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Abstract. For any integer h > 2, a set A of integers is called a Bh-set if all sums a1 + . . . + ah,

with a1, . . . , ah ∈ A and a1 6 . . . 6 ah, are distinct. We obtain essentially sharp asymptotic bounds

for the number of Bh-sets of a given cardinality that are contained in the interval {1, . . . , n}. As a

consequence of these bounds, we determine, for any integer m 6 n, the cardinality of the largest

Bh-set contained in a typical m-element subset of {1, . . . , n}.

1. Introduction

Let h > 2 be an integer. We call a set A of integers a Bh-set if all sums of the form a1 + . . .+ah,

where a1, . . . , ah ∈ A satisfy a1 6 . . . 6 ah, are distinct. The study of Bh-sets goes back to the

work of Sidon [32], who, motivated by the study certain trigonometric series, considered infinite

sequences k1 < k2 < . . . for which the number of representations of each integer M as ki + kj , with

i 6 j, is uniformly bounded. In particular, Sidon asked (see also [12]) to determine the maximum

number of elements in such a sequence that are not larger than a given integer n, when the upper

bound on the number of representations as above is one. Define, for each h > 2 and n, letting

[n] := {1, . . . , n},
Fh(n) = max{|A| : A ⊂ [n] is a Bh-set}.

In other words, Sidon was interested in the asymptotic behavior of the function F2. (This is why

B2-sets are now usually referred to as Sidon sets.) The results of Chowla, Erdős, Singer, and

Turán [5, 12, 11, 33] yield that F2(n) = (1 + o(1))
√
n, which answers the question of Sidon. The

asymptotic behavior of the function Fh in the case h > 2 is less well understood, even though

the problem of estimating it has received considerable amount of attention. Bose and Chowla [2]

showed that Fh(n) > (1 + o(1))n1/h for each h > 3. On the other hand, an easy counting argument

gives that for all h and n,

Fh(n) 6 (h · h! · n)1/h 6 hn1/h.
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Successively better bounds of the form Fh(n) 6 chn
1/h for sufficiently large n were given in [4, 6,

10, 17, 23, 24, 26, 31]. The currently best known bounds are due to Green [13], who proved that

c3 < 1.519, c4 < 1.627 and ch 6
1

2e

(
h+

(
3

2
+ o(1)

)
log h

)
,

where o(1) is some function tending to 0 as h→∞. For a wealth of material on Bh-sets, the reader

is referred to the classical monograph of Halberstam and Roth [14] and to the more recent survey

of O’Bryant [28].

In this work, we shall be interested in the problem of enumerating Bh-sets. Let Zhn be the family

of all Bh-sets contained in [n]. In 1990, Cameron and Erdős [3] proposed the problem of estimating

|Z2
n|, that is, the number of Sidon sets contained in [n]. Recalling the definition of Fh(n) and

observing that the property of being a Bh-set is preserved under taking subsets, one easily obtains

2Fh(n) 6 |Zhn | 6
Fh(n)∑
t=0

(
n

t

)
. (1)

Since (1 + o(1))n1/h 6 Fh(n) 6 hn1/h, one deduces from (1) that

(1 + o(1))n1/h 6 log2 |Zhn | 6 chn1/h log n, (2)

where ch is some positive constant.

The logarithmic gap between the lower and the upper bounds in (2) was first closed in the case

of Sidon sets [22], that is, when h = 2, and subsequently [9] for arbitrary h.

Theorem 1 ([22, 9]). For every h > 2, there exists a constant Ch such that |Zhn | 6 2Chn
1/h

for

all n.

Let us mention here that another proof of Theorem 1 in the case h = 2 was later given by

Saxton and Thomason [29], who also showed that, perhaps somewhat surprisingly, log2 |Z2
n| >

(1.16 + o(1))F2(n). Also, for Sidon sets in [n]d for an integer d ≥ 2, a similar result was given

in [25].

In fact, both [22] and [9] considered a somewhat refined version of the original question posed by

Cameron and Erdős. This refinement was motivated by the problem of estimating the maximum

size of a Bh-set contained in a random set of integers, which was the main focus of these two papers;

for details, we refer the reader to §1.1. For a nonnegative integer t, let Zhn(t) be the family of all

Bh-sets contained in [n] that have precisely t elements. The main results of [9, 22] were estimates

on the cardinality of Zhn(t) for a wide range of t.

In order to establish a lower bound for |Zhn(t)|, in [9] we constructed two large subfamilies of

Zhn(t). One of them is constructed using a standard deletion argument. The resulting family is

very large, but the construction works only if t 6 εhn
1/(2h−1) for some constant εh > 0. The

second one is built using a certain blow-up operation. The resulting family is much smaller, but

the construction is valid for all t 6 Fh(n). The lower bounds on |Zhn(t)| that are implied by the

existence of these two families can be summarized as follows.

Proposition 2 ([9]). The following holds for every h > 2:
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(i) For every δ > 0, there exists an ε > 0 such that for each t 6 εn1/(2h−1),

|Zhn(t)| > (1− δ)t
(
n

t

)
.

(ii) There is a constant ch > 0 such that for every t 6 Fh(n),

|Zhn(t)| >
(chn
th

)t
.

In other words, if t � n1/(2h−1), then Bh-sets constitute a sizable (1 − o(1))t-proportion of

all t-element subsets of [n] and if t � n1/(2h−1), then we only know that this proportion is at

least (mere) (c′h/t
h−1)t for some constant c′h > 0. It turns out that the ratio of |Zhn(t)| to

(
n
t

)
undergoes a dramatic change at t ∼ n1/(2h−1). A fairly straightforward corollary of the so-called

container theorems proved independently by Balogh, Morris, and Samotij [1] and by Saxton and

Thomason [29] (applied to the 2h-uniform hypergraph of solutions to the equation a1 + . . .+ ah =

b1 + . . . + bh which are contained in [n]) is that when t � n1/(2h−1), then |Zhn(t)| 6
(
o(1)

)t(n
t

)
.

The main result of [9] is that a much stronger estimate, |Zhn(t)| 6 (chn/t
h)t for some constant

ch > 0, holds under the stronger assumption that t > n1/(h+1)(log n)2, which matches the lower

bound given by Proposition 2. We conjectured in [9] that this best-possible estimate continues to

hold (up to a to(t) multiplicative factor) under the much weaker (and almost optimal) assumption

that t > n1/(2h−1)+o(1). In the current work, we prove this conjecture, determining |Zhn(t)| up to a

multiplicative factor of to(t) for almost all t.

Theorem 3 (Main result). For every h > 2, ε > 0, and all sufficiently large integers n and

t > n1/(2h−1)+ε,

|Zhn(t)| 6
(

n

th−ε

)t
. (3)

1.1. Largest Bh-sets contained in random sets of integers. In the recent years, a major trend

in probabilistic combinatorics has been to prove ‘sparse random’ analogues of classical results in

extremal combinatorics and additive number theory. This trend was initiated around twenty years

ago with the work of Haxell, Kohayakawa,  Luczak, and Rödl [15, 16, 20, 21] and recently culminated

in the breakthrough work of Conlon and Gowers [7] and Schacht [30], which provides general tools

for ‘transferring’ extremal and structural results from the dense to the sparse random environment.

This trend provides strong motivation for our work on Sidon and Bh-sets, including this paper,

due to the fact that estimating |Zhn(t)| is very closely tied with the problem of determining the

maximum size of a Bh-set contained in a sparse random set of integers.

Given a set R of integers, let Fh(R) denote the maximum size of a Bh-set contained in R. Note

that this definition generalizes the one made earlier, as Fh(n) = Fh([n]). Let [n]m be a uniformly

chosen random m-element subset of [n]. We want to study the distribution of the random variable

Fh([n]m) for all m. A standard deletion argument implies that with probability tending to 1 as

n→∞, or asymptotically almost surely (a.a.s. for short), we have

Fh([n]m) = (1 + o(1))m if m = m(n)� n1/(2h−1).
3



bh(a)

a

1
h

1
2h−1

1
2h−1

h
2h−1

1

Figure 1. The graph corresponding to the piece-wise linear function bh(a) of Theorem 4.

On the other hand, the transference theorems of Schacht [30] and Conlon and Gowers [7] imply

that a.a.s.,

Fh([n]m) = o(m) if m = m(n)� n1/(2h−1).

These two observations were the starting point in [9, 22], where much more precise information on

Fh([n]m) was provided. As a consequence of Theorem 3, we may now describe the exact behavior

(up to no(1) factors) of Fh([n]m) for the whole range of m.

Theorem 4. Let h > 2 be given and set, for any a ∈ [0, 1],

bh(a) =


a, if 0 6 a 6 1/(2h− 1),

1/(2h− 1), if 1/(2h− 1) 6 a 6 h/(2h− 1),

a/h, if h/(2h− 1) 6 a 6 1.

Then, for every m = m(n) = na+o(1) for some a ∈ [0, 1] we have, a.a.s.

Fh([n]m) = nbh(a)+o(1).

Proof sketch. The upper bound on Fh([n]m) follows from a simple counting argument, namely, for

any t, the probability that Fh([n]m) > t is at most

|Zhn(t)| ·
(

n

m− t

)(
n

m

)−1

.

Our main result, Theorem 3, shows that for any t > n1/(2h−1)+o(1), the above expression becomes

o(1) when m < th−o(1). This translates to the upper bound on Fh([n]m) when m = na+o(1) for

some h/(2h − 1) 6 a 6 1. When m 6 n1/(2h−1)+o(1), the claimed upper bound follows from the

trivial bound Fh([n]m) 6 m. Finally, when m = na+o(1) for some 1/(2h− 1) 6 a 6 h/(2h− 1), the

claimed upper bound follows from the monotonicity of bh(·).
The lower bounds on Fh([n]m) asserted in the theorem were already proved in [9] and therefore

we omit their proofs here. �

2. Proof outline

We devote this section to a detailed outline of the proof of our main result, Theorem 3.
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2.1. Background. Let us start by recalling the general strategy for proving upper bounds on

|Zhn(t)| that was used in [9, 22]. The high-level idea there was to bound the number of sets of

a given size that one can add to a given Bh-set so that the resulting larger set still has the Bh

property. (Having achieved this, one may easily derive a bound on |Zhn(t)| using induction on t.)

More precisely, that a Bh-set S ⊂ [n] of cardinality s is given and we would like to extend it to a

larger Bh-set T ⊂ [n] of cardinality t. The core of [9, 22] is showing that if s is somewhat large,

then the number of such extensions is very small. To see why this might be true, observe first that

if two distinct elements x, y ∈ [n] \ S satisfy

x+ a1 + . . .+ ah−1 = y + b1 + . . .+ bh−1

for some {a1, . . . , ah−1}, {b1, . . . , bh−1} ∈
(

S

h− 1

)
,

(4)

then S ∪ {x, y} is clearly not a Bh-set and hence x and y cannot simultaneously belong to T . This

motivates our next definition.

Definition 5 (Collision graph CGS). Let S be a Bh-set. Denote by CGS the graph on the vertex

set [n] whose edges are all pairs of distinct elements x, y ∈ [n] that satisfy (4).

The above observation is equivalent to noting that T \ S must be an independent set in the

collision graph CGS . Therefore, the number of extensions of S to a Bh set of cardinality t is not

larger than the number of independent sets in CGS which have t − s elements. The number of

such independent sets can be bounded with the use of the following lemma, implicit in the work

of Kleitman and Winston [19], which provides an upper bound on the number of independent sets

in graphs that have many edges in each sufficiently large vertex subset. A proof of this lemma is

given in [9].

Lemma 6. Let G be a graph on N vertices, let q be an integer, and let 0 6 β 6 1 and R be real

numbers satisfying

R > e−βqN. (5)

Suppose that

eG(A) > β

(
|A|
2

)
for every A ⊂ V (G) with |A| > R. (6)

Then, for all integers m > 0, the number of independent sets of cardinality q +m in G is at most(
N

q

)(
R

m

)
. (7)

Lemma 6 effectively reduces the problem of counting extensions of S into larger Bh-sets to the

problem of verifying that CGS satisfies condition (6) for appropriately chosen R and β. It is not

very difficult to show that for every sufficiently large set A ⊂ [n] \ S, there are many quadruples

(x, y, {a1, . . . , ah−1}, {b1, . . . , bh−1}) with x, y ∈ A that satisfy the equality in (4). This, however,

does not immediately imply that eCGS (A) is large because a single edge of CGS may correspond

to many different quadruples. In [9], we proved an upper bound on the maximum number of

such quadruples that a given pair {x, y} can be contained in. Unfortunately, this bound becomes
5



too weak when |S| � n1/(h+1). Consequently, we obtained an upper bound on |Zhn(t)| only for

t 6 h2n1/(h+1)(log n)1+1/(h+1).

2.2. Special case h = 3. In [8], we enhanced the above strategy and proved Theorem 3 in the

case h = 3. In the present work, we build on this refined strategy and make further adjustments

and generalizations, many of which are highly technical. Therefore we believe that it is instructive

to overview the argument used in [8] in that special case first. We shall omit many details in order

to simplify the exposition.

