
In this lecture we discuss the

complexity of approximation problems,

and show how to prove they are NP-

hard.

We will show how one can prove such

results and then apply this technique

to some approximation problems.

PCP Theorem

PCP Notes

 PCP Page 1

onenote:Arora-Barak%20Textbook.one#Chapters%207-12§ion-id={E445E0FD-9715-4099-B31B-8F5AECC6021A}&page-id={3CC1D72C-19C2-43A6-B0D8-2BBD9E66D873}&object-id={A5FA954F-ED1E-096A-187A-5FDD024361BE}&B&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote

Let us start with a general definition

of promise problems: these are

problems in which the algorithm is

required to accept some inputs and

reject others, however, unlike in

algorithm for languages, some inputs

are "don't care", and the algorithm

may return whatever answer.

The problem is therefore easier, and

showing such a problem is NP-hard

implies all languages that agree with it

on the good and bad inputs are NP-

hard as well.

Gap problems are a special case of

promise problems.

Let us recall the general framework of

optimization problems --- either

minimization or maximization problems.

These problems allow some type of

solution and measures those solutions

according to the optimization
parameter.

The goal is to find the best solution

according to the parameter --- one

which either minimizes or maximizes

the parameter.

An approximation algorithm is

guaranteed to find a solution which,

although not optimal, is nevertheless

within the approximation factor from

optimal.

 PCP Page 2

Gap problems partitions the input

instances into 3 categories according

to the optimized parameter of their

best solution.

It introduces two thresholds.

If the optimal solution is better than

the good threshold, the input is good.

If it is worse than the bad threshold

the input is bad.

In the in between ---gap--- the input is

a "don't care" input.

An approximation algorithm whose

factor of approximation is better than

the ratio between the two thresholds
can be easily adapted to solve the gap
problem. Hence, if the gap problem is

NP-hard then so is the approximation

problem.

As much as 3SAT is the grandparent

of all NP-complete problems, the gap

3SAT problem can serve the same role

for gap problems.

The good threshold is 1, namely, the

same as in 3SAT all formulas that are

completely satisfiable.

Bad inputs are those for which only

7/8+fraction of the clauses can be

satisfied by any given assignment.

We will next see why we chose the 7/8

fraction.

 PCP Page 3

In general, any 3SAT instance that

has clauses with exactly 3 independent

literals, has an assignment that

satisfies 7/8 of the clauses.

To show that, we apply a very simple

probabilistic method argument: we

show the probability, over a random

assignment to the variables, to satisfy

7/8 of clauses, is positive, hence there

must be such an assignment.

What is the average, uniformly over all

assignments, of the fraction of clauses

satisfied?

We show it is 7/8.

To see that, assume a variable Yi that

is 1 if clause Ci is satisfied and 0

otherwise.

For any i, the average value of Yi is

7/8, as 7 of all 8 possible assignments

to its 3 variables satisfy it.
Now look at the average number of

clauses satisfied: it is the same as the

sum of averages (by linearity of

expectation or in simple terms change

of order of summation) --- that sum is

of course simply 7/8 of the number of

clauses.

Now, by the law of averages, there

must be at least one assignment that

achieves this average.

 PCP Page 4

Now, let us go back to gap-3SAT and

state one of the versions of the PCP

theorem, which is that the problem is
NP-hard. That is, any NP problem can

be Karp-reduced to a 3CNF instance,

so that if the input is good the

outcome of the reduction is a

completely satisfiable formula (as in

Cook/Levin theorem). If the input is

bad, however, the reduction results in

a formula for which the maximum
satisfiable fraction of clauses is only

slightly above 7/8.

This can be viewed as an alternative,

much stronger characterization of NP

than the one of Cook/Levin.

The proof of this theorem is possibly

the most elaborated in Computer

Science with a matching impact, and

not too many mathematical proofs

beat it in that respect. It is hence way

beyond the scope of this course.

Nevertheless, we'll assume it is true

and proceed to show some of its

fundamental implications.

 PCP Page 5

Recall the characterization of NP we

used before, namely as all languages

for which a witness of membership can

be verified efficiently.

Now consider a very limited verifier

for the membership proof --- one who

is only allowed to read a constant
number of bits of the witness proof.

Nevertheless, it may choose which bits

to read by flipping random coins, and

then may err with small probability

(accept a bad input, that is, fail to

discover an error in the membership

proof).

Our gap-3SAT above is accepted by

this framework: assuming the

membership proof is simply an

assignment to the formula's variables,

the verifier can choose a constant

number of clauses and see if they are

satisfiable.

A satisfying assignment passes this

test with probability 1. In case no

assignment can satisfy 7/8+epsilon of

the clauses the probability of all

chosen clauses to be satisfied

becomes arbitrarily small.

It therefore follows (assuming the PCP

theorem) that all languages in NP have

membership proof that can be verified
probabilistically reading only a

constant number of their bits.

 PCP Page 6

Here’s a possible scenario which can

paint a nice picture of the subject

matter.

Suppose someone wants to deposit

some money in a bank account, without

being identified.

