
On the K LR conjecture in random graphs

D. Conlon∗ W. T. Gowers† W. Samotij‡ M. Schacht§

Abstract

The K LR conjecture of Kohayakawa,  Luczak, and Rödl is a statement that allows one to
prove that asymptotically almost surely all subgraphs of the random graph Gn,p, for sufficiently
large p := p(n), satisfy an embedding lemma which complements the sparse regularity lemma of
Kohayakawa and Rödl. We prove a variant of this conjecture which is sufficient for most known
applications to random graphs. In particular, our result implies a number of recent probabilistic
versions, due to Conlon, Gowers, and Schacht, of classical extremal combinatorial theorems. We
also discuss several further applications.

1 Introduction

Szemerédi’s regularity lemma [83], which played a crucial role in Szemerédi’s proof of the Erdős-
Turán conjecture [82] on long arithmetic progressions in dense subsets of the integers, is one of the
most important tools in extremal graph theory (see [57, 58, 73]). Roughly speaking, it says that
the vertex set of every graph G may be divided into a bounded number of parts in such a way that
most of the induced bipartite graphs between different parts are pseudorandom.

More precisely, a bipartite graph between sets U and V is said to be ε-regular if, for every
U ′ ⊆ U and V ′ ⊆ V with |U ′| ≥ ε|U | and |V ′| ≥ ε|V |, the density d(U ′, V ′) of edges between U ′

and V ′ satisfies
|d(U ′, V ′)− d(U, V )| ≤ ε.

We will say that a partition of the vertex set of a graph into t pieces V1, . . . , Vt is an equipartition
if, for every 1 ≤ i, j ≤ t, we have the condition that ||Vi| − |Vj || ≤ 1. We say that the partition
is ε-regular if it is an equipartition and, for all but at most εt2 pairs (Vi, Vj), the induced graph
between Vi and Vj is ε-regular. Szemerédi’s regularity lemma can be formally stated as follows.

Theorem 1.1. For every ε > 0 and every positive integer t0, there exists a positive integer T such
that every graph G with at least t0 vertices admits an ε-regular partition V1, . . . , Vt of its vertex set
into t0 ≤ t ≤ T pieces.

Often the strength of the regularity lemma lies in the fact that it may be combined with a
counting or embedding lemma that tells us approximately how many copies of a particular subgraph
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a graph contains, in terms of the densities d(Vi, Vj) arising in an ε-regular partition. The so-called
regularity method usually works as follows. First, one applies the regularity lemma to a graph G.
Next, one defines an auxiliary graph R whose vertices are the parts of the regular partition of G
one obtains, and whose edges correspond to regular pairs with non-negligible density. (For some
applications we may instead take a weighted graph, where the weight of the edge between a regular
pair Vi and Vj is the density d(Vi, Vj).) If one can then find a copy of a particular subgraph H
in R, the counting lemma allows one to find many copies of H in G. If R does not contain a
copy of H, this information can often be used to deduce some further structural properties of the
graph R and, thereby, the original graph G. Applied in this manner, the regularity and counting
lemmas allow one to prove a number of well-known theorems in extremal graph theory, including
the Erdős-Stone theorem [21], its stability version due to Erdős and Simonovits [81], and the graph
removal lemma [4, 24, 29, 76].

For sparse graphs – that is, graphs with n vertices and o(n2) edges – the regularity lemma stated
in Theorem 1.1 is vacuous, since every equipartition into a bounded number of parts is ε-regular for
n sufficiently large. It was observed independently by Kohayakawa [47] and Rödl that the regularity
lemma can nevertheless be generalized to an appropriate class of graphs with density tending to
zero. Their result applies to a natural class of sparse graphs that is wide enough for the lemma
to have several interesting applications. In particular, it applies to relatively dense subgraphs of
random graphs – that is, one takes a random graph Gn,p of density p and a subgraph G of Gn,p of
density at least δp (or relative density at least δ in Gn,p), where p usually tends to 0, while δ > 0
is usually independent of the number of vertices.

To make this precise, we say that a bipartite graph between sets U and V is (ε, p)-regular if, for
every U ′ ⊆ U and V ′ ⊆ V with |U ′| ≥ ε|U | and |V ′| ≥ ε|V |, the density d(U ′, V ′) of edges between
U ′ and V ′ satisifies

|d(U ′, V ′)− d(U, V )| ≤ εp.
That is, we alter the definition of regularity so that it is relative to a particular density p. This
density is usually comparable to the total density between U and V . A partition of the vertex set
of a graph into t pieces V1, . . . , Vt is then said to be (ε, p)-regular if it is an equipartition and, for
all but at most εt2 pairs (Vi, Vj), the induced graph between Vi and Vj is (ε, p)-regular.

The class of graphs to which the Kohayakawa-Rödl regularity lemma applies are the so-called
upper-uniform graphs [53]. Suppose that 0 < η ≤ 1, D > 1, and 0 < p ≤ 1 are given. We will
say that a graph G is (η, p,D)-upper-uniform if for all disjoint subsets U1 and U2 with |U1|, |U2| ≥
η|V (G)|, the density of edges between U1 and U2 satisfies d(U1, U2) ≤ Dp. This condition is satisfied
for many natural classes of graphs, including all subgraphs of random and pseudorandom graphs
of density p. The regularity lemma of Kohayakawa and Rödl is the following.

Theorem 1.2. For every ε,D > 0 and every positive integer t0, there exist η > 0 and a positive
integer T such that for every p ∈ [0, 1], every graph G with at least t0 vertices that is (η, p,D)-
upper-uniform admits an (ε, p)-regular partition V1, . . . , Vt of its vertex set into t0 ≤ t ≤ T pieces.

The proof of this theorem is essentially the same as the proof of the dense regularity lemma,
with the upper uniformity used to ensure that the iteration terminates after a constant number
of steps. We note that different versions of the result have appeared in the literature where the
(η, p,D)-upper-uniformity assumption is altered [3, 63] or dropped completely [80].

As we have already mentioned above, the usefulness of the dense regularity method relies on
the existence of a corresponding counting lemma. Roughly speaking, a counting lemma says that if
we start with an arbitrary graph H and replace its vertices by large independent sets and its edges
by ε-regular bipartite graphs with non-negligible density, then this blown-up graph will contain
roughly the expected number of copies of H. Here is a precise statement to that effect.
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Lemma 1.3. For every graph H with vertex set {1, 2, . . . , k} and every δ > 0, there exists ε > 0
and an integer n0 such that the following statement holds. Let n ≥ n0 and let G be a graph whose
vertex set is a disjoint union V1 ∪ . . . ∪ Vk of sets of size n. Assume that for each ij ∈ E(H),
the bipartite subgraph of G induced between Vi and Vj is ε-regular and has density dij. Then the
number of k-tuples (v1, . . . , vk) ∈ V1 × · · · × Vk such that vivj ∈ E(G) whenever ij ∈ E(H) is
nk(
∏
ij∈E(H) dij ± δ).

In particular, if the density dij is large for every ij ∈ E(H), then G contains many copies of H.
Let us define a canonical copy of H in G to be a k-tuple as in the lemma above: that is, a

k-tuple (v1, . . . , vk) such that vi ∈ Vi for every i ∈ V (H) and vivj ∈ E(G) for every ij ∈ E(H).
Let us also write G(H) for the number of canonical copies of H in G. (Of course, the definitions
of “canonical copy” and G(H) depend not just on G but also on the partition of G into V1, . . . , Vk,
but we shall suppress this dependence in the notation.)

In order to use Theorem 1.2, one would ideally like a statement similar to Lemma 1.3 but
adapted to a sparse context. For this we would have an additional parameter p, which can tend
to zero with n. We would replace the densities dij by dijp and we would like to show that G(H)
is approximately nkpe(H)(

∏
ij∈E(H) dij ± δ). In order to obtain this stronger conclusion (stronger

because the error estimate has been multiplied by pe(H)), we need a stronger assumption, and the
natural assumption, given the statement of Theorem 1.2 (which is itself natural), is to replace
ε-regularity by (ε, p)-regularity.

Of course, we cannot expect such a result if p is too small. Consider the random graph G
obtained from H by replacing each vertex of H by an independent set of size n and each edge
of H by a random bipartite graph with pn2 edges. With high probability, G(H) will be about
pe(H)nv(H). Hence, if pe(H)nv(H) � pn2, then one can remove all copies of H from G by deleting
a tiny proportion of all edges. (We may additionally delete a further small proportion of edges to
ensure that all bipartite graphs corresponding to the edges of H have the same number of edges.)
It is not hard to see that with high probability the bipartite graphs that make up the resulting
graph G′ will be (ε, q)-regular for some q = (1−o(1))p, but that G′ will contain no canonical copies
of H.

Therefore, a sparse analogue of Lemma 1.3 cannot hold if p ≤ cn−
v(H)−2
e(H)−1 for some small positive

constant c. Note that one can replace H in the above argument by an arbitrary subgraph H ′ ⊆ H,
since removing all copies of H ′ from a graph also results in a H-free subgraph. This observation
naturally leads to the notion of 2-density m2(H) of a graph H, defined by

m2(H) = max

{
e(H ′)− 1

v(H ′)− 2
: H ′ ⊆ H with v(H ′) ≥ 3

}
.

(We take m2(K2) = 1
2 .) With this notation, what we have just seen is that to have any chance of

an appropriate analogue of Lemma 1.3 holding, we need to assume that p ≥ Cn−1/m2(H) for some
absolute constant C > 0.

Unfortunately, there is a more fundamental difficulty with finding a sparse counting lemma
to match a sparse regularity lemma. Instead of sparse random graphs with many vertices, one
can consider blow-ups of sparse random graphs with far fewer vertices. That is, one can pick a
counterexample of the kind just described but with the sets Vi of size r for some r that is much
smaller than n, and then one can replace each vertex of this small graph by an independent set of
n/r vertices to make a graph with n vertices in each Vi. Roughly speaking, the counterexample
above survives the blowing-up process, and the result is that the hoped-for sparse counting lemma
is false whenever p = o(1). (For more details, see [34, 52].)
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However, these “block” counterexamples have a special structure, so, for p ≥ Cn−1/m2(H), it
looks plausible that graphs for which the sparse counting lemma fails should be very rare. This
intuition was formalized by Kohayakawa,  Luczak, and Rödl [50], who made a conjecture that is
usually known as the K LR conjecture. Before we state it formally, let us introduce some notation.

As above, let H be a graph with vertex set {1, 2, . . . , k}. We denote by G(H,n,m, p, ε) the
collection of all graphs G obtained in the following way. The vertex set of G is a disjoint union
V1 ∪ . . . ∪ Vk of sets of size n. For each edge ij ∈ E(H), we add to G an (ε, p)-regular bipartite
graph with m edges between the pair (Vi, Vj). These are the only edges of G. Let us also write
G∗(H,n,m, p, ε) for the set of all G ∈ G(H,n,m, p, ε) that do not contain a canonical copy of H.

Since the sparse regularity lemma yields graphs with varying densities between the various
pairs of vertex sets, it may seem surprising that we are restricting attention to graphs where all the
densities are equal (to m/n2). However, as we shall see later, it is sufficient to consider just this
case. In fact, the K LR conjecture is more specific still, since it takes all the densities to be equal
to p. Again, it turns out that from this case one can deduce the other cases that are needed.

Conjecture 1.4. Let H be a fixed graph and let β > 0. Then there exist C, ε > 0 and a positive
integer n0 such that

|G∗(H,n,m,m/n2, ε)| ≤ βm
(
n2

m

)e(H)

for every n ≥ n0 and every m ≥ Cn2−1/m2(H).

Note that
(
n2

m

)e(H)
is the number of graphs with vertex set V1 ∪ · · · ∪ Vk with m edges between

each pair (Vi, Vj) when ij ∈ E(H) and no edges otherwise. Thus, we can interpret the conjecture
as follows: the probability that a random such graph belongs to the bad set G∗(H,n,m,m/n2, ε)
is at most βm.