Consider all B3-sets S such that no two distinct x, y ∈ [n] form ‘too many’ quadruples satisfy-

ing (4), or equivalently, no number z 6= 0 admits too many representations as a1 + a2 − b1 − b2,

where a1, a2, b1, b2 ∈ S. (The actual requirement is somewhat more technical.) For convenience,

let us call these sets bounded.

Those t-element Bh-sets which contain a bounded subset of cardinality t1−ε may be counted as

before, as long as t > n1/5+o(1). The heart of [8] is estimating the number of T ∈ Z3
n(t) whose

largest bounded subset has fewer than t1−ε elements. The key fact used here is that if S is a

maximal bounded subset of T , then T \ S is necessarily contained in a set S̃ that possesses some

highly non-random arithmetic properties.

More precisely, given any ε > 0 and t > n1/5+ε, we consider a family F = F(t) = Fsmall(t) ∪
Flarge(t) of pairs of sets (S, S̃) defined as follows:

(1) Flarge(t) contains all bounded B3-sets S with precisely t1−ε elements, each paired with

S̃ =
{
x ∈ [n] \ S : S ∪ {x} is a B3-set

}
.

(2) Fsmall(t) contains all bounded B3-sets S with fewer than t1−ε elements, each paired with

S̃ =
{
x ∈ [n] \ S : S ∪ {x} is a B3-set which is not bounded

}
.

Clearly, the family F has the property that for every T ∈ Z3
n(t), there exists a pair (S, S̃) ∈ F

such that S ⊂ T ⊂ S ∪ S̃. This allows us to bound |Z3
n(t)| by estimating, for each pair (S, S̃) ∈ F ,

how many T ∈ Z3
n(t) satisfy S ⊂ T ⊂ S ∪ S̃. Since T \ S is an independent set in CGS [S̃], we may

derive an upper bound using Lemma 6. In order to obtain a sufficiently strong bound, we have to

prove that CGS [S̃] satisfies the assumptions of Lemma 6 for suitable parameters β and R. This

is straightforward when (S, S̃) ∈ Flarge. Showing this for (S, S̃) ∈ Fsmall is highly non-trivial and

requires a considerable amount of effort.

2.3. Notation. Given two sets A,B ⊂ Z, we let

A⊕B =
∑
a∈A

a+
∑
b∈B

b and A	B =
∑
a∈A

a−
∑
b∈B

b.

For an integer x, we abbreviate {x} ⊕A and {x} 	A with x⊕A and x	A, so that

x⊕A = x+
∑
a∈A

a and x	A = x−
∑
a∈A

a.
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Finally, for a hypergraph H with V (H) ⊂ Z, and integer x, let

x⊕H =
{
x⊕ e : e ∈ H

}
. (8)

We shall often let H in the above definition be the complete k-uniform hypergraph with vertex

set S, writing

x⊕
(
S

k

)
.

For the sake of clarity of our presentation, we shall often write polylog(n) to denote any function

that is bounded above by (log n)C for some absolute constant C. Morevoer, we shall from now on

write ‘k-graph’ instead of ‘k-uniform hypergraph’.

More notation will be introduced and used locally when needed.

2.4. Proof summary. Recall that given an S ⊂ [n], let have defined the collision graph CGS

to the graph on the vertex set [n] whose edges are all pairs of distinct elements x, y ∈ [n] that

satisfy (4), that is

x− y = A	B for some A,B ∈
(

S

h− 1

)
.

As we have already observed above, if T is a Bh-set, then for every S ⊂ T , the set T \ S is

independent in the graph CGS . We shall show that Theorem 3 follows from Lemma 6 and the

following statement, whose proof will take most of this paper.

Theorem 7. For every h > 2 and δ ∈ (0, 1/2) the following is true for all sufficiently large n.

Suppose that n1/(2h−1)+δ 6 t 6 2hn1/(2h−1)+δ.

There exists a family F of pairs of sets (S, S̃) with S, S̃ ⊂ [n] and |S| 6 t1−δ that has the following

property. For every T ∈ Zhn(t), there is (S, S̃) ∈ F such that S ⊂ T ⊂ S ∪ S̃ and the graph CGS

satisfies

eCGS (A) >
1

t1−δ/2

(
|A|
2

)
for every A ⊂ S̃ with |A| > n

th−1−8h2δ
. (9)

We postpone the (fairly straightforward) derivation of Theorem 3 to §5.2 and focus on Theorem 7

instead. First, we need several additional definitions which generalize concepts already introduced

in [8].

Definition 8 (Representation count). For a k-graph G and an `-graph H with V (G), V (H) ⊂ [n]

and an integer z, we let RG,H(z) be the number of pairs (e, f) ∈ G ×H that satisfy

z = e	 f and e ∩ f = ∅.

Moreover, let

‖RG,H‖ = max
z
RG,H(z).

For the sake of brevity, we shall often write RG to denote RG,G .

Definition 9 (Collision multigraph). Given an (h − 1)-graph G with V (G) ⊂ [n], let C̃GG be the

multigraph on the vertex set [n], where the multiplicity of each pair x, y ∈ [n] is RG(x− y).
7



Observe that for every S ⊂ [n] and every (h− 1)-graph G with V (G) = S, the set of pairs with

non-zero multiplicity in C̃GG is a subgraph of CGS . Moreover, for every A ⊂ [n],

e
C̃GG

(A) 6 ‖RG‖ · eCGS (A), (10)

where e
C̃GG

(A) counts pairs of vertices of A with their multiplicities in C̃GG . In view of (10), a

natural approach to proving a strong lower bound on eCGS (A) is to construct an (h − 1)-graph G
with V (G) = S for which the ratio e

C̃GG
(A)/‖RG‖ is large.

Similarly as in the case h = 3 described in §2.2, the family F from the statement of Theorem 7

will be partitioned into subsets Flarge and Fsmall in the following manner. Very roughly speaking,

we will say that a set S is bounded if S is a Bh-set and there exists a companion hypergraph

G ⊂
(
S
h−1

)
with the following properties: G is sufficiently dense and ‖RG‖ is somewhat small. With

this informal description, we describe the pairs in F .

(1) Flarge consists of all pairs formed by a bounded set S of ‘large’ size (n1/(2h−1)+δ elements)

and

S̃ =
{
x ∈ [n] \ S : S ∪ {x} is a Bh-set

}
.

It will not be very difficult to show that CGS [S̃] satisfies the assumptions of Lemma 6.

(2) Fsmall consists of all pairs formed by a bounded set S of ‘small’ size (fewer than n1/(2h−1)+δ

elements) and

S̃ =
{
x ∈ [n] \ S : S ∪ {x} is a Bh-set which is not bounded

}
.

In other words, S̃ contains all the elements x ∈ [n] \S such that S ∪{x} is a Bh-set but for

which one cannot find a companion hypergraph G ⊂
(S∪{x}
h−1

)
in such a way that the density

of G is large and ‖RG‖ is appropriately bounded. The precise definition of bounded sets will

force an atypical additive structure on the pair (S, S̃), which eventually allow us to prove

that CGS [S̃] satisfies the assumptions of Lemma 6.

It is easy to see that for every T ∈ Zhn(t), there is an (S, S̃) ∈ F such that S ⊂ T ⊂ S ∪ S̃. Indeed,

given such a set T , we let S′ be the largest bounded subset of T . If |S′| > n1/(2h−1)+δ, then we let S

be an arbitrary subset of S′ with precisely n1/(2h−1)+δ elements and obtain a pair (S, S̃) ∈ Flarge.
Otherwise, we let S = S′ and obtain a pair (S, S̃) ∈ Fsmall. The real content of Theorem 7 is

the fact that (9) holds for every (S, S̃) ∈ F . Since the arguments involving Flarge are somewhat

standard, we shall focus the remainder of this section on the precise notion of boundedness (which

determines the definitions of Flarge, Fsmall, and S̃) and the structure of the pairs (S, S̃) ∈ Fsmall.
First of all, since there seems to be no easy way of controlling ‖RG‖ ‘directly’, similarly as in [8],

we shall instead maintain an upper bound on the moment generating function of RG , defined as

follows.

Definition 10 (Moment generating function of RG,H). Given a k-graph G and an `-graph H with

V (G), V (H) ⊂ [n] and a positive real λ, we let

QG,H(λ) =

kn∑
z=−`n

exp
(
λ ·RG,H(z)

)
. (11)
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Note that the range of the above sum includes all z for which RG,H(z) 6= 0. Note also that

RG,H(z) = RH,G(−z) and thus QG,H = QH,G .

One reason why we are interested in the moment generating function is the following trivial

relationship between RG,H and QG,H(λ).

Remark 11. For every λ > 0,

‖RG,H‖ = max
z
RG,H(z) 6

1

λ
logQG,H(λ). (12)

To this end, we shall construct the set S and the hypergraph G with V (G) = S step-by-step,

adding to G one vertex at a time. There is an apparent difficulty to be overcome in this approach.

On the one hand, in order to guarantee that the multigraph C̃GG has many edges, we should make

sure that G is relatively dense. On the other hand, the more edges we add to G, the more difficult

it is to guarantee that ‖RG‖ stays small.

Suppose that a Bh-set S is bounded, that is, there is an (h− 1)-graph G with vertex set S that

is relatively dense and such that QG,G(λ) is somewhat small and, consequently, ‖RG‖ is also small.

Suppose moreover that we are trying to add a new vertex x 6∈ S to the (h− 1)-graph G in order to

form a new (h−1)-graph G with vertex set S∪{x}. Clearly, it suffices to decide which (h−2)-tuples

of elements of S will form an edge together with the new vertex x. Denote by Nx the hypergraph

formed by all such (h− 2)-tuples. One easily sees that

RG(z) = RG(z) +RG,Nx(z + x) +RNx,G(z − x). (13)

In view of this, it seems useful to control ‖RG,Nx‖ = ‖RNx,G‖. One can achieve this by requiring

that Nx ⊂ G(h−2) for some (h − 2)-graph G(h−2) such that QG,G(h−2)(λ) is somewhat small and,

consequently, ‖RG,Nx‖ 6 ‖RG,G(h−2)‖ is also small. Continuing in this fashion, one realizes that it

is useful to construct an entire family of hypergraphs, one k-graph G(k) ⊂
(
S
k

)
for each k ∈ [h− 1],

such that each G(k) is relatively dense and at the same time QG(k),G(`)(λ) is somewhat small for all

pairs k, ` ∈ [h − 1]. This motivates the following definition. First, given a positive integer m, let

Hm denote the mth harmonic number, that is,

Hm =
m∑
j=1

1

j

and recall that 0 6 Hm − logm 6 1 for every m.

Definition 12. Let h, n > 2 be integers, let α ∈ [0, 1), and let λ > 0. We shall say that a set

S ∈ Zhn satisfies property Ph(λ, α) if there exist hypergraphs G(k) ⊂
(
S
k

)
, for k ∈ [h− 1], such that

(a) |G(k)| > (1− 2kα)

(
|S|
k

)
for each k ∈ [h− 1];

(b) QG(k),G(`)(λ · ξk+`) 6 (2hn+ 1) · exp(H|S|) for all k, ` ∈ [h− 1], where

ξj = (2 log n)−j for all integers j. (14)

Finally, given a set S ⊂ [n] satisfying Ph(λ, α), we let

S̃λ,α =
{
x ∈ [n] \ S : S ∪ {x} 6∈ Ph(λ, α)

}
. (15)
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Remark 13. Note that if G(1), . . . ,G(h−1) satisfy condition (b) of the above definition, then

‖RG(k),G(`)‖ 6
logQG(k),G(`)(λ · ξk+`)

λ · ξk+`
6

2 log n

λ · ξk+`
=

1

λ · ξk+`+1
.

Let us tentatively say that a set S ∈ Zhn is bounded if it satisfies property Ph(λ, α) for some

given parameters α 6 2−h and λ > n−δ. (In reality, the definition is somewhat more complicated,

but this approximation will suffice for now.) Assume this definition of boundedness and suppose

that (S, S̃) ∈ Fsmall. In particular, S ∈ Ph(λ, α) and S̃ = S̃λ,α. Roughly speaking, it means that

there are realtively dense hypergraphs G(1), . . . ,G(h−1) such that QG(k),G(`)(λ) is somewhat small for

all pairs k, ` ∈ [h− 1] but for each x ∈ S̃, it is not possible to choose, for every k ∈ {2, . . . , h− 1},
sufficiently many edges of G(k−1) to form the neighborhood of x in a k-graph G(k)

with vertex set

S ∪ {x} in such a way that Q
G(k),G(`)

(λ) is not much larger than QG(k),G(`)(λ) for all k and `.

