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Abstract. Let us say that a graph G is Ramsey for a tuple (H1, . . . , Hr) of graphs if every
r-coloring of the edges of G contains a monochromatic copy of Hi in color i, for some i ∈
JrK. A famous conjecture of Kohayakawa and Kreuter, extending seminal work of Rödl and
Ruciński, predicts the threshold at which the binomial random graph Gn,p becomes Ramsey for
(H1, . . . , Hr) asymptotically almost surely. In this paper, we resolve the Kohayakawa–Kreuter
conjecture for almost all tuples of graphs. Moreover, we reduce its validity to the truth of a
certain deterministic statement, which is a clear necessary condition for the conjecture to hold.
All of our results actually hold in greater generality, when one replaces the graphs H1, . . . , Hr

by finite families H1, . . . ,Hr. Additionally, we pose a natural (deterministic) graph-partitioning
conjecture, which we believe to be of independent interest, and whose resolution would imply
the Kohayakawa–Kreuter conjecture.

1. Introduction

1.1. Symmetric Ramsey properties of random graphs. Given graphs G and H1, . . . ,Hr,
one says that G is Ramsey for the tuple (H1, . . . ,Hr) if, for every r-coloring of the edges of G,
there is a monochromatic copy of Hi in some color i ∈ JrK. In the symmetric case H1 = · · · =
Hr = H, we simply say that G is Ramsey for H in r colors. Ramsey’s theorem [24] implies
that the complete graph Kn is Ramsey for (H1, . . . ,Hr) whenever n is sufficiently large. The
fundamental question of graph Ramsey theory is to determine, for a given tuple (H1, . . . ,Hr),
which graphs G are Ramsey for it. For more on this question, as well as the many fascinating
sub-questions it contains, we refer the reader to the survey [3].

In this paper, we are interested in Ramsey properties of random graphs, a topic that was
initiated in the late 1980s by Frankl–Rödl [6] and  Luczak–Ruciński–Voigt [31]. The main
question in this area is, for a given tuple (H1, . . . ,Hr), which functions p = p(n) satisfy that
Gn,p is Ramsey for (H1, . . . ,Hr) a.a.s.1 In the case H1 = · · · = Hr, this question was resolved
in the remarkable work of Rödl and Ruciński [25, 26, 27]. In order to state their result, we need
the following terminology and notation. For a graph J , we denote by vJ and eJ the number
of vertices and edges, respectively, of J . The maximal 2-density of a non-empty graph H with
vH ⩾ 3 is then defined2 to be

m2(H) := max

{
eJ − 1

vJ − 2
: J ⊆ H, vJ ⩾ 3

}
.

With this notation, we can state the random Ramsey theorem of Rödl and Ruciński [27].

Theorem 1.1 (Rödl–Ruciński [27]). For every graph H which is not a forest3 and every integer
r ⩾ 2, there exist constants c, C > 0 such that

lim
n→∞

Pr(Gn,p is Ramsey for H in r colors) =

{
1 if p ⩾ Cn−1/m2(H),

0 if p ⩽ cn−1/m2(H).

EK, WS, and YW are supported by ERC Consolidator Grant 101044123 (RandomHypGra), by Israel Science
Foundation Grant 2110/22, and by NSF–BSF Grant 2019679. YW is additionally supported by ERC Consolidator
Grant 863438 (LocalGlobal).

1As usual, Gn,p denotes the binomial random graph with edge probability p and we say that an event happens
asymptotically almost surely (a.a.s.) if its probability tends to 1 as n → ∞.

2We also define m2(K2) := 1/2 and m2(H) := 0 if H has no edges.
3Rödl and Ruciński also determined the Ramsey threshold when H is a forest, but for simplicity we do not

state this more general result.
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As with many such threshold results for random graph properties, Theorem 1.1 really consists
of two statements: the 1-statement, which says that Gn,p satisfies the desired property a.a.s.
once p is above some threshold, and the 0-statement, which says that Gn,p a.a.s. fails to satisfy
the desired property if p is below some threshold.

In recent years, there has been a great deal of work on transferring combinatorial theorems,
such as Ramsey’s theorem or Turán’s theorem [30], to sparse random settings. As a consequence,
several new proofs of the 1-statement of Theorem 1.1 have been found. Two such proofs
were first given by Conlon–Gowers [4] and, independently, by Friedgut–Rödl–Schacht [8] (see
also Schacht [29]) with the use of their transference principles. More recently, Nenadov and
Steger [22] found a very short proof of the 1-statement of Theorem 1.1 that uses the hypergraph
container method of Saxton–Thomason [28] and Balogh–Morris–Samotij [1].

However, these techniques are not suitable for proving the respective 0-statements such as that
in Theorem 1.1. Furthermore, whereas the 0-statement of the aforementioned sparse random
analogue of Turán’s theorem is very easy to establish, proving the 0-statement of Theorem 1.1
requires a significant amount of work. To understand this, suppose that G is some graph that
is Ramsey for H in r colors. As is well-known (see e.g. [14, Theorem 3.4]), the probability that

Gn,p contains G as a subgraph is bounded away from zero if (and only if) p = Ω(n−1/m(G)),
where m(G) is the maximal density of G, defined by

m(G) := max

{
eJ
vJ

: J ⊆ G, vJ ⩾ 1

}
.

In particular, if m(G) ⩽ m2(H), then the 0-statement of Theorem 1.1 cannot hold. Therefore,
a prerequisite for any proof of the 0-statement is the following result, which Rödl–Ruciński [25]
termed the deterministic lemma: If G is Ramsey for H in r colors, then m(G) > m2(H). We
stress that this result is by no means trivial; in particular, it turns out to be false if we remove
the assumption that H is not a forest [7, 27], or if we move from graphs to hypergraphs [9].

To complement the deterministic lemma, Rödl–Ruciński also proved what they termed a
probabilistic lemma. Loosely speaking, this is a result that says that the 0-statement of Theo-
rem 1.1 is actually equivalent to the deterministic lemma. In other words, an obvious necessary
condition for the validity of the 0-statement—the non-existence of a graph G that is Ramsey
for H and satisfies m(G) ⩽ m2(H)—is also a sufficient condition.

1.2. Asymmetric Ramsey properties of random graphs. Given our good understanding
of Ramsey properties of random graphs in the symmetric case, provided by Theorem 1.1, it
is natural to ask what happens if we remove the assumption that H1 = · · · = Hr. This
question was first raised by Kohayakawa and Kreuter [15], who proposed a natural conjecture
for the threshold controlling when Gn,p is Ramsey for an arbitrary tuple (H1, . . . ,Hr). To
state their conjecture, we need the notion of the mixed 2-density : For graphs H1, H2 with
m2(H1) ⩾ m2(H2), their mixed 2-density is defined as

m2(H1, H2) := max

{
eJ

vJ − 2 + 1/m2(H2)
: J ⊆ H1, vJ ⩾ 2

}
.

With this terminology, we may state the conjecture of Kohayakawa and Kreuter [15].

Conjecture 1.2 (Kohayakawa–Kreuter [15]). Let H1, . . . ,Hr be graphs satisfying m2(H1) ⩾
· · · ⩾ m2(Hr) and m2(H2) > 1. There exist constants c, C > 0 such that

lim
n→∞

Pr(Gn,p is Ramsey for (H1, . . . ,Hr)) =

{
1 if p ⩾ Cn−1/m2(H1,H2),

0 if p ⩽ cn−1/m2(H1,H2).

The assumption m2(H2) > 1 is equivalent to requiring that H1 and H2 are not forests; it
was added by Kohayakawa, Schacht, and Spöhel [16] to rule out sporadic counterexamples, in
analogy with the assumption that H is not a forest in Theorem 1.1.

