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1 INTRODUCTION

Threshold phenomena refer to settings in which the probability for an event to
occur changes rapidly as some underlying parameter varies. Threshold phenom-
ena play an important role in probability theory and statistics, physics, and
computer science, and are related to issues studied in economics and political
science. Quite a few questions that come up naturally in those fields translate
to proving that some event indeed exhibits a threshold phenomenon, and then
finding the location of the transition and how rapid the change is. The notions
of sharp thresholds and phase transitions originated in physics, and many of
the mathematical ideas for their study came from mathematical physics. In this
chapter, however, we will mainly discuss connections to other fields.

A simple yet illuminating example that demonstrates the sharp threshold
phenomenon is Condorcet’s Jury Theorem (CJT), which can be described as
follows. Say one is running an election process, where the results are determined
by simple majority, between two candidates, Alice and Bob. If every voter votes
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for Alice with probability p > 1/2 and for Bob with probability 1 — p, and if
the probabilities for each voter to vote either way are independent of the other
votes, then as the number of voters tends to infinity the probability of Alice
getting elected tends to 1. The probability of Alice getting elected is a monotone
function of p, and when there are many voters it rapidly changes from being very
close to 0 when p < 1/2 to being very close to 1 when p > 1/2.

The reason usually given for the interest of CJT to economics and political
science is that it can be interpreted as saying that even if agents receive very
poor (yet independent) signals, indicating which of two choices is correct, ma-
jority voting nevertheless results in the correct decision being taken with high
probability, as long as there are enough agents, and the agents vote according to
their signal. This is referred to in economics as asymptotically complete aggrega-
tion of information.

Condorcet’s jury theorem is a simple consequence of the weak law of large
numbers. The central limit theorem implies that the “threshold interval” is of
length proportional to 1/4/n. Some extensions, however, are much more diffi-
cult. When we consider general economic or political situations, the aggregation
of agents’ votes may be much more complicated than a simple majority. The
individual signal (or signals) may be more complicated than a single bit of in-
formation, the distribution of signals among agents can be more general and,
in particular, agents’ signals may depend on each other. On top of that, voters
may vote strategically by taking into account the possible actions of others in
addition to their own signal, and distinct voters may have different goals and
interests, not only different information. In addition, the number of candidates
may be larger than two, resulting in a whole set of new phenomena.

Let us now briefly mention two other areas in which threshold behavior
emerges. The study of random graphs as a separate area of research was initiated
in the seminal paper of Erdés and Rényi [29] from 1959. Consider a random
graph G(n,p) on n vertices where every edge among the (g) possible edges
appears with probability p. Erdos and Rényi proved a sharp threshold property
for various graph properties. For example, for every € > 0, if p = (1 + ¢€) logn/n
the graph is connected with probability tending to 1 (as n tends to infinity)
while for p = (1 — €)logn/n the probability that the graph will be connected
tends to zero. Since the time of their work, extensive studies of specific random
graph properties have been carried out and, in recent years, results concerning
the threshold behavior of general graph properties have been found. For a general
understanding of the threshold properties of graphs, symmetry plays a crucial
role: when we talk about properties of graphs we implicitly assume that those
properties depend only on the isomorphism type of the graphs, and not on the
labeling of vertices. This fact introduces substantial symmetry to the model. We
will discuss how to exploit this symmetry.

Next, we mention complexity theory. Threshold phenomena play a role, both
conceptual and technical, in various aspects of computational complexity theory.
One of the major developments in complexity theory in the last two decades



Santa Fe Institute. August 22, 2005 12:17p.m. Kalai-new page 3

Gil Kalai and Shmuel Safra 3

is the emerging understanding of the complexity of approximating optimization
problems. Here is an important example: for a graph G let m(G) be the maximum
number of edges between two disjoint sets of vertices of G. MAX-CUT, the
problem of dividing the vertices of a given input graph into two parts so as
to maximize the number of edges between the parts, is known to be NP-hard.
However, simply finding a partition such that the number of edges between the
two parts is at least m(G)/2 is easy. The emerging yet unproven picture for
this problem is that if we wish to find a partition of the vertices with at least
em(G) edges between the parts then there is a critical value ¢y such that the
problem is easy (there is a randomized polynomial time algorithm to solve it) for
¢ < ¢g and hard (likely NP-hard) for ¢ > ¢y. For MAX-CUT, the critical value
co = 0.878567. .. is reached by the famous Goemans-Williamson algorithm [39]
based on semidefinite programming. More generally, for many other problems
we can expect a sharp threshold between the region where approximation is easy
and the region where approximation is hard. In addition, the study of threshold
phenomena and other related properties of Boolean functions is an important
technical tool in understanding the hardness of approximation.

Another connection with complexity theory occurs in the area of circuit
complexity. It turns out that Boolean functions in very “low” complexity classes
necessarily exhibit coarse threshold behavior. For example, the majority func-
tion that exhibits a very sharp threshold behavior cannot be represented by a
bounded-depth Boolean circuit of small size. This insight is related to another
major success of complexity theory: lower bounds for the size of bounded-depth
circuits.

Let us now explicitly define the basic mathematical object that is the sub-
ject of our considerations. A Boolean function is a function f(x1,22,...,%,)
where each variable x; is a Boolean variable, taking the value 0 or 1. The value
of f is also 0 or 1. A Boolean function f is monotone if f(y1,y2,...,Yn) >
f(z1,29,...,2,) when y; > z; for every i. Some basic examples of Boolean func-
tions are named after the voting method they describe. For an odd integer n, the
magjority function M (x1,xo, ..., x,) equals 1 if and only if z14+xo+. . .42, > n/2.
The dictatorship function is f(x1,xa,...,x,) = x;. Juntas refer to the class of
Boolean functions that depend on a bounded number of variables, namely func-
tions that disregard the value of almost all variables except for a few, whose
number is independent of n.

Now consider the probability wu,(f) that f(z1,22,...,2,) = 1, when the
probability that x; = 1 is p, independently for ¢ = 1,2,...,n, just as we had
earlier for the election between Alice and Bob. When f is a monotone Boolean
function, the function pu,(f) is a monotone real function of p. Given a real number
1/2 > € > 0, the threshold interval depending on € is the interval [p1,p2] where
tp, (f) = € and pp, (f) = 1—e. Understanding the length of this threshold interval
is one of our central objectives.

Before we describe this chapter’s sections it is worth noting that the notion of
a sharp threshold is an asymptotic property and therefore it applies to a sequence
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of Boolean functions when the number of variables becomes large. Giving explicit,
realistic, and useful estimates is an important goal. In the election example above,
the central limit theorem provides explicit, realistic, and useful estimates. In more
involved settings, however, this task can be quite difficult.

The main messages of this chapter can be summarized as follows:

e The threshold behavior of a system is intimately related to combinatorial
notions of “influence” and “pivotality” (section 2).

e Sharp thresholds are common. We can expect a sharp threshold unless there
are good reasons not to (section 3 and 5.3).

e A basic mathematical tool in understanding threshold behavior is Fourier anal-
ysis of Boolean functions (section 4).

e Higher symmetry leads (in a subtle way) to sharper threshold behavior (section
5.2).

e Sharp thresholds occur unless the property can be described “locally” (section
5.3).

e Systems whose description belongs to a very low complexity class have rather
coarse (not sharp) threshold behavior (section 6.1).

e In various optimization problems, when we seek approximate solutions, there
is a sharp transition between goals that are algorithmically easy and those
that are computationally intractable (section 6.3).

In section 2 we introduce the notions of pivotality and influence and discuss
Russo’s lemma, which relates these notions to threshold behavior. In section 3 we
describe basic results concerning influences and threshold behavior of Boolean
functions. In section 4 we discuss a major mathematical tool required for the
study of threshold phenomena and influences: Fourier analysis of Boolean func-
tions. In section 5 we discuss the connection to random graphs and hypergraphs
and to the k-SAT problem. In section 6 we discuss the connections to com-
putational complexity. Section 7 is devoted to the related phenomenon of noise
sensitivity. Section 8 discusses connections with the model of percolation. Section
9 discusses an example from social science: a result by Feddersen and Pesendorfer
that exhibits a situation of self-organized criticality. Section 10 concludes with
some of the main open problems and challenges.

2 PIVOTALITY, INFLUENCE, POWER, AND THE THRESHOLD
INTERVAL

In this section we describe the n-dimensional hypercube, and define the notions
of “pivotal” variables and influence for Boolean functions. We state Russo’s fun-
damental lemma connecting influences and thresholds.
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2.1 THE DISCRETE CUBE

Let ©,, = {0,1}™ denote the discrete n-dimensional cube, namely, the set of 0-1
vectors with n entries. A Boolean function is a map from €, to {0,1}. Boolean
functions on §2,, are of course in 1-1 correspondence with subsets of €2,,. Elements
in Q, are themselves in 1-1 correspondence with subsets of [n] = {1,2,...,n}.
Boolean functions appear under different names in many areas of science. We will
equip €2, with a metric, namely a distance function, and a probability measure.
For z,y € Q,, the Hamming distance d(z,y) is defined by

d(x,y) = {i: i # v}l (1)

Denote by Q,(p) the discrete cube endowed with the product probability
measure f,, where p,({z : z; = 1}) = p. In other words,

,Ufp(xla'TQa"'vxn) :pk(l_p)nikv (2)

where k =21 + 22+ ... + .