In the first key step of the proof, we shall show that there exist sets Γ2, . . . ,Γh−1 ⊂ [n] which are

fairly small but for each x ∈ S̃, there is some k ∈ {2, . . . , h− 1} such that the set x⊕
(
S
k−1

)
, defined

as in (8), has an unusually large intersection with Γk. More precisely, |Γk| 6 λ · (|S|+ 1)k+h−1 and∣∣∣∣x⊕ ( S

k − 1

)
∩ Γk

∣∣∣∣ > 2k−1α

(
|S|
k − 1

)
.

This constitutes what we called earlier ‘an atypical additive structure’ on the pair (S, S̃). In the

second key step of the proof, we shall exploit the existence of the sets Γ2, . . . ,Γh−1 to derive a

strong lower bound on C̃GH(A) for all sufficiently large A ⊂ S̃ and some H ⊂
(
S
h−1

)
. The caveat

here is that we cannot take H = G(h−1) as our argument requires that e(H) > (1 − α′)
(|S|
k

)
for

some α′ � α. But this only means that eCGS (A) > e
C̃GH

(A)/‖RH‖ and we have no strong a priori

bound on ‖RH‖. This is why in the real definition of bounded sets (Definition 18), we shall require

that S admits a whole family of collections G(1), . . . ,G(h−1), one for each pair (λ, α) coming from

a sequence (λi, αi)i, where αi+1 � αi and λi+1/λi is not very small for each i. This way, we may

let the hypergraph H above be the (h− 1)-graph G(h−1) constructed for the next pair (λ, α) in our

sequence. This H is sufficiently dense, since αi+1 � αi. But now ‖RH‖ is not much larger than

the ‘original’ bound on ‖RG(h−1)‖, since λi+1 is not much smaller than λi.

2.5. Organization of the proof. In Section 3 we prove two technical lemmas that explain how

adding a single vertex (together with edges containing it) to hypergraph affects the moment function

QG,H(·). We then show in Section 4 that each pair of sets (S, S̃λ,α) defined in (15) possesses a certain

additive structure. In Section 5 we state a technical result, Theorem 17, which asserts that for every

sufficiently dense H ⊂
(
S
h−1

)
, the multigraph C̃GH has many edges in each large subset of S̃λ,α.

We then use this technical theorem to prove Theorem 7. A fairly straightforward derivation of

our main results, Theorem 3, from Theorem 7 is presented in §5.2. The fairly long and technical

proof of Theorem 17 is postponed to Section 6. In Section 7, we conlude the paper with a short

discussion.
10



3. Extension lemmas

In this section we prove two technical lemmas that we shall later use to bound the moment

generating functions QG(k),G(`)(·). The first lemma shows that when we extend two hypergraphs G
and H to form G and H by adding to them a single vertex, then we may bound the increase of the

moment function, QG,H(λ)−QG,H(λ), in terms of the increases of the moment function caused by

extending G and H separately, that is, QG,H(λ)−QG,H(λ) and QG,H(λ)−QG,H(λ), provided that

the neighborhoods of the new vertex in G and H are two ‘well-behaved’ hypergraphs N and M,

respectively.

Lemma 14. Let k, ` > 2 be integers and let λ > 0. Suppose that

• G is a k-graph and N is a (k − 1)-graph with V (G) = V (N ) ⊂ [n],

• H is an `-graph and M is an (`− 1)-graph with V (H) = V (M) ⊂ [n],

• ‖RN ,H‖, ‖RG,M‖ 6 1/λ,

• x is an arbitrary element of [n] not in V (G) ∪ V (H).

Then the hypergraphs G and H defined by

G = G ∪
{
{x} ∪ e : e ∈ N

}
and H = H ∪

{
{x} ∪ f : f ∈M

}
satisfy

QG,H(λ)−QG,H(λ) 6 2
((
QG,H(λ)−QG,H(λ)

)
+
(
QG,H(λ)−QG,H(λ)

))
. (16)

Proof. As RG,H(z) counts only pairs (e, f) ∈ G ×H that satisfy e ∩ f = ∅, we have

RG,H(z) = RG,H(z) +RN ,H(z − x) +RG,M(z + x) (17)

for every integer z. Now, let

N(z) = RN ,H(z − x) = RG,H(z)−RG,H(z),

M(z) = RG,M(z + x) = RG,H(z)−RG,H(z)
(18)

and observe that

QG,H(λ)−QG,H(λ) =

kn∑
z=−`n

exp
(
λ ·RG,H(z)

)
·
(

exp
(
λ ·N(z)

)
− 1︸ ︷︷ ︸

a

)
, (19)

QG,H(λ)−QG,H(λ) =

kn∑
z=−`n

exp
(
λ ·RG,H(z)

)
·
(

exp
(
λ ·M(z)

)
− 1︸ ︷︷ ︸

b

)
. (20)

Since (17) holds, we have

exp
(
λ ·RG,H(z)

)
= exp

(
λ ·RG,H(z)

)
· exp

(
λ ·N(z)

)
· exp

(
λ ·M(z)

)
, (21)

and hence,

QG,H(λ)−QG,H(λ) =

kn∑
z=−`n

exp
(
λ ·RG,H(z)

)
·
(

exp
(
λ ·N(z)

)
· exp

(
λ ·M(z)

)
− 1︸ ︷︷ ︸

ab+a+b

)
.
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Therefore, in order to establish (16), it is enough to show that for every z,

exp
(
λ ·N(z)

)
· exp

(
λ ·M(z)

)
− 1︸ ︷︷ ︸

ab+a+b

6 2 ·
(

exp
(
λ ·N(z)

)
− 1︸ ︷︷ ︸

a

+ exp
(
λ ·M(z)

)
− 1︸ ︷︷ ︸

b

)
.

To prove the above inequality, first let a = exp
(
λ ·N(z)

)
− 1 and b = exp

(
λ ·M(z)

)
− 1 and notice

that the inequality becomes ab+ a+ b 6 2(a+ b), or simply ab 6 a+ b.

Our assumption that ‖RN ,H‖, ‖RG,M‖ 6 1/λ, together with (18) imply that

0 6 λN(z) = λRN ,H(z − x) 6 λ ‖RN ,H‖ 6 1,

and similarly, 0 6 λM(z) 6 1. This means that a, b ∈ [0, e − 1] ⊂ [0, 2]. In particular, a + b 6 4.

Consequently, ab 6
(
a+b

2

)2
6 a+ b by the AM–GM inequality. �

Our second lemma shows how one can extend a hypergraph by adding one vertex together with

edges containing it in a way that causes only a minor increase in the moment function.

Lemma 15. Let k > 2 and ` > 1 be integers and let λ > 0. Suppose that

• G is a k-graph and N is a (k − 1)-graph with V (G) = V (N ) ⊂ [n],

• H is an `-graph and V (H) ⊂ [n] is a B`-set1,

• ‖RN ,H‖ 6 1/λ.

Then for every integer M > 1, there exists a set Γ ⊂ [kn] with |Γ| 6 M such that for any

x ∈ [n] \ V (G), the k-graph G on V (G) ∪ {x} defined by

G = G ∪
{
{x} ∪ e : e ∈ N and x⊕ e 6∈ Γ

}
(22)

satisfies

QG,H(λ) 6 QG,H(λ) ·
(

1 +
2λ|H||N |

M

)
.

Proof. For integers w and z, define

I(w, z) = 1
[
z = w 	 f for some f ∈ H

]
and

uw =

kn∑
z=−`n

exp
(
λ ·RG,H(z)

)
I(w, z), (23)

see Figure 2. Set

Γ =

{
w ∈ [kn] : uw >

|H| ·QG,H(λ)

M

}
. (24)

Claim 1. |Γ| 6M .

Proof. Observe first that for every z, ∑
w∈[kn]

I(w, z) 6 |H|.

1If ` = 1, then this condition is vacuous as every set of numbers is a B1-set.

12



Figure 2. The definition of uw.

Indeed, each value w such that I(w, z) = 1 has some associated fw ∈ H satisfying w	 fw = z, and

since we clearly cannot have fw = fw′ for distinct w,w′, the inequality follows. Therefore,∑
w∈[kn]

uw =
kn∑

z=−`n
exp

(
λ ·RG,H(z)

) ∑
w∈[kn]

I(w, z) 6 |H| ·QG,H(λ).

On the other hand, as Γ ⊂ [kn], ∑
w∈[kn]

uw > |Γ| ·
|H| ·QG,H(λ)

M
.

Combining the two previous inequalities completes the proof of the claim. �

Let

Nx = {e ∈ N : x⊕ e 6∈ Γ} (25)

and consider the k-graph G defined in (22), namely

G = G ∪
{
{x} ∪ e : e ∈ Nx

}
.

Observe that for any integer z,

RG,H(z) 6 RG,H(z) +RNx,H(z − x).

It follows that

exp
(
λ ·RG,H(z)

)
6 exp

(
λ ·RG,H(z)

)
· exp

(
λ ·RNx,H(z − x)

)
6 exp

(
λ ·RG,H(z)

)
· (1 + 2λ ·RNx,H(z − x)) ,

(26)

13



where the last inequality follows from the fact that ex 6 1+2x for all x ∈ [0, 1] and our assumption

that

λ ·RNx,H(z − x) 6 λ · ‖RNx,H‖ 6 λ · ‖RN ,H‖ 6 1.

Moreover,

RNx,H(z − x) 6
∑
e∈Nx

∑
f∈H

1
[
z = (x⊕ e)	 f

]
=
∑
e∈Nx

I(x⊕ e, z),

where the last equality follows because V (H) is a B`-set and hence for given x, e, and z, there is

at most one f ∈ H such that z = (x⊕ e)	 f . Consequently, from (26), we have

exp
(
λ ·RG,H(z)

)
6 exp

(
λ ·RG,H(z)

)
·

(
1 + 2λ

∑
e∈Nx

I(x⊕ e, z)

)
.

Summing the above inequality over all z ∈ [−`n, kn], and recalling (23) yields

QG,H(λ) 6 QG,H(λ) + 2λ
∑
e∈Nx

ux⊕e.

From the definitions of Γ and Nx, see (24), (25), we finally conclude that

QG,H(λ) 6 QG,H(λ) ·
(

1 +
2λ|H||Nx|

M

)
6 QG,H(λ) ·

(
1 +

2λ|H||N |
M

)
. �

4. The additive structure of (S, S̃λ,α)

In this section we show that if S satisfies Ph(λ, α), then the pair (S, S̃λ,α) possesses some stringent

additive structure. In particular, one can partition S̃λ,α into
⋃h−1
k=2 S̃λ,α,k in such a way that a large

fraction of all numbers of the form x ⊕ e with x ∈ S̃λ,α,k and e ∈
(
S
k−1

)
belong to a fairly small

set Γk. In later sections, we shall exploit this structure to derive a strong lower bound on e
C̃GH

(A)

for all sufficiently large A ⊂ S̃λ,α and every sufficiently dense H ⊂
(
S
h−1

)
.

Lemma 16. Let λ ∈ (0, 1], let α ∈ [0, 1], and suppose that a set S ∈ Zhn satisfies property Ph(λ, α).

Then there exist sets Γ2, . . . ,Γh−1 ⊂ [hn] with the following properties:

(i) |Γk| 6 (|S|+ 1)k+h−1 · λ for every k ∈ {2, . . . , h− 1}.
(ii) For every x ∈ S̃λ,α there is a k ∈ {2, . . . , h− 1} such that∣∣∣∣x⊕ ( S

k − 1

)
∩ Γk

∣∣∣∣ > 2k−1α

(
|S|
k − 1

)
.

Proof. Our argument here can be summarized as follows. Since S has property Ph(λ, α), there are

some G(1), . . . ,G(h−1) with vertex set S satisfying (a) and (b) of Definition 12.Given an x ∈ S̃λ,α,

using Lemmas 14 and 15 from Section 3, we shall extend each G(k) to a G(k) ⊂
(S∪{x}

k

)
so that

condition (b) of Definition 12 is satisfied. By the definition of S̃λ,α, some G(k)
must fail condition (a).

We shall derive the conclusion of the lemma from this fact.

Let λ, α, and S be as in the statement of the lemma and fix arbitrary hypergraphs G(1), . . . ,G(h−1)

that satisfy conditions (a) and (b) of Definition 12. In particular, it follows from Remark 13 that

for every k ∈ {2, . . . , h− 1} and ` ∈ [h− 1], we have ‖RG(k−1),G(`)‖ 6 1/(λ · ξk+`), and hence we may
14



apply Lemma 15 with

G = G(k), N = G(k−1), H = G(`), λ = λ · ξk+`, M = 8(|S|+ 1)k+` · λ · ξk+`

to obtain a set Γk,` ⊂ [kn] with

|Γk,`| 6 8(|S|+ 1)k+` · λ · ξk+` (27)

such that for any x ∈ [n] \ S the k-graph G(k)
` (x) defined by

G(k)
` (x) = G(k) ∪

{
{x} ∪ e : e ∈ G(k−1) and x⊕ e 6∈ Γk,`

}
(28)

satisfies

Q
G(k)` (x),G(`)

(λ · ξk+`) 6 QG(k),G(`)(λ · ξk+`) ·

(
1 +
|G(`)| · |G(k−1)|
4(|S|+ 1)k+`

)

6 QG(k),G(`)(λ · ξk+`) ·
(

1 +
1

4(|S|+ 1)

)
.