The role of the mixed 2-density m2(H1, H2) in the context of Conjecture 1.2 can seem a little
mysterious at first, but there is a natural (heuristic) explanation. Since one can color all edges
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that do not lie in a copy of H1 with color 1, the only important edges are those that do lie in
copies of H1. The mixed 2-density is defined in such a way that p = Θ(n−1/m2(H1,H2)) is the
threshold at which the number of copies of (the densest subgraph of) each of H2, . . . ,Hr is at
least of the same order of magnitude as the number of edges in the union of all copies of (the
densest subgraph of) H1 in Gn,p. Since at least one edge in each copy of H1 must receive a color
from {2, . . . , r}, this is the point where avoiding monochromatic copies of H2, . . . ,Hr becomes
difficult.

Conjecture 1.2 has received a great deal of attention over the years, and has been proved
in a number of special cases. Following a sequence of partial results [9, 11, 15, 16, 19], the
1-statement of Conjecture 1.2 was proved by Mousset, Nenadov, and Samotij [20] with the use
of the container method as well as a randomized “typing” procedure. We henceforth focus on
the 0-statement, where progress has been more limited.

Note that, in order to prove the 0-statement, one can make several simplifying assumptions.
First, one can assume that r, the number of colors, is equal to 2. Indeed, if one can a.a.s. 2-color
the edges of Gn,p and avoid monochromatic copies of H1, H2 in colors 1, 2, respectively, then
certainly Gn,p is not Ramsey for (H1, . . . ,Hr). Furthermore, if H ′

2 ⊆ H2 is a subgraph satisfying
m2(H

′
2) = m2(H2), then the 0-statement for the pair (H1, H

′
2) implies the 0-statement for

(H1, H2), as any coloring with no monochromatic copy of H ′
2 in particular has no monochromatic

copy of H2. Thus, we may assume that H2 is strictly 2-balanced, meaning that m2(H
′
2) < m2(H2)

for any H ′
2 ⊊ H2. For exactly the same reason, we may assume that H1 is strictly m2(·, H2)-

balanced, meaning that m2(H
′
1, H2) < m2(H1, H2) for any H ′

1 ⊊ H1. Let us say that the pair
(H1, H2) is strictly balanced if H2 is strictly 2-balanced and H1 is strictly m2(·, H2)-balanced.
Additionally, let us say that (H ′

1, H
′
2) is a strictly balanced pair of subgraphs of (H1, H2) if

(H ′
1, H

′
2) is strictly balanced and satisfies m2(H

′
2) = m2(H2) and m2(H

′
1, H

′
2) = m2(H1, H2). All

previous works on the 0-statement of Conjecture 1.2 have made these simplifying assumptions,
working in the case r = 2 and with a strictly balanced pair (H1, H2).

The original paper of Kohayakawa and Kreuter [15] proved the 0-statement of Conjecture 1.2
when H1 and H2 are cycles. This was extended to the case when both H1 and H2 are cliques
in [19], and to the case when H1 is a clique and H2 is a cycle in [18]. To date, the most general
result is due to Hyde [13], who proved the 0-statement of Conjecture 1.2 for almost all pairs of
regular graphs (H1, H2); in fact, this follows from Hyde’s main result [13, Theorem 1.9], which
establishes a certain deterministic condition whose validity implies the 0-statement of Conjec-
ture 1.2. Finally, the first two authors [17] recently proved the 0-statement of Conjecture 1.2
in the case where m2(H1) = m2(H2). Because of this, we henceforth focus on the case that
m2(H1) > m2(H2).

1.3. New results. As in the symmetric setting, a necessary prerequisite for proving the 0-
statement of Conjecture 1.2 is proving the following deterministic lemma: If G is Ramsey
for (H1, H2), then m(G) > m2(H1, H2). The main result in this paper is a corresponding
probabilistic lemma, which states that this obvious necessary condition is also sufficient.

Theorem 1.3. The 0-statement of Conjecture 1.2 holds if and only if, for every strictly balanced
pair (H1, H2), every graph G that is Ramsey for (H1, H2) satisfies m(G) > m2(H1, H2).

More precisely, we prove that if (H1, H2) is any pair of graphs and (H ′
1, H

′
2) is a strictly

balanced pair of subgraphs of (H1, H2), then the 0-statement of Conjecture 1.2 holds for (H1, H2)
if every graph G which is Ramsey for (H ′

1, H
′
2) satisfies m(G) > m2(H

′
1, H

′
2) = m2(H1, H2).

While we believe that the probabilistic lemma, Theorem 1.3, is our main contribution, we
are able to prove the deterministic lemma in a wide range of cases. This implies that the 0-
statement of Conjecture 1.2 is true for almost all pairs of graphs. The most general statement
we can prove is slightly tricky to state because of the necessity of passing to a strictly balanced
pair of subgraphs; however, here is a representative example of our results, which avoids this
technicality and still implies Conjecture 1.2 for almost all pairs of graphs. We state the more
general result in Theorem 1.7 below.
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Theorem 1.4. Conjecture 1.2 holds for all sequences H1, . . . ,Hr of graphs satisfying m2(H1) ⩾
· · · ⩾ m2(Hr) and m2(H2) >

11
5 .

As discussed above, Theorem 1.4 follows easily from Theorem 1.3 and a deterministic lemma
for strictly balanced pairs (H1, H2) satisfying m2(H1) ⩾ m2(H2) >

11
5 . The deterministic lemma

in this setting is actually very straightforward and follows from standard coloring techniques.
Using a number of other coloring techniques, we can prove the deterministic lemma (and

thus Conjecture 1.2) in several additional cases, which we discuss below. However, let us first
propose a conjecture, which we believe to be of independent interest, and whose resolution
would immediately imply Conjecture 1.2 in all cases.

Conjecture 1.5. For any graph G, there exists a forest F ⊆ G such that

m2(G \ F ) ⩽ m(G).

Here, G \ F denotes the graph obtained from G by deleting the edges of F (but not deleting
any vertices). To give some intuition for Conjecture 1.5, we note that m(G) ⩽ m2(G) ⩽ m(G)+1
for any graph G, and that m2(F ) = 1 for any forest F which is not a matching. Thus, it is
natural to expect that by deleting the edges of a forest, we could decrease m2(G) by roughly 1.
Conjecture 1.5 says that this is roughly the case, in that the deletion of an appropriately-chosen
forest can decrease m2(G) to lie below m(G).

Moreover, we note that Conjecture 1.5 easily implies the deterministic lemma in all cases4

with m2(H1) > m2(H2), and thus implies Conjecture 1.2. Indeed, it is straightforward to
verify in this case that m2(H1) > m2(H1, H2) (see Lemma 3.4 below). Now, suppose that G is
some graph with m(G) ⩽ m2(H1, H2) < m2(H1). If Conjecture 1.5 is true, we may partition
the edges of G into a forest F and a graph K with m2(K) ⩽ m(G) < m2(H1). This latter
condition implies, in particular, that K contains no copy of H1. Additionally, by the assumption
m2(H2) > 1 in Conjecture 1.2, we know that H2 contains a cycle and thus F contains no copy
of H2. In other words, coloring the edges of K with color 1 and the edges of F with color 2
witnesses that G is not Ramsey for (H1, . . . ,Hr).

Because of this, it would be of great interest to prove Conjecture 1.5. Somewhat surprisingly,
we know how to prove Conjecture 1.5 under the extra assumption that m(G) is an integer. This
extra condition seems fairly artificial, but we do not know how to remove it—our technique
uses tools from matroid theory that seem to break down once m(G) is no longer an integer.
We present this proof in Appendix B, in the hope that it may serve as a first step to the full
resolution of Conjecture 1.5, and thus Conjecture 1.2.