Associated with the bank account

there will be a secret known only to

the owner of the account (whose

responsibility is not to reveal it to

anyone unauthorized).

The natural candidate for such a

secret is an input to a hard

computational problem, which is

designed so as for the account owner

to know the solution for.

The owner, wanting to carry out some

transaction, would prove to the bank

clerk she/he knows the solution for

the specific input.

Now, to make the process much

faster, we can assume the solution is

encoded so that the bank clerk can

read only very few bits and thus verify

the correctness of the solution, albeit,

with some negligible probability of

error, which can be made arbitrarily

small.

 PCP Page 7

Now, let us consider other

approximation problems, e.g. max-
CLIQUE.

How about approximating it?

Look at a special type of graphs:

consisting of m pair-wise disjoint

independent sets, each containing 3

vertexes.

If we prove hardness for this special

case, it still applies to the general

case, however we may later utilize this

special structure.

Now, define a gap problem, where good

inputs have a clique with a

representative in every independent

set, while the largest clique in a bad

input is of size less than 7/8+epsilon

of that number.
This problem is NP-hard.

To prove such a theorem, we need to

introduce a special type of reduction,

and apply one from gap-3SAT to

approximation of Max-CLIQUE.

As a corollary max-CLIQUE is NP-hard

to approximate to within the

corresponding factor.

 PCP Page 8

A gap-preserving Karp-reduction, from

one gap-problem to another, is one

that takes good inputs to good inputs,

bad inputs to bad one, and takes

"don't care" inputs to whatever inputs

it happens to.

We now revisit the same reduction we

used to show that CLIQUE is NP-hard,

and prove it to be a gap preserving

reduction, from gap-3SAT to gap-

CLIQUE with the same gap.

Completeness is clearly the same (it is

exactly the same statement).
As to soundness: note that a clique of l

vertexes can be utilized to construct

an assignment, by making TRUE all

literals appearing in it --- this must

satisfy all clauses the clique has a

representative in. Hence, the

assignment satisfies l clauses.

 PCP Page 9

Let us now generalize some

optimization problems we have

discussed earlier, by introducing the

constraints graph (CSG) problem:

The input is a graph, a set of possible

values for the vertexes (colors), and a

set of constraints, specifying for each

edge which pairs of colors are allowed

at its ends.

There are two possible variants of the

problem:
In the first, we allow vertexes to

remain uncolored, however require all

constraints between colored vertexes

be satisfied. In this case, the

parameter to maximize is the fraction
of vertexes colored.
The other, more natural, variant,

colors all vertexes and the maximized

parameters is the fraction of edges

whose constraints are satisfied.

Numerous optimization problems we’ve

looked at fall under this general

definitions.

See if you can identify for those

where is the relevant gap for which

the problem is easy, and where it may

be hard.

 PCP Page 10

Inserted from: <file://V:\lotan\Muli\PowerPoint_Slides\Final\PCP .pptm>

When looking at gap-CSG, even when

the alphabet (colors) set is of size 3,

for the appropriate gap, the problem

is NP-hard, which is the case as 3SAT

can be reduced to it.

In fact, we have just established NP-

hardness of gap-V-CSG above.

Another important observation is that

any CSG problem can be directly

reduced to a Independent Set (or

CLIQUE) problem as follows:

Have a vertex for each pair of a

vertex and color of the CSG instance,

and incorporate the appropriate edges

(are these pairs of vertex/color

consistent?).

This is in fact the reduction we’ve just

seen from 3SAT to CLIQUE --- it

turns out to be a general reduction

from CSG to IS or CLIQUE.

Here is an obvious problem with our

picturesque motivating story:
How can we prevent the bank clerk

from going to another branch and

solving our problem there to an

unsuspecting other clerk?

Well, can we at least design a protocol

in which the account owner reveals

only a small fraction of the colors to

the vertexes of the constraints

graph?

 PCP Page 11

file://V:\lotan\Muli\PowerPoint_Slides\Final\PCP .pptm

It turns out we can in general

“amplify” any CSG problem. The

reduction goes as follows:

Given a CSG instance, construct a

new instance in which
Every vertex corresponds to a

sequence of l vertexes of the original

graph.

-

The new set of colors will assign a

vertex with coloring for all l original

vertexes.

-

The new constraints consist of any

inconsistency in coloring that may

occur. Namely, if two new vertexes

are colored so that the same original

vertex is colored differently, or if

colors to the two ends of an original

edges do not satisfy the constraint

corresponding to that edge.

-

Let us now consider the first variant,

where one tries to maximize the

fraction of vertexes colored.

Given a consistent coloring of the

original graph, one can naturally

extend it to the new graph.

Now, suppose you have a coloring of

the new graph. Take all colorings of

the original graph (appearing in any

vertex corresponding to an l-

sequence containing it). These colors

are everywhere consistent.
If they happen to color an fraction

of the original vertexes, the coloring

of the new graph must avoid any l-

sequence containing any of the 1-

fraction of uncolored vertexes,

which implies it must be of size at

most  l.