(29)

For each k ∈ {2, . . . , h− 1}, we let

Γk =
h−1⋃
`=1

Γk,` (30)

and observe that (27) implies that condition (i) from the statement of this lemma is satisfied, see

the definition of ξj in (14).

Now, fix some x ∈ S̃λ,α, let G(1)
= G(1) ∪

{
{x}
}

, and define for each k ∈ {2, . . . , h− 1},

G(k)
=

h−1⋂
`=1

G(k)
` (x)

(28)
= G(k) ∪

{
{x} ∪ e : e ∈ G(k−1) and x⊕ e 6∈ Γk

}
. (31)

Since S ∪ {x} is a Bh-set, then ‖R
G(k),G(`)

‖ 6 1 for every k, ` ∈ [h − 1] satisfying k + ` 6 h and

therefore

Q
G(k),G(`)

(λ · ξk+`) 6 (2hn+ 1) · exp(λ · ξk+`)
(14)

6 (2hn+ 1) · e 6 (2hn+ 1) · exp(H|S|+1),

as we have assumed that λ 6 1. It follows from (29), and the fact that G(k) ⊂ G(k)
` (x), that for

every k, ` ∈ {2, . . . , h− 1},

Q
G(k),G(`)

(λ · ξk+`) 6 QG(k)` ,G(`)
(λ · ξk+`) 6 QG(k),G(`)(λ · ξk+`) ·

(
1 +

1

4(|S|+ 1)

)
. (32)

Since QG,H(·) = QH,G(·), the same bound above applies to Q
G(k),G(`)

(λ · ξk+`). Consequently,

Lemma 14 implies that for all k, ` ∈ {2, . . . , h− 1},

Q
G(k),G(`)

(λ · ξk+`) 6 QG(k),G(`)(λ · ξk+`) ·
(

1 +
1

|S|+ 1

)
—by condition (b) of Def. 12—

6 (2hn+ 1) · exp(H|S|) ·
(

1 +
1

|S|+ 1

)
6 (2hn+ 1) · exp(H|S|+1).

(33)
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In other words, the hypergraphs G(1)
, . . . ,G(h−1)

satisfy condition (b) of Definition 12 with S re-

placed by S ∪ {x}. Since x ∈ S̃λ,α, the set S ∪ {x} does not satisfy property Ph(λ, α) and hence

condition (a) of Definition 12 has to be violated, that is, there must be some k ∈ [h− 1] for which

|G(k)| < (1− 2kα)
(|S|+1

k

)
. Together with the fact that |G(k)| > (1− 2kα)

(|S|
k

)
, we have

|G(k)| − |G(k)| < (1− 2kα)

(
|S|+ 1

k

)
− (1− 2kα)

(
|S|
k

)
= (1− 2kα)

(
|S|
k − 1

)
. (34)

This is clearly not true if k = 1, as |G(1)| = |G(1)|+ 1, hence let us consider k ∈ {2, . . . , h− 1}. By

the definition of G(k)
in (31),

|G(k)| − |G(k)| = |G(k−1)| − |{e ∈ G(k−1) : x⊕ e ∈ Γk}| = |G(k−1)| −
∣∣(x⊕ G(k−1)

)
∩ Γk

∣∣,
where in the last equality we used the fact that S is a Bk−1-set and therefore no two distinct

e, e′ ∈ G(k−1) may satisfy x ⊕ e = x ⊕ e′. Since G(k−1) satisfies condition (a) of Definition 12, we

have

|G(k)| − |G(k)| > (1− 2k−1α)

(
|S|
k − 1

)
−
∣∣(x⊕ G(k−1)

)
∩ Γk

∣∣. (35)

Combining (34) and (35) yields∣∣∣∣x⊕ ( S

k − 1

)
∩ Γk

∣∣∣∣ > ∣∣(x⊕ G(k−1)
)
∩ Γk

∣∣ > 2k−1α

(
|S|
k − 1

)
,

which yields condition (ii) of this lemma, as x was arbitrary. �

5. Proof of the main result

In this section we derive our main result, Theorem 3, from the main result of the previous two

sections, Lemma 16, and the following technical statement, Theorem 17 below, that provides lower

bounds on e
C̃GH

(A) for various sets A and (h − 1)-graphs H. As an attentive reader will surely

notice, the assumptions of Theorem 17 are suited for invoking the theorem with A ⊂ S̃λ,α,` and

Γ = Γ` from Lemma 16. We postpone the proof of Theorem 17 to Section 6.

Theorem 17. Let h > 2, ` ∈ [h − 1], β ∈ (0, 1), n be a sufficiently large integer, and d >

(128h log2 n)`+2. Fix some S ∈ Zhn , A ⊂ [n], and H ⊂
(
S
h−1

)
, with β |S| > n1/(100h2), and

|H| >
(

1− βh

(log2 n)7h2

)(
|S|
h− 1

)
. (36)

Suppose that there exists a set Γ ⊂ [hn] such that∑
a∈A

∣∣∣∣a⊕ (S`
)
∩ Γ

∣∣∣∣ > max

{
β

(
|S|
`

)
· |A|, d · |Γ|

}
.

Then,

e
C̃GH

(A) >
βh · d

(log2 n)7h2
|A|
(
|S|
h− 1

)
. (37)
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We are now ready to prove Theorem 7, which implies an upper bound on |Zhn(t)| for t in a

narrow range interval around n1/(2h−1)+o(1). It is then easy to show that this bound extends to all

t satisfying n1/(2h−1)+o(1) 6 t 6 Fh(n), see §5.2.

Before we embark on the proof of Theorem 7, let us formally define the notion of bounded Bh-

sets. As we tried to explain at the end of §2.4, it is insufficient to consider property Ph(λ, α) for

merely one pair (λ, α). This is because in order to successfully apply Theorem 17 with A ⊂ S̃λ,α

and Γ = Γ` from Lemma 16, we need an H ⊂
(
S
h−1

)
satisfying (36) with β ≈ α, whereas the only

suitable candidate for H, the (h−1)-graph G(h−1) from the definition of Ph(λ, α), is not sufficiently

dense. That is why for us a bounded set will be one that satisfies Ph(λ, α) not for one but for an

entire sequence of pairs (λi, αi) with αi decreasing sufficiently fast so that (36) will be satisfied with

H being the ‘next’ G(h−1) and, at the same time, λi decreasing sufficiently slowly so that ‖RG(h−1)‖
does not increase too much while we move to the ‘next’ G(h−1).

Definition 18. Let h > 2 and ρ > 0 be given. A set S ⊂ [n] satisfies property Ph(ρ) if it satisfies,

for all i ∈ {0, 1, . . . , d1/ρe}, property Ph(λi, αi), where

λi = n−iρ, α0 =
1

2h(log2 n)7h2
, and αi+1 =

(αi/2)h

(log2 n)7h2
for i = 0, 1, . . . , d1/ρe − 1. (38)

5.1. Proof of Theorem 7. Let h, δ, n, and t be given as in the statement of Theorem 7. We

shall construct a family F = F(t) = Fsmall(t) ∪ Flarge(t) of pairs of sets (S, S̃) with the property

that every T ∈ Zhn(t) satisfies S ⊂ T ⊂ S ∪ S̃ for some (S, S̃) ∈ F and, more importantly, such that

every pair (S, S̃) satisfies (9). To this end, let

ρ =
δ

4

(
1

2h− 1
+ δ

)
. (39)

Note that αi = polylog(n)−1 for every i ∈ {0, 1, . . . , d1/ρe} since δ, h, and ρ are absolute constants.

Define Flarge(t) to be the set of all pairs (S, S̃) such that:

(I ) S ∈ Zhn .

(II ) |S| = t1−δ.

(III ) There exists G ⊂
(
S
h−1

)
satisfying (cf. (a) and (b) of Definition 12):

• |G| > (1− 2h−1α0)
( |S|
h−1

)
.

• QG,G(λ0ξ2h−2/2) 6 (2hn+ 1) exp
(
H|S|

)
.

(IV ) The set S̃ is defined as

S̃ =
{
x ∈ [n] \ S : S ∪ {x} is a Bh-set

}
. (40)

Define Fsmall(t) to be the set of all pairs (S, S̃) such that

S satisfies Ph(ρ), n1/(8h2) 6 |S| < t1−δ, and

S̃ =
{
x ∈ [n] \ S : S ∪ {x} is a Bh-set which does not satisfy Ph(ρ)

}
.

(41)

Claim 2. For every T ∈ Zhn(t), there exists (S, S̃) ∈ F such that S ⊂ T ⊂ S ∪ S̃.
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Proof. Given a T ∈ Zhn(t), let S be the family of all subsets of T that satisfy Ph(ρ) and have at

least n1/(8h2) elements. We first show that S 6= ∅. For that, observe that one can form a B2h−2-

set X ⊂ T by greedily picking elements from T one-by-one until no more elements can be selected.

The elements that cannot be added to X are of the form

x1 + · · ·+ x2h−2 − (y1 + · · ·+ y2h−3)

with xi ∈ X for all i ∈ [2h − 2] and yj ∈ X for all j ∈ [2h − 3]. Hence, if X was obtained by

the greedy procedure, we must have |X|4h−5 > |T |. In particular, |X| > t1/(4h−5) > n1/(8h2). Let

K =
(
X
h−1

)
. Since X is a B2h−2-set, it follows that ‖RK‖ = 1 . Therefore, for each λ ∈ (0, 1],

QK,K(λ) 6 2hneλ < (2hn+ 1) · exp(H|X|).

It follows that X satisfies Ph(λ, α) for any λ 6 1 and any α > 0. In particular, it satisfies Ph(ρ),

which shows that X ∈ S.

Pick some largest S ∈ S. If |S| < t1−δ, then let S̃ be the set defined in (41) so that (S, S̃) ∈
Fsmall(t). Since S is the largest subset of T which satisfies Ph(ρ) we clearly have T \S ⊂ S̃. Hence

we may assume that |S| > t1−δ.
We shall now construct a subset S′ ⊂ S and G ⊂

(
S′

h−1

)
that satisfy (I )–(III ) with S replaced

by S′. By assumption, S satisfies Ph(ρ) and hence, in particular, S ∈ Ph(λ0, α0). Therefore, there

exists a G(h−1)
0 ⊂

(
S
h−1

)
satisfying the conditions of Definition 12 with λ = λ0 and α = α0. Consider

an arbitrary subset S′ ∈
(
S
t1−δ

)
and let G = G(h−1)

0 [S′]. Since |S′| > |S|1−δ, then H|S| 6 2H|S′| and

consequently,

QG,G(λ0ξ2h−2) 6 QG(h−1)
0 ,G(h−1)

0

(λ0ξ2h−2) 6 (2hn+ 1) exp(2H|S′|).

Using the Cauchy-Schwarz inequality, we have

QG,G(λ0ξ2h−2/2) =

(h−1)n∑
z=−(h−1)n

exp
(
λ0ξ2h−2 ·RG(z)

)1/2
6

((
(2h− 2)n+ 1

) (h−1)n∑
z=−(h−1)n

exp
(
λ0ξ2h−2 ·RG(z)

))1/2

=
((

(2h− 2)n+ 1
)
QG,G(λ0ξ2h−2)

)1/2

6 (2hn+ 1) exp
(
H|S′|

)
.

As the choice of S′ above was arbitrary, we may select S′ which maximizes |G|. By averaging over

all sets of cardinality |S′| = t1−δ, we have

|G| >
∣∣G(h−1)

0

∣∣( t− (h− 1)

|S′| − (h− 1)

)(
t

|S′|

)−1

> (1− 2h−1α0)

(
|S′|
h− 1

)
.

Consequently, S′ and its corresponding S̃′, defined as in (40), form a pair (S′, S̃′) ∈ Flarge(t). Since

T ⊃ S is a Bh-set, it follows that T \ S′ ⊂ S̃′. This completes the proof of the claim. �
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So far we have constructed a family F that satisfies the first assertion of the theorem. It remains

to show that the second assertion also holds, that is, that for all (S, S̃) ∈ F , the graph CGS

satisfies (9). In order to prove it, we shall consider two cases, depending on whether (S, S̃) ∈
Flarge(t) or (S, S̃) ∈ Fsmall(t).

5.1.1. Case when (S, S̃) ∈ Flarge(t). Our definition of Flarge(t), see (I )–(IV ), guarantees the

existence of an (h − 1)-graph G ⊂
(
S
h−1

)
that satisfies (III ). Let A ⊂ S̃ be an arbitrary set with

|A| > n

th−1−8h2δ
. We shall apply Theorem 17 with

` = h− 1, β = 1, H = G, Γ = [hn], d = |A|
(
|S|
h− 1

)
/(hn). (42)

Indeed, the conditions of the theorem are satisfied as:

• For every a ∈ A, we have a⊕
(
S
h−1

)
⊂ [hn] = Γ.