Although we are not able to resolve Conjecture 1.5, we do have a number of other techniques
for proving the deterministic lemma, and thus Conjecture 1.2, under certain assumptions. First,
we are able to resolve the case when the number of colors is at least three and m2(H2) = m2(H3).

Theorem 1.6. Let H1, . . . ,Hr be a sequence of graphs with r ⩾ 3 and suppose that m2(H1) ⩾
m2(H2) = m2(H3) ⩾ · · · ⩾ m2(Hr) and m2(H2) > 1. Then Conjecture 1.2 holds for H1, . . . ,Hr.

We can also prove Conjecture 1.2 in a number of additional cases, expressed in terms of the
properties of (a strictly balanced pair of subgraphs of) the pair (H1, H2) of two densest graphs.

Recall that the degeneracy of H is the maximum over all J ⊆ H of the minimum degree of
J .

Theorem 1.7. Suppose that (H1, H2) is strictly balanced. Suppose additionally that one of the
following conditions holds:

(a) χ(H2) ⩾ 3, or
(b) H2 is not the union of two forests, or
(c) χ(H1) > m2(H1, H2) + 1, or
(d) H1 has degeneracy at least ⌊2m2(H1, H2)⌋, or
(e) H1 = Ks,t for some s, t ⩾ 2, or

4Recall that the case of m2(H1) = m2(H2) was settled in [17], so we may freely make this assumption.
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(f) m2(H1) > ⌈m2(H1, H2)⌉.
In any of these cases, Conjecture 1.2 holds for (H1, H2).

Remark. The only graphs H2 which do not satisfy (a) or (b) are sparse bipartite graphs, such
as even cycles. On the other hand, (c) applies whenever H1 is a clique5 or, more generally, a
graph obtained from a clique by deleting few edges. Moreover, (d) applies to reasonably dense
graphs, as well as all d-regular bipartite graphs with d ⩾ 2, and (e) handles all cases when H1

is a biclique6. Thus, very roughly speaking, the strictly balanced cases that remain open in
Conjecture 1.2 are those in which H2 is bipartite and very sparse and H1 is not “too dense”.

Case (f) is somewhat stranger and it is not obvious that there exist graphs to which it applies.
However, one can check that, for example, it applies if H1 = K3,3,3,3 and H2 = C8, and that
none of the other cases of Theorem 1.7 (or any of the earlier results on Conjecture 1.2) apply in
this case. However, the main reason we include (f) is that it is implied by our partial progress
on Conjecture 1.5; since we believe that this conjecture is the correct approach to settling
Conjecture 1.2 in its entirety, we wanted to highlight (f).

We remark that, unfortunately, the conditions in Theorem 1.7 do not exhaust all cases. While
it is quite likely that simple additional arguments could resolve further cases, Conjecture 1.5
remains the only (conjectural) approach we have found to resolve Conjecture 1.2 in all cases.
Moreover, our proof of the probabilistic lemma implies that, in order to prove Conjecture 1.2
for a pair (H1, H2), it is enough to prove the deterministic lemma for graphs G of order not
exceeding an explicit constant K = K(H1, H2). In particular, the validity of Conjecture 1.2 for
any specific pair of graphs reduces to a finite computation.

1.4. Ramsey properties of graph families. All of the results discussed in the previous
subsection hold in greater generality, when we replace H1, . . . ,Hr with r finite families of graphs.
In addition to being interesting in its own right, such a generalization also has important
consequences in the original setting of Conjecture 1.2; indeed, our proof of the three-color
result, Theorem 1.6, relies on our ability to work with graph families. Before we state our more
general results, we need the following definitions.

Definition 1.8. Let H1, . . . ,Hr be finite families of graphs. We say that a graph G is Ramsey
for (H1, . . . ,Hr) if every r-coloring of E(G) contains a monochromatic copy of some Hi ∈ Hi

in some color i ∈ JrK.

We now define the appropriate generalizations of the notions of maximum 2-density and
mixed 2-density to families of graphs. First, given a finite family of graphs H, we let

m2(H) := min
H∈H

m2(H).

Second, given a graph H and a (finite) family L of graphs, we let

m2(H,L) := max

{
eJ

vJ − 2 + 1/m2(L)
: J ⊆ H, vJ ⩾ 2

}
.

Third, given two finite families of graphs H and L with m2(H) ⩾ m2(L), we define

m2(H,L) := min
H∈H

m2(H,L).

Finally, continuing the terminology above, let us say that the pair (H,L) is strictly balanced if
every graph in L is strictly 2-balanced and every graph in H is strictly m2(·,L)-balanced.

The following conjecture is a natural generalization of Conjecture 1.2 to families of graphs.

Conjecture 1.9 (Kohayakawa–Kreuter conjecture for families). Let H1, . . . ,Hr be finite fami-
lies of graphs with m2(H1) ⩾ · · · ⩾ m2(Hr) and suppose that m2(H2) > 1. There exist constants

5Note that m2(H1, H2) ⩽ m2(H1), hence (c) holds if χ(H1) > m2(H1)+1, and cliques satisfy m2(Kk) =
k+1
2

.
6In fact, our proof of (e) applies to a larger class of graphs, which we call (s, t)-graphs; see Section 5 for details.
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c, C > 0 such that

lim
n→∞

Pr(Gn,p is Ramsey for (H1, . . . ,Hr)) =

{
1 if p ⩾ Cn−1/m2(H1,H2),

0 if p ⩽ cn−1/m2(H1,H2).

Note that, for any H1 ∈ H1, . . . ,Hr ∈ Hr, the property of being Ramsey for (H1, . . . ,Hr)
implies the property of being Ramsey for (H1, . . . ,Hr). Therefore, the 1-statement of Conjec-
ture 1.9 follows from the 1-statement of Conjecture 1.2, which we know to be true by the result
of Mousset, Nenadov, and Samotij [20].

The 0-statement of Conjecture 1.9 remains open; the only progress to date is due to the first
two authors [17], who proved Conjecture 1.9 whenever m2(H1) = m2(H2). We make further
progress on this conjecture: as in the case of single graphs, we prove a probabilistic lemma that
reduces the 0-statement to a deterministic lemma, which is clearly a necessary condition.

Theorem 1.10 (Probabilistic lemma for families). The 0-statement of Conjecture 1.9 holds if
and only if, for every strictly balanced pair (H1,H2) of finite families of graphs, every graph G
that is Ramsey for (H1,H2) satisfies m(G) > m2(H1,H2).

As in Theorems 1.4 and 1.7, we can prove the deterministic lemma for families in a wide
variety of cases, namely when every graph H1 ∈ H1 or every graph H2 ∈ H2 satisfies one of the
conditions in Theorem 1.7. In particular, we resolve Conjecture 1.9 in many cases. However, we
believe that the right way to resolve Conjecture 1.9 in its entirety is the same as the right way to
resolve the original Kohayakawa–Kreuter conjecture, Conjecture 1.2. Namely, if Conjecture 1.5
is true, then Conjecture 1.9 is true for all families of graphs.

1.5. Organization. Most of the rest of this paper is dedicated to proving Theorem 1.10, and
thus also Theorem 1.3. Our technique is inspired by recent work of the first two authors [17],
who proved Conjecture 1.9 in the case m2(H1) = m2(H2). Therefore, we assume henceforth
that m2(H1) > m2(H2). We will now change notation and denote H1 = H and H2 = L.
The names stand for heavy and light, respectively, and are meant to remind the reader that
m2(L) < m2(H). We also assume henceforth that (H,L) is a strictly balanced pair of families.

