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Abstract. In this short survey article, we present an elementary, yet quite powerful, method of

enumerating independent sets in graphs. This method was first employed more than three decades

ago by Kleitman and Winston and has subsequently been used numerous times by many researchers

in various contexts. Our presentation of the method is illustrated with several applications of it to

‘real-life’ combinatorial problems. In particular, we derive bounds on the number of independent

sets in regular graphs, sum-free subsets of {1, . . . , n}, and C4-free graphs and give a short proof of

an analogue of Roth’s theorem on 3-term arithmetic progressions in sparse random sets of integers

which was originally formulated and proved by Kohayakawa,  Luczak, and Rödl.

1. Introduction

Many well-studied problems in combinatorics concern characterising discrete structures that sat-
isfy certain ‘local’ constraints. For example, the celebrated theorem of Szemerédi [43] gives an upper
bound on the maximum size of a subset of the first n integers which does not contain an arithmetic
progression of a fixed length k. To give another example, the archetypal problem studied in ex-
tremal graph theory, dating back to the work of Mantel [33] and Turán [44], is that of characterising
graphs which do not contain a fixed graph H as a subgraph.

Problems of this type fall into the following general framework. We are given a finite set V and
a collection H of subsets of V . What can be said about sets I ⊆ V that do not contain any member
of H? Such a collection H is often called a hypergraph with vertex set V , members of H are termed
edges, and any set I ⊆ V that contains no edge is called an independent set. In view of this, one
might say that a large part of combinatorics is concerned with studying independent sets in various
hypergraphs. For instance, in the first example from the previous paragraph, V is the set {1, . . . , n}
and H is the collection of all k-term arithmetic progressions contained in V ; stated in this language,
Szemerédi’s theorem says that for every positive constant δ, every independent set in H has fewer
than δn elements, provided that n is sufficiently large. In the second example, V is the edge set of
a complete graph on a given set of n vertices and H is the family of all

(
n

|V (H)|
)

sets of |E(H)| edges

that form a copy of H in the complete graph; in this notation, if H is a clique with k + 1 vertices,
then Turán’s theorem says that the largest independent sets in H are precisely the edge sets of the
complete balanced k-partite subgraphs of the complete graph with edge set V and the well-known
theorem of Kolaitis, Prömel, and Rothschild [30] states that almost all independent sets of H are
k-partite, that is, the number i∗(H) of independent sets in H that are not the edge sets of k-partite
subgraphs of the complete graph with edge set V satisfies i∗(H)/i(H)→ 0 as n→∞.

For a hypergraph H, let I(H) denote the family of all independent sets in H, let i(H) = |I(H)|,
and let α(H) be the largest cardinality of an element of I(H), usually called the independence
number ofH. There are two natural problems that one usually poses about a specific hypergraphH:
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(i) Determine α(H) and describe all I ∈ I(H) with α(H) elements.
(ii) Estimate i(H) and describe a ‘typical’ member of I(H).

Let us remark here that providing a precise characterisation of a typical element of I(H) usually
yields a precise estimate for i(H).

An apparent connection between problems (i) and (ii) may be easily observed in the following
two inequalities, which are trivial consequences of the above definitions and the fact that the
family I(H) is closed under taking subsets:

2α(H) 6 i(H) 6
α(H)∑
m=0

(
|V (H)|
m

)
. (1)

Note that, unless α(H) is very close to |V (H)|, the lower and upper bounds on i(H) given in (1)
are quite far apart. Since for many interesting hypergraphs H this naive lower bound is actually
fairly close to being best possible, the efforts of many researchers have been focused on improving
the upper bound.

In this short survey article, we present an elementary, yet very powerful, method for proving
stronger upper bounds in the case when all edges of H have size two, that is, when H is a graph.
This method was first described more than three decades ago by Kleitman and Winston, who used
it to obtain upper bounds on the number of lattices1 [26] and graphs without cycles of length
four [27]. Variations of this method were subsequently rediscovered by several researchers, most
notably by Sapozhenko, in the context of enumerating independent sets in regular graphs [1, 37]
and sum-free sets in abelian groups [1, 32, 38]. We shall illustrate our presentation of this method
with several applications of it to ‘real-life’ combinatorial problems. We would like to stress here
that none of the results or proof techniques presented here are new, but we hope that there is some
value in seeing them next to one another.

2. The Kleitman–Winston algorithm

Suppose that we are given an arbitrary graph G with n vertices. Our goal is to give an upper
bound on i(G), the number of independent sets in G. The idea of Kleitman and Winston was
to devise an algorithm that, given a particular independent set I ∈ I(G), would encode I in an
invertible way. Crucially, the encoding should be performed in a way which makes it easy to
estimate the total number of outputs of the algorithm. Since for every invertible encoding, the
total number of outputs is precisely i(G), in this way one could derive an upper bound on this
quantity.

The crucial idea of Kleitman and Winston was to consider the vertices of G ordered according
to their degrees and encode each independent set I as a sequence of positions of the elements of I
in that ordering. We make this precise below.

Definition. Let G be a graph and fix an arbitrary total order on V (G). For every A ⊆ V (G),
the max-degree ordering of A is the ordering (v1, . . . , v|A|) of all elements of A, where for each
j ∈ {1, . . . , |A|}, vj is the maximum-degree vertex in the subgraph ofG induced by A\{v1, . . . , vj−1};
ties are broken by giving preference to vertices that come earlier in the fixed total order on V (G).

