outcome of the reduction is a 

completely satisfiable formula (as in 

Cook/Levin theorem). If the input is 

bad, however, the reduction results in 

a formula for which the maximum
satisfiable fraction of clauses is only 

slightly above 7/8.

This can be viewed as an alternative, 

much stronger characterization of NP 

than the one of Cook/Levin.

The proof of this theorem is possibly 

the most elaborated in Computer 

Science with a matching impact, and 

not too many mathematical proofs 

beat it in that respect. It is hence way 

beyond the scope of this course. 

Nevertheless, we'll assume it is true 

and proceed to show some of its 

fundamental implications.
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Recall the characterization of NP we 

used before, namely as all languages 

for which a witness of membership can 

be verified efficiently. 

Now consider a very limited verifier 

for the membership proof --- one who 

is only allowed to read a constant 
number of bits of the witness proof. 

Nevertheless, it may choose which bits 

to read by flipping random coins, and 

then may err with small probability 

(accept a bad input, that is, fail to 

discover an error in the membership 

proof).

Our gap-3SAT above is accepted by 

this framework: assuming the 

membership proof is simply an 

assignment to the formula's variables, 

the verifier can choose a constant 

number of clauses and see if they are 

satisfiable. 

A satisfying assignment passes this 

test with probability 1. In case no 

assignment can satisfy 7/8+epsilon of 

the clauses the probability of all 

chosen clauses to be satisfied 

becomes arbitrarily small.

It therefore follows (assuming the PCP 

theorem) that all languages in NP have 

membership proof that can be verified
probabilistically reading only a 

constant number of their bits.
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Here’s a possible scenario which can 

paint a nice picture of the subject 

matter.

Suppose someone wants to deposit 

some money in a bank account, without 

being identified.

Associated with the bank account 

there will be a secret known only to 

the owner of the account (whose 

responsibility is not to reveal it to 

anyone unauthorized).

The natural candidate for such a 

secret is an input to a hard 

computational problem, which is 

designed so as for the account owner 

to know the solution for.

The owner, wanting to carry out some 

transaction, would prove to the bank 

clerk she/he knows the solution for 

the specific input.

Now, to make the process much 

faster, we can assume the solution is 

encoded so that the bank clerk can 

read only very few bits and thus verify 

the correctness of the solution, albeit, 

with some negligible probability of 

error, which can be made arbitrarily 

small.
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Now, let us consider other 

approximation problems, e.g. max-
CLIQUE.

How about approximating it?

Look at a special type of graphs: 

consisting of m pair-wise disjoint 

independent sets, each containing 3 

vertexes.

If we prove hardness for this special 

case, it still applies to the general 

case, however we may later utilize this 

special structure.

Now, define a gap problem, where good 

inputs have a clique with a 

representative in every independent 

set, while the largest clique in a bad 

input is of size less than 7/8+epsilon 

of that number.
This problem is NP-hard.

To prove such a theorem, we need to 

introduce a special type of reduction, 

and apply one from gap-3SAT to 

approximation of Max-CLIQUE.

As a corollary max-CLIQUE is NP-hard 

to approximate to within the 

corresponding factor.
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A gap-preserving Karp-reduction, from 

one gap-problem to another, is one 

that takes good inputs to good inputs, 

bad inputs to bad one, and takes 

"don't care" inputs to whatever inputs 

it happens to.

We now revisit the same reduction we 

used to show that CLIQUE is NP-hard, 

and prove it to be a gap preserving 

reduction, from gap-3SAT to gap-

CLIQUE with the same gap.

Completeness is clearly the same (it is 

exactly the same statement).
As to soundness: note that a clique of l 

vertexes can be utilized to construct 

an assignment, by making TRUE all 

literals appearing in it --- this must 

satisfy all clauses the clique has a 

representative in. Hence, the 

assignment satisfies l clauses.
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Let us now generalize some 

optimization problems we have 

discussed earlier, by introducing the 

constraints graph (CSG) problem:

The input is a graph, a set of possible 

values for the vertexes (colors), and a 

set of constraints, specifying for each 

edge which pairs of colors are allowed 

at its ends.

There are two possible variants of the 

problem:
In the first, we allow vertexes to 

remain uncolored, however require all 

constraints between colored vertexes 

be satisfied. In this case, the 

parameter to maximize is the fraction
of vertexes colored.
The other, more natural, variant, 

colors all vertexes and the maximized 

parameters is the fraction of edges 

whose constraints are satisfied.

Numerous optimization problems we’ve 

looked at fall under this general 

definitions. 

See if you can identify for those 

where is the relevant gap for which 

the problem is easy, and where it may 

be hard.
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When looking at gap-CSG, even when 

the alphabet (colors) set is of size 3, 

for the appropriate gap, the problem 

is NP-hard, which is the case as 3SAT 

can be reduced to it.

In fact, we have just established NP-

hardness of gap-V-CSG above.

Another important observation is that 

any CSG problem can be directly 

reduced to a Independent Set (or 

CLIQUE) problem as follows:

Have a vertex for each pair of a 

vertex and color of the CSG instance, 

and incorporate the appropriate edges 

(are these pairs of vertex/color 

consistent?).

This is in fact the reduction we’ve just 

seen from 3SAT to CLIQUE --- it 

turns out to be a general reduction 

from CSG to IS or CLIQUE.

Here is an obvious problem with our 

picturesque motivating story:
How can we prevent the bank clerk 

from going to another branch and 

solving our problem there to an 

unsuspecting other clerk?