• |A|
(
|S|
h− 1

)
>

n

th−1−8h2δ

(
t1−δ

h− 1

)h−1

> ntδ and thus d > tδ � (128h log2 n)h+1.

• We have |S| = t1−δ > n1/(4h) and thus β|S| > n1/(100h2).

• Since |G| > (1 − 2h−1α0)
( |S|
h−1

)
, it follows from (38) that H = G satisfies (36), as 2h−1α0 =

1

2(log2 n)7h2
< βh

(log2 n)7h2
.

Hence,

e
C̃GG

(A) > polylog(n)−1 · d|A|
(
|S|
h− 1

)
(42)

>
1

hn · polylog(n)
|A|2

(
|S|
h− 1

)2

.

On the other hand, from (III ) and Remark 11 we conclude that

‖RG‖ =
2

λ0ξ2h−2
logQG,G(λ0ξ2h−2/2) 6

2 log
(

(2hn+ 1) exp
(
H|S|

))
λ0ξ2h−2

(14)
= polylog(n).

Therefore,

eCGS (A) >
e

C̃GG
(A)

‖RG‖
>

|S|2h−2

n · polylog(n)
|A|2. (43)

We claim that (43) implies

eCGS (A) >
|A|2

|S|
> tδ−1

(
|A|
2

)
,

which gives the conclusion of the theorem. For this it is enough to show that for all sufficiently

large n,

|S|2h−1 > n1+δ.

As we have |S| = t1−δ, δ < 1/2, and t > n1/(2h−1)+δ, the above inequality follows by taking the

logarithm of both sides and observing that

(1− δ)(2h− 1)

(
1

2h− 1
+ δ

)
log n > (1− δ)(1 + 3δ) log n > (1 + δ) log n.

This completes the proof of Theorem 7 in the case (S, S̃) ∈ Flarge(t).
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5.1.2. Case when (S, S̃) ∈ Fsmall(t). Recalling the definition of Fsmall(t), we can naturally partition

S̃ into

S̃ =

d1/ρe⋃
i=1

S̃i,

where S̃i is the set of all x ∈ S̃ such that i is the smallest index for which S ∪ {x} does not satisfy

Ph(λi, αi). Note that S̃i ⊂ S̃λi,αi , where S̃λi,αi is the set introduced by Definition 12.

Claim 3. S̃d1/ρe = ∅.

Proof. Assume for the sake of a contradiction that x ∈ S̃d1/ρe. For any k ∈ [h−1], let K(k) =
(S∪{x}

k

)
and observe that since λd1/ρe 6 n

−1, then for all k, ` ∈ [h− 1],

λd1/ρe · ‖RK(k),K(`)‖ 6 n−1 ·
(
|S|+ 1

)k+`
6 n−1 · t(1−δ)(2h−2) < 1.

Consequently,

QK(k),K(`)(λd1/ρeξk+`) < (2hn+ 1)e.

It follows that the family of hypergraphs K(k), k ∈ [h− 1], satisfies the conditions of Definition 12

with λ = λd1/ρe and α = αd1/ρe. Therefore S ∪ {x} ∈ Ph(λd1/ρe, αd1/ρe) and thus x /∈ S̃d1/ρe, which

is a contradiction. �

Now for each i ∈ {0, 1, . . . , d1/ρe−1} we apply Lemma 16 with λ = λi and α = αi to obtain sets

Γi,2, . . . ,Γi,h−1 ⊂ [hn] satisfying:

• |Γi,k| 6 (|S|+ 1)h+k−1 · λi for every k ∈ {2, . . . , h− 1}.
• For every x ∈ S̃i there is a k ∈ {2, . . . , h− 1} such that∣∣∣∣x⊕ ( S

k − 1

)
∩ Γi,k

∣∣∣∣ > 2k−1αi

(
|S|
k − 1

)
.

We then further partition

S̃i =

h−1⋃
k=2

S̃i,k,

where x ∈ S̃i,k if k is the smallest index for which the second condition above holds.

Choose an arbitrary A ⊂ S̃ with |A| > n

th−1−8h2δ
. Let i ∈ {0, 1, . . . , d1/ρe−1} and k ∈ {2, . . . , h−

1} be such that Ai,k = A ∩ S̃i,k satisfies

|Ai,k| >
|A|

(h− 2)d1/ρe
= Ω

(
n

th−1−8h2δ

)
. (44)

Finally, let H denote the (h − 1)-graph G(h−1) whose existence is guaranteed by the fact that S

satisfies Ph(λi+1, αi+1). (Note that in view of Claim 3, we must have i 6 d1/ρe−1, so this is indeed

well-defined.) Recall from Definition 12 that:

• |H| > (1− 2h−1αi+1)

(
|S|
h− 1

)
;
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• QH,H
(
λi+1ξ2h−2

)
6 (2hn+ 1) exp(H|S|), which by Remark 11 means that

‖RH‖ 6
log
(

(2hn+ 1) exp
(
H|S|

))
λi+1ξ2h−2

(14)
=

polylog(n)

λi+1
. (45)

We shall now apply Theorem 17 with

` = k − 1, A = Ai,k, β = αi,

Γ = Γi,k, d = 2k−1αi|Ai,k|
(
|S|
k − 1

)
/|Γi,k|.

First, let us verify that the conditions of the theorem are satisfied for our choice of parameters:

• For every a ∈ Ai,k ⊂ S̃i,k, we have
∣∣a⊕ ( S

k−1

)
∩ Γi,k

∣∣ > 2k−1αi
( |S|
k−1

)
> β

( |S|
k−1

)
.

• We also have∑
a∈Ai,k

∣∣∣∣a⊕ ( S

k − 1

)
∩ Γi,k

∣∣∣∣ > 2k−1αi |Ai,k|
(
|S|
k − 1

)
= d |Γi,k|.

• Since |Γi,k| 6 |S|h+k−1 · λi, we see that d satisfies

d = 2k−1αi |Ai,k|
(
|S|
k − 1

)
/|Γi,k|

(44)

> polylog(n)−1 · n|S|k−1

th−1−8h2δ |S|h+k−1λi

Since |S| < t 6 2hn1/(2h−1)+δ and λi 6 1, we have

d > polylog(n)−1 · n

t2h−1−8h2δ
> polylog(n)−1 · n4h2δ/(2h−1) � (128h log2 n)k+1.

• The set S, by the definition of Fsmall(t), has cardinality at least n1/(8h2) and therefore

β|S| � n1/(100h2).

• By our choice of β and the fact that |H| > (1 − 2h−1αi+1)
( |S|
h−1

)
, it follows from (38) that

H satisfies (36). Indeed,

2h−1αi+1 =
2h(αi/2)h

2(log2 n)7h2
=

βh

2(log2 n)7h2
. (46)

Hence by Theorem 17,

e
C̃GH

(Ai,k) > polylog(n)−1 · d |Ai,k|
(
|S|
h− 1

)
.

Recalling (45), we conclude that

eCGS (A) > eCGS (Ai,k) >
e

C̃GH
(Ai,k)

‖RH‖
> polylog(n)−1 · λi+1 · d

(
|S|
h− 1

)
|Ai,k|

= polylog(n)−1 · λi+1|S|h+k−2

|Γi,k|
|Ai,k|2

= polylog(n)−1 · λi+1

λi |S|
|Ai,k|2

= polylog(n)−1 · n
−ρ

|S|

(
|A|
2

)
,

(47)
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where we used the definition of λi, λi+1 in (38) and the fact that |Ai,k| = Ω
(
|A|
)
. From the fact

that |S| < t1−δ, and n−ρ > t−δ/4 (see (39) and recall that t > n1/(2h−1)+δ), we obtain

eCGS (A) >
1

t1−3δ/4 polylog(n)

(
|A|
2

)
� 1

t1−δ/2

(
|A|
2

)
.

This concludes the proof of Theorem 7.

5.2. Deriving Theorem 3 from Theorem 7. Our proof of Theorem 3 has two independent parts.

First, we derive the claimed bound on |Zhn(t)| only for t in a narrow interval around n1/(2h−1)+ε.

Second, we extend this bound to all larger t using the following statement, Lemma 19 below, which

was already implicitly proved in [9, Section 5]. For completeness, we include the proof of Lemma 19

in the Appendix A.

Lemma 19. Let h > 2 and suppose that N > 2hn. Then for every t,

|ZhN (t)| > |Zhn(t)| ·
(
N

2hn

)t
.

Proof of Theorem 3. Suppose that h > 2, fix some ε > 0 and let δ be a sufficiently small positive

constant. For any sufficiently large n, define

`h(n) = n1/(2h−1)+δ.

We will first show that

|Zhn(t)| 6
(

n

th−ε/2

)t
for all `h(n) 6 t 6 2h`h(n). (48)

To this end, invoke Theorem 7 to obtain a family F with the property that every T ∈ Zhn(t) satisfies

S ⊂ T ⊂ S ∪ S̃ for some (S, S̃) ∈ F and such that every (S, S̃) ∈ F has |S| 6 t1−δ and satisfies (9).

We may bound |Zhn(t)| from above by the sum, over all (S, S̃) ∈ F , of the number Fh(S, S̃, t) of

Bh-sets of cardinality t that contain S and are contained in S ∪ S̃.

Fix an arbitrary (S, S̃) ∈ F . If |S̃| < n

th−1−8h2δ
, then condition (9) is vacuous, but on the other

hand,

Fh(S, S̃, t) 6

( n

th−1−8h2δ

t− |S|

)
when |S̃| < n

th−1−8h2δ
. (49)

Otherwise, when |S̃| > n

th−1−8h2δ
, as Fh(S, S̃, t) is at most the number of (t− |S|)-element indepen-

dent sets in CGS [S̃], we invoke Lemma 6 with

G = CGS [S̃], N = |S̃|, R =
n

th−1−8h2δ
,

β =
1

t1−δ/2
, q = dβ−1 log ne, and m = t− q − |S|.

(50)

Note that the conditions of the lemma are satisfied by our choice of parameters as

R =
n

th−1−8h2δ
� 1 > e−βqn > e−βqN
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and condition (9) implies that G satisfies (6). It follows from Lemma 6 that

Fh(S, S̃, t) 6

(
|S̃|
q

)(
R

t− q − |S|

)
when |S̃| > n

th−1−8h2δ
. (51)

As q � t/(log n) and |S̃| 6 n, in view of both (49) and (51), we have

Fh(S, S̃, t) 6 eo(t)
( n

th−1−8h2δ

t

)
6
( n

th−8h2δ

)t+o(t)
.

Since |S| 6 t1−δ for each (S, S̃) ∈ F ,

|Zhn(t)| =
∑

(S,S̃)∈F

Fh(S, S̃, t) 6 n1+t1−δ
( n

th−8h2δ

)t+o(t)
=
( n

th−8h2δ

)t+o(t)
.

Consequently, (48) holds provided that δ = δ(ε) is sufficiently small.

We no extend the upper bound given in (48) to all t up to Fh(n). Suppose that 2h`h(n) < t 6

Fh(n) and let N be the largest integer such that t > `h(N). Note that t < `h(N +1) < `h(N)+1 <

2h`h(N) and `h(2hn) < 2h`h(n) < t, thus N > 2hn. From (48), we conclude that

|ZhN (t)| 6
(

N

th−ε/2

)t
.

Lemma 19 then implies that(
N

th−ε/2

)t
> |ZhN (t)| > |Zhn(t)| ·

(
N

2hn

)t
.

Consequently,

|Zhn(t)| 6
(

n

th−ε

)t
for all t with `h(n) 6 t 6 Fh(n), provided that n is sufficiently large. �

6. Proof of Theorem 17

Let S, A, Γ, and H be as in the statement of Theorem 17. Recall that our goal is to construct

many quadruples (a1, a2, e1, e2) ∈ A2 ×H2 with

a1 ⊕ e1 = a2 ⊕ e2 and e1 ∩ e2 = ∅. (52)

We shall reduce this task to the task of counting certain paths in a pair of bipartite graphs sharing

one color class. Our argument will have two parts. In the first part, termed the pre-processing stage,

we construct the aforementioned pair of bipartite graphs from the sets S, A, and Γ. Significant effort

is put into making these two graphs highly degree-regular. In the second part, we count certain

paths in these graphs, which we term special and semi-special, that correspond to quadruples

(a1, a2, e1, e2) that satisfy (52). Our counting arguments rely heavily on the degree-regularity

inherited from the pre-processing stage. We start with some definitions needed in both parts of the

proof.
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Figure 3. A congested vertex.

Define, for any S,X, Y ⊂ Z and k > 1, the bipartite graph

CS,k(X,Y ) =

{
(a, b) ∈ X × Y : b = a⊕ e for some e ∈

(
S

k

)}
. (53)

Definition 20 (Congestion, see Figure 3). For k, S,X, Y as above, d > 1, and s ∈ S, we say that

a vertex y ∈ Y is (d, s)-congested in CS,k(X,Y ) if there are at least d tuples e ∈
(
S
k

)
such that s ∈ e

and y 	 e ∈ X. We simply say that y ∈ Y is d-congested in CS,k(X,Y ) if it is (d, s)-congested in

CS,k(X,Y ) for some s ∈ S.