2.2 PIVOTALITY AND INFLUENCE OF VARIABLES

Consider a Boolean function f(z1,xs,...,z,) and the associated event A C
Q. (p), such that f = xa, namely that f is the indicator function of A. For
x = (x1,22,...,2n) € Qy, we say that the kth variable is pivotal if flipping the
value of xj changes the value of f. Formally, let

Uk(l’l,-~-aiﬂk—1,$k,xk+1,-~,fﬂn) = (5U1,~~793k—171*Ik,$k+1,-~~,$n) (3)

and define the kth variable to be pivotal at x if

flow(x)) # f(x). (4)

The influence of the kth variable on a Boolean function f, denoted by I} (f), is
the probability that the kth variable is pivotal, that is,

R = pp(z: flon(z) # f(2)}) ()

The influence of a variable in a Boolean function and more general notions of
influences were introduced by Ben-Or and Linial [11] in the context of “collective
coin-flipping.”

The total influence I?(f) is the sum of the individual influences.

()= Ii(f). (6)

k=1

n

We omit the superscript p for p = 1/2. For a monotone Boolean function
thought of as an election method, I (f) (= I;/Q(f)) is referred to as the Banzhaf
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power index of voter k. The quantity

on(f) = /0 12(f)dp. (7)

is called the Shapley-Shubik power index of voter k.

The mathematical study (under different names) of pivotal agents and in-
fluences is quite basic in percolation theory and statistical physics, as well as in
probability theory and statistics, reliability theory, distributed computing, com-
plexity theory, game theory, mechanism design and auction theory, other areas
of theoretical economics, and political science.

2.3 RUSSO’'S LEMMA AND THRESHOLD INTERVALS

A Boolean function f is monotone if its value does not decrease when we flip
the value of any variable from 0 to 1. For a monotone Boolean function f C €,
let p1,,(f) be the probability that f(x1,...,z,) = 1 with respect to the product
measure fi,. Note that u,(f) is a monotone function of p. Russo’s fundamental
lemma [41, 82] asserts that

dﬂp(f ) _ 1
o ). (®)
Suppose now that f is a non-constant monotone Boolean function. Given a
small real number € > 0, let p; be the unique real number in [0,1] such that
Up, (f) = € and let po be the unique real number such that yu,,(f) =1 — €. The
interval [p1,po] is called a threshold interval and its length ps — p; is denoted
by te(f). Denote by p. the value satisfying u,, (f) = 1/2, and call it the critical
probability of the event A.
By Russo’s lemma, a large total influence around the critical probability
implies a short threshold interval.

Remark: Let us now exhibit the notions introduced here using a simple exam-
ple. We will return to this example to demonstrate several issues discussed in
the chapter. Let M3 represent the majority function on three variables. Thus,
Ms(z1,29,23) =1 if 1 +x2 + x5 > 2 and M3(x1, 22, 23) = 0 otherwise. Clearly,
w(Ms) = 1/2. This follows from the fact that Ms is an odd Boolean function,
namely one that satisfies the relation

fA—z, 1 —xo9,...,1 —xp,) =1— f(z1,22,...,2Zpn) . (9)
A simple calculation gives, for general p,
pip(Ms) = p* +3p*(1 — p) . (10)

As for the influence of the variables, we obtain I (Ms) = 1/2 and IF(M3) =
2p(1 — p)? + 2p*(1 — p) for k = 1,2,3. Therefore, I(M3) = 3/2 and IP(M3) =
6(p(1 — p)), which is indeed equal to du,(Ms)/dp.
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3 BASIC RESULTS ON INFLUENCES AND THRESHOLD
BEHAVIOR OF BOOLEAN FUNCTIONS

Some basic facts on influences and the corresponding results on threshold in-
tervals are as follows. Dictatorships and juntas have small total influence, and
thus coarse thresholds. Conversely, when the critical probability is 1/2, a coarse
threshold implies that the function “looks like” a junta. These results are for-
malized as follows.

3.1 THE TOTAL INFLUENCE CANNOT BE OVERLY SMALL

Theorem 3.1. For every Boolean function f,
I(f) = 2p(f) loga(1/p(f)) - (11)

In particular, if pq/2(f) = 1/2 then I(f) > 1 and equality holds if and only
if f is a dictatorship, namely f(z1,...,2,) = z; for some 4, or an “antidictator-
ship,” f(x1,...,2n) = 1 — x; for some i. Inequality (11) has its origins in the
works of Whitney and Loomis, Harper, Bernstein, Hart, and others. It is of great
importance in many mathematical contexts. Inequality (11) is often referred to as
the edge-isoperimetric inequality. It can be regarded as an isoperimetric relation
for subsets of the discrete cube, analogous to the famous Euclidean isoperimetric
relations. This analogy goes a long way, and we will return to it in section 5.4.
Ledoux’s book [67] is an excellent source for the related phenomenon of “measure
concentration.”

An upper bound for the length of the threshold interval can be derived from
the bounds on the sum of influences combined with Russo’s lemma.

Theorem 3.2 (Bollobds and Thomason[16]). For every monotone Boolean func-
tion f,
te(f) = O(min(pe, 1 = pc)) - (12)

Two brief remarks are in order. First, note that for a function f(z1,za, ..., z,)
we can consider the “dual” function defined by

g(x1, e, .. xp) = f(l—21,1 —29,...,1 —xp). (13)

Then it is easily seen that

,Up(g) =1- lep(f) . (14)

Due to this duality we may, without loss of generality, restrict ourselves to the
case where p.(f) < 1/2, which will simplify several of the statements below.
Second, note that another way to state the Bollobas-Thomason result is that for
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every Boolean function f and every e > 0 there exists a value c(e) such that
L) /pelf) < cle).

Theorem 3.2 is the basis for the following definition: we say that a sequence
(fn) of Boolean functions has a sharp threshold if for every ¢ > 0,

te(fn) = o(min(pe, 1 — pc)) - (15)

Otherwise, we say that the sequence demonstrates a coarse threshold behavior.
When the critical probabilities for the functions f,, are bounded away from 0 and
1 then having a sharp threshold simply means that for every e > 0, t.(f,.) = o(1).

3.2 SIMPLE MAJORITY MAXIMIZES THE TOTAL INFLUENCE OF
MONOTONE BOOLEAN FUNCTIONS

Let n be an odd integer. Denote by M,, a simple majority function on n variables.

Proposition 3.3. Let f be a monotone Boolean function over n variables, n odd,
and with p.(f) = 1/2. Then for every p, 0 < p < 1,

IP(f) < IP(My) . (16)

See, for example, lemma 6.1 of Friedgut and Kalai [34] and Chayes et al. [24].
By Russo’s lemma it follows that:

Proposition 3.4. Let f be a monotone Boolean function over n variables, n odd,
and with p.(f) = 1/2. Then, for every p > 1/2, u,(M,) > p,(f).

3.3 NOT ALL INDIVIDUAL INFLUENCES CAN BE SMALL

Theorem 3.5 (Kahn-Kalai-Linial [53]). There exists a universal constant K such
that for every Boolean function f,

max [y(f) 2 Kmin(u(f),1 - p(f))logn/n. (17)

This theorem answered a question posed by Ben-Or and Linial [11], who gave
an example of a Boolean function f with u(f) = 1/2 and I (f) = ©(logn/n).
Note that theorem 3.5 implies that when all individual influences are the same,
that is, when A is invariant under the induced action from a transitive permuta-
tion group on [n], then the total influence is at least K min(u(f),1— u(f)) logn.
An extension for arbitrary product probability spaces was found by Bourgain,
Kahn, Kalai, Katznelson, and Linial [23]. Talagrand [92] extended the result
of Kahn, Kalai, and Linial in various directions and applied these results for
studying threshold behavior. Talagrand also presented a very useful extension
for arbitrary real functions on the discrete cube. Talagrand’s extension for the
product measure f, is stated as follows:
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Theorem 3.6 (Talagrand [92]). There exists a universal constant K such that for
every Boolean function f,

) (P = ()
2 o1 h = K o2/ - p)

(18)

Our next result Friedgut [35] describes Boolean functions with a small total
influence.

Theorem 3.7 (Friedgut). Let f be a monotone Boolean function. For every 0 <
z <1/2,a > 1 and v > 0, there exists a value C = C(z,a,7) such that if
z2 < p<1-—2zand IP(f) < a, then there is a monotone Boolean function g
depending on at most C' variables, such that

pp({z € Qn : f(2) # g(2)}) < 7. (19)

Theorem 3.7 asserts that if the critical probability is bounded away from 0 and 1
and the threshold is coarse, then for most values of p in the threshold interval, f
can be approximated by a junta with respect to the probability measure ;. Note
that when p tends to zero with increasing n, the size of the junta is no longer
bounded; when p tends to zero as a fractional power of 1/n, the theorem carries
no information. We will return to this important range of parameters later.

Likewise, if no one influence is unduly large then the threshold is sharp, as
demonstrated by the following.

Theorem 3.8 (Russo-Talagrand-Friedgut-Kalai). Let f be a Boolean function.
For every 0 < 2 < 1/2, ¢ > 0 and v > 0, there exist values 6; = §;(z,€,7v) > 0,
i =1,2,3 such that if z < p.(f) < 1 — z, then any of the following conditions
implies that

te(f) <.

1. For every k, 1 <k <mn, and for every p, 0 <p <1, I}(f) < b1 [34, 81, 92].

2. Foreveryk,1 <k <n, and for p such that e < p,(f) < 1—¢ (e.g., p = pc(f)),
IP(f) < 62 [57].

3. For every k, 1 < k <mn, the Shapley-Shubik power index ¢y (f) < o3 [57] .

Part (1) of the theorem was proved by Russo [81]. A sharp version was proved
by Talagrand [92] and Friedgut and Kalai [34] based on the Kahn-Kalai-Linial
theorem and its extensions.

Parts (2) and (3) are based on Friedgut’s result and some additional obser-
vations, and are derived in Kalai [57], but the values of d2,d3 are rather weak
(doubly logarithmic in 7). It would be interesting to find better bounds. Part
(3) in the theorem above is, in fact, a characterization:
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Theorem 3.9. Let (f,) be a sequence of monotone Boolean functions. For every
e>0,

lim t.(fn,) =0
n—oo

if and only if the mazimal Shapley-Shubik power index for f, tends to zero [57].