The rough idea of the conjecture is that the probability that a graph is bad is so small that a
simple union bound tells us that with high probability a random graph does not contain any bad
graph – which implies that we may use the sparse embedding lemma we need. In other words, (ε, p)-
regularity on its own does not suffice, but if you know in addition that your graph is a subgraph of
a sparse random graph, then with high probability it does suffice.

More precisely, let G be a random graph with N vertices and edge probability p and let n = ηN
and m = dpn2 ≥ n. Then the expected number of subgraphs of G of the form G∗(H,n,m, p, ε) is
at most

pme(H)βm
(
n2

m

)e(H)(
N

n

)v(H)

≤ pme(H)βm
(
e

dp

)me(H)( e
η

)nv(H)

≤ βm
(e
d

)me(H)
(
e

η

)mv(H)

.

Therefore, choosing β to be sufficiently small in terms of d, η, and H, the probability that G contains
a graph in G∗(H,n,m, p, ε) is very small. By summing over the possible values of n and m, we may
rule out such bad subgraphs for all n and m with n ≥ ηN and m ≥ dpn2.

This does not give us a counting lemma for (ε, p)-regular subgraphs of G, but it does at least tell
us that every (ε, p)-regular subgraph of G with sufficiently dense pairs in the right places contains a
canonical copy of H. In other words, it gives us an embedding lemma, which makes it suitable for
several applications to embedding results. For example, as noted in [50], it is already sufficiently
strong that a straightforward application of the sparse regularity lemma then allows one to derive
the following theorem, referred to as Turán’s theorem for random graphs, which was eventually
proved in a different way by Conlon and Gowers [17] (for strictly balanced graphs, i.e., those for
which m2(H) > m2(H ′) for every proper subgraph H ′ of H) and, independently, Schacht [79] (see
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also [10, 78]). We remark that this theorem was the original motivation behind Conjecture 1.4 –
see Section 6 of [50]. Following [17], let us say that a graph G is (H, ε)-Turán if every subgraph of
G with at least (

1− 1

χ(H)− 1
+ ε

)
e(G)

edges contains a copy of H. Here χ(H) is the chromatic number of H.

Theorem 1.5. For every ε > 0 and every graph H, there exist positive constants c and C such
that

lim
n→∞

P
(
Gn,p is (H, ε)-Turán

)
=

{
0, if p < cn−1/m2(H),

1, if p > Cn−1/m2(H).

The K LR conjecture has attracted considerable attention over the past two decades and has
been verified for a number of small graphs. It is straightforward to verify that it holds for all
graphs H that do not contain a cycle. In this case, the class G∗(H,n,m, p, ε) will be empty. The
cases H = K3, K4, and K5 were resolved in [49], [32], and [33], respectively. In the case when H
is a cycle, the conjecture was proved in [11, 30] (see also [48] for a slightly weaker version). Very

recently, it was proved for all balanced graphs, that is, those graphs H for which m2(H) = e(H)−1
v(H)−2 ,

by Balogh, Morris, and Samotij [10] and by Saxton and Thomason [78] in full generality.
Besides implying Theorem 1.5, Conjecture 1.4 is also sufficient for transferring many other

classical extremal results about graphs to subgraphs of the random graph Gn,p, including Ramsey’s
theorem [67] and the Erdős-Simonovits stability theorem [81]. However, there are situations where
an embedding result is not enough: rather than just a single copy of H, one needs to know that
there are many copies. That is, one needs something more like a full counting lemma. In this paper,
we shall state and prove such a “counting version” of the K LR conjecture for subgraphs of random
graphs. Later in the paper we shall give examples of classical theorems whose sparse random
versions do not follow from the K LR conjecture but do follow from our counting result: the graph
removal lemma (see Section 1.2) and the clique density theorem (see Section 1.3), whose sparse
random version requires a “strong counting version” of the conjecture (part (ii) of Theorem 1.6
below).

Our main theorem is the following.

Theorem 1.6. For every graph H and every δ, d > 0, there exist ε, ξ > 0 with the following
property. For every η > 0, there is a C > 0 such that if p ≥ CN−1/m2(H), then a.a.s. the following
holds in GN,p:

(i) For every n ≥ ηN , m ≥ dpn2, and every subgraph G of GN,p in G(H,n,m, p, ε),

G(H) ≥ ξ
(m
n2

)e(H)
nv(H). (1)

(ii) Moreover, if H is strictly balanced, that is, if m2(H) > m2(H ′) for every proper subgraph H ′

of H, then

G(H) = (1± δ)
(m
n2

)e(H)
nv(H). (2)

Note that strictly speaking the statements above depend not just on the graph G but on the
partition V1 ∪ · · · ∪ Vk that causes G to belong to G(H,n,m, p, ε). Roughly speaking, (i) tells us
that if G contains “many” edges in the right places, then there are “many” copies of H, while (ii)
tells us that the number of copies of H is roughly what one would expect for a random graph with
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pairs of the same densities. We note that a result similar to (ii) holds for all graphs if one is willing
to allow some extra logarithmic factors. We will make this comment precise in Section 5.2.

The proof of part (i) employs the ideas of Schacht [79], as modified by Samotij [77], and as a
result part (i) holds with probability at least 1−exp(−bpN2) for some b > 0 depending on H, η, and
d. Part (ii) is proved using the results of Conlon and Gowers [17] and hence holds with probability
at least 1−N−B for any fixed B > 0, provided that C and N are sufficiently large. Since part (ii)
gives an upper bound as well as a lower bound, standard results on upper tail estimates imply that
the result cannot hold with the same exponential probability as part (i) (see, for example, [44]).

We note that weaker versions of Theorem 1.6, applicable for larger values of p, may be found
in some earlier papers on the K LR conjecture and Turán’s theorem [31, 54] and more recent work
on sparse regularity in pseudorandom graphs [16]. We also believe that a variant of part (i) of
Theorem 1.6 may be derivable from the work of Saxton and Thomason [78], though they have not
stated it in these terms.

1.1 Known applications

It is not hard to show that Theorem 1.6, like Conjecture 1.4, implies the best possible sparse
random analogues of many classical theorems in extremal graph theory. In particular, it implies
Theorem 1.5 above. It also implies the following sparse random version of the Erdős-Simonovits
stability theorem, which was first proved by Conlon and Gowers [17] for all strictly balanced graphs
and later extended to general H by Samotij [77], who adapted Schacht’s method for this purpose.

Theorem 1.7. For every graph H and every δ > 0, there exist ε, C > 0 such that if p ≥
Cn−1/m2(H), then a.a.s. every H-free subgraph G′ ⊆ Gn,p with e(G′) ≥

(
1− 1

χ(H)−1 − ε
) (

n
2

)
p

may be made (χ(H)− 1)-partite by removing at most δpn2 edges.

Another easy consequence of Theorem 1.6 is the 1-statement of the following sparse Ramsey
theorem, originally proved by Rödl and Ruciński [72] in 1995. We remark here that the 1-statement
of Theorem 1.8 below also extends to general hypergraphs [17, 28]. Following [17], we say that a
graph G is (H, r)-Ramsey if every r-colouring of the edges of G yields a monochromatic copy of H.

Theorem 1.8. For every graph H that is not a star forest or a path of length 3 and for every
positive integer r ≥ 2, there exist constants c, C > 0 such that

lim
n→∞

P
(
Gn,p is (H, r)-Ramsey

)
=

{
0, if p < cn−1/m2(H),

1, if p > Cn−1/m2(H).

We will omit the deductions of Theorem 1.7 and the 1-statements of Theorems 1.5 and 1.8 from
Theorem 1.6. These are fairly standard applications of the regularity method (see, for example,
[34, 47]).

1.2 A sparse removal lemma for graphs

The triangle removal lemma of Ruzsa and Szemerédi [76] states that for every δ > 0 there exists
an ε > 0 such that if G is any graph on n vertices that contains at most εn3 triangles, then G may
be made triangle-free by removing at most δn2 edges. Despite its innocent appearance, this result
has several striking consequences. Most notably, it easily implies Roth’s theorem [75] on 3-term
arithmetic progressions in dense subsets of the integers. For general graphs H, a similar statement
holds [4, 24, 29] (see also [14, 27]): if an n-vertex graph contains o(nv(H)) copies of H, then it may
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be made H-free by removing o(n2) edges. This result is known as the graph removal lemma. A
sparse random version of the graph removal lemma was conjectured by  Luczak in [64] and proved,
for strictly balanced H, by Conlon and Gowers [17]. Here, we apply our main result, Theorem 1.6,
to extend this result to all graphs H.

Theorem 1.9. For every δ > 0 and every graph H, there exist positive constants ε and C such that
if p ≥ Cn−1/m2(H), then the following holds a.a.s. in Gn,p. Every subgraph of Gn,p which contains
at most εpe(H)nv(H) copies of H may be made H-free by removing at most δpn2 edges.

Note that if p ≤ cn−1/m2(H) for a sufficiently small positive constant c (depending on H and
δ), then H has a subgraph H ′ the expected number of copies of which is at most δpn2, so we can
remove all copies of H by deleting an edge from each copy of H ′. Thus, it is natural to conjecture,
as  Luczak did, that Theorem 1.9 actually holds for all values of p. For balanced graphs, we may
close the gap by taking ε to be sufficiently small in terms of C, δ, and H. For p ≤ Cn−1/m2(H) and
ε < δC−e(H), the number of copies of H is at most εpe(H)nv(H) ≤ εCe(H)pn2 < δpn2. Deleting an
edge from each copy of H yields the result.

1.3 The clique density theorem

For any ρ > 0, let gk(ρ, n) be the minimum number of copies of Kk which are contained in any
graph on n vertices with density at least ρ. We then take

gk(ρ) = lim
n→∞

gk(ρ, n)(
n
k

) .

Complete (k − 1)-partite graphs demonstrate that gk(ρ) = 0 for ρ ≤ 1− 1
k−1 . On the other hand,

a robust version of Turán’s theorem known as supersaturation [25] tells us that gk(ρ) > 0 for all
ρ > 1− 1

k−1 .
There has been much work [12, 22, 23, 36, 62] on determining gk(ρ) above the natural threshold

1− 1
k−1 , but it is only in recent years that the exact dependency of gk(ρ) on ρ has been found for

any k ≥ 3. For k = 3 and the interval 1
2 ≤ ρ ≤

2
3 , this was accomplished by Fisher [26, 35], while for

a general ρ the value of g3(ρ) was determined by Razborov [68, 69] using flag algebras. Employing
different methods, Nikiforov [66] reproved the k = 3 case and also solved the case k = 4. Finally,
Reiher [70] recently resolved the general case.

We will show that an analogous theorem holds within the random graph Gn,p. We note that
this theorem, Theorem 1.10 below, also follows as a direct application of the results of [17]. To state
the result, we define, for a subgraph G′ of Gn,p, the relative density of G′ in Gn,p to be e(G′)/p

(
n
2

)
.

Theorem 1.10. For any k ≥ 3 and any ε > 0, there exists a constant C > 0 such that if
p ≥ Cn−2/(k+1), then the following holds a.a.s. in Gn,p. Any subgraph G′ of Gn,p will contain at

least (gk(ρ)− ε)p(
k
2)
(
n
k

)
copies of Kk, where ρ is the relative density of G′ in Gn,p.

We remark that, as m2(Kk) = (k + 1)/2, the assumption on p in the above theorem is best
possible up to the value of the constant C. Using part (ii) of Theorem 1.6, we may show that
a similar theorem also holds for any strictly balanced graph H. That is, if gH(ρ) is the natural
analogue of gk(ρ) defined for H, then for any ε > 0, there exists a C > 0 such that if p ≥
Cn−1/m2(H), the random graph Gn,p will a.a.s. be such that any subgraph G′ of Gn,p contains

at least (gH(ρ) − ε)pe(H) nv(H)

Aut(H) copies of H, where again ρ is the relative density of G′ in Gn,p.