The Algorithm. Suppose that a graph G, an I ∈ I(G), and an integer q 6 |I| are given.
Set A = V (G) and S = ∅. For s = 1, . . . , q, do the following:

1A lattice is a partially ordered set in which every two elements have a supremum and an infimum.
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(a) Let (v1, . . . , v|A|) be the max-degree ordering of A.
(b) Let js be the minimal index j such that vj ∈ I.
(c) Move vjs from A to S.
(d) Delete v1, . . . , vjs−1 from A.
(e) Delete NG(vjs) ∩A from A.

Output (j1, . . . , jq) and A ∩ I.

For each output sequence (j1, . . . , jq) and every s ∈ {1, . . . , q}, denote by A(j1, . . . , js) and
S(j1, . . . , js) the sets A and S at the end of the sth iteration of the algorithm (run on some input I
that produces this particular sequence (j1, . . . , jq)), respectively. Observe that these definitions
do not depend on the choice of I as the sequence (j1, . . . , jq) uniquely determines how the sets S
and A evolve throughout the algorithm. More precisely, if running the algorithm on two inputs
I, I ′ ∈ I(G) produces the same sequence (j1, . . . , jq), then both these executions will also yield the
same sets S and A. Indeed, all the modifications of the sets S and A in the sth iteration of the
algorithm depend solely on js.

Note crucially that S(j1, . . . , js) ⊆ I and I \ S(j1, . . . , js) ⊆ A(j1, . . . , js) for every s. Indeed,
by the minimality of js and the assumption that I is independent, the only vertices of I that are
deleted from A are moved to S. It follows that one may recover the set I from the output of the
algorithm, as I = S(j1, . . . , jq) ∪ (A(j1, . . . , jq) ∩ I). We also note for future reference that the
sequence (j1, . . . , jq) can be recovered from the set S(j1, . . . , jq). Indeed, if running the algorithm
on some input I ∈ I(G) produces a sequence (j1, . . . , jq) and S = S(j1, . . . , jq), then the same
sequence will be produced by running the algorithm with I replaced by S. Finally, let us observe
that j1 + . . .+ jq 6 |V (G)| − |A(j1, . . . , jq)|, as in steps (c) and (d) of the sth iteration of the main
loop, we removed from A some js vertices.

Let i(G,m) be the number of independent sets in G that have precisely m elements. The above
observations readily imply that for every m and q with m > q,

i(G,m) 6
∑
(js)

i
(
G[A(j1, . . . , jq)],m− q

)
6
∑
(js)

(
|A(j1, . . . , jq)|

m− q

)
, (2)

where the above sums range over all output sequences (j1, . . . , jq). In particular, letting n = |V (G)|,

i(G) 6
q−1∑
m=0

(
n

m

)
+
∑
(js)

i
(
G[A(j1, . . . , jq)]

)
6

q−1∑
m=0

(
n

m

)
+
∑
(js)

2|A(j1,...,jq)|. (3)

In view of (2) and (3), it is in our interest to make the set A(j1, . . . , jq) as small as possible,
uniformly for all values of (j1, . . . , jq). This is why we consider the vertices of A listed according
to the max-degree ordering. (An attentive reader might have already noticed that this particular
ordering maximises degG(vjs , A) in each iteration of the algorithm.) Suppose that we are at the
sth iteration of the main loop of the algorithm and let A′ = A\{v1, . . . , vjs−1}, where A is as at the
start of this iteration, that is, A = A(j1, . . . , js−1). By the definition of the max-degree ordering,

|NG(vjs) ∩A′| = max
v∈A′

degG(v,A′) >
2eG(A′)

|A′|
.

In particular, if eG(A′) = β
(|A′|

2

)
, then the right-hand side of the above inequality is β(|A′| − 1).

Consequently, the number of vertices that are removed from A during the sth iteration of the main
loop of the algorithm is at least js + β(|A′| − 1), which is at least β|A|, as |A′| − 1 = |A| − js
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and β 6 1. In other words, as long as the density of the subgraph induced by the set A exceeds
some β, each iteration of the main loop of the algorithm shrinks A by a factor of at most 1− β.

The following two lemmas, which are both implicit in the work of Kleitman and Winston, sum-
marise the above discussion. The first lemma gives a simple bound on the number of independent
sets of a given size in a graph which satisfies a certain local density condition. The exact statement
of this lemma is taken from [28]. The second lemma characterises the family of all independent
sets in such a locally dense graph. The statement of this lemma is inspired by the statement of
the main result of [7].

Lemma 1. Let G be a graph on n vertices and assume that an integer q and reals R and β ∈ [0, 1]
satisfy

R > e−βqn. (4)

Suppose that the number of edges induced in G by every set U ⊆ V (G) with |U | > R satisfies

eG(U) > β

(
|U |
2

)
. (5)

Then, for every integer m with m > q,

i(G,m) 6

(
n

q

)(
R

m− q

)
. (6)

Proof. Since there are exactly
(
n
q

)
sequences (j1, . . . , jq) satisfying j1 + . . .+ jq 6 n and js > 1 for

each s, the sum in the right-hand side of (2) has at most
(
n
q

)
terms. Therefore, it suffices to show

that for each sequence (j1, . . . , jq) that is outputted by the algorithm, the set A(j1, . . . , jq) has at
most R elements. If this were not the case, then there would be some sequence (j1, . . . , jq) such
that for each s ∈ {1, . . . , q}, the set A \ {v1, . . . , vjs−1} in the sth iteration of the main loop of the
algorithm (run on some input that results in this particular sequence) would have more than R
elements and therefore induce in G a subgraph with edge density at least β. It follows from our
discussion that each of the q iterations would shrink the set A by a factor of at most 1− β. Since
|A| = |V (G)| = n at the start of the algorithm, then, by (4),

|A(j1, . . . , jq)| 6 (1− β)qn 6 e−βqn 6 R,

a contradiction. �

Lemma 2. Let G be a graph on n vertices and assume that an integer q and reals R and D satisfy