The rest of this paper is organized as follows. In Section 2, we present a high-level overview of
our proof of Theorem 1.10. Section 3 contains a number of preliminaries for the proof, including
the definitions and basic properties of cores—a fundamental notion in our approach—as well
as several simple numerical lemmas. The proof of Theorem 1.10 is carried out in detail in
Section 4. In Section 5, we prove the deterministic lemma under various assumptions, which
yields Theorems 1.4 and 1.7 as well as their generalizations to families. We conclude with
two appendices: Appendix A proves Theorem 1.6 by explaining what in our proof needs to be
adapted to deal with the three-color setting; and Appendix B presents our partial progress on
Conjecture 1.5.

Additional note. As this paper was being written, we learned that very similar results were
obtained independently by Bowtell, Hancock, and Hyde [2], who also resolve Conjecture 1.2 in
the vast majority of cases. As with this paper, they first prove a probabilistic lemma, show-
ing that resolving the Kohayakawa–Kreuter conjecture is equivalent to proving a deterministic
coloring result. By using a wider array of coloring techniques, they are able to prove more
cases of Conjecture 1.2 than we can. Additionally, they consider a natural generalization of
the Kohayakawa–Kreuter to uniform hypergraphs (a topic that we chose not to pursue here)
and establish its 0-statement for almost all pairs of hypergraphs; see also [9] for more on such
hypergraph questions. In contrast, their work does not cover families of graphs, a generalization
that falls out naturally from our approach.

Acknowledgments. We would like to thank Anita Liebenau and Let́ıcia Mattos for fruitful dis-
cussions on Ramsey properties of random graphs. We are also indebted to Candida Bowtell,
Robert Hancock, and Joseph Hyde for sharing an early draft of their paper [2] with us, and for
their many invaluable comments.
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2. Proof outline

We now sketch, at a very high level, the proof of the probabilistic lemma. Let us fix a strictly
balanced pair of families (H,L). We wish to upper-bound the probability that Gn,p is Ramsey

for (H,L), where p ⩽ cn−1/m2(H,L) for an appropriately chosen constant c = c(H,L) > 0. Our
approach is modeled on the recent proof of the 0-statement of Theorem 1.1 due to the first two
authors [17]; however, there are substantial additional difficulties that arise in the asymmetric
setting.

One can immediately make several simplifying assumptions. First, if Gn,p is Ramsey for
(H,L), then there exists some G ⊆ Gn,p that is minimally Ramsey for (H,L), in the sense that
any proper subgraph G′ ⊊ G is not Ramsey for (H,L). It is not hard to show (see Lemma 3.2
below) that every minimally Ramsey graph has a number of interesting properties. In particular,
if G is minimally Ramsey, then every edge of G lies in at least one copy of some H ∈ H, and at
least one copy of some L ∈ L. Our arguments will exploit a well-known strengthening of this
property, which we call supporting a core; see Definition 3.1 for the precise definition.

We would ideally like to union-bound over all possible minimally Ramsey graphs G in order
to show that a.a.s. none of them appears in Gn,p. Unfortunately, there are potentially too many
minimally Ramsey graphs for this to be possible. To overcome this, we construct a smaller
family S of subgraphs of Kn such that every Ramsey graph G contains some element of S as
a subgraph. Since S is much smaller than the family of minimally Ramsey graphs, we can
effectively union-bound over S. This basic idea also underlies the container method [1, 28]
and the recent work of Harel, Mousset, and Samotij on the upper tail problem for subgraph
counts [12]. The details here, however, are slightly subtle; there are actually three different
types of graphs in S and a different union-bound argument is needed to handle each type.

We construct our family S with the use of an exploration process on minimally Ramsey
graphs, each of which supports a core. This exploration process starts with a fixed edge of Kn

and gradually adds to it copies of graphs in H∪L. As long as the subgraph G′ ⊆ G of explored
edges is not yet all of G, we add to G′ a copy of some graph in H∪L that intersects G′ but is not
fully contained in it. By choosing this copy in a principled manner (more on this momentarily),
we can ensure that S satisfies certain conditions which enable this union-bound argument.

Since our goal is to show that the final graph G′ is rather dense (and thus unlikely to appear
in Gn,p), we always prefer to add copies of graphs in H, as these boost the density of G′. If
there are no available copies of H ∈ H, we explore along some L ∈ L. As L may be very sparse,
this can hurt us; however, the “core” property guarantees that each copy of L comes with at
least one copy of some H ∈ H per new edge. An elementary (but fairly involved) computation
shows that the losses and the gains pencil out, which is the key fact showing that S has the
desired properties.

3. Preliminaries

3.1. Ramsey graphs and cores. Given a graph G, denote by FH[G],FL[G] the set of all
copies of members of H,L, respectively, in G. We think of FH[G],FL[G] as hypergraphs on
the ground set E(G); in particular, we think of an element of FH[G],FL[G] as a collection of
edges of G that form a copy of some H ∈ H, L ∈ L, respectively. To highlight the (important)
difference between the members of H∪L and their copies (i.e. the elements of FH[G]∪FL[G]),

we will denote the former by H and L and the latter by Ĥ and L̂.
Given a graph G and FH ⊆ FH[G],FL ⊆ FL[G], we say that the tuple (G,FH,FL) is Ramsey

if, for every two-coloring of E(G), there is an element of FH that is monochromatic red or an
element of FL that is monochromatic blue. In particular, we see that G is Ramsey for (H,L) if
and only if (G,FH[G],FL[G]) is Ramsey. Having said that, allowing tuples (G,FH,FL) where
FH and FL are proper subsets of FH[G] and FL[G], respectively, enables us to deduce further
useful properties. These are encapsulated in the following definition.

7



Definition 3.1. An (H,L)-core (or core for short) is a tuple (G,FH,FL), where G is a graph
and FH ⊆ FH[G],FL ⊆ FL[G], with the following properties:

• The hypergraph FH ∪ FL is connected and spans E(G).

• For every Ĥ ∈ FH and every edge e ∈ Ĥ, there exists an L̂ ∈ FL such that Ĥ ∩ L̂ = {e}.

• For every L̂ ∈ FL and every edge e ∈ L̂, there exists an Ĥ ∈ FH such that Ĥ ∩ L̂ = {e}.

We say that G supports a core if there exist FH ⊆ FH[G],FL ⊆ FL[G] such that (G,FH,FL) is
a core.

The reason we care about cores is that minimal Ramsey graphs support cores, as shown in the
following lemma. Essentially the same lemma appears in the work of Rödl and Ruciński [25],
where it is given as an exercise. The same idea was already used in several earlier works,
including [15, Claim 6] and [18, Lemma 4.1].

Lemma 3.2. Suppose that a graph G is Ramsey for (H,L), but none of its proper subgraphs
are Ramsey for (H,L). Then G supports an (H,L)-core.

Proof. As G is Ramsey for (H,L), we know that (G,FH[G],FL[G]) is a Ramsey tuple. Let
FH ⊆ FH[G],FL ⊆ FL[G] be inclusion-minimal subfamilies such that (G,FH,FL) is still a
Ramsey tuple. In other words, this tuple is Ramsey, but for any F ′

H ⊆ FH,F ′
L ⊆ FL such

that at least one inclusion is strict, the tuple (G,F ′
H,F ′

L) is not Ramsey. We will show that
(G,FH,FL) is a core.

If some e ∈ E(G) is not contained in any edge of FH ∪ FL, then (G \ e,FH,FL) is still
Ramsey, and thus G \ e is Ramsey for (H,L), contradicting the minimality of G. Furthermore,
if FH ∪ FL is not connected, then at least one of its connected components induces a Ramsey
tuple, which contradicts the minimality of (FH,FL). Thus, the first condition in the definition
of a core is satisfied. We now turn to the next two parts of the definition.