However, the function gH(ρ) is only well understood for cliques and certain classes of bipartite
graph (see, for example, [15, 61]).
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1.4 The Hajnal-Szemerédi theorem

Let H be a fixed graph on h vertices. An arbitrary collection of vertex-disjoint copies of H in
some larger graph is called an H-packing. A perfect H-packing (or H-factor) is an H-packing that
covers all vertices of the host graph. It has long been known for certain graphs H that if the
minimum degree of an n-vertex graph G is sufficiently large and n is divisible by h, then G contains
an H-factor. For example, Dirac’s theorem [20] implies that if H is a path of length h − 1, n is
divisible by h, and δ(G) ≥ n/2, then G contains an H-factor. Corrádi and Hajnal [19] proved
that δ(G) ≥ 2n/3 implies the existence of a K3-factor in G. A milestone in this area of research,
the famous theorem of Hajnal and Szemerédi [42], states that the condition δ(G) ≥ (1 − 1

k )n is
sufficient to guarantee a perfect Kk-packing in G for an arbitrary k (see [46] for a short proof of
this theorem).

Theorem 1.11. For any k ≥ 3, every n-vertex graph G with δ(G) ≥ (1− 1
k )n contains a Kk-factor,

provided that n is divisible by k.

This theorem has also been generalized to arbitrary H [7, 56, 59]. In particular, a result of
Komlós [55] shows that a parameter known as the critical chromatic number governs the existence
of almost perfect packings (i.e., packings covering all but a o(1)-fraction of the vertices of the host
graph) in graphs of large minimum degree.

We will prove the following approximate version of the Hajnal-Szemerédi Theorem in the random
graph Gn,p.

Theorem 1.12. For any k ≥ 3 and any γ > 0, there exists a constant C > 0 such that if
p ≥ Cn−2/(k+1), then the following holds a.a.s. in Gn,p. Any subgraph G′ of Gn,p with δ(G′) ≥
(1− 1

k + γ)pn contains a Kk-packing that covers all but at most γn vertices.

We remark that the assumption on p in the above theorem is best possible up to the value of
the constant C. Using the result of Komlós [55], we may show that a similar theorem also holds for
any graph H. That is, for any H and any γ > 0, there exists a C > 0 such that if p ≥ Cn−1/m2(H),
then a.a.s. every subgraph G′ of Gn,p satisfying δ(G′) ≥ (1 − 1

χcr(H) + γ)pn, where χcr(H) is the
critical chromatic number of H, contains an H-packing covering all but at most γn vertices.

Finally, we remark that the problem of finding perfect packings in subgraphs of random graphs
seems to be much more difficult. On the positive side, a best possible sparse random analogue of
Dirac’s theorem was recently proved by Lee and Sudakov [60]. On the negative side, it was observed
by Huang, Lee, and Sudakov [43] that for every ε > 0, there are c, C > 0 such that if every vertex
of H is contained in a triangle and Cn−1/2 ≤ p ≤ c, then Gn,p a.a.s. contains a spanning subgraph
G′ with δ(G′) ≥ (1 − ε)pn such that at least εp−2/3 vertices of G′ are not contained in a copy
of H. Therefore, the presence of the set of uncovered vertices in the statement of Theorem 1.12 is
indispensable. For further discussion and related results, we refer the reader to [9, 43].

1.5 The Andrásfai-Erdős-Sós theorem

A result of Zarankiewicz [85] states that if a graph on n vertices has minimum degree at least
(1 − 1

k−1)n then it contains a copy of Kk. This result follows immediately from Turán’s theorem
but is interesting because it has a surprisingly robust stability version, due to Andrásfai, Erdős,
and Sós [8]. This theorem states that any Kk-free graph on n vertices with minimum degree at
least (1− 3

3k−4)n must be (k − 1)-partite.
This result was extended to general graphs by Alon and Sudakov [6] (see also [1]), who showed

that for any graph H and any γ > 0, every H-free graph on n vertices with minimum degree at
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least
(

1− 3
3χ(H)−4 + γ

)
n may be made (χ(H) − 1)-partite by deleting o(n2) edges. We prove a

random analogue of this result, as follows.

Theorem 1.13. For every graph H and every γ > 0, there exists C > 0 such that if p ≥
Cn−1/m2(H), then a.a.s. every H-free subgraph G′ ⊆ Gn,p with δ(G′) ≥

(
1− 3

3χ(H)−4 + γ
)
pn may

be made (χ(H)− 1)-partite by removing from it at most γpn2 edges.

More generally, for any H and any r, we may define

δχ(H, r) := inf{d : δ(G) ≥ d|G| and H 6⊆ G⇒ χ(G) ≤ r}.

The Andrásfai-Erdős-Sós theorem determines the value of δχ(Kk, k − 1), but there are also some
results known for other values of r. For example, it is known [13, 41, 45] that δχ(K3, 3) = 10

29
and δχ(K3, 4) = 1

3 . Our methods easily allow us to transfer any such results about δχ(H, r) to
the random setting. These are approximate results, proving that any H-free graph with a certain
minimum degree is close to a graph with bounded chromatic number. As noted in [2], one cannot
hope to achieve a more exact result saying that the graph itself has bounded chromatic number.

2 K LR conjecture via multiple exposure

In this section, we prove part (i) of Theorem 1.6. The proof follows the ideas of [79, 77]. The main
idea in these proofs is to expose the random graph in multiple rounds. In this context, this can be
traced back to the work of Rödl and Ruciński in [72].

We are going to prove a somewhat stronger statement, Theorem 2.1 below, which easily implies
part (i) of Theorem 1.6. A bipartite graph between sets U and V is (ε, d)-lower-regular if, for every
U ′ ⊆ U and V ′ ⊆ V with |U ′| ≥ ε|U | and |V ′| ≥ ε|V |, the density d(U ′, V ′) of edges between U ′ and
V ′ satisfies d(U ′, V ′) ≥ d. Given a graph H on the vertex set {1, . . . , k}, we denote by G`(H,n, d, ε)
the collection of all graphs G on the vertex set V1 ∪ . . . ∪ Vk, where V1, . . . , Vk are pairwise disjoint
sets of size n each, whose edge set consists of e(H) different (ε, d)-lower-regular bipartite graphs,
one graph between Vi and Vj for each ij ∈ E(H). For an arbitrary graph G and p ∈ [0, 1], we
will denote by Gp the random subgraph of G where each edge of G is included with probability p
independently of all other edges. Finally, given H ′ ⊆ H and two graphs G,G′ ∈ G`(H,n, 0, 1), we
denote by C(H,G;H ′, G′) the set of all canonical copies of H in G such that the edges of H ′ in
these copies are in G′.

Theorem 2.1. Let H be an arbitrary graph. For every H ′ ⊆ H and every d > 0, there exist
ε, ξ, b, C > 0 and an integer n0 such that if n ≥ n0 and p ≥ Cn−1/m2(H), then the following holds.
For every G ∈ G`(H,n, d, ε), with probability at least 1− exp(−bpn2), the random graph Gp has the
following property: Every subgraph G′ of Gp in G`(H,n, dp, ε) satisfies

|C(H,G;H ′, G′)| ≥ ξpe(H′)nv(H).

We now deduce the first part of Theorem 1.6 from Theorem 2.1. In its proof, as well as in some
of the other proofs below, we will use Chernoff’s bound in the following standard form (see, for
example, [5, Appendix A]).

Lemma 2.2 (Chernoff’s inequality). Let t be a positive integer, p ∈ [0, 1], and X ∼ Bin(t, p). For
every positive a,

Pr(X < pt− a) < exp

(
−a

2

pt

)
and Pr(X > pt+ a) < exp

(
− a2

2pt
+

a3

2(pt)2

)
.
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Observe that, in particular, if we apply the upper tail estimate with a = pt/2, we see that

Pr(X > 2pt) ≤ Pr(X > 3pt/2) ≤ exp(−pt/16).

Proof of part (i) of Theorem 1.6. Let H be an arbitrary k-vertex graph and let d > 0. We may
assume that H contains a vertex of degree at least two (and hence m2(H) ≥ 1) since otherwise the
assertion of the theorem is trivial. Let1

ε = min
{
d/2, ε2.1(H, d/2)

}
, b′ = min

{
1/40, b2.1(H, d/2)

}
, and C ′ = C2.1(H, d/2).

Moreover, let ξ′ = ξ2.1(H, d/2) and let ξ = 2−e(H)ξ′. Next, fix an arbitrary positive constant η and
let C = max{C ′, 40k} ·η−2. Assume that p ≥ CN−1/m2(H) and that N is sufficiently large. Finally,
let n ≥ ηN and let m ≥ dpn2. We estimate the probability of the event (we denote it by B) that

GN,p contains a subgraph G ∈ G(H,n,m, p, ε) with G(H) < ξ
(
m
n2

)e(H)
nv(H).

Let W1, . . . ,Wk be pairwise disjoint subsets of V (GN,p), each of size n, and let B(W1, . . . ,Wk)
denote the event that GN,p contains a subgraph G as above with sets W1, . . . ,Wk playing the role
of V1, . . . , Vk from the definition of G(H,n,m, p, ε). By Chernoff’s inequality (see below),

Pr
(
eGN,p

(Wi,Wj) ≥ 2pn2 for some ij ∈ E(H)
)
≤ e(H) · exp(−pn2/16) ≤ exp(−pn2/20).

On the other hand, if m ≤ 2pn2, then by Theorem 2.1 with H = H ′, d2.1 = d/2 and G2.1 =
H(W1, . . . ,Wk), the complete blow-up of H obtained by replacing the vertices of H by sets
W1, . . . ,Wk and the edges by complete bipartite graphs, the probability that GN,p∩H(W1, . . . ,Wk)
contains a subgraph G ∈ G(H,n,m, p, ε) ⊆ G`(H,n, pd/2, ε) satisfying

G(H) < ξ
(m
n2

)e(H)
nv(H) ≤ 2e(H)ξpe(H)nv(H) = ξ′pe(H)nv(H)

is at most exp(−bpn2). To see this, note that H(W1, . . . ,Wk)p has the same distribution as GN,p ∩
H(W1, . . . ,Wk) and that our assumptions imply that p ≥ CN−1/m2(H) ≥ C ′n−1/m2(H). It follows
that

Pr(B) ≤
∑

W1,...,Wk

Pr
(
B(W1, . . . ,Wk)

)
≤ (k+1)N

[
exp(−pn2/20)+exp(−bpn2)

]
≤ exp(−b′η2pN2/2)

since pn2 ≥ η2pN2 ≥ Cη2N2−1/m2(H) ≥ 40kN .

In the proof of Theorem 2.1, we will also need the following approximate concentration result
for random subgraphs of H(n), the complete blow-up of H obtained by replacing the vertices of
H by disjoint sets V1, . . . , Vk of size n each and the edges of H by complete bipartite graphs.
Lemma 2.3 below is [79, Proposition 3.6] with Hn being the e(H)-uniform hypergraph on the
vertex set E(H(n)) whose edges are the canonical copies of H in H(n). The proof of the fact that
this hypergraph is (K,n−1/m2(H))-bounded, see [79, Definition 3.2], is implicit in the proof of the
1-statement of [79, Theorem 2.7]. The definition of degH′ is given in Section 2.2.2.

Lemma 2.3 ([72, 79]). Let H be an arbitrary graph with ∆(H) ≥ 2. There exists a K > 0 such that
for every proper H ′ ⊆ H and every η > 0, there exist b > 0 and an integer n0 such that for every
n ≥ n0, if p ≥ n−1/m2(H), then with probability at least 1−exp(−bpn2), for every ij ∈ E(H)\E(H ′)
there exists a subgraph X ⊆ H(n)p with |X| ≤ ηpn2 satisfying∑

e∈(Vi,Vj)

deg2
H′ (e,H(n), H(n)p \X) ≤ Kp2e(H′)n2v(H)−2.

1A subscript of the form X.Y refers to Lemma/Proposition/Theorem X.Y. For example, we write ε2.1(·) to denote
the function implicitly defined in the statement of Theorem 2.1.
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Let H be an arbitrary graph and let d be a positive constant. In the remainder of this section,
we prove Theorem 2.1 by induction on the number of edges in H ′.