4 FOURIER ANALYSIS OF BOOLEAN FUNCTIONS

In this section we describe an important mathematical tool in the study of thresh-
old phenomena and in various related areas. The material described here is not
essential for reading most of the remaining sections, and so the reader who wishes
to skip this section may safely do so. But as the topic is central to many of the
mathematical results presented in this chapter, we feel it is important familiarize
the reader with it at this early stage.

4.1 ALL THE WAY TO PARSEVAL

Let Q,, denote the set of 0-1 vectors (z1, ..., z,) of length n. Let Lo(€),) denote
the space of real functions on (2,,, endowed with the inner product

(f,9) = Z 27" f(x1, .y mn)g(T1, .y T) - (20)

(z1,22,..., Ty )EQ,

The inner product space Lo(£2,) is 2"-dimensional. The La-norm of f is defined
by
||f|‘§:<f7f>: Z 2_nf2($1,$27...,.’1]n)- (21)

(z1,@2,...,Tn ) EQy

Note that if f is a Boolean function, then f2(x) is either 0 or 1 and therefore
I3 = D (1) €D 27" f2(x) is simply the probability u(f) that f =1 (with
respect to the uniform probability distribution on €,). If the Boolean function
f is odd (i.e., satisfying relation (9)) then || f||3 = 1/2.

For a subset S of [n] consider the function

us(x1, T2, . .., oy) = (—1)Xies i, (22)

It is not difficult to verify that the 2™ functions ug for all subsets S form an
orthonormal basis for the space of real functions on £2,,. .
For a function f € Ly(£,), the Fourier-Walsh coefficient f(S) of f is

F(S) = (f,us). (23)

Since the functions ug form an orthogonal basis, it follows that

(f,9)= > f(9)d(S). (24)
]

SCln
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In particular,

1713 =" f2(S). (25)
Scln)

This last relation is called Parseval’s formula.

Remark: To demonstrate the notions introduced here we return to our exam-
ple. Let M3 represent the majority function on three variables. The Fourier
coefficients of Ms are easy to compute: Ms(@) = S1(1/8)Ms(z) = 1/2. In
general, if f is a Boolean function then f () is the probability that f(z) =
1 and when f is an odd Boolean function, f(@) = 1/2. Next, Ms({1}) =
1/8(M5(0,1,1) — M3(1,0,1) — M5(1,1,0) — M3(1,1,1)) = (1 — 3)/8 and thus
Mg({]}) = —1/4, for j = 1,2,3. Next, M3(S) = 0 when |S| = 2 and finally
M;3({1,2,3}) =1/8(M5(1,1,0) + M5(1,0,1) + M3(0,1,1) — f(1,1,1)) = 1/4.

4.2 THE RELATION WITH INFLUENCES

It is surprising how far one can get with the simple base-change of the Fourier-
Walsh transform and Parseval’s formula. The relation between influences and
Fourier coefficients is given by the following expressions, whose proof is elemen-
tary:

L(f)=4 > fX9). (26)
S:kesS
I(f)=4> fA9)I9. (27)
SC[n]

If f is monotone we also have Iy (f) = —2f({k}).
The following notation is useful:

Wi(f)= Y fAS), (28)
5:S|=k
allowing us to rewrite relation (27) as I(f) =43 ;5 kWi (f).

To practice these notions, observe that f(2) = ||f||2 = u(f), so from Par-

seval’s formula, 3 g, 520 F2(S) = w(H)A = pu(f)). It follows from eq. (27)
that

I(f) = 4p(f)(1 = p(f)) - (29)

If one considers a Boolean function f where u(f) = 1/2, I(f) > 1. This is an
important special case of the edge-isoperimetric inequality (11).
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4.2.1 Remark: Indeed, for our example M3 we have

3/2=1I(Ms)=4 Y M;(S)|S|=4(3(1/16) + (1/16)3).
SCn]

4.3 BERNOULLI MEASURES

When we consider the probability distribution pu,, we have to define the inner
product by

(f,g) = Z flxa, o zn)g(T, o xn) (@1, oo Tp). (30)

(1,22, Ty )EQ,

We need an appropriate generalization for the Walsh-Fourier orthonormal
basis for general Bernoulli probability measures ji,,. Those are given by

> ics Ti n—> .5 Ti

1—p €8 P i€s
ul(z1,22,...,2,) = (— —) ( —_— . 31
S(l 2 ) 1 ( )

Let p be a fixed real number, 0 < p < 1. Every real function f on €2, can be
expanded to

F=> f(Sipuk,

SCn]

where

f(Sip) = > fl@)ub(z)py ().

€N,

The relations with influences also extend as follows:

p(L=p)IE(f) = > f*(S;p), (32)
S:keS
ppy L1 £2
') =1 _ps%f (9151 (33)

Exercise: Compute the coefficients Ms(S, p) and verify eq. (33) for the case of
M.

4.4 THE BONAMIE-GROSS-BECKNER RELATION

The reader who did not skip this whole section may still wish to skip this sub-
section. We will consider here a technical inequality that will not be explicitly
mentioned again in the chapter, but nevertheless underlies many of the proofs
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and results. There are many ways of viewing the inequality, and its remark-
able effectiveness remains somewhat mysterious. We will present the “simplest”
application of it that we know.

For a real function f : Q, — R, f = 3. f(S)usg, define the L,-norm of a
function f to be

1/w
[l = (Z 2‘"If(w)lw> : (34)
TEQ,

Note that, due to the normalization coefficient 27" in the definition, if 1 <
v < w then

11l < [1f ]l - (35)
Next define the operator
T,(f) =Y f(S)plus, (36)
ScCn]
so that X
IT,(NIE =D FA(9)p™. (37)
ScC[n]

The Bonamie-Gross-Beckner (BGB) inequality [7, 18, 43] asserts that for every
real function f on Q,,

ITo(Hll2 < 1 ll14p2 - (38)

Because this inequality involves two different norms, it is referred to as hyper-
contractive [42]. The inequality can be regarded as an extension of the Khintchine
inequality [62], which states that the different L,,-norms of functions of the form
>k crugyy differ only by absolute multiplicative constants. Beckner used this
inequality in the early 1970s to handle classical problems in harmonic analysis.
The work was influenced by earlier hypercontractive inequalities by Nelson and
others, originating in the mathematical study of quantum field theory [43, 74].

Here is a quick and sketchy argument giving a flavor of the use of the
Bonamie-Gross-Beckner inequality. Note that for a Boolean function f and every
w>1,

1f1le = n(f)- (39)

Let 0 < p < 1. Now, if a large portion of the Lo-norm of f is concentrated at
“low frequencies” |S|, then ||T,(f)||2 will not be too much smaller than || f||2. The
BGB inequality implies that in this case, || f[/14,2 cannot be too much smaller
than || f]|2 either. This fact, however, cannot coexist with eq. (39) if p(f) is
sufficiently small.

More formally, suppose that u(f) = s < 1/2, and we will try to give
lower bounds for I(f). In section 4.2 we derived from Parseval’s formula that
I(f) > 4(s—s?). The edge-isoperimetric inequality (eq. (11)) asserts that I(f) >
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2slogy(1/s). Let us try to understand the appearance of log(1/s). Take p = 1/2
and thus 1+ p? = 5/4. The BGB inequality and eq. (39) give

F2(9)
Z 9als] = 1154 = S5
Noting that 22151 < 1/./s for 0 < |S| < log,(1/s)/4,

Y PO < Vs < K\s(1-s)

0<|S|<log(1/s)/4

for some constant K < 1, since s < 1/2. This implies that a finite fraction of the
Ly norm of f is concentrated at Fourier coefficients f(.5) where |S| > K’ log(1/s).
It then follows from the discussion in section 4.2 that I(f) > K" (u(f)(1 —
() log(1/u(f)). Up to a multiplicative constant this gives the fundamental
edge-isoperimetric relation (eq. (11)), but the information on Fourier coefficients,
while not sharp, is even stronger.

An extension of the BGB inequality for general p can be found in Tala-
grand [92].

REMARKS

e The Fourier coefficients of Boolean functions are tailor-made to deal with the
total influence that by Russo’s lemma gives the “local” threshold behavior.
However, to understand the behavior in the entire threshold interval, a fur-
ther understanding of the relation between the behavior at different points is
required. For a global understanding of influences over the entire threshold
interval, the quantities fol £(S,p)dp may play a role: it would be interesting to
study them.

e This section is only a taste of a rather young field of Fourier analysis of Boolean
functions which has many connections, extensions, applications, and problems.
We hope to be able to give a fuller treatment elsewhere.

5 FROM ERDOS AND RENYI TO FRIEDGUT: RANDOM
GRAPHS AND THE K-SAT PROBLEM

5.1 GRAPH PROPERTIES AND BOOLEAN FUNCTIONS

Another origin for the study of threshold phenomena in mathematics is random
graph theory and, particularly the seminal works by Erdos and Rényi [29]. Some
good references on random graphs are Alon and Spencer [2], Bollobds [13], and
Janson et al. [51].

Consider a graph G = (V, E), where V is the set of vertices and E is the
set of edges. Let x1,x2,..., g be Boolean variables corresponding to the edges
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of G. An assignment of the values 0 and 1 to the variables z; corresponds to a
subgraph H C G, where H = (V, E’) and e € F’ if and only if 2. = 1. We will
mostly consider the case where G is the complete graph, namely, F = (‘2/)

This basic Boolean representation of subgraphs (or substructures for other
structures) is very important. A graph property P is a property of graphs that
does not depend on the labeling of the vertices. In other words, P depends only
on the isomorphism type of G. The property is monotone if when a graph H
satisfies it, every graph G on the same vertex set obtained by adding edges
to H also satisfies the property. Examples include: “the graph is connected,”
“the graph is not planar” (a graph is planar if it can be drawn in the plane
without crossings), “the graph contains a triangle,” and “the graph contains a
Hamiltonian cycle.” Understanding the threshold behavior of monotone graph
properties for random graphs was the main motivation behind the theorem of
Bollobds and Thomason ([16], theorem 3.2). Their result applies to arbitrary
monotone Boolean functions, so it does not rely on the symmetry that Boolean
functions representing graph properties have.