To see that the second condition in the definition of a core is satisfied, fix some Ĥ ∈ FH and

some e ∈ Ĥ. By minimality, we can find a two-coloring of E(G) such that no element of FL is

blue and no element of FH \ {Ĥ} is red. Note that all edges of Ĥ are colored red, as otherwise
our coloring would witness (G,FH,FL) being not Ramsey. Flip the color of e from red to blue.

Since Ĥ is now no longer monochromatic red, we must have created a monochromatic blue

element L̂ of FL. As all edges of Ĥ \ e are still red, we see that Ĥ ∩ L̂ = {e}, as required.
Interchanging the roles of FH,FL, and the colors yields the third condition in the definition of
a core. □

3.2. Numerical lemmas. In this section, we collect a few useful numerical lemmas, all of
which are simple combinatorial facts about vertex- and edge-counts in graphs. We begin with
the following well-known result, which we will use throughout.

Lemma 3.3 (The mediant inequality). Let a, c ⩾ 0 and b, d > 0 be real numbers with a/b ⩽ c/d.
Then

a

b
⩽

a + c

b + d
⩽

c

d
.

Moreover, if one inequality is strict, then so is the other (which happens if and only if a/b < c/d).

Proof. Both inequalities are easily seen to be equivalent to the inequality ad ⩽ bc, which is itself
the same as a/b ⩽ c/d. □

Lemma 3.4. Let (H,L) be a strictly balanced pair. If m2(L) < m2(H), then m2(L) <
m2(H,L) < m2(H).

Proof. To see the second inequality, let H ∈ H be a graph with m2(H) = m2(H) and observe
that the strict m2(·,L)-balancedness of H implies that

m2(H,L) =
eH

vH − 2 + 1/m2(L)
=

(eH − 1) + 1

(vH − 2) + 1/m2(L)
⩽

m2(H) · (vH − 2) + 1

(vH − 2) + 1/m2(L)
.

Since m2(H) = m2(H) > m2(L), Lemma 3.3 implies that m2(H,L) ⩽ m2(H,L) < m2(H).
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For the first inequality, let H ∈ H be a graph for which m2(H,L) = m2(H,L) and let J ⊆ H
be its subgraph with eJ−1

vJ−2 = m2(H). By the strict m2(·,L)-balancedness of H, we have

m2(H,L) ⩾ m2(J,L) =
(eJ − 1) + 1

(vJ − 2) + 1/m2(L)
=

m2(H) · (vJ − 2) + 1

(vJ − 2) + 1/m2(L)
.

Since m2(H) > m2(L), Lemma 3.3 implies that m2(H,L) = m2(H,L) ⩾ m2(J,L) > m2(L). □

Lemma 3.5. Let H ∈ H be strictly m2(·,L)-balanced. Then for any F ⊊ H with vF ⩾ 2, we
have

eH − eF > m2(H,L) · (vH − vF ) ⩾ m2(H,L) · (vH − vF ).

Proof. The second inequality follows from the definition of m2(H,L). Since eF < eH , we may
assume that vF < vH , as otherwise the claimed inequality holds vacuously. Since H is strictly
m2(·,L)-balanced, we have

m2(H,L) =
eH

vH − 2 + 1/m2(L)
=

(eH − eF ) + eF
(vH − vF ) + (vF − 2 + 1/m2(L))

whereas
eF

vF − 2 + 1/m2(L)
< m2(H,L).

Since vH > vF , we may use Lemma 3.3 to conclude that (eH − eF )/(vH − vF ) > m2(H,L). □

Lemma 3.6. Let L ∈ L be strictly 2-balanced. Then for any J ⊊ L with eL ⩾ 1, we have

eL − eJ ⩾ m2(L) · (vL − vJ) ⩾ m2(L) · (vL − vJ).

Moreover, the first inequality is strict unless J = K2.

Proof. The second inequality is immediate since m2(L) ⩽ m2(L). Since eJ < eL, we may
assume that vJ < vL, as otherwise the claimed (strict) inequality holds vacuously. We clearly
have equality if J = K2 and strict inequality if vJ = 2 and eJ = 0, so we may assume henceforth
that vJ > 2. Since L is strictly 2-balanced,

m2(L) =
eL − 1

vL − 2
=

(eL − eJ) + (eJ − 1)

(vL − vJ) + (vJ − 2)

whereas (eJ − 1)/(vJ − 2) < m2(L). Since vJ > 2, we may apply Lemma 3.3 to conclude the
desired result, with a strict inequality. □

Lemma 3.7. Suppose that (H,L) is a strictly balanced pair. Defining α := m2(H,L) and
X := minH∈H{(eH − 1) − α · (vH − 2)}, we have that

X + (vK − 2)(α− 1) ⩾ eK ·
(

α

m2(L)
− 1

)
for every L ∈ L and every non-empty K ⊆ L. Moreover, the inequality is strict unless K = K2.

Proof. Without loss of generality, we may assume that m2(L) < α and that vK > 2, as otherwise
the statement holds vacuously (recall from Lemma 3.4 that α = m2(H,L) > m2(L) > 1). Fix
some L ∈ L and a nonempty K ⊆ L. Recall that each H ∈ H is strictly m2(·,L)-balanced and
satisfies m2(H,L) ⩾ m2(H,L) = α. This implies that

eH
vH − 2 + 1/m2(L)

⩾ α

or, equivalently,

eH ⩾ α · (vH − 2) +
α

m2(L)
.

Consequently,

X = min
H∈H

{(eH − 1) − α · (vH − 2)} ⩾
α

m2(L)
− 1 ⩾

α

m2(L)
− 1,

where the final inequality uses that m2(L) ⩾ m2(L).
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Since L is strictly 2-balanced and we assumed that m2(L) < α, we have

(eK − 1) ·
(

α

m2(L)
− 1

)
⩽ m2(L) · (vK − 2) ·

(
α

m2(L)
− 1

)
= (vK − 2)(α−m2(L)).

Rearranging the above inequality, we obtain

eK ·
(

α

m2(L)
− 1

)
− (vK − 2)(α− 1) ⩽ (1 −m2(L))(vK − 2) +

(
α

m2(L)
− 1

)
<

α

m2(L)
− 1 ⩽ X,

where the penultimate inequality uses the assumption that vK > 2. □

4. Proof of the probabilistic lemma

In this section, we prove Theorem 1.10. We in fact prove the following more precise statement.

Lemma 4.1 (Theorem 1.10, rephrased). Let (H,L) be a strictly balanced pair of finite families of
graphs satisfying m2(H) > m2(L). There exists a constant c > 0 such that the following holds. If

p ⩽ cn−1/m2(H,L), then a.a.s. every G ⊆ Gn,p which supports a core satisfies m(G) ⩽ m2(H,L).

Note that this immediately implies the difficult direction in Theorem 1.10. Indeed, suppose
that the 0-statement of 1.9 fails for some tuple (H1, . . . ,Hr), i.e., the random graph Gn,p is

Ramsey for (H1, . . . ,Hr) with probability bounded away from zero when p = cn−1/m2(H1,H2),
for an arbitrarily small constant c > 0. In particular, with probability bounded away from
zero, Gn,p contains a graph that is also Ramsey for any pair (H,L) of families of subgraphs
of (H1,H2). For an appropriately chosen pair (H,L), Lemma 3.2 implies that some subgraph
G ⊆ Gn,p supports an (H,L)-core. By the assumed assertion of Lemma 4.1, a.a.s. any such
G ⊆ Gn,p satisfies m(G) ⩽ m2(H,L). However, by the deterministic lemma (i.e. the assumption
of Theorem 1.10), we know that no such G can be Ramsey for (H,L), a contradiction.