R+ qD > n. (7)

Suppose that the number of edges induced in G by every set U ⊆ V (G) with |U | > R satisfies

2eG(U) > D|U |. (8)

Then there exists a collection S of q-element subsets of V (G) and two mappings g : I(G)→ S and
f : S → P(V (G)) such that |f(S)| 6 R for each S ∈ S and g(I) ⊆ I ⊆ f(g(I)) ∪ g(I) for every
I ∈ I(G) with at least q elements.

Proof. We define the mappings f and g and the family S as follows. We simply run the algorithm
with input I for each I ∈ I(G) with at least q elements and let g(I) and f(g(I)) be the final sets S
and A, respectively. Moreover, we let S be the family of all such S, that is, the set of values taken
by g. The discussion in the paragraph following the description of the algorithm should convince
us that this is a valid definition of f , that g(I) ⊆ I ⊆ f(g(I)) ∪ g(I) for each I as above, and
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that S consists solely of q-element subsets of V (G). It suffices to check that |f(g(I))| 6 R for each
such I. If this were not the case, then there would be some sequence (j1, . . . , jq) such that for each
s ∈ {1, . . . , q}, the set A\{v1, . . . , vjs−1} in the sth iteration of the main loop of the algorithm (run
on an input I that generates this sequence) would have more than R elements and therefore induce
in G a subgraph with average degree at least D. But then, each of the q iterations would remove
from A at least D + 1 vertices. Since |A| = |V (G)| = n at the start of the algorithm, then by (7),

|A(j1, . . . , jq)| 6 n−Dq 6 R,
a contradiction. �

Before we close this section, let us make several final remarks. First, the conclusion of Lemma 2 is
stronger than the conclusion of Lemma 1. This is simply because the existence of f and g as in the
statement of the second lemma imply the bound on i(G,m) asserted by the first lemma. Moreover,
it should be clear from the proofs that the assumptions of the two lemmas are ‘interchangeable’
in the following sense. If a graph G satisfies the assumptions of Lemma 1 with some q, R, and
β, then the conclusion of Lemma 2 holds for G with the same q and R; and vice-versa, if a graph
G satisfies the assumptions of Lemma 2 with some q, R, and D, then the conclusion of Lemma 1
holds for G with the same q and R. (The latter statement is redundant because, as we have already
noted above, the conclusion of Lemma 2 is stronger than the conclusion of Lemma 1.)

3. Applications

3.1. Independent sets in regular graphs. During a number theory conference at Banff in 1988,
Granville conjectured (see [1]) that an n-vertex d-regular graph can have no more than 2(1+o(1))n

2

independent sets, where o(1) is some function that tends to 0 as d → ∞. A few years later, this
was shown to be true by Alon [1], who proved that in fact

i(G) 6 2(1+O(d−0.1))n
2

for every n-vertex d-regular graph G. As our first application of Lemma 1, we derive a somewhat
stronger estimate, which was obtained several years later by Sapozhenko [37], using arguments very
similar to those presented in Section 2.

Theorem 3 ([37]). There is an absolute constant C such that every n-vertex d-regular graph G
satisfies

i(G) 6 2

(
1+C

√
log d
d

)
n
2
.

Alon [1] speculated that when n is divisible by 2d, then the disjoint union of n
2d complete

bipartite graphs Kd,d has the maximum number of independent sets among all d-regular graphs with
n vertices. A slightly stronger statement (Theorem 4 below) was later conjectured by Kahn [24],
who proved it under the additional assumption that G is bipartite, using a beautiful entropy
argument. This assumption was recently shown to be unnecessary by Zhao [46], who gave a short
and elegant argument showing that for every n-vertex d-regular graph G, there exists a 2n-vertex
d-regular bipartite graph G′ such that i(G) 6 i(G′)1/2. The results of Kahn and Zhao yield the
following.

Theorem 4 ([24, 46]). For every n-vertex d-regular graph G,

i(G) 6 i(Kd,d)
n
2d =

(
2d+1 − 1

) n
2d
.
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We now derive Theorem 3 from Lemma 1.

Proof of Theorem 3. Let G be an n-vertex d-regular graph. We shall in fact estimate i(G,m) for
each m and deduce the claimed bound on i(G) by summing over all m. Since i(G) 6 2n and C
is an arbitrary constant, we may assume that d is sufficiently large (and therefore n is sufficiently
large). We consider two cases. First, if m 6 n/10, then we simply note that

i(G,m) 6

(
n
n
10

)
6 (10e)

n
10 6 20.48n, (9)

where we used the well-known inequality
(
a
b

)
6 (ea/b)b valid for all a and b.