6.1. Pre-processing stage. In this subsection we state and prove the pre-processing lemma. In

the next subsection, we use this lemma to establish Theorem 17. The presentation is quite long and

technical. Since understanding the details of this proof is not necessary to follow the subsequent

arguments, any reader who initially skips these next pages will perhaps be more motivated to return

to them after seeing how this lemma integrates into our proof in §6.2.

Roughly speaking, in the pre-processing stage we obtain a pair of bipartite graphs sharing a class

with the property that both graphs are highly degree-regular in the shared class. This regularity is

useful when we need to count, with great accuracy, certain special paths in §6.2.

Lemma 21. Let h > 2, ` ∈ [h − 1], β ∈ (0, 1), n be a sufficiently large integer, and d >

(128h log2 n)`+2. Suppose that S ∈ Zhn , with |S| > 2h, X ⊂ [n], and Γ0 ⊂ [hn] are such that

C0 = CS,`(X,Γ0) satisfies

|C0| > max

{
β

(
|S|
`

)
· |X|, d · |Γ0|

}
. (54)

Then for some 1 6 k 6 `, condition (1 ) below holds.

(1 ) There exist sets Γ̄, Z ⊂ Z and numbers δ1 and δ2 such that the graphs C1 = CS,k(X, Γ̄) and

C2 = CS,1(Z, Γ̄) satisfy the following conditions:

(1-a) No vertex of Γ̄ is

⌈
δ1

16h log2 n

⌉
-congested in C1.
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(1-b) For all b ∈ Γ̄,

d

(4 log2 n)(128h log2 n)`−k
6 δ1 6 degC1(b) 6 2δ1.

(1-c) For all b ∈ Γ̄,

4h 6 δ2 6 degC2(b) 6 8δ2.

(1-d) For all z ∈ Z, we have

degC2(z) >
β |S|

(log2 n)5(256h2 log2 n)`−k
.

(1-e) |C1| >
|C0|

12(log2 n)3 · (128h |S| log n)`−k
.

Proof of Lemma 21. We start this proof by letting k ∈ [`] be the smallest integer such that the

following holds:

• There exist Γ ⊂ Z and

α > β · (256h2 log2 n)k−`, D > d · (128h log2 n)k−`, (55)

such that C = CS,k(X,Γ) satisfies

|C| > max

{
α

(
|S|
k

)
· |X|, D · |Γ|, |C0|

(128h |S| log n)`−k

}
. (56)

Note that such a minimum value of k must exist, since for k = `, all these conditions are satisfied

by the assumptions of the lemma on Γ = Γ0, α = β, and D = d. We then fix k, Γ, α, D, and C as

above and define

Γcong =

{
b ∈ Γ: b is

⌈
degC(b)

32h log2 n

⌉
-congested in C

}
. (57)

Claim 4. We have

|CS,k(X,Γcong)| < |C|
2
. (58)

Proof. First notice that if k = 1, then no vertex can be d-congested in C for any d > 1. Hence, the

only vertices in Γcong are those b ∈ Γ with degC(b) 6 32h log2 n. Since D > d · (128h log2 n)k−` >

(128h log2 n)k+2, we have

|CS,k(X,Γcong)| =
∑

b∈Γcong

degC(b) 6 32h log2 n · |Γcong| 6 32h log2 n · |Γ| 6
D

4
· |Γ|

(56)

6
|C|
4
,

which establishes the claim for k = 1. Hence let us assume that k > 2 and, for the sake of a

contradiction, that (58) fails. We will show that this assumption contradicts the minimality of k.

For every b ∈ Γcong, let sb ∈ S be a canonical choice of an element such that b is
(⌈ degC(b)

32h log2 n

⌉
, sb
)
-

congested in C. Let
Γ
cong
+ =

{
b ∈ Γcong : degC(b) > D/4

}
,

Γ′ =
{
b− sb : b ∈ Γ

cong
+

}
,

C′ = CS,k−1(X,Γ′).

(59)
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Note that by construction, for any y = b−sb ∈ Γ′, there must be at least d = ddegC(b)/(32h log2 n)e
distinct tuples e1, . . . , ed ∈

(
S
k

)
such that sb ∈ ei and b 	 ei ∈ X for all i = 1, . . . , d. Hence,

setting fi = ei\{sb} for each i, we obtain a collection of d distinct (k−1)-tuples such that y	fi ∈ X
for all i. Since S is a Bk−1-set, this implies that degC′(y) > d. In general, we then have

∀y ∈ Γ′, degC′(y) > max
b∈Γ

cong
+

y=b−sb

{⌈
degC(b)

32h log2 n

⌉}
(59)

>
D

128h log2 n
. (60)

For each y ∈ Γ′, there are at most |S| representations of the form y = b − sb with b ∈ Γ
cong
+ .

Therefore the maximum in the above inequality may be replaced by the average over all b ∈ Γ
cong
+

such that y = b− sb, yielding

|C′| =
∑
y∈Γ′

degC′(y) >
∑
y∈Γ′

1

|S|
∑

b∈Γ
cong
+

y=b−sb

degC(b)

32h log2 n

=
1

32h |S| log2 n

∑
b∈Γ

cong
+

degC(b) =
|CS,k(X,Γcong

+ )|
32h |S| log2 n

.

Since we assumed the converse of (58), it follows from (56) and the definitions of Γcong and Γ
cong
+

that

|CS,k(X,Γcong
+ )| = |CS,k(X,Γcong)| − |CS,k(X,Γcong \ Γ

cong
+ )|

(59)

>
|C|
2
− D

4
|Γ|

(56)

>
|C|
4
.

We conclude that

|C′| > |C|
128h |S| log2 n

> α

(
|S|
k

)
· |X|/(128h |S| log2 n) = α′

(
|S|
k − 1

)
· |X|,

where

α′ :=
α
(|S|
k

)
128h |S|

( |S|
k−1

)
log2 n

>
α(|S| − k + 1)

128hk |S| log2 n
>

α

256h2 log2 n
.

Together with (60), we obtain

|C′| > max

{
α′
(
|S|
k − 1

)
· |X|, D

128h log2 n
|Γ′|, |C|

128h |S| log2 n

}
,

which contradicts the minimality of k (see (56)). �

Define for all j > 0,

Γj =
{
b ∈ Γ \ Γcong : degC(b) ∈ [2j , 2j+1 − 1]

}
. (61)

Since the maximum degree in C is bounded by |S|k and S is a Bh-set, implying that |S|k 6 |S|h−1 �
n, we have Bj = ∅ for j > log2 n. Pick 0 6 j∗ 6 log2 n such that |CS,k(X,Γj∗)| is maximum and let

Γ∗ = Γj∗ . We then have

Γ∗ ⊂ Γ \ Γcong, ∀b ∈ Γ∗, degC(b) ∈ [2j
∗
, 2j
∗+1 − 1], and |CS,k(X,Γ∗)|

(58)

>
|C|

2 log2 n
. (62)
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Thus,
D |Γ|

2 log2 n

(56)

6
|C|

2 log2 n
6 |CS,k(X,Γ∗)| 6 (2j

∗+1 − 1) · |Γ∗| 6 2j
∗+1 · |Γ|,

which implies that 2j
∗
> D/(4 log2 n). Let δ1 = 2j

∗
and observe that

δ1 >
D

4 log2 n
and ∀b ∈ Γ∗, degC(b) ∈ [δ1, 2δ1 − 1]. (63)

Claim 5. For any Γ̄ ⊂ Γ∗, we have

|CS,k(X, Γ̄)| > |Γ̄|
4 |Γ∗| log2 n

|C|.

Proof. We have

2δ1 |Γ∗|
(63)

> |CS,k(X,Γ∗)|
(62)

>
|C|

2 log2 n

and

|CS,k(X, Γ̄)|
(63)

> δ1 |Γ̄|.

The lower bound on δ1 obtained from the first inequality, when substituted into the second inequal-

ity immediately yields the claim. �

Claim 6. Any subset Γ̄ ⊂ Γ∗ satisfies conditions (1-a) and (1-b).

Proof. In view of (63), condition (1-b) follows immediately for any subset of Γ∗. We now check that

condition (1-a) is also satisfied. Recall (57) and (62). By definition, every b ∈ Γ̄ subsetΓ \ Γcong

is not
⌈ degC(b)

32h log2 n

⌉
-congested in C. Since degC1(b) = degC(b) 6 2δ1, it follows that b is also not⌈

δ1
16h log2 n

⌉
-congested in C1 = CS,k(X, Γ̄). �

In view of Claim 6, it suffices to construct subsets Z ⊂ Z and Γ̄ ⊂ Γ∗ that will satisfy properties

(1-c)–(1-e). The next claim will bring us closer to that goal.

Claim 7. There are sets Γ̄ ⊂ Γ∗ and Z ⊂ Z with |Γ̄| > |Γ∗|
3(log2 n)2

and an integer δ2 such that

conditions (1-c) and (1-d) hold.

Proof. Consider the auxiliary (k + 1)-partite graph with parts

X0 = X, X1 = X0 + S, . . . Xk−1 = Xk−2 + S, Xk = Γ∗

and edges joining a ∈ Xi and b ∈ Xi+1 whenever b − a ∈ S, for i ∈ {0, . . . , k − 1}, see Figure 4.

Let us call a path of length m ∈ [k] in this graph proper if it is of the form (x0, x1, . . . , xm) with

xi ∈ Xi for all i ∈ {0, 1, . . . ,m} and, moreover, the differences xi − xi−1 are all distinct for i ∈ [m].

Notice that for each vertex b ∈ Xk, there are exactly k! degC(b) proper paths of length k ending

at b. Indeed, since S is a Bk-set, for each a ∈ NC(b) ⊂ X = X0 there exists a unique e ∈
(
S
k

)
such that b = a ⊕ e. Any ordering (e1, . . . , ek) of e corresponds to the proper path (a, a + e1, a +

e1 + e2, . . . , b). Conversely, if (a, x1, . . . , xk−1, b) is a proper path, then a ∈ NC(b) and the set of

consecutive differences in the path gives an ordering of some e ∈
(
S
k

)
such that a⊕ e = b. We will

use this fact shortly.
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Figure 4. The auxiliary (k + 1)-partite graph with parts X0, X1, . . . , Xk.

For each u ∈ Xk−1, let Pu denote the number of proper paths (of length k− 1) ending at u. For

each j > 0, let

Xk−1,j =
{
u ∈ Xk−1 : Pu ∈ [2j , 2j+1 − 1]

}
. (64)

Since S is a Bk-set, we have Pu 6 |S|k−1 < n for all u ∈ Xk−1. Hence, Xk−1,j = ∅ whenever

j > log2 n and therefore

Xk−1 =

log2 n⋃
j=0

Xk−1,j .

For every b ∈ Xk, let π(b) ∈ [log2 n] be the index such that among all the proper paths (of length k)

ending at b, the largest number visits the set Xk−1,π(b). In particular, more than k! degC(b)/ log2 n

proper paths ending at b have a final edge of the form (u, b) for some u ∈ Xk−1,π(b).

Let j′ be such that π−1(j′) has maximum size. For brevity, let U = Xk−1,j′ and V = π−1(j′).

By construction, we have

∀v ∈ V, # of proper paths passing through U and ending at v is >
k! degC(v)

log2 n
. (65)

We will prove that

degCS,1(U,V )(v) > 16h for every v ∈ V. (66)

Suppose for the sake of a contradiction, that for some v ∈ V , the above inequality fails. By (65),

there must be some u ∈ U such that at least

k! degC(v)

16h log2 n

proper paths end in (u, v). However, as we will show, this implies that v is (d, v − u)-congested

in C with d > degC(v)
16h log2 n

, which contradicts the fact that V ⊂ Xk = Γ∗ is disjoint from Γcong.
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To show that v is congested, note that for each proper path (x0, . . . , xk−2, u, v), the k-set e =

{x1 − x0, . . . , xk−2 − xk−3, u − xk−2, v − u} ∈
(
S
k

)
satisfies v − u ∈ e and v 	 e = x0 ∈ X0 = X.

Since the same k-set can be obtained by at most (k− 1)! proper paths ending in (u, v), there must

be at least k! degC(v)
(k−1)!16h log2 n

such k-sets, which proves that v is (d, v − u)-congested as claimed. The

obtained contradiction proves that (66) holds.

Since we chose V = π−1(j′) of maximum size, we have

|V | > Xk

log2 n
=
|Γ∗|

log2 n
.

Define, for every m > 0

Vm =
{
v ∈ V : degCS,1(U,V )(v) ∈ [16h · 2m, 16h · 2m+1 − 1]

}
, (67)

and similarly as before, notice that Vm = ∅ for m > log2 n > log2 |S|. Observe also that (66) implies

that

V =

log2 n⋃
m=0

Vm.