Theorem 5.1 (Friedgut and Kalai [34]). For every monotone property P of graphs,
there exists a constant C' such that

te(P) < Clog(1l/e)/logn. (40)

Theorem 5.1, which answered a question suggested by Nati Linial, is a simple
consequence of the Kahn-Kalai-Linial theorem and its extensions combined with
Russo’s lemma. The crucial observation is that all influences of variables are
equal for Boolean properties defined by graph properties. As a matter of fact,
this continues to be true for Boolean functions f describing random subgraphs
of an arbitrary edge-transitive graph.! All influences being equal implies that
the total influence IP(f) is at least as large as K min(p,(f), 1 — pp(f)) logn. By
Russo’s lemma, this gives the required result.

Friedgut and Kalai [34] raised several questions that were addressed in later
works:

e What is the relation between the group of symmetries of a Boolean function
and its threshold behavior?

e What would guarantee a sharp threshold when the critical probability p. tends
to zero with increasing n?

e What is the relation between influences, the threshold behavior, and other
isoperimetric properties of f?

We will describe in some detail the work of Bourgain and Kalai [22] on the
first question and the works of Friedgut [36] and Bourgain [21] on the second.

LA graph is edge-transitive if for every two edges e and e’ there is an automorphism of
the graph that maps e to e’
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The last question was addressed by several papers of Talagrand [90, 91] and also
Benjamini et al. [10], but we will not elaborate on it here.

Let us make one comment at this point. When we consider the Fourier
coefficients f (S) of a Boolean function representing a graph property then the
set S, which can be regarded as a subset of the variables, also represents a graph.
As mentioned above, being a graph property implies large symmetry for the
original Boolean function: it is invariant under permutations of the variables that
correspond to permutations of the vertices of the graph. The same is true for the
Fourier coefficients: the Fourier coefficient f (S) depends only on the isomorphism
type of the graph described by the set S. This is a crucial observation for the
results that follow.

5.2 THRESHOLD UNDER SYMMETRY

We now describe a measure of symmetry that is related to the threshold behavior.
The key intuition is that the more symmetry we have, the sharper the threshold
behavior we observe. The measure of symmetry is based on the size of orbits.

A graph property for graphs with n’ vertices is described by a Boolean
function on n = (g) variables. Such Boolean functions are invariant under the
induced action of the symmetric group S, on the vertices, namely the group of
all permutations of the vertices, acting on the edges. (Note that the variables
of f correspond to the n edges of the complete graph on n' vertices.) In the
previous section we used this symmetry to argue that all individual influences
are the same. Here we would like to exploit further the specific symmetry in the
situation at hand.

Bourgain and Kalai [22] studied the effect of symmetry on the threshold
interval, leading to the following result:

Theorem 5.2 (Bourgain and Kalai). For every monotone property P of graphs
with n' vertices, and every T > 0, there exists a value C(T) such that

t(P) < C(r)log(L/e)/(logn')>". (41)

It is conjectured that the theorem continues to hold for 7 = 0. Let I' be
a group of permutations of [n]. Thus I' is a subgroup of the group of all n!
permutations of [n]. The group I" acts on €, as follows:

(21, T2, -+, Tn) = (Tr(1), Tr(2)) -+ Tr(n)) »

for # € T. A Boolean function is T-invariant if f(7(z)) = f(z) for every x € Q,
and every m € I'. We would like to understand the influences and threshold
behavior of Boolean functions that are I'-invariant.

We now describe certain parameters of I' that depend on the size of the
orbits in the action of I' on subsets of [n]. Divide the discrete hypercube €,



Santa Fe Institute. August 22, 2005 12:17p.m. Kalai-new page 17

Gil Kalai and Shmuel Safra 17

into layers: write 27" for the vectors in €2,, with exactly m 1’s. For a group I' of
permutations of [n], let T'(m) denote the number of orbits in the induced action
of T' on Q7 and let B(m) be the smallest size of an orbit of I acting on Q.
For graph properties, T'(m) is the number of isomorphism types of graphs with
n' vertices and m edges, and B(m) is the minimum number of (labeled) graphs
with n’ vertices and m edges that are isomorphic to a specific graph H. The
number of graphs isomorphic to H is n'!/|Aut(H)|, where Aut(H) denotes the
automorphism group of H.

When we consider graph properties for graphs with n’ vertices, B(m) grows
as (\7%) To see this, note that when m = (;) for some s < n’, graphs H with
the fewest isomorphic copies (hence with the largest automorphism groups) are
complete graphs on s vertices, leading to B(m) = (Zl)

Define the parameter (") as follows:

k() = min{m : B(m) < 2™}. (42)

Since greater symmetry leads to smaller B(m), x(I") measures the “size” of the
group of symmetries.
Define also for 7 > 0:

ki (T) = min{m : B(m) < 2™ }. (43)

Bourgain and Kalai showed that for every 7 > 0 the total influence I?(f) of
a [-invariant Boolean function f satisfies the inequality

IP(f) > K(1)x-(T) min(ﬂp(f)al _:up(f))v (44)

where K (7) is a positive function of 7. It can be shown that this reduces to The-
orem 5.2 when we specialize to graph properties, emphasizing that the symmetry
implied by I'-invariance leads directly to a sharp threshold.

Bourgain and Kalai also gave examples of I'-invariant functions f,, such that
p(fr) is bounded away from 0 and 1 and I(f,,) = ©(k(f,)). Based on this result
and results on primitive permutation groups (that require the classification of
finite simple groups), it is possible to classify the coarsest threshold behavior
for I'-invariant Boolean functions, when I' is a primitive permutation group.
Welcome results here would include sharper lower bounds for the influences and,
for example, proving a lower bound of K log® nu(f)(1—u(f)) on the influence of
Boolean functions that describe graph properties. See Bourgain and Kalai [22]
for further details.

5.3 THRESHOLD BEHAVIOR FOR SMALL CRITICAL PROBABILITIES

Theorem 3.7 addressed the consequences of a coarse threshold when p is bounded
away from 0. In this section we state theorems by Friedgut [36] and by Bour-
gain [21] on the sharpness of thresholds (as defined by eq. (15)), that apply when
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the critical probability p. tends to zero. These theorems yield sharp threshold
results for graph properties when p. tends to zero. Recall that theorem 5.2 as-
serts that a sharp threshold is guaranteed for graph properties when the critical
probability is bounded away from 0 and 1.

Given a family G of graphs, let gg be the Boolean function describing the
graph property: “The graph contains a subgraph H, where H € G.” For a graph
H, e(H) denotes the number of edges in H.

Theorem 5.3 (Friedgut [36]). Let f represent a monotone graph property. For
every a > 1 and v > 0, there exists a value C = C(a,v) such that if IP(f) < a,
then there is a family G of graphs such that

e(H) < C for every H € G

and

pp({z = f(x) # gg(x)}) <. (45)

The interpretation of the theorem is that a coarse threshold implies that the
function has “local” behavior.

Friedgut’s proof relies on symmetry and the statement extends to hyper-
graphs and similar structures. The crucial property appears to be that the num-
ber of orbits of sets of a given size, or T'(m) in the notation of the previous
section, has a uniform upper bound. (For graphs this reads: For a fixed nonneg-
ative integer m the number of isomorphism types of graphs with n’ vertices and
m edges is uniformly bounded.)

Friedgut conjectured that his theorem can be extended to arbitrary Boolean
functions. For a collection G of subsets of [n] (which without loss of generality
we assume to be an antichain of sets, so it does not contain two sets Q and R
with @ C R) let gg(x1,x2,...,2,) be defined as follows: gg(z1,22,...,2,) =1
if and only if for some S € G, x; = 1 for every ¢ € S. The sets S in G are
called minterms for the function gg. Of course, every Boolean function can be
represented in such a way.

Conjecture 5.4 (Friedgut). Let f be a monotone Boolean function. For every
a>1 and v > 0, there is a value C = C(a,~y) such that if I?(f) < a, then there
is a family G of subsets of [n] such that

|S| < C for every S € G

and

pp({z : f(x) # gg(x)}) <.

In other words, Friedgut’s conjecture asserts that a Boolean function with
low influence can be approximated by a Boolean function with small minterms.

A theorem of Bourgain [21] towards this conjecture which is very useful for
applications is:
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Theorem 5.5 (Bourgain). Let f be a monotone Boolean function. For every a >
1, there is a value 6 = §(a) > 0 such that if IP(f) < a then there is a set S of
variables, |S| < 10a, such that

tp(f(x)|z; =1 for everyi € S) > (14 0)up(f) .

Both Friedgut’s and Bourgain’s theorems are very useful for proving sharp
threshold behavior in many cases. We will mention one example that was studied
in Friedgut’s original paper, and is central to this volume. We refer the reader to
Friedgut’s recent survey article [37] for many other examples. This survey article
also describes various handy formulations of theorems 5.3 and 5.5.

