

Let us now discuss two important notions regarding

two aspects of computing, and furthermore show an

interesting connection between the two.

The first, fundamental aspect is Random

Computation, where one allows the use of random

bits for the computation, while willing to allow some

small probability of error, or for the running time

to be only an expectation. In particular the

Complexity class BPP.

The other basic notion is the extension of the P,

NP, coNP framework to form a hierarchy of

complexity classes --- the Polynomial-Time

Hierarchy.

We then show that BPP is in fact contained in the

polynomial-time hierarchy.

Consider a QBF (Quantified Boolean Formula): we’ve

already proved TQBF is PCPACE-complete. We could

also have formulated SAT as a special case of

TQBF, where only existential quantifiers are aloud.

Now, what if we look at some less restrictive forms

of QBFs?

Let us count the number of times the quantifier

used in the formula changes between existential

and universal, and add 1 to it --- in other words,

count how many blocks of recurring quantifiers

there are in the formula.

Some Languages can be Karp-reduced to such a

formula with i blocks of quantifiers which also

starts with an existential quantifier --- let the class

of these languages be denoted i.

Note that this is an alternative, still-legitimate

manner by which to define a class of languages:

usually we define a class and then find a problem

complete for it; this time we define a language and

then define the class it is complete for.

We can then define i as the class of all problems

whose complement is in i, for which the language of

TRUE formulas with i block of quantifiers that

begin with a universal quantifier is complete.

The Polynomial-time Hierarchy comprises all those

classes for some i. Note, however, that these are

still not general TQBF formulas as the number of

blocks cannot grow with the input size, hence PH is

not necessarily the same as PSPACE.

• By on ,

Let us now note some simple facts regarding the

PH:

The first two levels of the hierarchy are the

classes NP and coNP.

As necessary so as to refer to it as a hierarchy, the

i’th level is contained in both classes in the next

i+1’st level.

The entire hierarchy is contained in PSPACE.

And lastly, if the two classes of the hierarchy in

some level turn out to be the same, then the

hierarchy collapses for that level.

One proves that by induction: take the formula you

get by fixing (in any manner legal) the variable

associated with the first blocks of quantifiers,

leaving the last i block intact; this formula can be

replaced by a formula of the complement class.

After that transformation, the formula has one less

block of quantifiers.

q8

A Probabilistic or Random TM is one that uses an

additional tape which is referred to as the Random tape.

For any given input x one may consider all possible random

strings r that can be written to that tape, and look at all

possible executions of the TM on x and r. (If M runs in

polynomial time there is an upper-bound on the number of

bits that can be read from r, hence one need not consider

longer strings, which in turns allow us to consider uniform

probability over all possible strings r).

The class BPP comprise all languages that have a

polynomial-time TM that on ALL inputs x, accept x with

probability >2/3 if xL, and accepts with probability <1/3

in case xL.

A BPP TM for a language L returns on a definitive

majority of the random strings the correct

accept/reject answer. Nevertheless, it may err on a

small fraction of those.

Note that we are still discussing worst-case

complexity. Were we interested in average case

complexity –namely, where the algorithm returns

the correct answer on most of the inputs– some

problems may become easier. A BPP TM must

answer w.h.p. the correct answer on ALL inputs.

One can AMPLIFY a BPP TM to err with a very small

probability, in particular exponentially small. To do

that, a TM M’ runs M many times on independently

selected random strings and returns the majority

of the answers returned by these runs. Apply

Chernoff bound to see that the probability of error

becomes exponentially small in the number of

repetitions.

For the purpose of the next theorem we prove, we

are interested in slightly different parameters, and

would like to get the probability of error small in

terms of the number of bits the TM uses.

It is not hard to see that, starting with a TM that

uses m random bits, applying the above repetition

technique m polylog(m) times ensures the

probability of error is less than 1/3m’ where m’ is

the number of bits M’ uses (m2 polylog(m)).

Now, does randomness really help in time-bounded

computations?

It is quite possible that P=BPP but no one can prove that

so far.

It is again possible BPP is contained in NP, but that’s also

not proved.

What we can prove is that BPP is in fact in PH, in

particular in 2.

The proof is by a reduction: given a language L in BPP

there is a TM M whose error on any input is limited to

1/3m where m is the random bits M uses (we’ve just

shown that); per M and x construct a formula that is true

if and only if there are m strings S1, .., Sm so that for

every string r, applying M on r XORed with one of the Si’s

makes M accept (one is enough).

This formula is clearly in 2 – we now need to show that

formula is true if and only if xL.

{0, 1}m

Intuitively, we need to show that in case xL (M

rejects w.p. <1/3m) there are S1, .., Sm so that

every r has at least one of them XOR it to become

accepting.

{0, 1}m

On the other hand, in case xL, as M accepts w.p.

<1/3m, XORing r with m distinct strings, can enlarge

the set of accepting strings by at most a factor m,

which would still imply that at most 1/3 of the

strings r are good, namely, not all are good and the

formula is FALSE.

The proof is as follows:

First, assume M that errs on L w.p. <1/3m where m

is the number of random bits it uses (we just

proved one can assume that).

Now, apply the probabilistic method, which would

allow us to conclude that in case xL there are

S1,..,Sm that cause all random strings r to be

accepting XORed with one of them.

The probabilistic method proves there exists some

structure satisfying a given property, by showing

the probability of a structure chosen randomly,

according to some distribution, to satisfy the

property is positive.

Let us then prove completeness next.

Soundness follows by a simple application of the

union-bound (the probability of a union of events is

bounded from above by the sum of the events`

probabilities). A formal proof would follow.

   m
1 m R

mm
is ,...,s {0,1}

i 1

Pr r 0,1 , M x,r s 0




 
     



 m
1 m Rm

m

is ,...,s {0,1}
i 1r {0,1}

Pr M x,r s 0




 
    
 

m
1 m Rm

m

is ,...,s {0,1}
i 1r {0,1}

Pr M(x,r s) 0




     

  m
R

m
m

s {0,1}
i 1

2 Pr M x,s 0




  
m

m 1
2 1

3m
 

   
 

Completeness:

The probability S1,..,Sm is bad (namely there exists

an r that stays rejecting even if XORed with all

Si’s) is bounded from above

by the sum over all r’s of the probability r is bad,

which in turn is bounded from above

by the sum over all r’s of the product of the

probability for each Si (r XORed with a random Si

are independent events), which can be limited from

above

By the number of r’s, times the m’th power of the

probability for a random string s to be bad (the

probability of all independent events to hold is the

product of their probability)

which in fact tends to 0, but is certainly smaller

than 1.

To conclude, the probability of S1,..,Sm to be good

is very high and certainly positive.

 m
R

m

ir {0,1}
i 1

Pr M x,r s 1




 
   



 m

m

ir {0,1}
i 1

Pr M x,r s 1




    
1

m 1
3m

  

Soundness:

Follows by a simple application of the union bound.

In summary, any L in BPP can be reduced to the

above formula, which is in 2.

Q.E.D.

• the polynomial-time hierarchy

• Saw

(“the hierarchy
collapses”)

Polynomial Time
Hierarchy

BPP

TQBF SAT

Probablistic Turing
Machine