In the complementary case, m > n/10, we shall apply Lemma 1. To this end, let B ⊆ V (G) and
note that

d|B| =
∑
v∈B

degG(v) = 2e(B) + e(B,Bc) 6 2e(B) +
∑
v∈Bc

degG(v) = 2e(B) + d(n− |B|). (10)

Fix an arbitrary β, let R = n
2 + βn2

2d , and observe that if |B| > R, then (10) yields

e(B) >
d

2
(2|B| − n) >

d

2
(2R− n) >

βn2

2
> β

(
|B|
2

)
. (11)

Assume that β > 10/n and let q = d1/βe. By Lemma 1, since

e−βqn 6 e−1n 6 R,

then for every m with m > dn/10e > q,

i(G,m) 6

(
n

q

)(n
2 + βn2

2d

m− q

)
6

(
en

q

)q (n
2 + βn2

2d

m− q

)
6 (eβn)d1/βe ·

(n
2 + βn2

2d

m− q

)
. (12)

Summing (9) and (12) over all m yields

i(G) 6 20.49n + 2
n
2

+βn2

2d
+d1/βe log2(eβn)

We obtain the claimed bound by letting β =
√
d log d
n ; we note that

√
d log d > 10 as we assumed

that d is large. �

We ought to indicate here that one may significantly improve the upper bound given by Theo-
rem 3 by a somewhat more careful analysis of the execution of the Kleitman–Winston algorithm
than the one given in the proof of Lemma 1. The main reason why one should expect such an im-
provement to be possible is the crudeness of the second inequality in (11) in the case when |B|−n/2
is much larger than R− n/2. The proof of Lemma 1 uses (11) to show that in each step of the al-
gorithm, the set A loses at least β|A| elements whereas in reality A will lose many more elements
as long as |A| is not very close to n/2 + βn2/(2d). By considering the ‘evolution’ of |A| partitioned
into ‘dyadic’ intervals

(
n/2 +n/2i+1, n/2 +n/2i

]
, where 1 6 i 6 log2 d− log2 log2 d, one may prove

that there is an absolute constant C such that every n-vertex d-regular graph G satisfies

i(G) 6 2

(
1+C

(log d)2

d

)
n
2
.

One rigorous way of tracking this ‘evolution’ of |A| is to repeatedly invoke Lemma 2 with Ri =
n/2 + n/2i+1 and Di = d/2i for i = 1, . . . , log2 d − log2 log2 d. We leave filling in the details as
an exercise for the reader.
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3.2. Sum-free sets. The conjecture of Granville mentioned in the previous section was motivated
by a problem posed by Cameron and Erdős at the same number theory conference. A set A of
elements of an abelian group is called sum-free if there are no x, y, z ∈ A satisfying x + y = z.
Let [n] denote the set {1, . . . , n} ⊆ Z. Cameron and Erdős raised the question of determining
the number SF([n]) of sum-free sets contained in the set [n]. They noted that any set containing
either only odd integers or only integers greater than n/2 is sum-free, and that it is unlikely that
there is another large collection of sum-free sets that are not essentially of one of the above two
types. In view of this, they conjectured that SF([n]) = O(2n/2). Soon afterwards, Alon [1] showed
that the aforementioned conjecture of Granville implies the following weaker estimate on SF([n]),
which will serve as a second example application of Lemma 1.

Theorem 5 ([1]). The set {1, . . . , n} has at most 2(1/2+o(1))n sum-free subsets.

The Cameron–Erdős conjecture was solved some fifteen years later by Green [19] and, indepen-
dently, by Sapozhenko [39]. The solution due to Sapozhenko uses a method akin to the Kleitman–
Winston algorithm presented in Section 2, while the one due to Green uses discrete Fourier analysis.2

We do not discuss either of their arguments here, but instead refer the interested reader to the origi-
nal papers. Finally, we mention that strong estimates on the number of sum-free subsets of [n] with
a given number of elements, which imply the conjecture, were recently obtained in [3]; the proof
there employs the ideas presented in Section 2.

Proof of Theorem 5. Observe first that the number of all subsets of [n] which contain fewer than

n2/3 elements from {1, . . . , dn/2e − 1} is at most (n/2)n
2/3

2n/2+1. Therefore, we may restrict our

attention to sum-free sets that contain at least n2/3 elements strictly smaller than n/2. For each

such set A, let SA be the set of bn2/3c smallest elements of A.
Given a set S ⊆ {1, . . . , dn/2e − 1}, define an auxiliary graph GS with vertex set [n] by letting

E(GS) = {xy : x+ s ≡ y (mod n) for some s ∈ S ∪ (−S)}

and note that GS is 2|S|-regular, as n − (dn/2e − 1) > dn/2e − 1 and hence S and −S contain
different residues modulo n. The crucial observation is that for every sum-free A as above, the set
A \ SA is an independent set in the graph GSA . Indeed, otherwise there would be x, y ∈ A \ SA
and an s ∈ SA ∪ (−SA) with x + s ≡ y (mod n); since 1 6 |s| < x, y 6 n, this is only possible
when x+ s = y. In particular, for a given S ⊆ {1, . . . , dn/2e− 1}, there are at most i(GS) sum-free
sets A satisfying S = SA. By Theorem 3, we conclude that

SF([n]) 6 (n/2)n
2/3

2n/2+1 +

(
n/2

n2/3

)
· 2(1+O(n−1/3

√
logn))n2 6 2(1/2+O(n−1/3 logn))n. �

Before closing this section, we remark that the paper of Alon [1] started a very successful line
of inquiry into the closely related problem of determining the number of sum-free sets contained in
an arbitrary finite abelian group; see, e.g., [2, 20, 21, 32, 38]. In many of these works, variations of
the ideas presented in Section 2 play a prominent role.

3.3. Independent sets in regular graphs without small eigenvalues. Since every n-vertex
bipartite graph G satisfies α(G) > n/2 and hence it contains at least 2n/2 independent sets, the
upper bounds for i(G) proved in Section 3.1 are essentially best possible whenever G is bipartite.