2.1 Induction base (e(H ′) = 0)

Let H ′ be the empty subgraph of H and note that, regardless of G′, we have |C(H,G;H ′, G′)| =
G(H). The base of the induction follows immediately from the following one-sided version of the
counting lemma, Lemma 1.3, if we let ε = ε2.4(d), ξ = ξ2.4(d), b = 1, C = 1, and n0 = 1.

Lemma 2.4. For every graph H and every d > 0, there exist ε, ξ > 0 such that for every n and
every G ∈ G`(H,n, d, ε),

G(H) ≥ ξnv(H).

In fact, by choosing ε sufficiently small, one can show that ξ ≥ de(H) − δ.

2.2 Induction step

Let H ′′ be an arbitrary subgraph of H ′ with e(H ′) − 1 edges. Let ε, ξ′, b′, C ′, and n′0 be the
constants whose existence is asserted by the inductive assumption with H ′ replaced by H ′′ and d
replaced by d/4, i.e., let

ε = ε2.1(H ′′, d/4), ξ′ = ξ2.1(H ′′, d/4), b′ = b2.1(H ′′, d/4), and C ′ = C2.1(H ′′, d/4).

We also let K = K2.3(H), η = ε2d/8, and b̂ = b2.3(H,H ′′, η). Furthermore, let

R =

⌈
4K

(ξ′)2
+ 1

⌉
(3)

and let

ξ =
ξ′ε2d

16(RLR)e(H)
, b = min

{
b∗

2RLR
,
e(H)d

21RLR

}
, and C =

32RLRC ′

ε2d
,

where

b∗ = min

{
ε2d

162
,
b′

4
,
b̂

4

}
and L =

3e(H)

b∗
.

Throughout the proof, we will assume that n ≥ n0, where n0 is sufficiently large. In particular,
we will assume that n0 is larger than the values of n which come from applying Theorem 2.1
and Lemma 2.3 in context. Finally, assume that p satisfies p ≥ Cn−1/m2(H) and fix some G ∈
G`(H,n, d, ε).

2.2.1 Multiple exposure trick

Let S denote the event that the random graph Gp possesses the postulated property:

S: Every subgraph G′ ⊆ Gp such that G′ ∈ G`(H,n, dp, ε) satisfies |C(H,G;H ′, G′)| ≥
ξpe(H

′)nv(H).

Following Samotij [77], we will consider a richer probability space that is in a natural correspondence
with the space P(G) of all subgraphs of G equipped with the obvious probability measure Pr, i.e.,
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the distribution of the random graph Gp. To this end, let p1, . . . , pR ∈ [0, 1] be the unique numbers
that satisfy

1− p =
R∏
s=1

(1− ps) and ps+1 = Lps for every s ∈ [R− 1] (4)

and observe that

R∑
s=1

ps ≥ p and consequently ps ≥ p1 ≥
p

RLR
for every s ∈ [R]. (5)

The richer probability space will be the space P(G)R equipped with the product measure Pr∗

that is the distribution of the sequence (Gp1 , . . . , GpR) of independent random variables, where for
each s, the variable Gps is a ps-random subgraph of G. Crucially, observe that due to our choice of
p1, . . . , ps, see (4), the natural mapping

ϕ : P(G)R → P(G) defined by ϕ(G1, . . . , GR) = G1 ∪ . . . ∪GR

is measure preserving, i.e., for every G0 ⊆ G,

Pr(G0) = Pr∗(ϕ−1(G0)).

In other words, the variables Gp and Gp1∪. . .∪GpR have the same distribution. Finally, let d∗ = d/2
and consider the following event in the space P(G)R:

S∗: For every G′1 ⊆ Gp1 , . . . , G′R ⊆ GpR such that G′s ∈ G`(H,n, d∗ps, ε) for every s ∈ [R],
we have |C(H,G;H ′, G′1 ∪ . . . ∪G′R)| ≥ ξpe(H′)nv(H).

There are two reasons why we consider the probability space P(G)R. The first reason is that the
probability of S∗ is much easier to estimate than the probability of S. The second reason is that
a lower bound on Pr∗(S∗) implies a (marginally weaker) lower bound on Pr(S), which we show
below.

Claim 2.5. 1− Pr(S) ≤ 2 ·
(
1− Pr∗(S∗)

)
.

Proof. Note that in order to prove the claim, it suffices to show that

Pr∗(S∗ | ϕ−1(Ĝ)) = Pr∗(S∗ | Gp1 ∪ . . . ∪GpR = Ĝ) ≤ 1/2 (6)

for every Ĝ that does not satisfy S. Indeed, assuming that (6) holds for every such Ĝ, we have

1− Pr(S) =
∑
Ĝ 6∈S

Pr(Gp = Ĝ) =
∑
Ĝ6∈S

Pr∗(Gp1 ∪ . . . ∪GpR = Ĝ)

≤
∑
Ĝ 6∈S

2
(

1− Pr∗(S∗ | Gp1 ∪ . . . ∪GpR = Ĝ)
)
· Pr∗(Gp1 ∪ . . . ∪GpR = Ĝ)

≤ 2
∑
Ĝ

(
1− Pr∗(S∗ | Gp1 ∪ . . . ∪GpR = Ĝ)

)
· Pr∗(Gp1 ∪ . . . ∪GpR = Ĝ)

= 2(1− Pr∗(S∗)).

Consider an arbitrary Ĝ ⊆ G that does not satisfy S. By the definition of S, there exists a
subgraph G′ ⊆ Ĝ such that G′ ∈ G`(H,n, dp, ε) but |C(H,G;H ′, G′)| < ξpe(H

′)nv(H). Consider the
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event ϕ−1(Ĝ), i.e., the event Gp1 ∪ . . . ∪GpR = Ĝ. Now, for each s ∈ [R], let G′s = G′ ∩Gps . Since
clearly C(H,G;H ′, G′) = C(H,G;H ′, G′1 ∪ . . . ∪ G′R), it suffices to show that with probability at
least 1/2, we have G′s ∈ G`(H,n, d∗ps, ε) for every s ∈ [R].

To this end, observe that conditioned on the event Gp1 ∪ . . . ∪ GpR = Ĝ, for each s ∈ [R],
the variable Gps has the same distribution as Ĝp′s , where p′s = ps/p (although Gp1 , . . . , GpR are
no longer independent). Since G′ ∈ G`(H,n, dp, ε) and for each s ∈ [R], the graph G′s is simply a
p′s-random subgraph of G′, it follows from Chernoff’s inequality and the union bound that for fixed
s ∈ [R], the probability that G′s 6∈ G`(H,n, d∗ps, ε) = G`(H,n, dp · p′s/2, ε) is at most

e(H) · 22n · exp(−ε2dpsn2/16).

Since ps ≥ p/(RLR) ≥ Cn−1/m2(H)/(RLR) ≥ 32n−1/(ε2d), the claimed estimate follows from the
union bound, provided that n is sufficiently large.

2.2.2 Estimating the probability of S∗

In the remainder of the proof, we will work in the space P(G)R and estimate the probability of
the event S∗, that is, Pr∗(S∗). Let Gp1 , . . . , GpR be independent random subgraphs of G. Given
G′1 ⊆ Gp1 , . . . , G′R ⊆ GpR , let

G(s) = (Gp1 , . . . , Gps) and G′(s) = (G′1, . . . , G
′
s).

Let ij be the edge of H ′ that is missing in H ′′ and let Vi and Vj be the subsets of V (G) corresponding
to the vertices i and j, respectively. We consider the set Zs of ‘rich’ edges of G(Vi, Vj) that belong
to many copies of H from C(H,G;H ′′, G′s), which we define by

Zs =

{
e ∈ G(Vi, Vj) : degH′′(e,G,G

′
s) ≥

ξ′

2
pe(H

′′)
s nv(H)−2

}
,

where
degH′′(e,G,G

′) =
∣∣{J ∈ C(H,G;H ′′, G′) : e ∈ J

}∣∣ ,
and let

Z(s) = Z1 ∪ . . . ∪ Zs.

Now comes the key step in the proof. We show that with very high probability, for every s ∈ [R],
regardless of G(s − 1) and G′(s − 1), either C(H,G;H ′, G′1 ∪ . . . ∪ G′s) is large or the set Z(s) of
‘rich’ edges grows by more than n2/R, that is, |Z(s) \ Z(s− 1)| ≥ n2/R.

Claim 2.6. For every s ∈ [R] and every choice of G′(s − 1) ⊆ G(s − 1) ∈ P(G)s−1, let S∗G′(s−1)

denote the event that Gps has the following property: For every G′s ⊆ Gps that satisfies G′s ∈
G`(H,n, d∗ps, ε), either ∣∣C(H,G;H ′, G′1 ∪ . . . ∪G′s)

∣∣ ≥ ξpe(H′)nv(H) (7)

or

|Z(s) \ Z(s− 1)| ≥ (ξ′)2

4K
n2. (8)

Then for every Ĝ ∈ P(G)s−1,

Pr∗(S∗G′(s−1) | G(s− 1) = Ĝ) ≥ 1− exp(−2b∗psn
2),

where Pr∗(S∗G′(0) | G(0) = Ĝ) = Pr∗(S∗G′(0)).
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2.2.3 Deducing Theorem 2.1 from Claims 2.5 and 2.6

For every s ∈ [R], let As denote the event that e(Gps) ≤ 2pse(G) and let A(s) = A1 ∩ . . . ∩ As.
Observe that by (4),

s−1∑
t=1

2pte(G) ≤ 3ps−1e(G) =
3pse(G)

L
≤ 3e(H)psn

2

L
. (9)

By Chernoff’s inequality, (4), (5), and the fact that e(G) ≥ e(H)dn2,

Pr∗(¬A(s− 1)) ≤
s−1∑
t=1

exp

(
−pte(G)

16

)
≤ s · exp

(
−p1e(G)

16

)
≤ exp

(
−e(H)dp1n

2

20

)
. (10)

Now, for every s ∈ [R], let S∗s denote the event that A(s − 1) holds and S∗G′(s−1) holds for all

G′(s − 1) ⊆ G(s − 1). Here, G′(s − 1) ⊆ G(s − 1) means that inclusion holds coordinate-wise.
Observe that if S∗s holds for all s ∈ [R], then S∗ must hold since (8) in Claim 2.6 can occur at most
R− 1 times, see (3). Let

Â =
{
Ĝ ∈ P(G)s−1 : |Ĝt| ≤ 2pte(G) for all t ∈ [s− 1]

}
and note that

Pr∗(¬S∗s ) ≤ Pr∗(¬A(s− 1)) + Pr∗(¬S∗s ∧ A(s− 1)) (11)

= Pr∗(¬A(s− 1)) +
∑
Ĝ∈Â

Pr∗(¬S∗s ∧G(s− 1) = Ĝ).

Now, by Claim 2.6, for every Ĝ ∈ Â,

Pr∗(¬S∗s ∧G(s− 1) = Ĝ) = Pr∗(¬S∗s | G(s− 1) = Ĝ) · Pr∗(G(s− 1) = Ĝ) (12)

≤
∑

G′(s−1)⊆Ĝ

Pr∗(¬S∗G′(s−1) | G(s− 1) = Ĝ) · Pr∗(G(s− 1) = Ĝ)

≤ 2
∑s−1

t=1 2pte(G) · exp
(
−2b∗psn

2
)
· Pr∗(G(s− 1) = Ĝ).

Since clearly
∑

Ĝ∈Â Pr∗(G(s− 1) = Ĝ) ≤ 1, it follows from (9), (10), (11), and (12) that

Pr∗(¬S∗) ≤
R∑
s=1

Pr∗(¬S∗s ) ≤ R exp

(
−e(H)dp1n

2

20

)
+

R∑
s=1

2
3e(H)psn

2

L exp
(
−2b∗psn

2
)

(13)

≤ R exp

(
−e(H)dp1n

2

20

)
+R exp

(
−b∗p1n

2
)
≤ 1

2
exp

(
−bpn2

)
.

Now, Theorem 2.1 easily follows from (13) and Claim 2.5.