Now, pick an m′ with 0 6 m′ 6 log2 n such that

|Vm′ | >
|V |

log2 n
>

|Γ∗|
(log2 n)2

. (68)

Using Claim 5, (65), and (68), we obtain that the total number N of proper paths (of length k)

whose final edge is a pair in U × Vm′ satisfies

N >
∑
v∈Vm′

k! degC(v)

log2 n
>

k!

log2 n
· |CS,k(X,Vm′)| >

k!

log2 n
· |Vm′ |

4|Γ∗| log2 n
|C|

(68)

>
k! |C|

4(log n)4
. (69)

Since there are fewer than |X| |S|k−1 proper (k − 1)-paths, by (64) and our choice of U = Xk−1,j′ ,

we must have

2j
′ |U | 6

∑
u∈U

Pu 6 |X| |S|k−1.

Since

N 6
∑
u∈U

Pu degCS,1(U,Vm′ )
(u) 6 2j

′+1
∑
u∈U

degCS,1(U,Vm′ )
(u),

it follows that

1

|U |
∑
u∈U

degCS,1(U,Vm′ )
(u) >

N

2j′+1|U |
>

N

2 |X| |S|k−1

(69)

>
k! |C|

8(log2 n)4|X| |S|k−1

(56)

>
k!α

(|S|
k

)
· |X|

8(log2 n)4|X| |S|k−1
� α |S|

(log2 n)5
.

(70)

We are now ready to construct the sets Z ⊂ U , Γ̄ ⊂ Vm′ . Set

δ2 = 4h · 2m′ . (71)

We begin by setting Z = U , Γ̄ = Vm′ and then successively remove vertices:

• z ∈ Z such that degCS,1(Z,Γ̄)(z) <
α |S|

(log2 n)5
and
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• b ∈ Γ̄ such that degCS,1(Z,Γ̄)(b) < δ2.

From (55) we have α > β · (256h2 log2 n)k−` and from (71), we have δ2 > 4h. Moreover, by the

definition of Vm′ in (67), we have degCS,1(Z,Γ̄)(b) 6 8δ2 for all b ∈ Γ̄ ⊂ Vm′ . Consequently, if the

sets obtained from the above iterative process are not empty, they must satisfy (1-c) and (1-d).

We shall show an explicit lower bound on |Γ̄|.
Note that the total number of edges lost because a vertex z ∈ Z was deleted is bounded by

|U | · α |S|
(log2 n)5

(70)
� |CS,1(U, Vm′)|.

The number of edges lost due to a vertex b ∈ Γ̄ being deleted is bounded by

|Vm′ | δ2

(67),(71)
<

∑
v∈Vm′

degCS,1(U,Vm′ )
(v)

4
6
|CS,1(U, Vm′)|

4
.

We conclude that fewer than |CS,1(U, Vm′)|/3 edges were lost in total. Therefore

|Γ̄| · 8δ2 >
∑
b∈Γ̄

degCS,1(Z,Γ̄)(b) = |CS,1(Z, Γ̄)| >
2 |CS,1(U, Vm′)|

3

(67),(71)

>
2 |Vm′ | · 4δ2

3
.

It follows that

|Γ̄| > |Vm
′ |

3

(68)

>
|Γ∗|

3(log2 n)2
.

This completes the proof of the claim. �

Let Γ̄ be the set whose existence is asserted by Claim 7. By Claim 6, it satisfies (1-a)–(1-d). By

Claim 5,

|C1| = |CS,k(X, Γ̄)| > |C|
12(log2 n)3

(56)

>
|C0|

12(log2 n)3 · (128h |S| log n)`−k
,

which establishes (1-e) and completes the proof of the pre-processing lemma. �

6.2. Completing the proof of Theorem 17. Recall that we are tasked with counting the num-

ber Q of quadruples (a1, a2, e1, e2) ∈ A2×H2 that satisfy (52). We will recast this goal in terms of

counting the number of certain paths in an auxiliary graph.

The following notation will be convenient in the arguments that follow. For a fixed Bk-set S,

∀(x, y) ∈ CS,k(X,Y ), ey−x = eS,k,y−x ∈
(
S

k

)
is the unique k-set satisfying y = x⊕ e, (72)

where CS,k(X,Y ) is the graph defined in (53). Since S and k will be understood from context, we

will use the short version ey−x.

Let h, `, β, n, d, S, A, H, and Γ satisfy all the requirements in the statement of Theorem 17.

We shall invoke Lemma 21 with h, `, β, n, d, S, X = A, and Γ0 = Γ. Note that the assumptions

of Theorem 17 match those of Lemma 21, namely, we have d > (128h log2 n)`+2, β > 0, X ⊂ [n],

S ∈ Zhn , |S| � 2h, Γ0 ⊂ [hn], and C0 = CS,`(X,Γ0) satisfies

|C0| =
∑
x∈X

∣∣∣∣x⊕ (S`
)
∩ Γ

∣∣∣∣ > max

{
β

(
|S|
`

)
· |X|, d · |Γ|

}
,
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where the inequality follows by the exact same requirement imposed by Theorem 17 on A = X.

Lemma 21 then implies that there exist k ∈ [`], sets Γ̄, Z ⊂ Z, and numbers δ1 and δ2 such that all

conditions in (1 ) hold.

6.2.1. Warm-up: The case k = h − 1. It will be easier and instructive to deal first with the case

k = ` = h− 1. Here we will only need the graph C1 = CS,`(A, Γ̄).

Consider the map φ that takes each 2-path (a1, b, a2) in C1, with a1, a2 ∈ A, to the quadruple

(a1, a2, eb−a1 , eb−a2). First note that φ is one-to-one. Indeed, for any 2-path (a1, c, a2), we have

eb−a1 = ec−a1 if and only if b = a1 ⊕ eb−a1 = a1 ⊕ ec−a1 = c. Therefore, one possible way to obtain

a lower bound on the number of quadruples satisfying (52) is to establish how many b ∈ Γ̄ are such

that b = a1 ⊕ e1 = a2 ⊕ e2 with e1, e2 ∈ H and e1 ∩ e2 = ∅. This task is divided in two steps:

• We first estimate from below the number of 2-paths (a1, a1⊕e1 = a2⊕e2, a2) with e1∩e2 = ∅.
We will refer to such paths as semi-special.

• We then bound from above the number of those 2-paths counted before for which either

e1 /∈ H or e2 /∈ H.

Let us now perform the first step above. We start building the 2-path by taking an arbitrary

edge (a1, b) ∈ C1. Then we need to choose a2 ∈ NC1(b) such that eb−a2 ∩ eb−a1 = ∅ (recall the

notation (72)). Consider the set

Eb :=
{
eb−a2 : a2 ∈ NC1(b)

}
.

Condition (1-a) states that no vertex of Γ̄ is
⌈

δ1
16h log2 n

⌉
-congested in C1 = CS,h−1(A, Γ̄). Recalling

Definition 20, this implies that for every s ∈ S, the number of (h − 1)-tuples in Eb containing s

is at most δ1
16h log2 n

. Since there are h − 1 values s ∈ eb−a1 ⊂ S, it follows that there are at least

|Eb| − (h− 1) δ1
16h log2 n

elements eb−a2 ∈ Eb such that eb−a2 ∩ eb−a1 = ∅. Since |Eb| = degC1(b) and,

by condition (1-b), we have degC1(b) > δ1, it follows that there are more than δ1/2 choices for a2.

In total, we have found more than

|C1|
δ1

2

(1-e)

>
δ1 |C0|

12(log2 n)3
>

δ1 |A|
12(log2 n)3

β

(
|S|
h− 1

)
(73)

semi-special paths.

Now we must exclude all the 2-paths (a1, b, a2) counted above such that either eb−a1 /∈ H or

eb−a2 /∈ H. For a fixed e ∈
(
S
h−1

)
\ H, the number of paths with eb−a1 = e is at most |A| · (2δ1).

Indeed, if we first choose a1 ∈ A, then b = a⊕ e is determined and by condition (1-b), there are at

most degC1(b) 6 2δ1 choices for a2 ∈ NC1(b). The case when eb−a2 = b is symmetric, and therefore

there are at most

4δ1 |A| ·
∣∣∣∣( S

h− 1

)
\ H
∣∣∣∣ (36)

6 4δ1 |A| ·
βh

(log2 n)7h2

(
|S|
h− 1

)
2-paths which fail to satisfy eb−a1 , eb−a2 ∈ H. Therefore,

Q
(73)

>
δ1 |A|

12(log2 n)3
β

(
|S|
h− 1

)
− 4δ1 |A| ·

βh

(log2 n)7h2

(
|S|
h− 1

)
>

βδ1

24(log2 n)3
|A|
(
|S|
h− 1

)
,
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Figure 5. A special path in G.

which yields the conclusion of the theorem since δ1 > d
4 log2 n

, see (1-b).

6.2.2. General case. Since the simpler case when k = ` = h − 1 was handled in our warm-up

(§6.2.1), we assume from now on that

k < h− 1 and k 6 ` 6 h− 1.

Let us define an auxiliary tripartite graph G with parts A, Γ̄, Z defined as follows. We place a copy

of C1 between A and Γ̄ and a copy of C2 between Z and Γ̄. Formally, we have

V (G) = (A× {1}) ∪ (Γ̄× {2}) ∪ (Z × {3}),

E(G) =
{(

(a, 1), (b, 2)
)

: (a, b) ∈ C1

}
∪
{(

(y, 2), (z, 3)
)

: (z, y) ∈ C2

}
,

but we will drop this cumbersome definition and simply assume that V (G) = A ∪ Γ̄ ∪Z where the

elements of these three sets come from three disjoint copies of Z.

Definition 22 (Special path, see Figure 5). A special path in G is a path of the form

P = (a1, b1, z1, b2, z2, . . . , bh−k, a2)

such that, letting

e1(P ) = eb1−a1 ∪ {bi+1 − zi : i ∈ [h− k − 1]},

e2(P ) = ebh−k−a2 ∪ {bi − zi : i ∈ [h− k − 1]},

the following hold:

(SP-1 ) a1, a2 ∈ A,

(SP-2 ) bi ∈ Γ̄, for i = 1, . . . h− k,

(SP-3 ) zi ∈ Z, for i = 1, . . . , h− k − 1,

(SP-4 ) |e1(P ) ∪ e2(P )| = 2(h− 1),

(SP-5 ) e1(P ) ∈ H, e2(P ) ∈ H.

Note that if a1, a2 ∈ A are connected by a special path P , then

a1 ⊕ e1(P ) = a1 ⊕ eb1−a1︸ ︷︷ ︸
b1

+(b2 − z1) + (b3 − z2) + · · ·+ (bh−k − zh−k−1)

a2 ⊕ e2(P ) = a2 ⊕ ebh−k−a2︸ ︷︷ ︸
bh−k

+(b1 − z1) + (b2 − z2) + · · ·+ (bh−k−1 − zh−k−1),
(74)
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and hence,

a1 ⊕ e1(P ) =
h−k∑
i=1

bi −
h−k−1∑
i=1

zi = a2 ⊕ e2(P ).

Together with the condition |e1(P )∪e2(P )| = 2(h−1) of (SP-4 ), which implies that e1(P )∩e2(P ) =

∅, and condition (SP-5 ), we see that (a1, a2, e1(P ), e2(P )) ∈ A2 ×H2 is a quadruple that satisfies

(52). On the other hand, a quadruple (a1, a2, e1, e2) ∈ A2 ×H2 corresponds to at most(
(h− 1)!

)2
< h2h

special paths between a1 and a2 with e1(P ) = e1 and e2(P ) = e2. Indeed, after fixing orderings e1 =

(e1,1, . . . , e1,h−1) and e2 = (e2,1, . . . , e2,h−1), the path P = (a1, b1, z1, b2, z2, . . . , bh−k, a2) defined

below is special (provided that it appears in the graph G):

(a1, b1 = a1 + e1,1 + · · ·+ e1,k),

(b1, z1 = b1 − e2,1),

(z1, b2 = z1 + e1,k+1),

...

(bh−k−1, zh−k−1 = bh−k−1 − e2,h−k−1),

(zh−k−1, bh−k = zh−k−1 + e1,h−1),

(bh−k, a2 = bh−k + e2,h−k + e2,h−k+1 + · · ·+ e2,h−1).

Consequently, letting N be the number of special paths, we have

Q > N

h2h
. (75)

Our goal is now to provide a lower bound for N . To that end, we will proceed similarly to the

warm-up case above, in two steps:

• We first estimate from below the number N∗ of paths that satisfy (SP-1 )–(SP-4 ) but not

necessarily (SP-5 ). We shall call such paths semi-special.

• We then bound from above the number of semi-special paths P such that either e1(P ) /∈ H
or e2(P ) /∈ H.