Our proof of Lemma 4.1 follows closely the proof of the probabilistic lemma in recent work
of the first two authors [17]. Fix a strictly balanced pair (H,L) of families satisfying m2(H) >
m2(L), and let α := m2(H,L). Let Gbad denote the set of graphs G ⊆ Kn which support a core
and satisfy m(G) > m2(H,L). The key lemma, which implies Lemma 4.1, is as follows.

Lemma 4.2. There exist constants Λ,K > 0 and a collection S of subgraphs of Kn satisfying
the following properties:

(a) Every element of Gbad contains some S ∈ S as a subgraph.
(b) Every S ∈ S satisfies at least one of the following three conditions:

(i) vS ⩾ log n and eS ⩾ α · (vS − 2);
(ii) vS < log n and eS ⩾ α · vS + 1;
(iii) vS ⩽ K and m(S) > α.

(c) For every k ∈ JnK, there are at most (Λn)k graphs S ∈ S with vS = k.

Before we prove Lemma 4.2, let us see why it implies Lemma 4.1.

Proof of Lemma 4.1. Recall that p ⩽ cn−1/α, for a small constant c = c(H,L) to be chosen
later. We wish to prove that a.a.s. Gn,p contains no element of Gbad. By Lemma 4.2(a), it
suffices to prove that a.a.s. Gn,p contains no element of S. By (b), the elements of S are of
three types, each of which we deal with separately. First, recall that for any fixed graph S with
m(S) > α, we have that Pr(S ⊆ Gn,p) = o(1) (see e.g. [14, Theorem 3.4]). As there are only a
constant number of graphs on at most K vertices, we may apply the union bound and conclude
that a.a.s. no graph S satisfying vS ⩽ K and m(S) > α appears in Gn,p. This deals with the
elements of S corresponding to case (iii).
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Let S ′ ⊆ S be the set of S ∈ S which lie in cases (i) or (ii). We have that

Pr(S ⊆ Gn,p for some S ∈ S ′) ⩽
∑
S∈S′

peS

⩽
⌈logn⌉−1∑

k=1

(Λn)kpαk+1 +

∞∑
k=⌈logn⌉

(Λn)kpα(k−2)

⩽ p
∞∑
k=1

(Λcα)k + c−2αn2
∞∑

k=⌈logn⌉

(Λcα)k

We now choose c so that Λcα = e−3. Then the first sum above can be bounded by p, which
tends to 0 as n → ∞. The second term can be bounded by 2c−2αn−1, which also tends to 0 as
n → ∞. All in all, we find that a.a.s. Gn,p does not contain any graph in S, as claimed. □

4.1. The exploration process and the proof of Lemma 4.2. In this section, we prove
Lemma 4.2. We will construct the family S by considering an exploration process on the set
G of graphs G ⊆ Kn which support a core. For each such G ∈ G, let us arbitrarily choose
collections FH ⊆ FH[G] and FL ⊆ FL[G] such that (G,FH,FL) is a core. From now on, by
copies of graphs from H,L in G, we mean only those copies that belong to the families FH,FL,
respectively. This subtlety will be extremely important in parts of the analysis.

We first fix arbitrary orderings on the graphs in H and L. Additionally, we fix a labeling of
the vertices of Kn, which induces an ordering of all subgraphs according to the lexicographic
order. Together with the ordering on H,L, we obtain a lexicographic ordering on all copies
in Kn of graphs in H,L. Now, given a G ∈ G, we build a sequence G0 ⊊ G1 ⊊ · · · ⊆ G as
follows. We start with G0 being the graph comprising only the smallest edge of G. As long as
Gi ̸= G, do the following: Since G ̸= Gi and (G,FH,FL) is a core, there must be some copy of
a graph from H ∪ L which belongs to FH ∪ FL that intersects Gi but is not fully contained in
Gi. Call such an overlapping copy regular if it intersects Gi in exactly one edge, called its root ;
otherwise, call the copy degenerate. We form Gi+1 from Gi as follows:

(1) Suppose first that there is an overlapping copy of some graph in H. We form Gi+1 by
adding to Gi the smallest (according to the lexicographic order) such copy. We call
Gi → Gi+1 a degenerate H-step.

(2) Otherwise, there must be an overlapping copy L̂ of some L ∈ L. Note that, for every edge

e ∈ L̂ \Gi, there must be a copy of some H ∈ H that meets L̂ only at e, as (G,FH,FL)
is a core. Note further that this copy of H does not intersect Gi, as otherwise we would

perform a degenerate H-step. We pick the smallest such copy for every e ∈ L̂ \Gi, and

call it Ĥe (note that the graphs He ∈ H such that He
∼= Ĥe may be different for different

choices of e). We say that L̂ is pristine if it is regular and the graphs {Ĥe}e∈L̂\Gi
are

all vertex-disjoint (apart from the intersections that they are forced to have in V (L̂)).
(2.1) If there is a pristine copy of some graph in L, we pick the smallest one in the

following sense: First, among all edges of Gi that are roots of a pristine copy of
some graph in L, we choose the one that arrived to Gi earliest. Second, among all
pristine copies that are rooted at this edge, we pick the smallest (according to the

lexicographic order). We then form Gi+1 by adding to Gi this smallest copy L̂ as

well as all Ĥe where e ∈ L̂ \Gi. We call Gi → Gi+1 a pristine step.
(2.2) If there are no pristine copies of any graph in L, we pick the smallest (according to

the lexicographic order) overlapping copy L̂ of a graph in L and we still form Gi+1

by adding to Gi the union of L̂ and all its Ĥe with e ∈ L̂ \Gi. We call Gi → Gi+1

a degenerate L-step.

We define the balance of Gi to be

b(Gi) := eGi − α · vGi ,
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where we recall that α = m2(H,L). The key result we will need in order to prove (b) is the
following lemma. We remark that a similar result was proved by Hyde [13, Claims 6.2 and 6.3];
it plays an integral role in his approach to the Kohayakawa–Kreuter conjecture.

Lemma 4.3. For every i, we have that b(Gi+1) ⩾ b(Gi). Moreover, there exists some δ =
δ(H,L) > 0 such that b(Gi+1) ⩾ b(Gi) + δ if Gi+1 was obtained from Gi by a degenerate step.

As the proof of Lemma 4.3 is somewhat technical, we defer it to Section 4.2. For the moment,
we assume the result and continue the discussion of how we construct the family S. We now
let Γ := ⌈2α/δ⌉, where δ is the constant from Lemma 4.3. For G ∈ G, let

τ(G) := min{i : vGi ⩾ log n or Gi = G or Gi−1 → Gi is the Γth degenerate step}
and let

S := {Gτ(G) : G ∈ Gbad}. (1)

Having defined the family S, we are ready to prove Lemma 4.2. Since the definition of S
clearly guarantees property (a), it remains to establish properties (b) and (c). We begin by
showing that, if K is sufficiently large (depending only on H and L), then (b) holds.

Proof of Lemma 4.2(b). Let δ be the constant from Lemma 4.3, let M := max{eL · vH : H ∈
H, L ∈ L}, and let K := 2M2Γ; note that each of these parameters depends only on H and L.

Every S ∈ S is of the form Gτ(G) for some G ∈ Gbad. We split into cases depending on which
of the three conditions defining τ(G) caused us to stop the exploration. Suppose first that we
stopped the exploration because vS ⩾ log n. By Lemma 4.3, we have that

eS − α · vS = b(S) = b(Gτ(G)) ⩾ b(G0) = 1 − 2α,

and therefore eS ⩾ α · (vS − 2). This yields case (i).
Next, suppose we stopped the exploration because step Gτ(G)−1 → Gτ(G) was the Γth degen-

erate step. As we are not in the previous case, we may assume that vS < log n. By Lemma 4.3
and our choice of Γ, we have that

eS − α · vS = b(S) = b(Gτ(G)) ⩾ b(G0) + Γδ ⩾ 1 − 2α + 2α = 1.