2.2.4 Proof of Claim 2.6

Let s ∈ [R], condition on the event G(s−1) = Ĝ for some Ĝ ∈ P(G)s−1, and assume that G′(s−1)
is given. Note that this uniquely defines the graph Z(s − 1) of ‘rich’ edges. Also, observe that it
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follows from the definition of Z(s− 1) and (5) that

|C(H,G;H ′, G′1 ∪ . . . ∪G′s)| ≥
∑

e∈G′s∩Z(s−1)

degH′′(e,G,G
′
1 ∪ . . . ∪G′s−1) (14)

≥ e
(
G′s ∩ Z(s− 1)

)
· ξ
′

2
p
e(H′′)
1 nv(H)−2

≥
e
(
G′s ∩ Z(s− 1)

)
ps

· ξ
′

2

pe(H
′)

(RLR)e(H′)
nv(H)−2

≥
e
(
G′s ∩ Z(s− 1)

)
(ε2d/8)psn2

· ξpe(H′)nv(H).

Hence, it will be enough if we show that

e
(
G′s ∩ Z(s− 1)

)
≥ ε2d

8
psn

2. (15)

Let B = G(Vi, Vj). We consider two cases, depending on whether the bipartite graph B \ Z(s− 1)
of ‘poor’ edges is (ε, d∗/2)-lower-regular.

Case 1. B \ Z(s− 1) is not (ε, d∗/2)-lower-regular

In this case, there exist sets Xi ⊆ Vi and Xj ⊆ Vj with |Xi|, |Xj | ≥ εn such that

eB\Z(s−1)(Xi, Xj) < (d∗/2)|Xi||Xj |.

By Chernoff’s inequality, with probability at least 1− exp(−2b∗psn
2), the graph Bps satisfies

eBps\Z(s−1)(Xi, Xj) ≤ (3d∗/4)ps|Xi||Xj |.

Consequently, since for every G′s ⊆ G satisfying G′s ∈ G`(H,n, d∗ps, ε), the graph G′s∩B is (ε, d∗ps)-
lower-regular, then

e
(
G′s ∩ Z(s− 1)

)
≥ eG′s∩Z(s−1)(Xi, Xj) ≥ eG′s(Xi, Xj)− eBps\Z(s−1)(Xi, Xj)

≥ (d∗/4)ps|Xi||Xj | ≥ (d∗/4)ε2psn
2 = (d/8)ε2psn

2,

which, by (14) and (15), proves (7).

Case 2. B \ Z(s− 1) is (ε, d∗/2)-lower-regular

In this case, we will apply the inductive assumption to the graph G \ Z(s − 1), which clearly is
(ε, d∗/2)-lower regular as Z(s− 1) ⊆ B ⊆ G. First, observe that if e

(
G′s ∩Z(s− 1)

)
≥ (d/8)ε2psn

2,
then this, by (14) and (15), proves (7), so from now on we may assume that the opposite inequality
holds, i.e., that

e
(
G′s ∩ Z(s− 1)

)
<
d

8
ε2psn

2. (16)

Let G̃ = G \ Z(s − 1) and observe again that G̃ ∈ G`(H,n, d/4, ε). Note that by (5) and our

assumption on p, we have ps ≥ p
RLR ≥ Cn−1/m2(H)

RLR ≥ C ′n−1/m2(H) and hence by the inductive

assumption applied to G̃, with probability at least 1 − exp(−b′psn2), every subgraph G̃′ ⊆ G̃ps in
G`(H,n, (d/4)ps, ε) satisfies

|C(H, G̃;H ′′, G̃′)| ≥ ξ′pe(H′′)s nv(H).

Moreover, it follows from Lemma 2.3 that with probability at least 1− exp(−b̂ps|V |), there exists
a subgraph X ⊆ G̃ps satisfying

e(X) ≤ ηpsn2 (17)
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and ∑
e∈G̃(Vi,Vj)

deg2
H′′(e, G̃, G̃ps \X) ≤ Kp2e(H′′)

s n2v(H)−2. (18)

Consider the graph G̃′ ⊆ G̃ps defined by G̃′ = G′s \ (X ∪ Z(s − 1)). We verify that G̃′ ∈
G`(H,n, (d/4)ps, ε). It follows from (16) and (17) that for every i′j′ ∈ E(H) and every pair of
sets Wi′ ⊆ Vi′ and Wj′ ⊆ Vj′ with |Wi′ | ≥ εn and |Wj′ | ≥ εn,

eG̃′(Wi′ ,Wj′) ≥ eG′s(Wi′ ,Wj′)− e
(
G′s ∩ Z(s− 1)

)
− e(X)

≥
(
d∗ − d

8
− η

ε2

)
ps|Wi′ ||Wj′ | ≥ (d/4)ps|Wi′ ||Wj′ |.

From the inductive assumption (which holds for G̃ps with probability at least 1 − exp
(
−b′psn2

)
),

we infer that ∑
e∈G̃(Vi,Vj)

degH′′(e, G̃, G̃
′) = |C(H, G̃;H ′′, G̃′)| ≥ ξ′pe(H′′)s nv(H). (19)

Let

Z ′s =

{
e ∈ G̃(Vi, Vj) : degH′′(e, G̃, G̃

′) ≥ ξ′

2
pe(H

′′)
s nv(H)−2

}
and note that, by definition, Z ′s ⊆ Zs and, by (19),∑

e∈Z′s

degH′′(e, G̃, G̃
′) ≥

∑
e∈G̃(Vi,Vj)

degH′′(e, G̃, G̃
′)− e

(
G̃(Vi, Vj) \ Z ′s

)
· ξ
′

2
pe(H

′′)
s nv(H)−2 (20)

≥ ξ′pe(H′′)s nv(H) − n2 · ξ
′

2
pe(H

′′)
s nv(H)−2 =

ξ′

2
pe(H

′′)
s nv(H).

It follows from (18), (20), and the Cauchy-Schwarz inequality that

Kp2e(H′′)
s n2v(H)−2 ≥

∑
e∈G̃(Vi,Vj)

deg2
H′′(e, G̃, G̃ps \X) ≥

∑
e∈G̃(Vi,Vj)

deg2
H′′(e, G̃, G̃

′)

≥ 1

|Z ′s|

∑
e∈Z′s

degH′′(e, G̃, G̃
′)

2

≥ 1

|Z ′s|

(
ξ′p

e(H′′)
s nv(H)

2

)2

and, consequently,

|Z ′s| ≥
(ξ′)2

4K
n2.

Since Z ′s ⊆ G̃ = G \ Z(s − 1), the graphs Z ′s and Z(s − 1) are disjoint. Therefore, (8) holds with
probability at least

1− exp(−b′psn2)− exp(−b̂psn2),

which is at least 1− exp(−2b∗psn
2). This concludes the proof of the claim.

3 K LR conjecture via transference

The method employed by Conlon and Gowers [17] to determine probabilistic thresholds for combi-
natorial theorems hinges on proving a transference principle [39, 40, 71]. Suppose, for example, that
one wishes to prove Turán’s theorem for triangles within the random graph Gn,p for p ≥ Cn−1/2.
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Then they show that asymptotically almost surely Gn,p has the following property. Any subgraph
G of Gn,p may be modelled by a subgraph K of the complete graph on n vertices in such a way that
the proportion of edges and triangles in the dense graph is close to the proportion of edges and tri-
angles in the sparse graph. That is, if the sparse graph G contains c1pn

2 edges and c2p
3n3 triangles

then the dense model graph K should contain approximately c1n
2 edges and c2n

3 triangles.
To see that this implies Turán’s theorem in the sparse graph, suppose that G is a subgraph

of Gn,p with
(

1
2 + ε

)
p
(
n
2

)
edges. Then, provided the approximation is sufficiently good, the model

graph K will have at least
(

1
2 + ε

2

) (
n
2

)
edges. A robust version of Turán’s theorem (as discussed

in Section 1.3) then implies that K contains at least cn3 triangles for some c > 0. Provided again
that the approximation is sufficiently good, this implies that the original graph G contains at least
c
2p

3n3 triangles.
More generally, we have the following theorem (Corollary 9.7 in [17]) from which many such

threshold results for graphs may be derived in a similar fashion. For any graph G on N vertices,
we let the function G : V (G)2 → {0, 1} be the characteristic function of G, given by G(x, y) = 1 if
xy ∈ E(G) and 0 otherwise. For any fixed graph H on k vertices, we also let

µH(G) = N−k
∑

x1,...,xk

∏
ij∈E(H)

G(xi, xj)

be the normalized count of homomorphisms from H to G.

Theorem 3.1. For any strictly balanced graph H and any ε > 0, there exist positive constants C
and λ such that if CN−1/m2(H) ≤ p ≤ λ then the following holds a.a.s. in the random graph GN,p.
For every subgraph G of GN,p, there exists a subgraph K of KN such that

|p−e(H)µH(G)− µH(K)| ≤ ε

and, for all pairs of disjoint vertex subsets U1, U2 of V (KN ),

|p−1
∑
x,y

G(x, y)−
∑
x,y

K(x, y)| ≤ εN2,

where the sums are taken over all x ∈ U1 and y ∈ U2.

As stated, the result in [17] only gives the bound p−e(H)µH(G) ≥ µH(K)− ε. This is all that is
necessary for the applications given in that (and this) paper. However, the bound p−e(H)µH(G) ≤
µH(K) + ε also follows from a more careful analysis, as we shall now briefly explain.

Sketch of the proof of Theorem 3.1. First, we need to say a little about the method used in [17].
For any collection of functions h1, . . . , he(H), we consider the function

µH(h1, . . . , he(H)) = N−k
∑

x1,...,xk

∏
ij∈E(H)

hij(xi, xj).

Let γ be the associated measure of the random graph GN,p. We define this as being γ(x, y) = p−1

if xy is an edge of GN,p and 0 otherwise. Note that a.a.s. the value of ‖γ‖1 is 1 + o(1). Suppose
that k and g are functions on the edge set of GN,p with 0 ≤ k ≤ 1 and 0 ≤ g ≤ γ. For example,
g could be (and usually is) the characteristic function of a subgraph G of GN,p, with each edge
weighted by a factor of p−1.
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One of the main ideas of [17] was to define a norm ‖.‖ with the property that if ‖gi−ki‖ = o(1)
for all 1 ≤ i ≤ e(H) then µH(g1, . . . , ge(H)) ≥ µH(k1, . . . , ke(H)) − o(1). Note that if Gi is a graph
and gi is the weighted characteristic function gi = p−1Gi, then

p−e(H)µH(G1, . . . , Ge(H)) = µH(g1, . . . , ge(H)) ≥ µH(k1, . . . , ke(H))− o(1),

that is, the functions ki serve as dense models for the Gi for the purposes of one-sided counting.
The main result of [17] is that for any function gi with 0 ≤ gi ≤ γ such a dense model function ki
with 0 ≤ ki ≤ 1 exists. In particular, the constant function 1 serves as an appropriate model for
the function γ corresponding to the random graph.

Suppose that k serves as a model for g. Then, by the triangle inequality,

‖(γ − g)− (1− k)‖ ≤ ‖γ − 1‖+ ‖g − k‖ = o(1),

that is 1− k serves as a model for γ − g. It follows that, for any 1 ≤ i ≤ e(H),

µH(g, . . . , g, γ − g, γ, . . . , γ) ≥ µH(k, . . . , k, 1− k, 1, . . . , 1)− o(1), (21)

where in the µH on the left-hand side the first i − 1 terms are g, the ith term is γ − g and the
remaining terms are γ. The same holds for the µH on the right-hand side with g replaced by k and
γ by 1. Note that, since µH is additive in each variable,

µH(g, . . . , g, g) = µH(g, . . . , g, γ)− µH(g, . . . , g, γ − g)

= µH(g, . . . , g, γ, γ)− µH(g, . . . , g, γ − g, γ)− µH(g, . . . , g, γ − g)

...

= µH(γ, . . . , γ, γ)− µH(γ − g, . . . , γ, γ)− · · · − µH(g, . . . , g, γ − g).

Therefore, by (21),

µH(g, . . . , g, g) ≤ µH(1, . . . , 1, 1)− µH(1− k, . . . , 1, 1)− · · · − µH(k, . . . , k, 1− k) + o(1)

= µH(k, . . . , k, k) + o(1).