2However, one might still argue that the general ‘philosophy’ behind Green’s proof is similar.
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It is natural to ask whether these bounds can be improved when one assumes that G is ‘far’ from
being bipartite. An affirmative answer to this question was given by Alon and Rödl [5].

Recall that the adjacency matrix of an n-vertex graph G is a real-valued symmetric n×n matrix
and therefore it has n real eigenvalues. Denote these eigenvalues by λ1, . . . , λn, where λ1 > . . . > λn.
It is well known that the quantity max{|λ2|, |λn|}, called the second eigenvalue of G, is closely tied
with, among other parameters, the expansion properties of G. We shall be interested only in the
smallest eigenvalue λn of G, which we denote by λ(G). It was first proved by Hoffman [22] that every

d-regular n-vertex graph G satisfies α(G) 6 −λ(G)
d−λ(G)n. This was later significantly strengthened3 by

Alon and Chung [4], who established the following relation between λ(G) and the number of edges
induced by large sets of vertices in G, cf. the expander mixing lemma (see, e.g., [23]).

Lemma 6 ([4]). Let G be an n-vertex d-regular graph. For all A ⊆ V (G),

2eG(A) >
d

n
|A|2 +

λ(G)

n
|A|
(
n− |A|

)
.

Alon and Rödl [5] were the first to prove that if λ(G) is much larger than −d, then each such G

has far fewer than 2n/2 independent sets. As our next application of Lemma 1, we derive a similar
estimate, originally proved in [2].

Theorem 7 ([2]). For every ε > 0, there exists a constant C such that the following holds. If G is
an n-vertex d-regular graph with λ(G) > −λ, then

i(G,m) 6

(( λ
d+λ + ε

)
n

m

)
,

provided that m > Cn/d.

Proof of Theorem 7. Fix some ε > 0, let G be an n-vertex d-regular graph, and let λ = −λ(G).
We may assume that λ

d+λ + ε < 1 as otherwise there is nothing to prove. Let U ⊆ V (G) be an

arbitrary set with |U | >
(

λ
d+λ + ε

2

)
n. Lemma 6 implies that

2eG(U) >
d

n
|U |2 − λ

n
|U |
(
n− |U |

)
=
|U |
n

(
(d+ λ)|U | − λn

)
>
εd

2
|U | > εd

n

(
|U |
2

)
.

Let β = εd
n , q =

⌈
log(2/ε)

ε · nd
⌉
, and R =

(
λ
d+λ + ε

2

)
n and observe that R > e−βqn. It follows from

Lemma 1 that for every m with m > q,

i(G,m) 6

(
n

q

)(
R

m− q

)
. (13)

Let r(t) denote the right-hand side of (13) with q replaced by t. We may clearly assume that
m 6 α(G) 6 λ

d+λn, as otherwise i(G,m) = 0. An elementary calculation shows that

r(t+ 1)

r(t)
=
n− t
t+ 1

· m− t
R−m+ t+ 1

6
nm

(t+ 1)(R−m)
6

2m

ε(t+ 1)

and hence

i(G,m) = r(q) =

q−1∏
t=0

r(t+ 1)

r(t)
· r(0) 6

(2m)q

εqq!
·
(
R

m

)
6

(
2em

εq

)q
·
(

R

R+ εn/2

)m(R+ εn/2

m

)
,

3In particular, Lemma 6 implies that eG(A) > 0 for every A with more than −λ(G)
d−λ(G)

n vertices.
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where we used the inequalities a! > (a/e)a and
(
a
c

)
> (a/b)c

(
b
c

)
valid whenever a > b > c > 0.

Finally, if K is sufficiently large (as a function of ε) and C > K ·
⌈

log(2/ε)
ε

⌉
, then for every m with

m > Cn/d > Kq, (
2em

εq

)q/m
· R

R+ εn/2
6

(
2Ke

ε

)1/K

·
(

1− ε

2

)
6 1,

which completes the proof of the theorem. �

We close this section with several remarks. First, the constant λ
d+λ in the assertion of the theorem

is optimal as for many values of n, d, and α, there are n-vertex d-regular graphs with α(G) =
−λ(G)
d−λ(G)n = αn. Second, the assumption that m > Cn/d cannot be relaxed as for every ε > 0, every

n-vertex d-regular graph G satisfies i(G,m) >
(

(1−ε)n
m

)
whenever m 6 εn/(d + 1). (To see this,

consider the greedy process of constructing an independent set which repeatedly picks an arbitrary
vertex of G and removes it and all of its neighbours from G.) Third, the above theorem implies the
conjecture of Granville stated in Section 3.1 as λ(G) > −d for every d-regular graph G. Finally,
we refer the interested reader to [2] and [5], where Theorem 7 was used to obtain upper bounds on
the number of sum-free sets in abelian groups of even order and lower bounds on some multicolor
Ramsey numbers, respectively.

3.4. The number of C4-free graphs. As our next example, we present the main result from one
of the papers of Kleitman and Winston [27] which introduced the methods described in Section 2.
Call a graph C4-free if it does not contain a cycle of length four and let ex(n,C4) denote the
maximum number of edges in a C4-free graph with n vertices. A classical result of Kővári, Sós, and
Turán [31] together with a construction due to Brown [11] and Erdős, Rényi, and Sós [17] imply
that

ex(n,C4) =

(
1

2
+ o(1)

)
n3/2.