The 3-SAT problem. This problem has been discussed at length in Percus et
al. [77]. Consider n Boolean variables, x1,...,x,. A “literal” z; is either z; or 7;.
A clause c is an expression of the form (z;Vz;V i) where the symbol V represents
the logical OR and 1 < i < j < k < n. A 3-CNF formula with m clauses is
a formula of the form (¢; A cag A -+ A ¢), where the symbol A represents the
logical AND. A random formula of length m is obtained by choosing ¢; uniformly
at random among the possible 8(2) possible clauses. A closely related model
is obtained by choosing each one of the possible 8(2) clauses at random with
probability p. (See Kirousis et al. [66] for further discussion of the differences
between these ensembles.) A formula is satisfiable if we can assign truth values
to the variables so that the Boolean value of the entire formula is TRUE. The
larger m is, the more difficult it is. Using a slight extension of Theorem 5.3,
Friedgut proved that there is a threshold «a.(n) such that for every ¢ > 0, a
random formula with (ca.(n) + €)n clauses is satisfiable with probability tending
to 0 (as n tends to infinity) while a random formula with (a.(n) — €)n clauses
is satisfiable with probability tending to 1. It is still an outstanding problem to
show that a.(n) can be replaced by a constant «, in the large n limit, meaning
that the location of the critical probability does not oscillate.

Recent advances concerning the location of the critical value for the k-SAT
problem are discussed in Kirousis et al. [66].

5.4 MARGULIS’ THEOREM

Margulis [71] found in 1974 a remarkable condition guaranteeing a sharp thresh-
old for Boolean functions, and applied it to study random subgraphs of highly
connected graphs. His paper also contains an earlier proof of Russo’s lemma.
The theorem later improved by Talagrand [89] gives another general method for
proving threshold behavior.

Let f be a monotone Boolean function. For x € €, let

hz) = {y € Qn - d(z,y) = 1, f(y) # f(@)}], (46)
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with the Hamming distance d(x,y) as defined in eq. (1). Thus, h(z) counts the
number of neighbors of z for which the value of f changes, which is the number
of pivotal variables at z. Note that the total influence is then given by

P(f) = mp()h(z). (47)

€N,
Define hy (z) = h(x) if f(z) =1 and h4(z) = 0 if f(x) = 0. Since every pair
x,y with f(x) # f(y) has precisely one element where f attains the value one,

one finds
pIP(f) = > ppla)hy(z).
€N,

Theorem 5.6 (Talagrand [89]).

S i@V 2 (P — ()Y 2RBELD) g

2€Q, p(l__p)

Suppose (for simplicity) that p.(f) is bounded away from 0 and 1. Suppose
also that if Ay (z) > 0 then h4(x) > k. This implies that

P = (/@) 3 hal@) 2 VE S mpla) /i (@)

z€Q, zeQ,

It then follows from eq. (48) that
I°(f) > CVEk.

By Russo’s lemma the length of the threshold interval is O(1/V/k).

Here is Margulis’ original application. Let G be a k-connected graph, that
is, at least k& vertices must be deleted from G for it to no longer be connected.
Consider a random spanning subgraph H where an edge of G is taken to be
absent from H with probability p. We assume that H has n edges and let f be the
Boolean function that represents the property: “H is not connected.” Margulis
proved that the threshold interval for connectivity is of length O(1/vk). The
reason is that if H is not connected, but it is possible to make H connected by
adding back a single edge of G (so that hy(z) > 0), then H must have precisely
two connected components. Since G is k-connected, there are at least k edges
in G\H such that adding any of them to H yields a connected graph. It thus
follows that if hy(x) > 0 then hy(z) > k.

5.5 FURTHER CONNECTIONS AND PROBLEMS

e The giant component. Both Talagrand’s strengthening of Margulis’ theo-
rem and Friedgut’s theorem give the sharp threshold of graph connectivity as
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a special case. This is nice, but a serious criticism would be that the more
interesting phase transition relating to connectivity occurs earlier, when p is
around 1/n. The value 1/n is the critical probability of the emergence of the
“giant component” [2, 51]. It would be desirable to understand even the ba-
sic facts concerning the giant component in the context of general threshold
phenomena, discrete isoperimetry, and Fourier analysis.

e Graph invariants. We have discussed a monotone graph property, or more
generally a monotone Boolean function, and varied the parameter p. A differ-
ent scenario would be to consider a parameter of graphs or a function defined
on the discrete cube and study its distribution for a fixed p. We can consider,
for example, the chromatic number, the clique number, the size of the max-
imal component, etc. The probabilistic properties of monotone functions on
the discrete cube, and especially those which come from interesting graph pa-
rameters are of great interest. Discrete isoperimetric relations play a central
role in this study. But direct relations with threshold results and with Fourier
analysis are sparse.

e Hereditary properties. We could also consider non-monotone properties.
A property of graphs (on n vertices) described by a Boolean function f is
hereditary if there is a collection H of graphs such that f = 1 if the graph
contains a subgraph H from H as an induced subgraph. Alon and Kalai asked
for which hereditary properties is it the case that the measure of the set of p’s
for which € < p,(f) < 1— € tends to 0 as n tends to infinity. Since f need not
be monotone, this set will not necessarily be an interval. Of course, monotone
properties are hereditary.

e Influence of Boolean functions with tiny measure. Another criticism
would be that we concentrate on the secondary problem of threshold behavior
while neglecting the primary problem of finding the location of the critical
probability. Indeed, finding the critical probability of particular properties of
random structures is a large and beautiful field, and is the subject of later
chapters of this book. We comment that there are a very few cases where
knowing that the threshold is sharp helps in estimating its location, since it is
sufficient to show that the property is satisfied with a probability that is small
but bounded away from zero. The analogy with physical models suggests that
the threshold behavior, like certain critical exponents for models of statistical
physics, may exhibit more “universal” behavior than the location of the critical
probability.

Finally, recent work of Kahn and Kalai [52] suggests that for a large class
of problems, good estimates on the location of critical probabilities can follow
from understanding the behavior of the function ¢.(f) when e itself is a function
that tends to zero with increasing n. Such an understanding can be derived from
some conjectures, quite similar to theorems 5.3, 5.5 and conjecture 5.4, about
influences of Boolean functions when p,(f) tends to zero with increasing n.



Santa Fe Institute. August 22, 2005 12:17p.m. Kalai-new page 22

22 Threshold Phenomena and Influence. ..

6 THRESHOLD BEHAVIOR AND COMPLEXITY

In this section we will discuss two areas where threshold phenomena and com-
plexity theory are related. First we will describe results on bounded depth cir-
cuits, a very basic notion in computational complexity. Second we will describe
the connection to the area of “hardness of approximation.”

6.1 BOUNDED DEPTH BOOLEAN CIRCUIT

The important complexity class ACO of Boolean functions consists of those that
can be expressed by Boolean circuits of polynomial size (in the number of vari-
ables) and bounded depth. Although functions belonging to ACO are of very low
complexity, the class is an important one. Here we show that such functions must
have a coarse threshold behavior.

A Boolean circuit is a directed acyclic graph with 2n sources, each corre-
sponding to a variable z; or its negation T;, and one sink representing the output
of the computation. The intermediate vertices are called gates and can represent
the Boolean operations AND and OR. The size of a Boolean circuit is the num-
ber of vertices including all sources, gates, and sink. The depth is the maximum
length of a directed path.

Boppana [19] proved that if a Boolean function f is expressed by a depth-c
circuit of size N, then

I(f) < Cilog" ' N. (49)

Earlier, Linial, Mansour, and Nisan [69] proved that for Boolean functions that
can be expressed by Boolean circuits of polynomial (or quasi-polynomial) size and
bounded depth the Fourier coefficient sum W (f) defined in equation (28) decays
exponentially with & when k is larger than poly-logarithmic in the number of
variables. This result relies on the fundamental Hastad switching lemma [46, 2],
and a more precise result was recently given by Hastad [48]. It appears that all
these results and their proofs apply to the probability measure p,(f) when p is
bounded away from 0 and 1.

Remark: A monotone circuit is one where all the gates are monotone increasing
in the inputs, that is, there are no NOT gates. The Hastad lemma for monotone
Boolean circuits is easier, and was already proved much earlier by Boppana [20].

It can be conjectured that the “only” reason for a small total influence, and
hence for a coarse threshold behavior, comes from bounded depth small circuits.
Here, small means a slowly growing function of n. For that to be the case, an
inequality that is roughly the reverse of eq. (49) must also hold. The following
conjecture is a particularly bold version of the statement:

Conjecture 6.1 (Reverse Hastad). Let f be a monotone Boolean function. For
every € > 0 there is a value K = K(€) > 0 and another function g expressible as
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a Boolean circuit of size N and depth ¢, such that
log" ' N < KI(f),

and

pw{z: f(z) # g(2)} <e.
Remarks:

e As discussed in the previous chapter, a large number of papers in recent years
have suggested a bold and far-reaching statistical physics approach to fun-
damental questions in complexity. These papers regard classical optimization
problems as zero-temperature cases of statistical physics systems. The ap-
proach further proposes that the complexity of problems may be related to
the type of phase transition of the physical system. In addition, statistical
physics suggests both a way of thinking and heuristic mathematical machinery
for dealing with these problems. This approach has met with some skepticism
within the complexity theory community, and evidence for its usefulness is still
tentative. The results by Hastad, Linial-Mansour-Nisan, and Boppana can be
interpreted as going in the direction suggested by physicists. Of course, when
we deal with complexity classes beyond ACO, caution is still advised.

e Connections between influences and the model of decision trees can be found
in Friedgut et al. [38] and O’Donnell et al. [75].

6.2 HARDNESS OF APPROXIMATION AND PCP

Given an optimization problem, what is the complexity of finding an approx-
imation to an optimal solution? Sometimes approximation is intractable and
sometimes it is easy. The theory of probabilistically checkable proofs (PCP)
is a powerful tool for studying approximation. Technical results pertaining to
sharp threshold phenomena are important for showing that certain approxima-
tion problems are difficult.