Rearranging, we see that eS ⩾ α · vS + 1, yielding case (ii).
The remaining case is when we stop because S = G ∈ Gbad. Since the definition of Gbad

implies that m(G) > α, in order to establish (iii), we only need to show that vG ⩽ K. For this
proof, we need to keep track of another parameter during the exploration process, which we

term the pristine boundary. Recall that at every pristine step, we add to Gi a copy L̂ of some

L ∈ L that intersects Gi in a single edge (the root), and then add copies Ĥe of graphs He ∈ H,

one for every edge of L̂ apart from the root. Let us say that the boundary of this step is the

set of all newly added vertices that are not in L̂, that is, the set V (Gi+1) \ (V (Gi) ∪ V (L̂)) =

(
⋃

e∈L̂\Gi
V (Ĥe)) \ V (L̂). Note that the size of the boundary is equal to

Yi :=
∑

e∈L̂\Gi

(vHe − 2);

indeed, by the definition of pristine steps, the copies Ĥe are vertex-disjoint outside of V (L̂).
We claim that Yi ⩾ 3. To see this, note first that L has at least three edges, as it is not a

forest. Similarly, each He has at least three vertices. Putting these together, we see that there
are at least two terms in the sum, and every term in the sum is at least one. Thus, Yi ⩾ 3
unless eL = 3 and vHe = 3 for all e. But in this case, L = K3 = He ∈ H for all e, which means

that L̂ should have been added to Gi as a degenerate H-step.
We now inductively define the pristine boundary ∂Gi of Gi as follows. We set ∂G0 := ∅. If

Gi → Gi+1 is a pristine step, then we delete from ∂Gi the two endpoints of the root and add to
∂Gi the boundary of this pristine step. Note that |∂Gi+1| ⩾ |∂Gi|+ Yi − 2 ⩾ |∂Gi|+ 1. On the
other hand, if Gi → Gi+1 is a degenerate step, then we only remove vertices from ∂Gi, without
adding any new vertices. Namely, we remove from ∂Gi all the vertices which are included in
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the newly added graphs. In other words, if we performed a degenerate H-step by adding a copy

Ĥ of some graph in H, we set ∂Gi+1 := ∂Gi \ V (Ĥ). Similarly, if we performed a degenerate

L-step by adding a copy L̂ of some graph in L along with the graphs Ĥe for all e ∈ L̂ \Gi, we

set ∂Gi+1 := ∂Gi \ (V (L̂) ∪
⋃

e V (Ĥe)). Note that in either case |∂Gi+1| ⩾ |∂Gi| −M , as the
union of all graphs added in each degenerate step can have at most M vertices.

We now argue that ∂Gτ(G) = ∅. Indeed, suppose we had some vertex v ∈ ∂Gτ(G). By

definition, v was added during a pristine step, as a vertex of a copy Ĥe of some graph He ∈ H,

and was never touched again. Observe that v is incident to some edge uv of Ĥe that was not

touched by any later step of the exploration. However, as (G,FH,FL) is a core and Ĥe ∈ FH,

there must be some L̂uv ∈ FL that intersects Ĥe only at uv. Moreover, as L̂uv has minimum

degree at least two (by the strict 2-balancedness assumption), there is some edge vw ∈ L̂uv \uv
that is incident to v. Since we assumed that Gτ(G) = G, the edge vw must have been added at
some point, a contradiction to the assumption that v was never touched again.

Finally, since |∂Gi| increases by at least one during every pristine step and decreases by at
most M during each of the at most Γ degenerate steps, in order to achieve ∂Gτ(G) = ∅, there
can be at most MΓ pristine steps. In particular, the total number of exploration steps is at
most MΓ + Γ. As each exploration step adds at most M vertices to Gi, we conclude that
vG ⩽ M(MΓ + Γ) + 2 ⩽ K. This completes the proof of (iii). □

Proof of Lemma 4.2(c). Suppose S has k vertices and let G ∈ Gbad be such that S = Gτ(G).
We consider the exploration process on G. Note that in every step we add an overlapping copy
of a graph from a finite family F that comprises all graphs in H (for the cases where we made
a degenerate H-step) and graphs in L that have graphs from H glued on subsets of their edges,
with all intersection patterns (for the pristine and degenerate L-steps). Let F× denote the
graphs in F that correspond to a pristine step.

Now, every degenerate step can be described by specifying the graph F ∈ F whose copy

F̂ we are adding, the subgraph F ′ ⊆ F and the embedding φ : V (F ′) → V (Gi) that describe

the intersection F̂ ∩ Gi, and the sequence of vF − vF ′ vertices of Kn that complete φ to an
embedding of F into Kn. Every pristine step is uniquely described by the root edge in Gi, the
graph F ∈ F×, the edge of F corresponding to the root, and the (ordered sequence of) vF − 2
vertices of Kn that complete the root edge to a copy of F in Kn. There are at most nk ways to
choose the sequence of vertices that were added through this exploration process, in the order
that they are introduced to G. Each pristine step adds at least one new vertex, so there are at
most k pristine steps. Furthermore, there are always at most Γ degenerate steps, meaning that
τ(G) ⩽ k+ Γ. In particular, there are at most (k+ Γ) ·2k+Γ ways to choose τ(G) and to specify
which steps were pristine.

For every degenerate step, there are at most

∑
F∈F

vF∑
ℓ=2

(
vF
ℓ

)
kℓ ⩽ |F| · (k + 1)Mv

ways of choosing F ∈ F and describing the intersection of its copy F̂ with Gi (the set V (F ′) ⊆
V (F ) and the embedding φ above), where Mv := max{vF : F ∈ F}. As for the pristine steps,
note that, in the course of our exploration, the sequence of the arrival times of the roots to
Gτ(G) must be non-decreasing. This is because as soon as an edge appears in some Gi, every
pristine step that includes it as a root at any later step is already available, and we always
choose the one rooted at the edge that arrived to G the earliest. Therefore, there are at most(
eS+k
k

)
possible sequences of root edges, since this is the number of non-decreasing sequences of

length k in JeSK. To supplement this bound, remember that every step increases the number of
edges in Gi by at most Me := max{eF : F ∈ F}, which means that

eS ⩽ 1 + τ(G) ·Me ⩽ 1 + (k + Γ) ·Me.
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To summarize, the number of S ∈ S with k vertices is at most

nk · (k + Γ) · 2k+Γ ·
(
|F| · (k + 1)Mv

)Γ ·
(

(k + Γ) ·Me + k + 1

k

)
· (|F| ·Me)

k .

Every term in this product, apart from the first, is bounded by an exponential function of k,
since Γ, |F|,Mv, and Me are all constants. Therefore, if we choose Λ = Λ(H,L) sufficiently
large, we find that the number of S ∈ S with vS = k is at most (Λn)k, as claimed. □

4.2. Proof of Lemma 4.3. In this section, we prove Lemma 4.3. The proof is divided into a
number of claims. Recall Lemma 3.5, which asserts that

eH − eF > m2(H,L) · (vH − vF ) = α · (vH − vF )

for all H ∈ H and all F ⊊ H. This implies that we can choose some δ1 = δ1(H,L) > 0 so that

eH − eF ⩾ α · (vH − vF ) + δ1 (2)

for all H ∈ H and all F ⊊ H; we henceforth fix such a δ1 > 0.
Our first claim deals with the (easy) case that Gi → Gi+1 is a degenerate H-step.

Claim 4.4. If Gi → Gi+1 is a degenerate H-step, then b(Gi+1) ⩾ b(Gi) + δ1.