Let fn(C4) be the number of (labeled) C4-free graphs on the vertex set {1, . . . , n}. Since each
subgraph of a C4-free graph is itself C4-free, we have

2ex(n,C4) 6 fn(C4) 6
ex(n,C4)∑
m=0

((n
2

)
m

)
= 2Θ(ex(n,C4) logn),

which yields

ex(n,C4) 6 log2 fn(C4) 6 O
(
ex(n,C4) log n

)
. (14)

Answering a question of Erdős, Kleitman and Winston [27] showed that the lower bound in (14) is
tight up to a constant factor.

Theorem 8 ([27]). There is a positive constant C such that

log2 fn(C4) 6 Cn3/2.

Before we continue with the proof of the theorem, let us make a few comments. In fact, Erdős
asked whether log2 fn(H) = (1 + o(1))ex(n,H) for an arbitrary H that contains a cycle. This was
shown to be the case by Erdős, Frankl, and Rödl [16] under the assumption that χ(H) > 3. Very
recently, Morris and Saxton [34] proved that log2 fn(C6) > 1.0007 · ex(n,C6) for infinitely many n.
But the notoriously difficult problem of determining whether or not log2 fn(H) = O(ex(n,H))
for every bipartite H that is not a forest remains unsolved, apart from the following two special
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cases: H is a cycle length four [27], six [25], or ten [34] or H is an unbalanced complete bipartite

graph [8, 9]. More exactly, it is proved in [9] and [34] that log2 fn(Ks,t) = O(n2−1/s) whenever

2 6 s 6 t and that log2 fn(C2`) = O(n1+1/`) for every ` > 2, respectively. As it is commonly

believed that ex(n,Ks,t) = Ω(n2−1/s) whenever s 6 t and that ex(n,C2`) = Ω(n1+1/`), both these
results are most likely best possible. Finally, we mention that the proofs of most of the results
mentioned in this paragraph use either a variant of Lemma 1 or extensions of the ideas presented
in Section 2 to hypergraphs, see Section 4.2.

Proof of Theorem 8. Note that one can order the vertices of every n-vertex graph G as v1, . . . , vn
in such a way that for every i ∈ {2, . . . , n}, letting Gi = G[{v1, . . . , vi}],

δ(Gi−1) > degGi(vi)− 1.

Indeed, one may obtain such an ordering by iteratively letting vi be a minimum-degree vertex of
G−{vi+1, . . . , vn} for i = n, . . . , 2. In particular, every labeled n-vertex graph G can be constructed
in the following way. First, choose an ordering v1, . . . , vn of the vertices and let G1 be the empty
graph with vertex set {v1}. Second, for each i ∈ {2, . . . n}, build a graph Gi by adding to the graph
Gi−1 a vertex labeled vi in such a way that its degree di (in Gi) satisfies di 6 δ(Gi−1) + 1. Finally,
we let G = Gn. Observe that G is C4-free if and only if Gi is C4-free for each i.

Now, given integers d and i with d 6 i, let gi(d) denote the maximum number of ways to attach
a vertex of degree d to an i-vertex C4-free graph with minimum degree at least d − 1 in such a
way that the resulting graph remains C4-free. This number is well defined as clearly gi(d) 6

(
i
d

)
.

Moreover, let gi = max{gi(d) : d 6 i}. The argument given in the previous paragraph proves that

fn(C4) 6 n! · n! ·
n∏
i=2

gi−1. (15)

Indeed, there are n! ways to order [n] as v1, . . . , vn and for each such ordering, there are at most
n! choices for the sequence d2, . . . , dn of degrees. In view of (15), the following claim easily implies
the assertion of the theorem.

Claim. There exists a constant C such that gn 6 exp(C
√
n) for all n.

Without loss of generality, we may assume that n is large. Thus, if d 6
√
n/ log n, then

gn(d) 6

(
n

d

)
6

(
n√
n

logn

)
6
(
e
√
n log n

) √n
logn 6 exp(

√
n).

Therefore, we shall from now on assume that d >
√
n/ log n. Let G be a C4-free graph on n vertices

with δ(G) > d− 1. Let H be the square of G, that is, the graph with V (H) = V (G) and

E(H) = {xy : xz, yz ∈ E(G) for some z ∈ V (G)}.
Crucially, observe that adding v to G will result in a C4-free graph if and only if the neighbourhood
of v is an independent set in H. Hence, i(H, d) is an upper bound on the number of C4-free
extensions of G by a vertex of degree d. We shall estimate i(H, d) using Lemma 1.

To this end, we show that subgraphs of H induced by large subsets of V (H) have reasonably
high density. Since G is C4-free, every edge xy of H corresponds to a unique vertex z ∈ V (G) such
that xz and yz are edges of G. Therefore, for each B ⊆ V (H),

eH(B) =
∑

z∈V (G)

(
degG(z,B)

2

)
> n ·

(∑
z deg(z,B)/n

2

)
,
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where the last inequality is Jensen’s inequality applied to the convex function x 7→
(
x
2

)
. Since∑

z∈V (G)

degG(z,B) =
∑
x∈B

degG(x) > |B| · δ(G) > (d− 1)|B|,

then assuming that |B| > 2n
d−1 implies

eH(B) > n · (d− 1)|B|
2n

(
(d− 1)|B|

n
− 1

)
>

(d− 1)2

2n

(
|B|
2

)
.