The PCP theorem concerns constraint satisfaction problems (sometimes re-
ferred to as label-cover problems) of various types, and is the main tool in proving
NP-hardness for approximation problems. As examples, consider the following
two computational problems:

Vertex Cover: Given a graph G, find the smallest set of vertices whose com-
plement is an independent set.

MAX-CUT: Given a graph G, find a partition of its vertices that maximizes
the number of edges between the two sets of the partition.

Coming up with the optimal solution for these problems is known to be NP-
hard [58]. The next best option is to approximate the optimal solution. In the case
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of Vertex Cover, that means coming up with an appropriate set that may not be
the smallest, but whose size is larger by at most some fixed approzimation factor.
Approximating MAX-CUT requires coming up with a partition that may not
maximize the cut size, but gives a cut whose size is within a fixed approximation
factor of the maximum.

Proving that such problems are NP-hard requires extending the Cook-
Levin [25, 68] characterization of NP, which in simple terms states that SAT
is NP-complete. One has to show that even approximating SAT is NP-hard, in
the following sense.

A Constraint Satisfaction Problem (CSP) involves a set of variables and
constraints over the assignment to those variables. Let X and Y be two sets of
(not necessarily Boolean) variables, whose range is Rx and Ry respectively. Rx
and Ry are two fixed sets independent of the sizes of X and Y. For some pairs of
variables (z,y) where z € X and y € Y, there is a constraint ¢, C Rx X Ry,
specifying the values of x and y that satisfy it. The constraints imposed on the
variables are local, in the sense that they only involve one variable in X and one
in Y. Let us further assume that all constraints have the projection property:
for each constraint ¢, ,, for every a € Rx there is only one b € Ry so that both
satisfy ¢, ,. Our objective is to find an assignment for all variables x € X and
y € Y such that no constraint will be violated.

A very general version of the PCP theorem is as follows:

Theorem 6.2 (PCP [5, 4, 79]). Given a CSP ® as defined above, there exists a
constant 6 > 0 such that it is NP-hard to exclude either of the following alterna-
tives:

o There is a variable assignment satisfying all the constraints ¢ € ®.
e There is no variable assignment satisfying even a fraction € = |RX|_5 of the
constraints ¢ € ®.

Note that if we had an approximation algorithm determining whether or not
there is an assignment satisfying at least an e fraction of the constraints, this
algorithm would necessarily rule out one of the two alternatives. Namely, given
a CSP instance, if the algorithm satisfies an € fraction of the entire set of con-
straints, the second alternative is ruled out, while if it satisfies less than an €
fraction of the constraints, the first alternative is ruled out. Therefore, the cor-
responding approximation problem is NP-hard.

A general scheme for proving hardness of approximation was developed in
Arora et al. [5], Arora and Safra [4], Bellare et al. [8], Dinur and Safra [26], and
Hastad [47, 49]. Let us demonstrate this scheme on the Vertex Cover problem
from above. We consider a basic combinatorial construction in which sufficiently
large independent sets—or alternatively, small vertex covers—are represented by
juntas. We then sketch a reduction of CSP to vertex cover, such that juntas lead
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to variable assignments satisfying an e fraction of the constraints. By the PCP
theorem, this implies that approximating the Vertex Cover problem is NP-hard.

We proceed as follows. First, consider the graph ng], whose vertex set €2,, is
the set of all binary vectors {0,1}" of length n. One may think of these vertices
as all possible input vectors to a function over n Boolean variables. In G[I"], two
vertices v and u are adjacent if there is no ¢ € [n] so that v; = u; = 1. This
is referred to as the non-intersection graph, and it is the complement of the
intersection graph (where two vectors are adjacent if the sets of indices where
they are 1 have non-empty intersection), which has been investigated extensively.
It is easy to see that no independent set in G[In} contains more than half of the
vertices. This upper bound corresponds to an independent set that for some
index i takes all vectors whose ith entry is 1. Such an independent set is the
pre-image of a dictatorship Boolean function. What other large independent sets
can one find in G[In}?

The pre-image of the majority function (or any other odd monotone Boolean
function) is also an independent set in the non-intersection graph, as any two
vectors with more than half of their indices being 1 must have an index in which
both are 1. For odd n that independent set matches the upper bound. To apply
the PCP theorem we will need to “eliminate” independent sets, such as the
majority function, that are not close to juntas.

For this purpose, one may impose a different distribution on the vertices of
G[In} that will rule out such examples. One can assign weights to the vertices of

G[I"} according to p, for some p smaller than 1/2, weighting independent sets as
the sum of their vertices” weight. In that case, dictatorships’ weights are p, while
majority’s weight tends to 0 as n tends to infinity.

What about independent sets that are smaller than those corresponding to
dictatorships, but still within some constant factor of that size? It turns out that
for p < 1/2 any independent set of non-negligible weight must correspond in
some sense to a junta. The following result relies on Friedgut’s theorem 3.7 and
Russo’s lemma.

Theorem 6.3 (Dinur and Safra [26]). Let W be a locally mazimal independent
set in G[In] (thus, every vertexr x € G[I"] is either in W or is adjacent to a vertex
in W), and let f be a Boolean function where f(x) =1 ifz € W and f(z) =0 if
x ¢ W. For every0 < p < 1/2,~v >0 and e > 0, there exists a value g € [p, p+7],
a value C(vy,€) < 200/79) and another Boolean function g depending on at most
C' wvariables, such that

pe({x € Qn: fz) # g(2)}) <e.

Note that if we let J C [n] denote the C' variables that ¢ depends on, the pre-
image g~!(1) represents a set of vectors over J that constitutes an independent
set over G¥.
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We now sketch the reduction from the CSP instance ® above to the Vertex
Cover problem. One constructs a graph Gg as follows. Gg consists of one copy
of G?X for every variable x € X, and one copy of G?Y for every variable y €
Y. Additional edges, representing constraints, are then added to connect the
copies. The effect of these edges is that large independent sets reflect consistent
assignments of ®: in particular, if there is an assignment satisfying all constraints,
then the set of vertices made up of the dictatorships in each copy forms an
independent set in Gg. Theorem 6.3 guarantees that any independent set in
G4 corresponds to juntas in many of the copies of G; in G, so a sufficiently
large independent set allows one to design an assignment that satisfies at least
an € fraction of ®. This excludes the second alternative in the PCP theorem.
Consequently, finding whether or not such a large independent set exists must
be NP-hard.

We now describe another powerful form of PCP. Consider a further restricted
CSP variant. Above we required the constraints to satisfy the projection prop-
erty, meaning that for any constraint ¢ ,, the value for z, a € Rx, determines a
unique value for y so that both satisfy ¢, ,. What if we require in addition that
the value for y uniquely determines the value of x?

Given a CSP instance satisfying this uniqueness property, one can efficiently
figure out whether there is an assignment satisfying all constraints. Nevertheless,
one may consider the following problem:

Khot’s Unique Game [63] Given a CSP instance ® that conforms to the
uniqueness property, decide whether one of the following alternatives can be
exlcuded:

e There exists an assignment satisfying at least a fraction 1 — e of the constraints
pcd
e No assignment satisfies even a fraction € of ®.

For € > 0, the complexity of this problem is still wide open. No polynomial
algorithm is known for it; neither is it known to be NP-hard. (Khot himself
conjectures that the problem is NP-hard.) Placing this problem within the known
complexity classes is an exciting open question. The motivation for this problem,
and the reason it is so interesting, is that it is often possible to relate the hardness
of approximation problems to that of the Unique Game problem. We will give
examples in the next section.

6.3 THE SHARP THRESHOLD BETWEEN EASY AND HARD PROBLEMS

In the previous section we briefly discussed PCP and indicated how technical
results for threshold phenomena are used. There is another threshold aspect to
the story. It turns out that for various optimization problems, when we try to
approximate the solution, there is a sharp threshold between cases that are very
easy to solve and cases in which the problem is NP-hard. This insight and the
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methodology for observing such phenomena are fairly recent, and a deeper un-
derstanding of the issues involved may lead both to improved approximation
algorithms and to tighter hardness results. (We do not see a clear connection be-
tween the two appearances of sharp thresholds in this story.) Harmonic analysis
of Boolean functions has already proved to be a powerful tool for such consider-
ations.

Here are some results concerning sharp transitions between easy and hard
computational problems:

o MAX-3-LIN(2): Given a set of linear equations over Z, (integers modulo 2),
assign variables in such a way as to satisfy as many of them as possible.
Satisfying half of the equations is easy—by just taking a random assignment—
and this “algorithm” can be derandomized easily. However, for all € > 0, it is
NP-hard to distinguish instances where 1/2 + € of the equations are satisfied
and instances where 1 — e of the equations are satisfied [49].

e MAX-3-SAT: A similar problem—only instead of equations one has ORs over
three literals each. A fraction 7/8 of the constraints are expected to be satisfied
by a random assignment, yet distinguishing between 7/8 4+ ¢ and 1 is NP-hard
[49].

e SET-COVER: Given a collection of subsets of [n], find the smallest number
of sets from the collection such that their union is [n]. A logn approximation
(one that uses at most logn times as many sets as actually necessary) is simple
to obtain, but nothing better can be achieved unless NP-complete problems
with input size n have a deterministic algorithm with running time n?{oglogn)

32, 80].

When we consider reductions to Khot’s Unique Game problem, further re-
sults can be proved.

e MIN-2-SAT-DELETION: The instance is a formula in 2-CNF form, that is,
a conjunction of clauses, each one consisting of 2 literals connected by OR.
The goal is to delete as few of the clauses as possible, such that the remaining
instance is completely satisfiable. Approximation within any constant factor
(finding a solution that deletes at most a constant times as many clauses as
actually necessary) is as hard as Khot’s Unique Game problem [63].

e VERTEX COVER: Given an undirected graph, find the minimal number of
nodes that touch all edges. A 2-approximation, namely covering the edges by
at most twice the number of nodes needed, is quite easy—for example, by
taking “both” ends of each as yet uncovered edge. Any better approximation
is as hard as Khot’s Unique Game problem [64].

e MAX-CUT: Find a 2-partition of the nodes of a given graph such that there
are as many edges as possible between the two parts. We will return to this
problem in the next section.
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Remark: Other interesting cases of threshold behavior in complexity theory con-
cern fault-tolerant computations, both for classical notions of computation and
for “quantum computers.”