That is, |µH(g)−µH(k)| = o(1). Here we used that µH(γ, . . . , γ, γ) = µH(1, . . . , 1, 1) + o(1), which
follows from standard tail estimates (see, for example, [44]).

To recover the statement of Theorem 3.1, where we refer to graphs rather than functions, we
let g = p−1G. This yields a function k with 0 ≤ k ≤ 1 such that |p−1µH(G)− µH(k)| = o(1). If we
now choose a graph K randomly by picking each edge xy independently with probability k(x, y),
we will a.a.s. produce a graph K with H-count close to k (see, for example, the proof of Corollary
9.7 in [17]). Choosing such a graph, we have |p−e(H)µH(G)− µH(K)| = o(1), as required.

Because we are dealing with canonical homomorphisms of a graph H with k vertices to a k-
partite graph G with vertex sets V1, . . . , Vk, it would be quite useful to have another version of
Theorem 3.1 which captures this situation. To this end, let H∗(V1, . . . , Vk) be the class of graphs
on vertex set V1 ∪ · · · ∪ Vk, where V1, . . . , Vk are disjoint sets, such that the only edges lie between
sets Vi and Vj with ij ∈ E(H). Then, for any G ∈ H∗(V1, . . . , Vk), we let

µ∗H(G) = N−k
∑

x1∈V1,...,xk∈Vk

∏
ij∈E(H)

G(xi, xj)

be the normalized count of canonical homomorphisms from H to G. The following theorem may
be proved by a minor modification of the technique used in [17].
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Theorem 3.2. For any strictly balanced graph H on k vertices and any ε > 0, there exist pos-
itive constants C and λ such that if CN−1/m2(H) ≤ p ≤ λ then the following holds a.a.s. in the
random graph GN,p. For all disjoint vertex subsets V1, . . . , Vk and every subgraph G of GN,p in
H∗(V1, . . . , Vk), there exists a subgraph K of KN in H∗(V1, . . . , Vk) such that

|p−e(H)µ∗H(G)− µ∗H(K)| ≤ ε (22)

and, for all pairs of disjoint vertex subsets U1, U2 of V (KN ),

|p−1
∑
x,y

G(x, y)−
∑
x,y

K(x, y)| ≤ εN2, (23)

where the sums are taken over all x ∈ U1 and y ∈ U2.

In proving part (ii) of Theorem 1.6, we will use the following slight variant of the dense counting
lemma, Lemma 1.3. We let G(H,n,m, p, θ, ε) be defined in exactly the same way as G(H,n,m, p, ε),
except we now allow the number of edges between each pair Vi and Vj to be m± θpn2. (Here and
hereafter, we write x = y ± z to abbreviate x ∈ [y − z, y + z].)

Lemma 3.3. For every graph H and every δ > 0, there exist θ, ε > 0 and an integer n0 such that
for every n ≥ n0, every m, and every G ∈ G(H,n,m, 1, θ, ε),

G(H) =
(m
n2

)e(H)
nv(H) ± δnv(H).

Part (ii) of Theorem 1.6 is now a relatively easy corollary of Theorem 3.2.

Proof of part (ii) of Theorem 1.6. Let H be a fixed graph on k vertices and d, δ fixed positive

constants. Choose θ and ε3.3 so that the conclusion of Lemma 3.3 holds with δ3.3 = de(H)δ
4 . We let

ε = ε3.3
6 and, for a fixed positive constant η,

ε3.2 = min

(
η2ε33.3

3
, η2θ,

de(H)δ

4

)

and then choose C and λ so that the conclusion of Theorem 3.2 holds with ε3.2.
Suppose now that CN−1/m2(H) ≤ p ≤ λ and GN,p satisfies the conclusion of Theorem 3.2. Let

G be a subgraph of GN,p from the set G(H,n,m, p, 2ε) with vertex sets V1, . . . , Vk, each of size
n ≥ ηN . Let K be the dense graph given by Theorem 3.2. If V ′i ⊆ Vi and V ′j ⊆ Vj the triangle
inequality tells us that |dK(V ′i , V

′
j )− dK(Vi, Vj)| is at most

|dK(V ′i , V
′
j )− p−1dG(V ′i , V

′
j )|+ p−1|dG(V ′i , V

′
j )− dG(Vi, Vj)|+ |p−1dG(Vi, Vj)− dK(Vi, Vj)|.

Suppose that |V ′i | ≥ ε3.3|Vi| and |V ′j | ≥ ε3.3|Vj |. Then, since G is (2ε, p)-regular between Vi and Vj
and ε3.3 ≥ 2ε, the middle term is at most 2ε. By (23), since V ′i and V ′j are disjoint sets of size at

least ε3.3ηN , the first and third terms are each at most (ε3.3η)−2ε3.2. We therefore see that

|dK(V ′i , V
′
j )− dK(Vi, Vj)| ≤ 2ε+ 2(ε3.3η)−2ε3.2 ≤ ε3.3.

Therefore, K is ε3.3-regular. Note also that the number of edges between Vi and Vj in K is

p−1m± ε3.2N2 = p−1m± θn2,
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since ε3.2 ≤ η2θ. Applying Lemma 3.3, we see that for n sufficiently large

K(H) =

(
p−1m

n2

)e(H)

nv(H) ± δ3.3n
v(H) =

(
1± δ

4

)(
p−1m

n2

)e(H)

nv(H),

where we used that m ≥ dpn2. Therefore, by (22),

G(H) = pe(H)K(H)± ε3.2pe(H)nv(H) =

(
1± δ

4

)(m
n2

)e(H)
± ε3.2pe(H)nv(H)

=

(
1± δ

2

)(m
n2

)e(H)
nv(H), (24)

where we used that ε3.2 ≤ de(H)δ
4 .

Suppose now that p > λ and fix a G ⊆ GN,p in G(H,n,m, p, ε) with n ≥ ηN and m ≥ dpn2.
Form a random subgraph G′ of G by choosing m′ = λm edges in each pair G(Vi, Vj) uniformly at
random. Clearly,

E[G′(H)] = λe(H)G(H). (25)

A standard application of Hoeffding’s inequality (see [34, Lemma 4.3]) proves that with prob-
ability at least 1− exp(−cm′) ≥ 1− δ/2, the graph G′ is in G(H,n,m′, p′, 2ε), where p′ = λp, and
hence, by (24) and (25),

G(H) ≥ λ−e(H)

(
1− δ

2

)2(m′
n2

)e(H)

nv(H) ≥ (1− δ)
(m
n2

)e(H)
nv(H).

We may assume, since it happens a.a.s., that the total number of copies of H in GN,p does not
exceed 2pe(H)Nv(H) (see, for example, [44]). Therefore,

G(H) ≤ λ−e(H) · [Pr
(
G′ ∈ G(H,n,m′, p′, 2ε)

)
·
(

1 +
δ

2

)(
m′

n2

)e(H)

nv(H)

+ Pr
(
G′ 6∈ G(H,n,m′, p′, 2ε)

)
· 2pe(H)Nv(H)].

Since n ≥ ηN , m ≥ dpn2, and Pr(G′ 6∈ G(H,n,m′, p′, 2ε)) ≤ exp(−cm′) ≤ δ(λd)e(H)ηv(H)/4, if n is
sufficiently large, it follows that

G(H) ≤ (1 + δ)
(m
n2

)e(H)
nv(H).

The result follows.

We note that the second case, where p > λ, also follows as an immediate corollary of the
counting lemma for pseudorandom graphs proved in [16]. Indeed, this result is already strong
enough to imply a counting lemma down to densities of about N−c/∆(H), where ∆(H) is the
maximum degree of H. In addition, if one is only interested in one-sided counting, that is, in
showing that G(H) ≥ (1 − δ)(m/n2)e(H)nv(H), then the results of [16] apply for p ≥ N−c/d(H),
where d(H) is the degeneracy of H.

4 Applications

4.1 Preliminaries

After applying the sparse regularity lemma, it is usually helpful to clean up the the regular parti-
tion, removing all edges which are not contained in a dense regular pair. The following standard
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lemma, which incorporates both the regularity lemma and this cleaning process, is sufficient for
our purposes. Recall that a graph is (η, p,D)-upper-uniform if for all disjoint subsets U1 and U2

with |U1|, |U2| ≥ η|V (G)|, the density of edges between U1 and U2 satisfies d(U1, U2) ≤ Dp. Here,
for the sake of clarity of presentation, we make the additional assumption in this definition that if
U1 = U2 = U , then eG(U) ≤ Dp

(|U |
2

)
.

Proposition 4.1. For every ε,D > 0 and every positive integer t0, there exist η > 0 and a positive
integer T such that, for every d > 0, every graph G with at least t0 vertices which is (η, p,D)-upper-
uniform contains a subgraph G′ with

e(G′) ≥ e(G)−
(
D

t0
+ 2Dε+ d

)
pn2

2

that admits an equipartition V1, . . . , Vt of its vertex set into t0 ≤ t ≤ T pieces such that the following
conditions hold.

1. There are no edges of G′ within Vi for any 1 ≤ i ≤ t.

2. Every non-empty graph G′(Vi, Vj) is (ε, p)-regular and has at least dp|Vi||Vj | edges.

Proof. Fix ε, D, and t0 as in the statement of the proposition and let T = T1.2(ε,D, t0) and
η = min{η1.2(ε,D, t0), 1

2T }. Let d > 0, fix a G as above, and apply the sparse regularity lemma,
Theorem 1.2, to obtain an (ε, p)-regular partition V1, . . . , Vt of the vertices of G into t0 ≤ t ≤ T
pieces. Let us delete from G all edges that are contained in:

• one of the sets V1, . . . , Vt,

• one of the at most εt2 pairs (Vi, Vj) that are not (ε, p)-regular, or

• one of the pairs (Vi, Vj) that have fewer than dp|Vi||Vj | edges.

Denote the resulting graph by G′. Since G is (η, p,D)-upper-uniform, we have eG(Vi) ≤ Dp1
2(nt )2

and eG(Vi, Vj) ≤ Dp(nt )2 for all i and j. It follows that

e(G)− e(G′) ≤ t ·Dp1

2

(n
t

)2
+ εt2 ·Dp

(n
t

)2
+

(
t

2

)
· dp

(n
t

)2
≤
(
D

t0
+ 2Dε+ d

)
pn2

2
.

In the proofs of our applications, we will need a version of the main theorem which allows us to
have different densities between different pairs of vertex sets. To this end, given a graph H on the
vertex set {1, . . . , k} and a sequence m = (mij)ij∈E(H) of integers, we denote by G(H,n,m, p, ε)
the collection of all graphs G obtained in the following way. The vertex set of G is a disjoint union
V1 ∪ . . . ∪ Vk of sets of size n. For each edge ij ∈ E(H), we add to G an (ε, p)-regular bipartite
graph with mij edges between the pair (Vi, Vj). These are the only edges of G. As before, for any
G ∈ G(H,n,m, p, ε), let us denote by G(H) the number of canonical copies of H in G.