Finally, let R = 2n
d−1 , β = (d−1)2

2n , and q = d3(log n)3e. Since d >
√
n/ log n and n is large, then

βq > log n and therefore e−βqn 6 1 6 R. It follows from Lemma 1 that

i(H, d) 6

(
n

q

)( 2n
d−1

d− q

)
6 e4 log4 n ·

(
2en

(d− q)2

)d−q
6 sup

k>0

(
e
√
n

k

)2k

= e2
√
n,

where we used the assumption that n is large and the fact that sup
{(

e
x

)x
: x > 0

}
= e. �

3.5. Roth’s theorem in random sets. As our final example, we present a short proof of a well-
known result of Kohayakawa,  Luczak, and Rödl [29]. Recall that [n] denotes the set {1, . . . , n}.
A famous theorem of Roth [35] asserts that for every positive δ, any set of at least δn integers
from [n] contains a 3-term arithmetic progression (3-term AP), provided that n is sufficiently large
(as a function of δ only). Given a positive δ, we shall say that a set A ⊆ Z is δ-Roth if each B ⊆ A
satisfying |B| > δ|A| contains a 3-term AP. We may now restate Roth’s theorem as follows. For
every positive δ, there exists an n0 such that the set [n] is δ-Roth whenever n > n0. With the aim
of showing that there exist ‘smaller’ and ‘sparser’ δ-Roth sets Kohayakawa,  Luczak, and Rödl [29]
proved the following result.

Theorem 9 ([29]). For every positive δ, there exists a constant C such that if C
√
n 6 m 6 n, then

the probability that a uniformly chosen random m-element subset of {1, . . . , n} is δ-Roth tends to 1
as n→∞.

We shall deduce Theorem 9 as an easy corollary of the following upper bound for the number
of subsets of [n] of a given cardinality that do not contain a 3-term AP, originally proved in [7]
and [40] in a much more general form. This upper bound will be derived from Roth’s theorem
using Lemma 2 with one additional twist which was previously considered in [2].

Theorem 10. For every positive ε, there exists a constant D such that if D
√
n 6 m 6 n,

∣∣{A ⊆ [n] : |A| = m and A contains no 3-term AP
}∣∣ 6 (εn

m

)
.

Proof of Theorem 9. Fix a positive δ, let ε = δ/6, and let D be the constant from the statement
of Theorem 10. Let C = D/δ and suppose that C

√
n 6 m 6 n. Since dδme > D

√
n, Theorem 10

implies that the set A defined by

A =
{
A ⊆ [n] : |A| = dδme and A contains no 3-term AP

}
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has at most
(
εn
dδme

)
elements. Now, let R be an m-element subset of [n] chosen uniformly at random.

Clearly,

Pr
(
R is not δ-Roth

)
= Pr

(
R ⊇ A for some A ∈ A

)
6
∑
A∈A

Pr(R ⊇ A) 6
∑
A∈A

(m
n

)|A|
= |A| ·

(m
n

)dδme
6

(
εn

dδme

)
·
(m
n

)dδme
6

(
εen

dδme
· m
n

)dδme
6 2−δm. �

Our proof of Theorem 10 will use the following simple consequence of Roth’s theorem, observed
first by Varnavides [45], as a ‘black box’.

Proposition 11 ([35, 45]). For every positive δ, there exist an integer n0 and a positive β such
that if n > n0, then every set of at least δn integers from {1, . . . , n} contains at least βn2 3-term
APs.

Proof of Theorem 10. Fix a positive ε, let n0 and β be the constants from the statement of Propo-
sition 11 invoked with δ = ε/2, and suppose that n > n0. Given an arbitrary set B ⊆ [n] and
integers m and n′, let

a(B,m) =
∣∣{I ⊆ B : |I| = m and I contains no 3-term AP

}∣∣ ,
a(n′,m) = max

{
a(B,m) : B ⊆ [n] with |B| = n′

}
.

Our aim is to show that a([n],m) = a(n,m) 6
(
εn
m

)
, provided that m > C

√
n for some constant C

which depends only on ε. This inequality will follow from the trivial observation that a(n′,m) 6
(
n′

m

)
for all n′ and m and the following claim.

Claim. If n′ > εn/2 and m > 2b
√
nc, then a(n′,m) 6 2

(
n
b
√
nc
)2 · a(n′ − dβn/12e,m− 2b

√
nc
)
.

Let H be the 3-uniform hypergraph with vertex set [n] whose edges are all triples of numbers
which form a 3-term AP. Let B be an arbitrary n′-element subset of [n]. By Proposition 11,
eH(B) > βn2. Let Z ⊆ B be the set of all vertices of H[B], the subhypergraph of H induced by B,
whose degree is at least βn. In other words, Z is the set of all numbers in B that belong to at
least βn three-term APs contained in B. Since the maximum degree of H is at most 2n, we have
|Z| > βn.