7 NOISE SENSITIVITY

Motivated by mathematical physics, Benjamini, Kalai, and Schramm [10] have
studied the sensitivity of an election’s outcome to low levels of noise in the
signals—or viewed differently, to small errors in the counting of votes. Their
assumption is that there is a probability € > 0 of a mistake in counting a given
vote and these probabilities are independent. Simple majority tends to be quite
stable in the presence of noise. Two-level majority like the U.S. electoral system is
less stable and multi-tier council democracy is quite sensitive to noise. This study
is also closely related to works by Tsirelson, Vershik and Schramm [93, 94, 85].
For an attempt to apply the notion of noise sensitivity in finance, see [1].

For a Boolean function f and w > 0, consider the following scenario. First
choose voter signals x1,Zs,..., 2, randomly such that x; = 1 with probability
p, independently for ¢ = 1,2,...,n. Let S = f(x1,2a,...,2,). Next let y; = z;
with probability 1 — w and y; = 1 — z; with probability w, independently for
i=1,2,...,n. Let T = f(y1,y2,--.,Yyn). Define C,(f) to be the correlation
between S and T'.

Let p,0 < p < 1, be fixed. A sequence (fy)n=1,2,.. of Boolean functions such
that up(fr) is bounded away from 0 and 1 is called asymptotically noise-sensitive
if, for every ¢t > 0,

lim C,(f,)=0. (50)

n—oo

We will now define the complementary notion of noise stability. A class F of
Boolean functions is uniformly noise-stable if for every f € F and every s > 0
there exists a value w = w(s) > 0 such that C,,(f) > 1 —s.

A basic result concerning noise sensitivity is that the class of simple and
weighted majority functions f such that p,(f) is bounded away from 0 and 1
is noise-stable. A sharp version was recently demonstrated by Peres [78]. Note
that when the individual influences tend to 0, the property is a consequence of
the central limit theorem.

The main result of Benjamini et al. [10] is a sort of converse of this. It asserts
the following:

Theorem 7.1. For every sequence (fy) of monotone Boolean functions such that
wp(frn) is bounded away from 0 and 1 and (f,) is not asymptotically noise-
sensitive, there exists a weighted majority function g such that the correlation
between (f,) and g is bounded away from zero.

The basic relation between noise sensitivity and influences is that for a
sequence (f,) of asymptotically noise-sensitive monotone Boolean functions,
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lim I?(f,,) = oo. Therefore, if f is noise-sensitive in its threshold interval, it must
have a sharp threshold behavior. On the other hand, in this case the threshold
interval is of length Q(1/y/n).

In this chapter, we have described several results where, in order to demon-
strate a sharp threshold behavior, we exhibited a large total influence. In some
of these results the proofs actually give the stronger property of noise sensitivity.

The following four remarks will further demonstrate the relevance of noise
sensitivity:

1. The connection with Fourier coefficients. A simple but important result
from Benjamini et al. [10] asserts

Theorem 7.2. For every sequence (f,) of Boolean functions such that u(fy,)
is bounded away from 0 and 1, (f,) is asymptotically noise-sensitive if and
only if for every k > 0

k
lim > Wi(fa) =0. (51)
=1

Thus, f is noise-sensitive if and only if most of the Ls-norm of f is concen-
trated at “high frequencies.” By the same token, noise stability is equivalent
to the statement that most of the Ls-norm of f is concentrated at “low”
frequencies.

Theorem 7.3. A class F of Boolean functions is uniformly noise-stable if and
only if for every f € F and every € > 0 there exists a value k such that

S OWif) <e. (52)

i>k

2. The majority-is-stablest conjecture. What are the Boolean functions
most stable under noise? It was conjectured by several authors that under
several conditions that exclude individual variables having a large influence,
majority is (asymptotically) most stable to noise. This conjecture has recently
been proved by Mossel, O’Donnell, and Oleszkiewicz [73].

We define a sequence (f,,) of Boolean functions to have a diminishing indi-
vidual influence if

lim max{l;(f,):1<k<n}=0. (53)

Theorem 7.4 (Mossel, O’Donnell, and Oleszkiewicz [73]). For every sequence
(fn) of Boolean functions with diminishing individual influence,

Co,(fn) < (1 —0(1)) (1 - %arccos(l - Qw)) . (54)
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The fact that the right-hand side gives the precise asymptotic description of
the noise stability of the majority function is a nineteenth-century result by
Sheppard.

3. MAX-CUT. Khot, Kindler, Mossel, and O’Donnell [65] showed that the
majority-is-stablest theorem (which at the time was a conjecture that they
posed) implies a sharp threshold for approximating MAX-CUT based on
Khot’s unique game problem. The famous Goemans-Williamson algorithm
based on semidefinite programming achieves the ratio a = .878567 ... Khot,
Kindler, Mossel, and O’Donnell showed that assuming the majority-is-stablest
theorem, anything better is as hard as Khot’s Unique Game problem.

4. Monotone threshold circuits. Threshold circuits form an important class
of circuits that are more general than Boolean circuits, since they allow
weighted majority gates. Contrary to the situation for Boolean circuits, it
is not the case that functions expressible by constant depth threshold circuits
have coarse threshold behavior, as is evident from the majority of such cir-
cuits. But there is a far-reaching conjecture [10] regarding their stability to
noise that is analogous to the theorems by Boppana, Linial-Mansour-Nisan,
and Hastad mentioned in the previous section:

Conjecture 7.5. Consider the class F of monotone Boolean functions f that
are expressed by monotone depth-c threshold circuits (of size N(f)). Then,
for every f € F and every e > 0 there is a value K = K(¢) such that

Z Wi(f) <e. (55)

k>K loge—! N(f)

Equation (52) shows that a noise-stable Boolean function can be well ap-
proximated by a low depth threshold circuit, but we do not know whether,
when the function is monotone, this can be achieved by a monotone threshold
circuit.

Finally, let us note an important criticism arising from works by Tsirelson
[85, 93]. These demonstrate that Boolean functions are too restricted for various
problems and applications concerning noise sensitivity, and indicate that “binary
trees” (in the form used in basic probability theory) rather than “cubes” are the
correct mathematical framework. Tsirelson’s more general setting allows him to
study, for example, “correlated” random walks and Brownian motions. It sug-
gests that the extensive investigation of Boolean functions, based on the discrete
cube, may be complemented by investigations based on binary trees. This point
of view may reflect on other topics studied in this chapter.
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8 PERCOLATION

We have mentioned in the introduction that the area in which threshold behavior
was originally studied is Physics. In this section we will discuss the model of
percolation.

Consider the graph G of an m by m+ 1 planar rectangular grid. The vertices
of G are thus points of the form (i,7) : 1 <i <m,1 < j <m+1, and two vertices
are adjacent in the graph G if they agree in one coordinate and differ by one in
the other coordinate. Questions concerning percolation in the plane (usually on
the infinite grid) are very important. Russo’s lemma was proved in the context of
percolation, and Kesten proved a sharp threshold result on the way to proving his
famous result [59] on critical probabilities for planar percolation. (For a simple
proof of Kesten’s theorem and an extension to Voronoi percolation, see the recent
papers by Bollobds and Riordan [15, 14].)

Choose every edge in G to be “open” with probability p. What is the proba-
bility of an open path from the left side of the rectangle to the right side? Is there
a sharp threshold? We can ask and immediately answer the analogous question
on the torus when we identify the left and right sides of the rectangle and the
top and bottom sides, or even just for a cylinder when we identify only the left
and right sides. When we look for a path homotopic to the horizontal path from
(0,0) to (0,m + 1), a sharp threshold follows from the proof of theorem 5.1.

The total influence of the Boolean function f described by “left-right” per-
colation on the m + 1 by m grid is a basic notion in percolation theory. It is
conjectured that I(f) ~ m3/* ~ n3/%, where n is the number of variables. This
conjecture was recently verified for one of the variants of planar percolation
(site percolation on the triangular grid) based on the works of Smirnov, Lawler,
Schramm, and Werner.

Basic Problem: For a Boolean function f with u(f) bounded away from 0 and
1, find sufficient conditions to guarantee that for some a, 8 > 0, n® < I(f) <
nt/2=8,

It was shown by Kesten [60, 61] that this property holds for the crossing event
for planar percolation. Why does the total influence for percolation behave as
a power of n? We can expect that the reason lies in some symmetry like the
one considered in theorem 5.2 of Bourgain and Kalai. However, two facts are
worth noting. The first is that the present formulation of Theorem 5.2 is not
sufficiently strong to yield lower bounds of the form I(f) > n® The second is
that the Boolean function we described does not admit many symmetries. What
it does seem to have is “approximate” symmetries. We expect that as the grid
becomes finer, there will be some “limit object” (the scaling limit) reflecting an
approximate symmetry of our functions under continuous maps of the square
to itself. Such a symmetry is expected in any dimension. In two dimensions,
it is expected that the limit object is symmetric under conformal maps. This
was proved by Smirnov for another variant of planar percolation, namely site
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percolation on the triangular grid. Noise sensitivity for the crossing event was
proved in Benjamini et al. [10] and Schramm and Steif [84] recently proved a
very strong form of it.