The first edge of a semi-special path could be any (a1, b1) ∈ C1, hence there are |C1| choices. Our

choice of z1 must be such that z1 ∈ NC2(b1) and b1 − z1 /∈ eb1−a1 . According to condition (1-c),

we have degC2(b1) > δ2 > 4h, and hence there are more than δ2/2 choices for z1. Similarly, we

must have b2 ∈ NC2(z1) and b2 − z1 /∈ eb1−a1 ∪ {b1 − z1}. According to condition (1-d), and the

assumption that β |S| > n1/(100h2), we have

degC2(z1) >
β |S|

(log2 n)5(256h2 log2 n)`−k
>

n1/(100h2)

polylog(n)
� 4h,
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and hence, there are more than degC2(z1)/2 choices for b2. Continuing in this fashion, we construct a

path arriving at bh−k ∈ Γ̄ which needs to be extended to some a2 ∈ NC1(bh−k), under the restriction

ebh−k−a2 ∩
(
eb1−a1 ∪ {b1 − z1, b2 − z1, b2 − z2, b3 − z2, . . . , bh−k − zh−k−1}

)︸ ︷︷ ︸
e′

= ∅.

Consider the set

Ebh−k :=
{
ebh−k−a2 : a2 ∈ NC1(bh−k)

}
.

Condition (1-a) states that no vertex of Γ̄ is
⌈

δ1
16h log2 n

⌉
-congested in C1 = CS,k(A, Γ̄). Recalling

Definition 20, this implies that for all s ∈ S, the number of k-tuples in Ebh−k containing s is at

most δ1
16h log2 n

. Since there are fewer than 2h elements s ∈ e′ ⊂ S, it follows that there are at least

|Ebh−k | −
δ1

8 log2 n
tuples ebh−k−a2 ∈ Ebh−k such that ebh−k−a2 ∩ e′ = ∅. Since |Ebh−k | = degC1(bh−k)

and, by condition (1-b), we have degC1(bh−k) > δ1, it follows that more than δ1/2 elements a2 ∈
NC1(bh−k) may be selected for the final vertex of the path. The above argument shows that:

• The number of choices for (a1, b1) is |C1|.
• Each element z1, . . . , zh−k−1 can be chosen from among at least δ2/2 alternatives.

• Each element bi, i ∈ {2, 3, . . . , h − k} can be chosen from among at least degC2(zi−1)/2 >
β |S|

2·(log2 n)5(256h2 log2 n)`−k
alternatives.

• There are at least δ1/2 choices for the final vertex a2.

Consequently,

N∗ > |C1|
(
δ2

2
· β |S|

2 · (log2 n)5(256h2 log2 n)`−k

)h−k−1

· δ1

2
.

From (1-e) we obtain

|C1| >
|C0|

12(log2 n)3(128h |S| log2 n)`−k

(54)

>
Ω(1) · β |A|

(|S|
`

)
|S|`−k(log2 n)3+`−k =

Ω(1) · β |A| |S|k

(log2 n)3+`−k .

Therefore, it follows that

N∗ > Ω(1)
βh−k |A| |S|h−1δ1δ

h−k−1
2

(log2 n)3+`−k+(5+`−k)(h−k−1)

>
βhδ1δ

h−k−1
2

(log2 n)6h2
|A|
(
|S|
h− 1

)
,

(76)

where in the last inequality we used the fact that

3 + `− k + (5 + `− k)(h− k − 1) < (5 + `− k)(h− k) < (5 + h)h < 6h2.

Since this inequality is strict, the constant factors of the first inequality in (76) are easily absorbed

by (log2 n)6h2−(3+`−k+(5+`−k)(h−k−1)).

Next we will bound the number of semi-special paths P such that e1(P ) /∈ H. Fix an arbitrary e ∈(
S
h−1

)
\H and one of the (h−1)! orderings of its elements, say (e1, . . . , eh−1). Pick an element a1 ∈ A

to be the first vertex of the path and notice that b1 = a1 + e1 + · · ·+ ek is determined. According

to condition (1-c), there are at most 4δ2 choices for z1 ∈ NC2(b1). Once z1 is chosen, the value of

b2 must satisfy b2 = z1 + ek+1, and so, continuing this construction process, we eventually arrive
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at bh−1. From bh−1, condition (1-b) shows that we have at most 2δ1 candidates for a2 ∈ A. To

summarize, the number of semi-special paths P such that e1(P ) /∈ H is at most∣∣∣∣( S

h− 1

)
\ H
∣∣∣∣(h− 1)!|A|(4δ2)h−k−12δ1

(36)

6 O(1) ·
βh
( |S|
h−1

)
(log2 n)7h2

|A| δ1δ
h−k−1
2

(76)
= o(N∗). (77)

Since the same is true for the number of semi-special paths P such that e2(P ) /∈ H, we conclude

that N > N∗

2 and thus

Q
(75)

>
N∗

2h2h
>

1

2h2h

βhδ1δ
h−k−1
2

(log2 n)6h2
|A|
(
|S|
h− 1

)
>

βhd

(log2 n)7h2
|A|
(
|S|
h− 1

)
,

where in the last inequality we used condition (1-b), that is, the fact that

δ1 >
d

(4 log2 n)(128h log2 n)`−k
> d(128h log2 n)−h.

This completes the proof of Theorem 17. �

7. Concluding Remarks

In this paper, we have established essentially tight bounds for the number of Bh-sets contained

in the set {1, . . . , n} of almost every given cardinality t. There is, however, a small ‘threshold gap’,

that is, an interval of values of t for which the precise asymptotics of |Zhn(t)| is not determined

here. This interval is of the form [εn1/(2h−1), n1/(2h−1)+ε], where ε = ε(n) is some function of n that

slowly converges to 0 as n→∞. Outside this interval, the value of |Zhn(t)| is determined within at

most nεt multiplicative factor.

There are therefore two directions in which our result could be refined. The first of them would

be to improve the upper bound on |Zhn(t)| to
(
f(n)n
th

)t
, where f(n) is some explicit function; our

methods give f(n) = nc/ log logn for some small positive constant c. The second direction would be

to narrow the threshold gap.

It is conceivable that our methods could be used to obtain somewhat stronger upper bounds,

however it would most likely require a great deal of effort. In order to improve our estimates, one

needs to ‘balance’ the values of αs and λs better. The sequence of λs must be longer so that the

ratio of consecutive values allows to obtain better bounds in (47). At the same time, the sequence

of αs has to decrease quickly enough so that condition (36) in Theorem 17 is satisfied when we

apply it in the proof of Theorem 7, see (46).

As for narrowing the gap, one could adapt the proof given in §5.1 by requiring A to be larger,

therefore allowing t to be smaller. The cost one would pay for that is a weaker upper bound

on |Zhn(t)|, which would be a result of applying Lemma 6 with larger values of R. The obtained

upper bounds would still be similar to those proved by Theorem 3. In view of the lower bound of

Proposition 2 (i), it is clearly not possible to reduce t below n1/(2h−1). A careful analysis of our

proof shows that (43) is where a lower bound on t of that form is required. More precisely, for our

application of Lemma 6 to work, we need q = o(t), |S| = o(t), and βq = Ω(log n). For that reason,

t must be at least n1/(2h−1) polylog(n) for (43) to yield anything useful. In fact, it seems that any
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proof based on Lemma 6 would require a threshold gap with factor at least log n. Still, we believe

that the following is true:

Conjecture 23. For every h > 2, there exists a constant Ch such that

|Zhn(t)| 6
(
Chn

th

t)
for every n and t satisfying t > Chn1/(2h−1).

7.1. Related work. Some recent results in extremal combinatorics have used the so-called con-

tainers method based on the main results of [1, 29]. This method was recently applied by Morris

and Saxton [27] to show that for every integer h > 2, the number of C2h-free graphs with vertex

set [n] is at most 2O(n1+1/h), which extends the results of [19, 18]. In fact, they proved that for

every m � n1+1/(2h−1)(log n)2, the number fn,m(C2h) of C2h-free graphs with vertex set [n] that

have exactly m edges satisfies

fn,m(C2h) 6

(
Cnh+1

mh
·
(

log
nh+1

mh

)h−1
)m

. (78)

The problems of counting C2h-free graphs and Bh-sets seem to be related. Given a t-element

Bh-set T ⊂ [n], one may define an auxiliary bipartite graph GT on [hn]×{1, 2} by placing an edge

between (x, 1) and (y, 2) whenever y−x (mod n) is an element of T . This graph GT has htn edges

and is ‘essentially’ C2h-free2. In particular, the bound (78) may be viewed as an analogue of our

Theorem 3. However, we are not aware of any rigorous connection between these two results.

One might still ask whether the argument of [27] could be adapted to our setting. As in most ap-

plications of the containers method, the heart of [27] is proving a sufficiently strong supersaturation

result for copies of C2h in n-vertex graphs with more that Dn1+1/h edges, see [27, Theorem 1.5].

It is conceivable that one could obtain some supersaturation theorem for solutions to the equation

a1 + . . . + ah = b1 + . . . + bh in subsets of [n] with more than Dn1/h elements using the methods

of [27]. However, a supersaturation statement that would be necessary for our application does

not seem to follow from [27, Theorem 1.5] as it is unclear how to ‘translate’ condition (b) there to

our setting. We did not pursue this direction further, mainly because our research leading to the

current work was carried out largely in parallel to [27].

The obvious advantage of the approach of Morris and Saxton is that their upper bound on

fn,m(C2h) is larger than the (theoretical) lower bound3 of
(
cnh+1

mh

)
only by a factor of

(
log nh+1

mh

)(h−1)m
.

On the other hand, our approach has the advantage of being entirely self-contained, since it relies

merely on the simple Lemma 6 as opposed to this much more involved hypergraph version proved

in [1, 29].

2The graph GT contains Θ(nth) copies of C2h which correspond to ‘trivial’ equalities of the form a1 + . . . + ah =
aπ(1) + . . .+ aπ(h), where π is some permutation of [h].
3One could derive such a bound in a similar fashion to [27, Proposition 1.4] and our Lemma 19 from the existence of

n-vertex graphs with Ω(n1+1/h) edges which admit no non-backtracking closed walks of length 2h.
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Appendix A. Omitted proofs

Proof of Lemma 19. Fix some h > 2 and suppose that n and N are integers satisfying N > 2hn.

We shall show that there exists a subset U ⊂ [N ] and a projection π : U → [n] such that the

following holds:

(a) If A ⊂ [n] is a Bh-set, then any set B ⊂ π−1(A) with |B ∩ π−1(x)| = 1 for every x ∈ A is

also a Bh-set.

(b) For every x ∈ [n], we have |π−1(x)| > N/(2hn).

Observe that the existence of such U and π immediately implies the assertion of the lemma. Indeed,

for every A ∈ Zhn(t), we may construct at least (N/(2hn))t different B ∈ ZhN (t) by choosing for

each x ∈ A one of at least N/(2hn) elements of π−1(x) to be included in B. Moreover, each B

constructed in this way satisfies π(B) = A.

In order to define the projection π and its domain U ⊂ [N ], we first partition [N ] into intervals

Ij =

(
j

n
N,

j + 1

n
N

]
∩ Z, j = 0, . . . , n− 1.

Furthermore, we subdivide each of the intervals above into h subintervals of (almost) equal lengths,

namely,

Ij,k =

((
j

n
+

k

hn

)
N,

(
j

n
+
k + 1

hn

)
N

]
∩ Z, j = 0, . . . , n− 1 and k = 0, . . . , h− 1.

We then define the domain of π by

U =
n−1⋃
j=0

Ij,0.

The projection π is then defined by letting π(x) = j + 1, where j is the unique index such that

x ∈ Ij,0. Condition (b) is clearly satisfied as for every j,

|Ij,0| >
⌊
N

hn

⌋
>

N

2hn
,

where the last inequality follows from our assumption that N > 2hn.

It remains to prove that condition (a) is also satisfied. Let A ⊂ [n] be a Bh-set and let B ⊂
π−1(A) be a set satisfying |B ∩ π−1(A)| = 1. This ensures that π|B is a bijection between B and

A. Let (b1, . . . , bh) ∈ Bh be an arbitrary h-tuple with b1 6 . . . 6 bh and let ` be the unique index

such that b1 + . . .+ bh ∈ I`. We claim that `+ h = π(b1) + . . .+ π(bh). Indeed, for each i ∈ [h], let

ji = π(bi)− 1, so that bi ∈ Iji,0, and observe that

b1 + . . .+ bj ∈
(
j1 + . . .+ jh

n
N,

j1 + . . .+ jh + 1

n
N

]
∩ Z = Ij1+...+jh .

Since A is a Bh set and π is one-to-one, it follows that no other h-tuple (b′1, . . . , b
′
h) ∈ Bh with

b′1 6 . . . 6 b′h can satisfy π(b′1) + . . . + π(b′h) = ` + h. In particular, no other h-tuple (b′1, . . . , b
′
h)

with b′1 6 . . . 6 b′h satisfies b′1 + . . . + b′h ∈ I` and hence B must be a Bh-set (recall that ` is the

unique index such that b1 + . . .+ bh ∈ I`). �
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