We first estimate the number of m-element subsets of B with no 3-term AP that contain fewer
than

√
n elements of Z. Since each such set A may be partitioned into A1 and A2, where |A1| =

b
√
nc and A2 ⊆ B\Z, there are at most

(
n
b
√
nc
)
·a(n′−dβne,m−b

√
nc) such sets. We may therefore

focus on counting subsets of B that contain at least
√
n elements of Z. We shall obtain a suitable

upper bound for their number using Lemma 2.
Let W be an arbitrary subset of Z and consider the auxiliary graph GW with vertex set B whose

edges are all pairs {x, y} such that {x, y, z} ∈ H for some z ∈W . Since for a given pair {x, y} ⊆ [n],
there are at most three different z such that {x, y, z} ∈ H, it follows that e(GW ) > |W |βn/3 and
the maximum degree of GW is no more than 3|W |. It follows that for an arbitrary subset U of B
with at least n′ − βn/12 elements,

eGW (U) > e(GW )− |B \ U | ·∆(GW ) >
βn|W |

3
− βn

12
· 3|W | = βn|W |

12
. (16)

Observe crucially that if some set I ∪W contains no 3-term APs, then I is an independent set in
the graph GW .
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Let w = b
√
nc and fix some W ⊆ Z with |W | = w. We shall prove an upper bound on the number

of ways one can extend W to an m-element subset of B that contains no 3-term APs. By our above
discussion, if I ∪W is such a set, then I is an independent set of GW with m − w elements. Let
S be the family of sets and let f and g be the maps whose existence is postulated by Lemma 2
with G = GW , q = b

√
nc, R = n′ − dβn/12e, and D = βw/6. Note that the assumptions of the

lemma are satisfied by our discussion above, see (16). Since clearly for each extension I of W to
an m-element subset of B with no 3-term APs, I ∩ f(g(I)) contains no 3-term APs, the number
EW of extensions of W satisfies

EW 6
∑
S∈S

a
(
f(S),m− w − q

)
6

(
n

q

)
· a
(
R,m− w − q

)
.

We conclude that

a(B,m) 6

(
n

b
√
nc

)
· a
(
n′ − dβne,m− b

√
nc
)

+
∑

W⊆Z : |W |=w

EW

6

(
n

b
√
nc

)2

· a
(
n′ − dβne,m− 2b

√
nc
)

+

(
n

w

)(
n

q

)
· a
(
n′ − dβn/12e,m− 2b

√
nc
)

6 2

(
n

b
√
nc

)2

· a
(
n′ − dβn/12e,m− 2b

√
nc
)
,

which, since B was an arbitrary n′-element subset of [n], proves the claim.

Let K = d(12− 6ε)/βe and suppose that m >
√
n. We recursively invoke the claim K times to

obtain

a(n,m) 6 2K
(

n

b
√
nc

)2K( εn/2

m− 2Kb
√
nc

)
6 2K

(
2Kn

2Kb
√
nc

)(
εn/2

m− 2Kb
√
nc

)
. (17)

As in the proof of Theorem 7, denote by r(t) the right-hand side of (17) with 2Kb
√
nc replaced

by t. We may clearly assume that m < εn/4 as otherwise a(n,m) = 0 by Roth’s theorem (we may
assume that n is sufficiently large). An elementary calculation shows that

r(t+ 1)

r(t)
=

2Kn− t
t+ 1

· m− t
εn/2−m+ t+ 1

6
2Knm

(t+ 1)(εn/2−m)
6

8Km

ε(t+ 1)

and hence, letting T = 2Kb
√
nc,

a(n,m) 6 r(T ) 6 2K · (8Km)T

εTT !
·
(
εn/2

m

)
6 2K ·

(
8eKm

εT

)T
·
(

1

2

)m(εn
m

)
.

Finally, if D is sufficiently large as a function of K and ε, then for every m with m > D
√
n >

D/(2K) · T , we have

2K/m ·
(

8eKm

εT

)T/m
6 2,

which completes the proof of the theorem. �
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4. Concluding remarks and further reading

4.1. Other applications of the Kleitman–Winston method. There have been quite a few
successful applications of the Kleitman–Winston method other than the ones presented in Section 3.
In particular, variants of Lemma 1 were used in the following works: Kleitman and Wilson [25]

proved that the number of n-vertex graphs with girth larger than 2` is 2O(n1+1/`); Dellamonica,
Kohayakawa, Lee, Rödl, and the author [14, 15, 28] proved sharp bounds on the number of subsets
of [n] with a given cardinality which contain no non-trivial solutions to the equation a1 + . . .+ah =
b1 + . . .+ bh for every h > 2; Balogh, Das, Delcourt, Liu, and Sharifzadeh [6] and Gauy, Hàn, and
Oliveira [18] proved sharp bounds for the number of intersecting families of k-element subsets of
[n] with a given cardinality and for the typical size of the largest intersecting subfamily contained
in a random collection of k-element subsets of [n]; Bansal, Pendavingh, and van der Pol [10] proved
strong bounds on the number of matroids on n elements.

4.2. Extensions of the Kleitman–Winston method to hypergraphs. It seems natural to
seek a generalisation of the Kleitman–Winston method that would yield non-trivial upper bounds
for the number of independent sets in a hypergraphs of higher uniformity. Perhaps somewhat
surprisingly, such generalisations were considered only fairly recently. To the best of our knowledge
this was first done in [8, 9], where sharp upper bounds for the number of n-vertex graphs which
do not contain a copy of a fixed complete bipartite subgraph were proved using a generalisation
of the argument presented in Section 3.4. Around the same time, similar ideas were developed by
Saxton and Thomason, who used them to establish lower bounds for the list chromatic number of
regular uniform hypergraphs [41]. Inspired by the groundbreaking work of Conlon and Gowers [13]
and Schacht [42], these efforts culminated in far-reaching generalisations of the Kleitman–Winston
method to arbitrary uniform hypergraphs, obtained independently by Saxton and Thomason [40],
and by Balogh, Morris, and the author [7]. For further details, we refer the interested reader
to [7, 12, 13, 36, 40, 42].
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also like to thank David Conlon, Asaf Ferber, and Rob Morris for their careful reading of an earlier
version of this manuscript and many valuable comments which helped me improve the exposition
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