We now briefly discuss several related issues:

1. First passage percolation. Let f be a Boolean function. Consider a real
function g defined on the discrete cube. Let y1,yo2,...,y, be independent,
identically distributed random variables. Define

9(T1, T2y, Ty) = min{z T1y1 + T2y2 + +TnYn © fl21, 22, 2,) = 1}

(56)
Understanding the behavior of the function g is of interest in percolation
theory. In this context f is the Boolean function that describes the existence
of a path of open edges between two points on the grid. Curiously, the same
model is related to questions raised in mechanism design in economics theory.
Influences and methods used to study them apply very nicely to the study of
first passage percolation [9].

2. Models with dependence. One of the major research challenges is to
extend the results described in this chapter to models where the probability
distribution is not a product distribution. Important cases are the Ising and
the more general Potts and random cluster models, as well as models based
on random walks of various types. The random cluster model is a model of
random subgraphs of a graph G with n edges, where one has a real parameter
q > 0. The probability of a spanning graph H with k edges is proportional to

(1 —p) R,

where ¢ is the number of connected components of H. This model thus defines
a two-parameter probability distribution on random subgraphs. The challenge
is to find useful discrete isoperimetric theory and useful harmonic analysis for
these probability distributions that will allow us to extend some of the general
theorems described in this chapter.
Very recently, Graham and Grimmett [40] have made a breakthrough in this
area, extending the Kahn-Kalai-Linial theorem and deducing sharp threshold
theorems for measures of the random-cluster type.

3. The Fourier coefficients. The Fourier coefficients of the crossing (and
other) events for percolation are indexed by subgraphs of the grid. The Fourier
transform gives a distribution on such subgraphs which is very interesting.
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9 ECONOMICS AND VOTING: AN EXAMPLE OF
SELF-ORGANIZED CRITICALITY

Let us now return to the Condorcet Jury theorem from the section 1. A key
assumption in Condorcet Jury theorem is that each agent votes according to his
or her signals. There is recent interesting literature on the case where voters vote
strategically based on their signal. Suppose that every voter wishes to minimize
the probability of mistakes, where we may assign different weights to mistakes
in the two directions. Feddersen and Pesendorfer [31] considered the example
of juries, where a much larger weight is typically given to an innocent person
being convicted than to a guilty one being acquitted. Suppose that in order to
convict, one needs two thirds of the votes. Suppose furthermore that each juror k
receives a Boolean signal s such that if the defendant is guilty then s = 1 with
probability p > 1/2 and if the defendant is innocent then s = 1 with probability
1 — p. (We assume these signals are independent.) Now, if jurors vote according
to their signals, then when p = 0.51 and the number of jurors is large, they will
hardly ever convict.

Feddersen and Pesendorfer considered the case where jurors vote strategi-
cally, observing how their peers are voting, and use mixed (randomized) strate-
gies. The surprising conclusion is that in such a situation, ever with a high
threshold for conviction and a weak signal, the probability of either convicting
an innocent defendant or acquitting a guilty one tends to zero as the number of
jurors grows, even if the signal is weak. The one case where this does not hold
is where unanimity among all jurors is required. Feddersen and Pesendorfer’s
result and analysis is based on the notion of Nash equilibrium. Nash equilibrium
in this case gives us a nice example of “self-organized criticality.” The behavior
at the critical point is significant even when the voting method is biased from
the beginning.

For the reader who is not familiar with game theory, some explanation is in
order. To start with, every member of the jury has four pure strategies for how to
act, given the signal he or she receives: act according to the signal, act opposite
to the signal, acquit regardless of the signal, and convict regardless of the signal.
A mixed strategy means a strategy involving randomization, so the outcome is
probabilistic. In our case, a mixed strategy for juror k¥ would be: upon receiving a
signal to acquit, acquit with probability a; and convict with probability 1 — ay;
upon receiving a signal to convict, acquit with probability 8y and convict with
probability 1 — 8. We assume that each juror knows the signal s; he or she has
received, but not the signals or strategies of the other voters, and the jurors vote
in a secret ballot. Furthermore, we assume that the signal strength p is known
to all.

Each juror now votes in such a way as to maximize his or her own perceived
“payoff,” defined as follows. Jurors want to minimize the probability of a wrong
decision, and it is considered worse to convict an innocent defendant than to
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acquit a guilty defendant. So if the jury reaches the right decision, the payoff for
each juror is zero. If the jury acquits a guilty defendant, the payoff for each juror
is —g, where ¢ € (0,0.5). If the jury convicts an innocent defendant, the payoff
for each juror is ¢— 1. Note that the payoff function is the same for all jurors, and
depends only on the collective decision of the jury. Given a sequence of mixed
strategies, one for each juror, and based on an equal prior probability of innocence
and guilt, a juror can estimate the posterior probability that the defendant is
guilty as well as the expected payoff. In game theory, the Nash equilibrium point
is a sequence of mixed strategies such that no player can expect a gain in payoff
by deviating from his or her strategy as long as none of the other players deviates.

When we consider general voting methods and not only majority rules, it
can be shown that “asymptotically complete aggregation of information” is inti-
mately related to having a sharp threshold [83]. In particular, if there is a sharp
threshold, then there is always a Nash equilibrium point for which the probability
of mistakes tends to zero as the number of voters grows.

Fedderson and Pesendorfer’s result is related to the question of why we care
about critical behavior to start with. Why is it so often the case that shortly
before an election between two candidates, both of them appear to have a sig-
nificant chance of being elected? How come the probabilities we can assign to
the choices of each individual voter do not “sum up” to a decisive collective
outcome? This seems especially surprising in view of the sharp threshold phe-
nomena. Fedderson and Pesendorfer’s result suggests that the strategic behavior
of voters can push the situation towards criticality. Another explanation would
challenge the independence of the signals received by the voters.

There are other relations between threshold phenomena and economics and
social choice theory. We have already seen in theorem 3.9 that having a sharp
threshold for a sequence of monotone Boolean functions is equivalent to hav-
ing a diminishing Shapley-Shubik power index. A famous result in social choice
theory is Arrow’s impossibility theorem concerning election methods when there
are three or more candidates. Condorcet’s famous “paradox” demonstrates that
given three candidates A, B, and C, the majority rule may result in the soci-
ety preferring A to B , B to C, and C to A. Arrow’s Impossibility Theorem
is an extension of Condorcet’s paradox, and states that under certain general
conditions such non-transitive social preferences cannot be avoided under any
non-dictatorial voting method. Relations between threshold phenomena and Ar-
row type theorems are described in Kalai [54, 55].

As in the percolation discussion in section 8, a further problem in the context
of economics is to understand matters under more realistic probabilistic assump-
tions, moving away from product distributions. This poses interesting conceptual
and technical problems. Haggstrom, Kalai, and Mossel [44] studied aggregation
of information in models with dependence. Another challenge in the economic
arena is to study threshold phenomena (aggregation of information) and related
notions such as noise sensitivity for more complex models.
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10 CONCLUSIONS AND OPEN PROBLEMS

Threshold phenomena and related concepts such as pivotality, influence, and
noise sensitivity are important in many areas of mathematics, science, and engi-
neering. We have described some mathematical advances in the understanding of
threshold behavior and related phenomena, as well as various applications and
connections, and some open problems. The underlying mathematical concepts
are similar in different disciplines. However, bridging the different points of view,
methodologies, and interpretations is a major challenge. The subequent chapters
of this book address this challenge from the perspectives of physics and computer
science.

Over the course of this chapter, we have highlighted some important open
problems. These include proving Friedgut’s conjecture 5.4 and finding sharper
versions of Bourgain and Kalai’s theorem 5.2.2 A less explicit but nevertheless
important problem is to explain the emergence of power laws in the threshold
interval, where the width of the interval behaves as n=” where § > 0 is a real
number.

A fundamental challenge is to relate the threshold behavior to the threshold’s
location, and to find methods to exclude the possibility of oscillating critical
probabilities. We mentioned this issue in the context of the k-SAT problem. It
is equally of interest for many other problems as well.

Another important challenge is to find methods to deal with the influence
of events of small probability. This is related to a detailed understanding of how
the function p,(f) behaves, and especially to the analysis of large deviations of
the threshold behavior. In this chapter we have dealt mainly with ¢.(f) when
€ is fixed. It is of great interest to understand dependence on €. The precise
behavior of the function p,(f) in the threshold interval and the situation when
€ itself is very small and expressed as a function of n are both very interesting
topics. Kahn and Kalai [52] have proposed far-reaching conjectures concerning
the influence IP(f) of Boolean functions f when p,(f) is a function of n and
tends to 0 with increasing n. They also studied possible applications towards
finding the location of the critical probability.

It would also be interesting to study threshold behavior and influences when
we replace the Boolean cube {0,1}" by X" when ¥ is a finite alphabet with
more than two letters. We expect, in that case, that for symmetric monotone
functions the transition will occur in small “membranes” [56]. There is interesting
related work concerning powers of arbitrary graphs by Alon, Dinur, Friedgut, and
Sudakov [3]. There are various other generalizations of Boolean functions. Some
can be found in Ben-Or and Linial’s original paper [11] on collective coin flipping
and are waiting to be explored further. Another important generalization is to

2Falik and Samorodnitsky [30] have very recently found a new proof of the Kahn-Kalai-
Linial theorem based on an extension of the edge-isoperimetric inequality. Their methods may
be relevant to some of the problems that we have mentioned.
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functions of the form
f:{0,1}" — {0,1}™. (57)

These are of great importance in mathematics (e.g., error-correcting codes) and
computer science (e.g., extractors).

Finally, it is worth repeating a problem already mentioned in several con-
texts: study threshold behavior and related notions of noise sensitivity and
Fourier analysis for various models, with non-product probability distributions.
These are examples of some of the many open problems suggested by our dis-
cussion of threshold phenomena. We challenge the reader to explore other appli-
cations.
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