
 

Let us now discuss two important notions regarding 

two aspects of computing, and furthermore show an 

interesting connection between the two. 

 
 

 

The first, fundamental aspect is Random 

Computation, where one allows the use of random 

bits for the computation, while willing to allow some 

small probability of error, or for the running time 

to be only an expectation. In particular the 

Complexity class BPP. 

 

The other basic notion is the extension of the P, 

NP, coNP framework to form a hierarchy of 

complexity classes --- the Polynomial-Time 

Hierarchy. 

 

We then show that BPP is in fact contained in the 

polynomial-time hierarchy. 

 
 

 

Consider a QBF (Quantified Boolean Formula): we’ve 

already proved TQBF is PCPACE-complete. We could 

also have formulated SAT as a special case of 

TQBF, where only existential quantifiers are aloud. 

Now, what if we look at some less restrictive forms 

of QBFs? 

 

Let us count the number of times the quantifier 

used in the formula changes between existential 

and universal, and add 1 to it --- in other words, 

count how many blocks of recurring quantifiers 

there are in the formula. 

Some Languages can be Karp-reduced to such a 

formula with i blocks of quantifiers which also 

starts with an existential quantifier --- let the class 

of these languages be denoted i. 

Note that this is an alternative, still-legitimate 

manner by which to define a class of languages: 

usually we define a class and then find a problem 

complete for it; this time we define a language and 

then define the class it is complete for. 

  

We can then define i as the class of all problems 



whose complement is in i, for which the language of 

TRUE formulas with i block of quantifiers that 

begin with a universal quantifier is complete. 

 

The Polynomial-time Hierarchy comprises all those 

classes for some i. Note, however, that these are 

still not general TQBF formulas as the number of 

blocks cannot grow with the input size, hence PH is 

not necessarily the same as PSPACE. 

 

 
 

• By on ,    

Let us now note some simple facts regarding the 

PH: 

 

The first two levels of the hierarchy are the 

classes NP and coNP. 

 

As necessary so as to refer to it as a hierarchy, the 

i’th level is contained in both classes in the next 

i+1’st level. 

 

The entire hierarchy is contained in PSPACE. 

 

And lastly, if the two classes of the hierarchy in 

some level turn out to be the same, then the 

hierarchy collapses for that level. 

One proves that by induction: take the formula you 

get by fixing (in any manner legal) the variable 

associated with the first blocks of quantifiers, 

leaving the last i block intact; this formula can be 

replaced by a formula of the complement class. 

After that transformation, the formula has one less 

block of quantifiers. 
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A Probabilistic or Random TM is one that uses an 

additional tape which is referred to as the Random tape. 

For any given input x one may consider all possible random 

strings r that can be written to that tape, and look at all 

possible executions of the TM on x and r. (If M runs in 

polynomial time there is an upper-bound on the number of 

bits that can be read from r, hence one need not consider 

longer strings, which in turns allow us to consider uniform 

probability over all possible strings r). 

The class BPP comprise all languages that have a 

polynomial-time TM that on ALL inputs x, accept x with 

probability >2/3 if xL, and accepts with probability <1/3 

in case xL. 

 

 
 



  

A BPP TM for a language L returns on a definitive 

majority of the random strings the correct 

accept/reject answer. Nevertheless, it may err on a 

small fraction of those. 

 

Note that we are still discussing worst-case 

complexity. Were we interested in average case 

complexity –namely, where the algorithm returns 

the correct answer on most of the inputs– some 

problems may become easier. A BPP TM must 

answer w.h.p. the correct answer on ALL inputs. 

 

 
 

  

One can AMPLIFY a BPP TM to err with a very small 

probability, in particular exponentially small. To do 

that, a TM M’ runs M many times on independently 

selected random strings and returns the majority 

of the answers returned by these runs. Apply 

Chernoff bound to see that the probability of error 

becomes exponentially small in the number of 

repetitions. 

 

For the purpose of the next theorem we prove, we 

are interested in slightly different parameters, and 

would like to get the probability of error small in 

terms of the number of bits the TM uses. 

It is not hard to see that, starting with a TM that 

uses m random bits, applying the above repetition 

technique m polylog(m) times ensures the 

probability of error is less than 1/3m’ where m’ is 

the number of bits M’ uses (m2 polylog(m)).  

 

 
 

  

Now, does randomness really help in time-bounded 

computations? 

It is quite possible that P=BPP but no one can prove that 

so far. 

It is again possible BPP is contained in NP, but that’s also 

not proved. 

What we can prove is that BPP is in fact in PH, in 

particular in 2. 

The proof is by a reduction: given a language L in BPP 

there is a TM M whose error on any input is limited to 

1/3m where m is the random bits M uses (we’ve just 

shown that); per M and x construct a formula that is true 

if and only if there are m strings S1, .., Sm so that for 

every string r, applying M on r XORed with one of the Si’s 

makes M accept (one is enough). 

This formula is clearly in 2 – we now need to show that 

formula is true if and only if xL. 

 
 



 

{0, 1}m

 

Intuitively, we need to show that in case xL (M 

rejects w.p. <1/3m) there are S1, .., Sm so that 

every r has at least one of them XOR it to become 

accepting. 

 
 

  

{0, 1}m

 

On the other hand, in case xL, as M accepts w.p. 

<1/3m, XORing r with m distinct strings, can enlarge 

the set of accepting strings by at most a factor m, 

which would still imply that at most 1/3 of the 

strings r are good, namely, not all are good and the 

formula is FALSE. 

 

 
 

   

The proof is as follows: 

First, assume M that errs on L w.p. <1/3m where m 

is the number of random bits it uses (we just 

proved one can assume that). 

 

Now, apply the probabilistic method, which would 

allow us to conclude that in case xL there are 

S1,..,Sm that cause all random strings r to be 

accepting XORed with one of them. 

The probabilistic method proves there exists some 

structure satisfying a given property, by showing 

the probability of a structure chosen randomly, 

according to some distribution, to satisfy the 

property is positive. 

 

Let us then prove completeness next. 

Soundness follows by a simple application of the 

union-bound (the probability of a union of events is 

bounded from above by the sum of the events` 

probabilities). A formal proof would follow. 
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Completeness: 

The probability S1,..,Sm is bad (namely there exists 

an r that stays rejecting even if XORed with all 

Si’s) is bounded from above 

by the sum over all r’s of the probability r is bad, 

which in turn is bounded from above 

by the sum over all r’s of the product of the 

probability for each Si (r XORed with a random Si 

are independent events), which can be limited from 

above  

By the number of r’s, times the m’th power of the 

probability for a random string s to be bad (the 

probability of all independent events to hold is the 

product of their probability) 

which in fact tends to 0, but is certainly smaller 

than 1. 

 

To conclude, the probability of S1,..,Sm to be good 

is very high and certainly positive. 
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Soundness: 

Follows by a simple application of the union bound. 

 
 

   

In summary, any L in BPP can be reduced to the 

above formula, which is in 2. 

Q.E.D. 

 
 



• the polynomial-time hierarchy 

• Saw 

(“the hierarchy 
collapses”)
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