 PCP Page 12

The three last claims we prove,

combined, implies that it is hard to

approximate the IS (or CLIQUE) size

to within any constant factor.

Make sure you see how come.

Does this prohibits the bank clerk

from posing as the account owner?

Not really! Despite the fraction being

arbitrarily small, the amount of

information may be enough to

reconstruct the entire coloring…

So, can we change the problem so that

there are many symmetric solutions?
Can we transform the general CSG

problem to one in which colors are

0…q-1 and all constrains simply specify

some differences (mod q) that are

allowed?

This will imply adding any d (mod q) to

all colors results in a coloring

satisfying the same constraints.

 PCP Page 13

Here is a definition of the qCSG.

Colors are 0…q-1 and for each edge 

defines satisfying differences

between colors (mod q).

We will next prove one can reduce any

CSG to such a CSG while making the

number of new colors polynomial in the

number of vertexes times the number

of old colors.

Before proving the theorem, let us

note that as a corollary, the Chromatic

Number of a graph is hard to

approximate to within any constant.

(Assuming IS is hard to approximate

to within a constant power of the

number of vertexes, this would imply

an even stronger result --- can you see

what would the factor be?).
To see why this corollary is true, let us

consider the coloring number of the

graph resulting from the CSG-to-IS

reduction we studied earlier.

In case the CSG instance is

completely satisfiable, look at all

shifts of the coloring –--where one

adds the shift value d (mod q) to the

colors of all vertexes--- and observe

these are all good coloring as well.

Each of these, when translated to an

IS in the IS-graph forms an IS so

that they are all pair-wise disjoint.

Hence, their union covers all the

graph, namely, colors it with q colors.

In case the CSG instance maximal

good coloring colors only a  fraction

of the vertexes, a cover by IS’s must

consist of at least 1/ IS's in order to

cover all vertexes. In that case, the

chromatic number of the resulting

graph is at least q/.

 PCP Page 14

For the purpose of this reduction, let

us introduce a mapping, assigning each

element in some set U with a number

mod q, and so that the sum of triplets

are unique.

Namely, take any three elements (with

repetition) of U, apply the mapping T

to them and add (mod q) --- the

number you get is unique to that

triplet.

One can incrementally and

simplistically construct such a mapping,

as long as q is at least the |U|5.

At each step the elements that are

prohibited correspond to 5 elements

whose values disallow that number. So,

for such a q, there’s always a number

(mod q) allowed.

Note that such a mapping is also unique

for pairs (add the same elements to

both pairs) and of course for single

elements.

 PCP Page 15

Now it’s time to prove the Theorem, that

is, show a reduction from a general CSG
problem to one in which each constraint is

derived by some set of allowed
differences (CSG)
Before we start with the reduction let us

assume the graph is a complete graph,
that is, there is a constraint between any

two vertexes. If two vertexes have no
constraint simply add a trivial constraint.
Now, set q to be the range necessary for

the mapping T so as to map all pairs (v, i)
for any vertex v and color I (U=V×).
For any pair u,v let the allowed

differences be all T(u, i)-T(v, j) where u,i
and v,j are consistent.
This is the reduction --- let’s proceed to

the proof of correctness.
Completeness is rather easy – given a

coloring A to the original graph, let the
coloring for the constructed graph A’

color each vertex v by T(v, A(v)).
As to soundness, let us prove –given an

assignment A’ to the new, constructed
graph– that there is a global shift d, so

that if one subtract d from all colorings
of A’, and then inverse T, one gets a

coloring of the original graph.
Let us first assign a shift dA’(u,v) to every

pair u,v so that both u and v are colored
by A’ – then show these shifts are all the

same.
The shift is how much one should subtract

from both colors so as to get it to values
of T. This shift is well defined (there is

exactly one such shift) as otherwise T is
not unique for pairs.
Now look at triplets u,v,w all of which are

colored by A’. The shift for u.v must be
the same as the shift for v,w ---

otherwise T would not be unique for
triplets (the sum of the three difference

is clearly 0 – every element has one
positive and one negative occurrences).
Finally, for a general set of colored

vertexes, if the shifts are not everywhere
consistent, there must be a vertex v, so

that the shift for u,v and the shift for
v,w are not consistent. But that’s an

inconsistent triplet, which cannot exist as
we just proved.

 PCP Page 16

 PCP Page 17

PCP•

PCP Theorem•

Clique•

SAT•

3SAT•

Vertex Cover•

Coloring•

CNF•

NP-Hard•

Interactive Proof System•

 PCP Page 18

http://en.wikipedia.org/wiki/PCP_(complexity)
http://en.wikipedia.org/wiki/PCP_theorem
http://en.wikipedia.org/wiki/Clique_problem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Vertex_cover_problem
http://en.wikipedia.org/wiki/Graph_coloring
http://en.wikipedia.org/wiki/Conjunctive_normal_form
http://en.wikipedia.org/wiki/NP-hard
http://en.wikipedia.org/wiki/Interactive_proof_system