Proposition 4.2. For every graph H and every δ, d > 0, there exist ε, ξ > 0 with the following
property. For every η > 0, there is a C > 0 such that if p ≥ CN−1/m2(H) then a.a.s. the following
holds in GN,p:

(i) For every n ≥ ηN , m with mij ≥ dpn2 for all ij ∈ E(H) and every subgraph G of GN,p in
G(H,n,m, p, ε),

G(H) ≥ ξ

 ∏
ij∈E(H)

mij

n2

nv(H). (26)
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(ii) Moreover, if H is strictly balanced, that is, if m2(H) > m2(H ′) for every proper subgraph H ′

of H, then

G(H) = (1± δ)

 ∏
ij∈E(H)

mij

n2

nv(H). (27)

Proof. Fix H, δ, and d as in the statement of the proposition. We may assume that ∆(H) ≥ 2 (and
hence m2(H) ≥ 1) as otherwise the assertion of the proposition is trivial. Let ε = ε1.6(H, δ/2, d)/2
and ξ = ξ1.6(H, δ/2, d)/2. Moreover, fix some η > 0, let C be a sufficiently large positive constant,
and suppose that p ≥ CN−1/m2(H). First, we will show that if GN,p satisfies part (i) of Theorem 1.6,
which happens a.a.s., then it also satisfies part (i) of Proposition 4.2. To this end, let n ≥ ηN , let
m satisfy mij ≥ dpn2 for all ij ∈ E(H), and fix a G ⊆ GN,p in G(H,n,m, p, ε). Form a random
subgraph G′ of G by choosing m = dpn2 edges in each pair G(Vi, Vj) uniformly at random. Clearly,

E[G′(H)] =

 ∏
ij∈E(H)

m

mij

 ·G(H). (28)

A standard application of Hoeffding’s inequality (see [34, Lemma 4.3]) proves that with probability
at least 1 − exp(−cm), where c > 0 is an absolute constant, the graph G′ is in G(H,n,m, p, 2ε).
Hence, if GN,p satisfies part (i) of Theorem 1.6, then with probability at least 1/2,

G′(H) ≥ 2ξ

(
m

n

2
)e(H)

nv(H)

and therefore (28) implies that

G(H) =

 ∏
ij∈E(H)

mij

m

 · E[G′(H)] ≥

 ∏
ij∈E(H)

mij

m

 · ξ (m
n2

)e(H)
nv(H),

as claimed.
Now, we show that if GN,p satisfies part (ii) of Theorem 1.6 and the total number of copies of H

in GN,p does not exceed 2pe(H)Nv(H), which happens a.a.s. (see, for example, [44]), then part (ii)
of this proposition is also satisfied. To this end, fix m and G as above, recall the definition of G′,
and observe that since with probability at least 1 − δ/2, the graph G′ is in G(H,n,m, p, 2ε), then
by (2) and (28),

G(H) ≥

 ∏
ij∈E(H)

mij

m

 · (1− δ

2

)2 (m
n2

)e(H)
nv(H) ≥ (1− δ)

 ∏
ij∈E(H)

mij

n2

nv(H).

On the other hand, we also have

G(H) ≤

 ∏
ij∈E(H)

mij

m

 · [Pr
(
G′ ∈ G(H,n,m, p, 2ε)

)
·
(

1 +
δ

2

)(m
n2

)e(H)
nv(H)

+ Pr
(
G′ 6∈ G(H,n,m, p, 2ε)

)
· 2pe(H)Nv(H)].

Since n ≥ ηN , m ≥ dpn2, and Pr(G′ 6∈ G(H,n,m, p, 2ε)) ≤ exp(−cm) ≤ δde(H)ηv(H)/4, if n is
sufficiently large, it follows that

G(H) ≤ (1 + δ)

 ∏
ij∈E(H)

mij

n2

nv(H).
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4.2 The sparse removal lemma

Let δ > 0 and let H be an arbitrary (not necessarily balanced) graph. The proof of Theorem 1.9
is a classical application of the regularity method. We start by defining a range of constants.
For the sake of brevity, we let k = v(H). Furthermore, let d = δ/2, t0 = 2/d, D = 2, ε′ =
min{ε4.2(H, d/2), δ/8}, ξ = ξ4.2(H, d/2), T = T4.1(ε′/k,D, t0), and η = min{η4.1(ε′/k,D, t0), 1/(kT )}.
Finally, let ε = ξ(d/2)e(H)(kT )−v(H) and C = C4.2(H, d/2, η). Suppose that p ≥ Cn−1/m2(H). We
will show that the sparse H removal lemma holds in Gn,p a.a.s., that is, that every subgraph of
Gn,p with fewer than εpe(H)nv(H) copies of H can be made H-free by removing from it at most δpn2

edges. It clearly suffices to show that part (i) of Proposition 4.2 and (η, p,D)-upper-uniformity,
which holds in Gn,p a.a.s., imply the above property. To this end, assume that Gn,p is (η, p,D)-
upper-uniform and that part (i) of Proposition 4.2 holds in Gn,p. Let G ⊆ Gn,p be a subgraph
with fewer than εpe(H)nv(H) copies of H and let G′ be a subgraph of G satisfying the assertion of
Proposition 4.1 with ε4.1 = ε′/k. By our choice of parameters,

e(G)− e(G′) ≤
(
D

t0
+

2Dε′

k
+ d

)
pn2

2
≤
(

2d+
δ

2

)
pn2

2
< δpn2.

We claim that G′ is H-free. Since all edges of G′ lie in ( ε
′

k , p)-regular pairs with edge density at
least dp, if G′ contained a copy of H, there would be a graph H ′ with k′ ≤ k vertices which is a
homomorphic image of H, pairwise disjoint sets V ′1 , . . . , V

′
k′ and a sequence m′ = (m′ij)ij∈E(H′) with

m′ij ≥ dp(nt )2 such that G′[V ′1 ∪ . . . ∪ V ′v(H′)] ∈ G(H ′, nt ,m, p, ε′/k). Consequently, there would be

pairwise disjoint sets V1, . . . , Vk and a sequence m = (mij)ij∈E(H) with mij ≥ dp
2

(
n
kt

)2
such that

G′[V1 ∪ . . .∪Vk] ∈ G(H, nkt ,m, p, ε′). One can obtain such V1, . . . , Vk by arbitrarily dividing each V ′i
into k parts and choosing k of these parts according to the homomorphism from H to H ′. It would
follow that the number of copies of H in G′, and therefore also in G, would exceed

ξ

 ∏
ij∈E(H)

mij

(n/(kt))2

( n
kt

)v(H)
≥ ξ

(
dp

2

)e(H) ( n
kt

)v(H)
≥ εpe(H)nv(H),

a contradiction.

4.3 The clique density theorem

To begin, we note that if W is a weighted graph on n vertices with 0 ≤ W ≤ 1 for which∑
x,yW (x, y) ≥ ρ

(
n
2

)
, then, for any θ and n sufficiently large depending on θ,∑

x1,...,xk

∏
1≤a<b≤k

W (xa, xb) ≥ (gk(ρ)− θ)nk.

This follows from choosing a random graph G, picking each edge xy independently with probability
W (x, y). The resulting graph will, with high probability, have a similar count of edges and Kks to
the weighted graph W (see, for example, Corollary 9.7 in [17]). The result then follows by applying
the clique density theorem to the graph G (and using the fact that gk(ρ) is uniformly continuous).

Let k ≥ 3 and ε > 0. We start by defining constants. We choose t1 such that, for t ≥ t1 and all
ρ, any weighted graph W on t vertices with

∑
x,yW (x, y) ≥ ρ

(
t
2

)
also satisfies∑

i1,...,ik

∏
1≤a<b≤k

W (ia, ib) ≥
(
gk(ρ)− ε

4

)
tk.
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Since gk(ρ) is uniformly continuous in ρ, we may choose δ′ such that |gk(ρ±δ′)−gk(ρ)| ≤ ε
4 . Let δ =

min{δ′, ε2}, d = δ/16, t0 = max{t1, 2/d}, D = 2, ε′ = min{ε4.2(H, δ, d), δ/32}, T = T4.1(ε′, D, t0),
and η = min{η4.1(ε′, D, t0), 1/T}. Finally, let C = C4.2(H, δ, d, η).

Suppose that p ≥ Cn−2/(k+1). Since (η, p,D)-upper-uniformity holds a.a.s. in Gn,p, we will
assume that it is satisfied. Let G′ ⊆ Gn,p be a subgraph of Gn,p of relative density ρ, that is, with
ρp
(
n
2

)
edges. By Proposition 4.1 with ε4.1 = ε′, we get an equipartition V1, . . . , Vt of the vertex set

of G′ into t0 ≤ t ≤ T pieces and a subgraph G′′ of G′ all of whose edges lie in (ε′, p)-regular pairs
with edge density at least dp and which satisfies

e(G′)− e(G′′) ≤
(
D

t0
+ 2Dε′ + d

)
pn2

2
≤
(

2d+
δ

8

)
pn2

2
<
δ

4
pn2.

Consider the reduced weighted graph R on vertex set [t] with the weight of edge ij given by

R(i, j) = min

(
eG′′(Vi, Vj)

p|Vi||Vj |
, 1

)
.

Note that a.a.s. the random graph Gn,p satisfies eG(U, V ) ≤ p|U ||V |+ δ
4T 2 pn

2 for all disjoint subsets

U and V . This in turn implies that eG′′(Vi, Vj) ≤ p|Vi||Vj |+ δ
4T 2 pn

2. Hence,

R(i, j) ≥
eG′′(Vi, Vj)− δ

4p
(
n
T

)2
p|Vi||Vj |

.

Therefore, since e(G′) ≥ ρp
(
n
2

)
,

∑
1≤i<j≤t

R(i, j) ≥
e(G′′)− δ

4pn
2

p(nt )2
≥
e(G′)− δ

2pn
2

p(nt )2
≥ (ρ− δ)

(
t

2

)
.

Therefore, by the choice of t1 and δ′, we have that∑
i1,...,ik

∏
1≤a<b≤k

R(ia, ib) ≥
(
gk(ρ− δ)−

ε

4

)
tk ≥

(
gk(ρ)− ε

2

)
tk.

Now, for any particular 1 ≤ i1 < · · · < ik ≤ t, consider the sets Vi1 , . . . , Vik . Then G′′[Vi1 ∪· · ·∪Vik ]

is an element of G(Kk,
n
t ,m, p, ε′) with miaib ≥ R(ia, ib)p

(
n
t

)2
. By part (ii) of Proposition 4.2 and

the choice of ε′, η, and C, it follows that the number of copies of Kk between the sets Vi1 , . . . , Vik
is at least

(1− δ)
∏

1≤a<b≤k
R(ia, ib) · p(

k
2)
(n
t

)k
.

Adding over all choices of i1, . . . , ik gives

µG′′(Kk) ≥ (1− δ)
∑
i1,...,ik

∏
1≤a<b≤k

R(ia, ib) · p(
k
2)
(n
t

)k
≥
(

1− ε

2

)(
gk(ρ)− ε

2

)
tkp(

k
2)
(n
t

)k
≥ (gk(ρ)− ε)p(

k
2)nk,

as required.
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4.4 The Hajnal-Szemerédi theorem

We start this section with a brief outline of the proof of Theorem 1.12. Fix some k ≥ 3 and γ > 0.
Given a subgraph G′ of Gn,p with δ(G′) ≥ (1− 1

k + γ)pn, we apply the regularity lemma to G′ to
obtain an (ε, p)-regular partition of its vertex set into t parts. We then construct an auxiliary graph
R on the vertex set [t] whose edges correspond to (ε, p)-regular pairs of non-negligible density in
the regular partition of G′. Since most of the edges of G′ lie in such dense and regular pairs, the
assumption on the minimum degree of G′ implies that R contains an almost spanning subgraph R′

with minimum degree at least (1− 1
k )t. By the Hajnal-Szemerédi theorem, R′ contains a Kk-factor.

Finally, a fairly straightforward application of Theorem 1.6 implies that each of the cliques in this
Kk-factor corresponds to a Kk-packing in G′ that covers most of the vertices in the k parts of
the regular partition that form this clique. As is typically the case with arguments employing the
regularity method, the details of the argument are somewhat intricate.

We start the actual proof by fixing several constants. Let

β = min

{
γ

2
,

1

2k

}
, γ′ =

β2

14
, and t0 =

⌈
1

γ′

⌉
.

Let ε′ be the constant obtained by invoking Proposition 4.2 with d4.2 = γ′. Let ε = min{βε′, γ′/2}
and D = 1 + γ′. Furthermore, let T = T4.1(ε,D, t0), let η = min{η4.1(ε,D, t0), 1/T}, and let
η′ = β/T . Assume that p ≥ Cn−1/m2(H) for some large constant C so that a.a.s. the random
graph Gn,p is (η, p,D)-upper-uniform and every subgraph G of Gn,p in G

(
Kk, n

′,m, p, ε′
)
, where

n′ ≥ η′n and mij ≥ γ′p(n′)2 for all ij ∈ E(Kk), contains a canonical copy of Kk. We shall show
that, conditioned on the above two events, every G′ ⊆ Gn,p with δ(G′) ≥ (1 − 1

k + γ) contains a
Kk-packing covering all but at most γn vertices.