Well, can we at least design a protocol 

in which the account owner reveals 

only a small fraction of the colors to 

the vertexes of the constraints 

graph?
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It turns out we can in general 

“amplify” any CSG problem. The 

reduction goes as follows:

Given a CSG instance, construct a 

new instance in which 
Every vertex corresponds to a 

sequence of l vertexes of the original 

graph. 

-

The new set of colors will assign a 

vertex with coloring for all l original 

vertexes.

-

The new constraints consist of any 

inconsistency in coloring that may 

occur. Namely, if two new vertexes 

are colored so that the same original 

vertex is colored differently, or if 

colors to the two ends of an original 

edges do not satisfy the constraint 

corresponding to that edge.

-

Let us now consider the first variant, 

where one tries to maximize the 

fraction of vertexes colored.

Given a consistent coloring of the 

original graph, one can naturally 

extend it to the new graph.

Now, suppose you have a coloring of 

the new graph. Take all colorings of 

the original graph (appearing in any 

vertex corresponding to an l-

sequence containing it). These colors 

are everywhere consistent. 
If they happen to color an fraction 

of the original vertexes, the coloring 

of the new graph must avoid any l-

sequence containing any of the 1-

fraction of uncolored vertexes, 

which implies it must be of size at 

most  l.
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The three last claims we prove, 

combined, implies that it is hard to 

approximate the IS (or CLIQUE) size 

to within any constant factor.

Make sure you see how come.

Does this prohibits the bank clerk  

from posing as the account owner?

Not really! Despite the fraction being 

arbitrarily small, the amount of 

information may be enough to 

reconstruct the entire coloring…

So, can we change the problem so that 

there are many symmetric solutions?
Can we transform the general CSG 

problem to one in which colors are 

0…q-1 and all constrains simply specify 

some differences (mod q) that are 

allowed?

This will imply adding any d (mod q) to 

all colors results in a coloring 

satisfying the same constraints.
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Here is a definition of the qCSG.

Colors are 0…q-1 and for each edge 

defines satisfying differences 

between colors (mod q).

We will next prove one can reduce any 

CSG to such a CSG while making the 

number of new colors polynomial in the 

number of vertexes times the number 

of old colors.

Before proving the theorem, let us 

note that as a corollary, the Chromatic 

Number of a graph is hard to 

approximate to within any constant. 

(Assuming IS is hard to approximate 

to within a constant power of the 

number of vertexes, this would imply 

an even stronger result --- can you see 

what would the factor be?).
To see why this corollary is true, let us 

consider the coloring number of the 

graph resulting from the CSG-to-IS 

reduction we studied earlier.

In case the CSG instance is 

completely satisfiable, look at all 

shifts of the coloring –--where one 

adds the shift value d (mod q) to the 

colors of all vertexes--- and observe 

these are all good coloring as well. 

Each of these, when translated to an 

IS in the IS-graph forms an IS so 

that they are all pair-wise disjoint. 

Hence, their union covers all the 

graph, namely, colors it with q colors.

In case the CSG instance maximal 

good coloring colors only a  fraction 

of the vertexes, a cover by IS’s must 

consist of at least 1/ IS's in order to 

cover all vertexes. In that case, the 

chromatic number of the resulting 

graph is at least q/.
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For the purpose of this reduction, let 

us introduce a mapping, assigning each 

element in some set U with a number 

mod q, and so that the sum of triplets 

are unique.

Namely, take any three elements (with 

repetition) of U, apply the mapping T 

to them and add (mod q) --- the 

number you get is unique to that 

triplet.

One can incrementally and 

simplistically construct such a mapping, 

as long as q is at least the |U|5.

At each step the elements that are 

prohibited correspond to 5 elements 

whose values disallow that number. So, 

for such a q, there’s always a number 

(mod q) allowed.

Note that such a mapping is also unique 

for pairs (add the same elements to 

both pairs) and of course for single 

elements.
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Now it’s time to prove the Theorem, that 

is, show a reduction from a general CSG 
problem to one in which each constraint is 

derived by some set of allowed 
differences (CSG)
Before we start with the reduction let us 

assume the graph is a complete graph, 
that is, there is a constraint between any 

two vertexes. If two vertexes have no 
constraint simply add a trivial constraint.
Now, set q to be the range necessary for 

the mapping T so as to map all pairs (v, i) 
for any vertex v and color I (U=V×).
For any pair u,v let the allowed 

differences be all T(u, i)-T(v, j) where u,i 
and v,j are consistent.
This is the reduction --- let’s proceed to 

the proof of correctness.
Completeness is rather easy – given a 

coloring A to the original graph, let the 
coloring for the constructed graph A’ 

color each vertex v by T(v, A(v)).
As to soundness, let us prove –given an 

assignment A’ to the new, constructed 
graph– that there is a global shift d, so 

that if one subtract d from all colorings 
of A’, and then inverse T, one gets a 

coloring of the original graph.
Let us first assign a shift dA’(u,v) to every 

pair u,v so that both u and v are colored 
by A’ – then show these shifts are all the 

same.
The shift is how much one should subtract 

from both colors so as to get it to values 
of T. This shift is well defined (there is 

exactly one such shift) as otherwise T is 
not unique for pairs.
Now look at triplets u,v,w all of which are 

colored by A’. The shift for u.v must be 
the same as the shift for v,w ---

otherwise T would not be unique for 
triplets (the sum of the three difference 

is clearly 0 – every element has one 
positive and one negative occurrences).
Finally, for a general set of colored 

vertexes, if the shifts are not everywhere 
consistent, there must be a vertex v, so 

that the shift for u,v and the shift for 
v,w are not consistent. But that’s an 

inconsistent triplet, which cannot exist as 
we just proved.
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