Fix a G′ as above and apply Proposition 4.1 with d4.1 = 2γ′ to obtain an equipartition V1, . . . , Vt
of the vertex set of G′ into t0 ≤ t ≤ T pieces and a subgraph G′′ of G′ all of whose edges lie in
(ε, p)-regular pairs with edge density at least 2γ′p and which satisfies

e(G′)− e(G′′) ≤
(
D

t0
+ 2Dε+ 2γ′

)
pn2

2
≤ 3γ′pn2.

Let R be the graph on the vertex set [t] whose edges are those pairs ij such that the bipartite
graph G′′(Vi, Vj) is non-empty. Recall that each such bipartite graph is (ε, p)-regular and has at
least 2γ′p|Vi||Vj | edges.

Claim 4.3. The cluster graph R contains a subgraph R′ with δ(R′) ≥ (1 − 1
k )t and t′ ≥ (1 − β)t

vertices for some t′ divisible by k.

Proof. We construct such a graph R′ greedily by sequentially removing from R vertices of degree
smaller than (1− 1

k )t+ k and at most k− 1 further vertices in order to guarantee that k divides t′.
If this process terminates before we delete from R more than βt− k vertices, then we will arrive at
a graph R′ with the desired properties. Otherwise, R contains at least βt− k vertices with degree
at most (1− 1

k + β)t. Denote this set by X and observe that∑
i∈X

∑
v∈Vi

degG′(v) ≤
∑
i∈X

∑
v∈Vi

degG′′(v) + 2(e(G′)− e(G′′)) =
∑
i∈X

∑
j 6=i

eG′′(Vi, Vj) + 2(e(G′)− e(G′′))

≤ |X|
(

1− 1

k
+ β

)
t ·Dp

(n
t

)2
+ 6γ′pn2 ≤ |X|

t

(
1− 1

k
+ β + γ′ +

12γ′

β

)
pn2

<
|X|
t

(
1− 1

k
+ 2β

)
pn2.
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On the other hand, ∑
i∈X

∑
v∈Vi

degG′(v) ≥ |X| · n
t
· δ(G′) ≥ |X|

t

(
1− 1

k
+ γ

)
pn2,

a contradiction, as γ ≥ 2β.

By the Hajnal-Szemerédi theorem, Theorem 1.11, the graph R′ contains a Kk-factor. Hence, it
suffices to show that each subgraph of G′′ induced by sets Vi1 , . . . , Vik , where i1, . . . , ik ∈ [t] form
a copy Kk in R, contains a Kk-packing covering at least a (1− β)-fraction of its vertices. Indeed,
since the Kk-factor in R′ covers at least a (1−β)-proportion of all the vertices of the cluster graph
R and, as we show below, each of its cliques i1, . . . , ik corresponds to a Kk-packing covering at
least a (1 − β)-proportion of the vertices in Vi1 ∪ . . . ∪ Vik , Theorem 1.12 will easily follow, as
(1− β)2 > 1− γ.

Claim 4.4. Suppose that i1, . . . , ik ∈ [t] induce a copy of Kk in R. Then the graph G′′[Vi1∪. . .∪Vik ]
contains a Kk-packing covering all but at most β nt vertices in each of Vi1 , . . . , Vik .

Proof. For simplicity, assume that i1 = 1, . . . , ik = k. It will be enough to show that for every choice
of W1 ⊆ V1, . . . ,Wk ⊆ Vk with n′ = |W1| = . . . = |Wk| ≥ β nt , the graph G′′[W1 ∪ . . .∪Wk] contains
a canonical copy of Kk. To this end, observe that this graph belongs to G(Kk, n

′,m, p, ε′) for some
m = (mij)ij∈E(Kk) with mij ≥ γ′p(n′)2 for all ij ∈ E(Kk). Indeed, since for each ij ∈ E(Kk),
the graph G′′(Vi, Vj) is (ε, p)-regular and has at least 2γ′p|Vi||Vj | edges, it follows that the graph
G′′(Wi,Wj) is (ε′, p)-regular and has at least γ′p|Wi||Wj | edges. The claim now follows.

4.5 The Andrásfai-Erdős-Sós theorem

Fix a graph H and γ > 0. We start by fixing several constants. Choose t1 so that, for any t ≥ t1, the
Andrásfai-Erdős-Sós theorem [8] (or rather its generalization due to Alon and Sudakov [6]) holds

in the sense that any H-free graph on t vertices with minimum degree at least
(

1− 3
3χ(H)−4 + γ

2

)
t

may be made (χ(H)− 1)-partite by removing at most γ
2 t

2 edges. Let

β =
γ

4
, γ′ =

β2

14
, and t0 = max{2t1,

⌈
1/γ′

⌉
}.

Let ε′ be the constant obtained by invoking Proposition 4.2 with d4.2 = γ′. Let ε = min{ε′, γ′/2}
and D = 1 + γ′. Furthermore, let T = T4.1(ε,D, t0) and η = min{η4.1(ε,D, t0), 1/T}. Assume that
p ≥ Cn−1/m2(H) for some large constant C so that a.a.s. the random graph Gn,p is (η, p,D)-upper
uniform and every subgraph G of Gn,p in G

(
H,n′,m, p, ε

)
, where n′ ≥ ηn and mij ≥ γ′p(n′)2 for

all ij ∈ E(H), contains a canonical copy of H. We shall show that, conditioned on the above
two events, every H-free subgraph G′ ⊆ Gn,p with δ(G′) ≥ (1 − 3

3χ(H)−4 + γ)pn may be made

(χ(H)− 1)-partite by removing at most γpn2 edges.
Fix a G′ as above and apply Proposition 4.1 with d4.1 = γ′ to obtain an equipartition V1, . . . , Vt

of the vertex set of G′ into t0 ≤ t ≤ T pieces and a subgraph G′′ of G′ all of whose edges lie in
(ε, p)-regular pairs with edge density at least γ′p and which satisfies

e(G′)− e(G′′) ≤
(
D

t0
+ 2Dε+ γ′

)
pn2

2
≤ 3γ′pn2.

Let R be the graph on vertex set [t] whose edges are those pairs ij such that the bipartite graph
G′′(Vi, Vj) is non-empty. Recall that each such bipartite graph is (ε, p)-regular and has at least
γ′p|Vi||Vj | edges. The following claim is proved in the same way as Claim 4.3.
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Claim 4.5. The cluster graph R contains a subgraph R′ with δ(R′) ≥ (1 − 3
3χ(H)−4 + γ

2 )t and

t′ ≥ (1− β)t vertices.

Suppose now that R′ contained a copy of H. Then there would be pairwise disjoint sets
V1, . . . , Vk and a sequence m = (mij)ij∈E(H) with mij ≥ γ′p(nt )2 such that G′[V1 ∪ . . . ∪ Vk] ∈
G(H, nt ,m, p, ε). Consequently, by Proposition 4.2 and the choice of ε, η, and C, the number of
copies of H in G′′ would be positive, contradicting the assumption that G′ was H-free.

Therefore, R′ is H-free and by the choice of t0, the graph R′ may be turned into a (χ(H)− 1)-
partite graph R0 by removing at most γ

2 t
′2 edges. The corresponding sparse graph G0 whose edges

consist of all those edges contained within an edge of R0 is also (χ(H)− 1)-partite. It is obtained

from G′ by first deleting at most 3γ′pn2 edges to form G′′, then at most βt2Dp
(
n
t

)2
edges in

forming R′ from R, and, finally, at most γ
2 t
′2Dp

(
n
t

)2
edges in forming R0 from R′. Overall, this is

at most

3γ′pn2 + βt2Dp
(n
t

)2
+
γ

2
t′2Dp

(n
t

)2
≤ γ

16
pn2 +

5γ

16
pn2 +

9γ

16
pn2 < γpn2.

The result follows.

5 Concluding remarks

5.1 Hypergraphs

The methods employed in this paper should also extend to work for hypergraphs. That is, one
should be able to show that a.a.s any regular partition of a subgraph of the random hypergraph
has a corresponding counting lemma. The main obstacle here is to prove a sparse counterpart to the
hypergraph regularity lemma [37, 38, 65, 74, 84]. This should be a comparatively straightforward
hybrid of the hypergraph regularity lemma and the sparse regularity lemma. Once this theorem is
in place, either method used in this paper should extend to show that it is effective in the random
setting.

For linear hypergraphs, that is, hypergraphs for which every pair of edges intersect in at most
one vertex, the results of this paper generalize more easily. In this case, the relevant regularity and
counting lemmas [51] (see also [18]) follow in a similar fashion to the usual regularity and counting
lemmas. This is because it is enough to have control over edge density on large vertex sets, whereas,
for general hypergraphs, we need more elaborate conditions.

An alternative approach was already used in [17] to prove an extension of the hypergraph
removal lemma to sparse random hypergraphs. Roughly speaking, rather than applying a sparse
regularity lemma, one maps the sparse hypergraph G to its dense model K and then applies the
usual hypergraph regularity lemma to this hypergraph K. This produces a regular partition which
is also regular for the original hypergraph.

The difference is a matter of quantifiers. If we have a sparse hypergraph regularity lemma
then the correct analogue of the K LR conjecture would be that a.a.s. any regular partition of a
subgraph of the random hypergraph has a corresponding counting lemma. This alternative method
allows one to say that a.a.s. for any subgraph of the random hypergraph there exists some regular
partition for which there is a corresponding counting lemma. Despite this difference, we believe
that this method is likely to be sufficient for most applications in the random setting.
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5.2 Removing the need for strict balance

In Theorem 1.6 (ii) we assumed that the graph H was strictly balanced, which was sufficient for
the applications in this paper. However, the methods of [17] can be used to obtain a result without
this condition if we allow an extra logarithmic factor. That is, if p ≥ C(logN)cN−1/m2(H), for
c > 0 an absolute constant, then a.a.s. we have the conclusion

G(H) = (1± δ)
(m
n2

)e(H)
nv(H)

that we had in Theorem 1.6 (ii). We are not formally claiming this as a result, since a certain
amount of modification is needed to the proofs in [17], and though this modification appears to be
straightforward, we have not written it out in detail.

However, let us briefly indicate why we are confident that this result is true. It turns out
that many of the difficulties involved in proving transference disappear if one allows some extra
logarithmic factors in the thresholds. This is because we no longer have to worry about certain
large deviations from the expectation. To give an example, recall that the threshold for Turán’s
theorem for triangles occurs at around p = n−1/2. This is the point at which the number of triangles
is about the same as the number of edges. So we expect that most edges will be contained in at
most a constant number of triangles. However, it will happen that there are some edges which are
in many more triangles than expected and this deviation is enough to spoil some of the required
estimates.

To deal with these unwanted deviations, one has to show that they do not occur too often and
this adds many extra technicalities to the proof. In [17], the main tool for circumventing these
problems was the introduction of so-called capped convolutions. If we allow some extra slack, we
no longer have to work with these capped convolutions and this simplifies the proof considerably.
In particular, it appears to be straightforward to prove the following result, valid for all graphs H.

Claim 5.1. There is a positive constant c such that, for any graph H on k vertices and any ε > 0,
there exist positive constants C and λ such that if C(log n)cN−1/m2(H) ≤ p ≤ λ then the following
holds a.a.s. in the random graph GN,p. For all disjoint vertex subsets V1, . . . , Vk and every subgraph
G of GN,p in H∗(V1, . . . , Vk), there exists a subgraph K of KN in H∗(V1, . . . , Vk) such that

|p−e(H)µ∗H(G)− µ∗H(K)| ≤ ε

and, for all pairs of disjoint vertex subsets U1, U2 of V (KN ),

|p−1
∑
x,y

G(x, y)−
∑
x,y

K(x, y)| ≤ εN2,

where the sums are taken over all x ∈ U1 and y ∈ U2.

The version of Theorem 1.6 without the strict balance condition is a straightforward consequence
of this claim, proved in exactly the same fashion as Part (ii) of Theorem 1.6. We omit the details.
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