Proof. Suppose we add to Gi a copy of some H ∈ H that intersects Gi on a subgraph F ⊆ H.
This means that

eGi+1 = eGi + (eH − eF ) and vGi+1 = vGi + (vH − vF )

and thus

b(Gi+1) − b(Gi) = (eH − eF ) − α · (vH − vF ) ⩾ δ1,

where the inequality follows from (2), as F must be a proper subgraph of H. □

Now, suppose that Gi → Gi+1 is an L-step, either degenerate or pristine, which means that

we add a copy L̂ of some L ∈ L and then add, for every edge e ∈ L̂ \ Gi, a copy Ĥe of some

He ∈ H. Let G′
i := Gi ∪ L̂ and let Ĵ := Gi ∩ L̂, so that Ĵ ∼= J for some J ⊊ L with at least one

edge. Note that

b(G′
i) − b(Gi) = (eL − eJ) − α · (vL − vJ), (3)

as we add eL − eJ edges and vL − vJ vertices to Gi when forming G′
i.

In order to analyze b(Gi+1)−b(G′
i), we now define an auxiliary graph I as follows. Its vertices

are the edges of L̂ \ Ĵ . Recall that, for every such edge e, the graph Ĥe
∼= He intersects G′

i only

in the edge e. A pair e, f of edges of L̂\ Ĵ will be adjacent in I if and only if their corresponding

graphs Ĥe and Ĥf share at least one edge (equivalently, the graphs Ĥe \ e and Ĥf \ f share an
edge).

Denote the connected components of I by K1, . . . ,Km and note that each of them corresponds

to a subgraph of L̂ \ Ĵ . For each j ∈ JmK, let

Uj :=
⋃

e∈Kj

(Ĥe \ e).

Note that the graphs G′
i and U1, . . . , Um are pairwise edge-disjoint and that each Uj shares at

least vKj vertices (the endpoints of all the edges of Kj) with G′
i. It follows that

b(Gi+1) − b(G′
i) ⩾

m∑
j=1

(eUj − α · (vUj − vKj )) =

m∑
j=1

(b(Uj) + α · vKj ). (4)

Finally, as in the statement of Lemma 3.7, define

X := min{(eH − 1) − α · (vH − 2) : H ∈ H}.

The following claim lies at the heart of the matter.
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Claim 4.5. For every j ∈ JmK, we have

b(Uj) ⩾ X − 2α− (vKj − 2) + min{δ1, 1} · 1vKj
>2.

Proof. Since Kj is connected in I, we may order its edges as e1, . . . , eℓ so that, for each
r ∈ Jℓ− 1K, the edge er+1 is I-adjacent to {e1, . . . , er}. Letting F ⊆ Her+1 be the subgraph
corresponding to this intersection, we define, for each r ∈ {0, . . . , ℓ},

U r
j :=

r⋃
s=1

(Ĥes \ es),

so that ∅ = U0
j ⊆ · · · ⊆ U ℓ

j = Uj . Observe that

b(U1
j ) = eU1

j
− α · vU1

j
= (eHe1

− 1) − α · vHe1
⩾ X − 2α,

where the inequality follows from the definition of X.

Suppose now that r ⩾ 1 and let F̂ be the intersection of Ĥer+1 \ er+1 with U r
j ; note that this

intersection is non-empty as er+1 is I-adjacent to {e1, . . . , er}. We have

b(U r+1
j ) − b(U r

j ) = (eHer+1
− 1 − eF ) − α · (vHer+1

− vF ).

Let tr+1 be the number of endpoints of er+1 that are not in U r
j . Suppose first that tr+1 = 0,

that is, both endpoints of er+1 are already in U r
j . In this case, both endpoints of er+1 also

belong to F̂ and thus F̂ ∪ er+1 is isomorphic to a subgraph F+ ⊆ Her+1 with eF + 1 edges and
vF vertices, which means that

b(U r+1
j ) − b(U r

j ) = (eHer+1
− eF+) − α · (vHer+1

− vF+) ⩾ 0,

by Lemma 3.5. In case tr+1 > 0, F is a proper subgraph of Her+1 and thus we have

b(U r+1
j ) − b(U r

j ) ⩾ δ1 − 1 ⩾ δ1 − tr+1,

see (2). We may thus conclude that

b(Uj) = b(U1
j ) +

ℓ−1∑
r=1

(b(U r+1
j ) − b(U r

j )) ⩾ X − 2α−
ℓ−1∑
r=1

tr+1 + δ1 · 1t2+···+tℓ>0.

The desired inequality follows as t2 + · · ·+ tℓ = |V (Kj)\V (U1
j )| ⩽ vKj −2 and, further, vKj > 2

implies that the sum t2 + · · · + tr is either positive or at most vKj − 3. □

We are now ready to show that the balance only increases when we perform an L-step.

Claim 4.6. If Gi → Gi+1 is an L-step, then b(Gi+1) ⩾ b(Gi). Moreover, if this L-step is
degenerate, then b(Gi+1) ⩾ b(Gi) + δ2 for some δ2 > 0 that depends only on H and L.

Proof. By (3), (4), and Claim 4.6, we have

b(Gi+1) − b(Gi) = b(G′
i) − b(Gi) + b(Gi+1) − b(G′

i)

⩾ (eL − eJ) − α · (vL − vJ) +

m∑
j=1

(b(Uj) + α · vKj )

⩾ (eL − eJ) − α · (vL − vJ) +

m∑
j=1

(
X + (vKj − 2)(α− 1)

)
+ min{δ1, 1} · 1I≠∅,

since I is nonempty only if one of its components has more than two vertices. We now apply
Lemma 3.7 to each component Kj to conclude that

m∑
j=1

(
X + (vKj − 2)(α− 1)

)
⩾

m∑
j=1

eKj ·
(

α

m2(L)
− 1

)
= (eL − eJ)

(
α

m2(L)
− 1

)
.
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Therefore,

b(Gi+1) − b(Gi) ⩾ (eL − eJ) · α

m2(L)
− α · (vL − vJ) + min{δ1, 1} · 1I̸=∅ ⩾ min{δ1, 1} · 1I̸=∅,

where the last inequality follows from Lemma 3.6. This implies the desired result if the L-step
is pristine. If the L-step is not pristine but I has no edges, it means that some vertex was

repeated between different Ĥe. In that case, the first inequality in (4) is strict (we assumed
there that the graphs Uj share no vertices outside of V (Kj)). All in all, we obtain the desired
boost in the degenerate case. □

Combining Claims 4.4 and 4.6, we obtain Lemma 4.3. This completes the proof of the
probabilistic lemma.

5. Proof of the deterministic lemma

Given the probabilistic lemma and the work of the first two authors on the symmetric case [17],
in order to prove Conjecture 1.9, which generalizes the Kohayakawa–Kreuter conjecture, we
only need to show the following. For every strictly balanced pair (H,L) of finite families of
graphs with m2(H) > m2(L) > 1, we can two-color the edges of every graph G satisfying
m(G) ⩽ m2(H,L) so that there are neither red monochromatic copies of any H ∈ H nor blue
monochromatic copies of any L ∈ L. As discussed in the introduction, we do not know how
to do this in all cases. However, the following proposition lists a number of extra assumptions
under which we are able to find such a coloring. We recall the notion of the 1-density (or
fractional arboricity) of a graph L, defined by

m1(L) := max

{
eJ

vJ − 1
: J ⊆ L, vJ ⩾ 2

}
.

We also make the following definition.

Definition 5.1. Given positive integers s ⩽ t, we say that a graph is an (s, t)-graph if its
minimum degree is at least s, and every edge contains a vertex of degree at least t. We say that
a graph is (s, t)-avoiding if none of its subgraphs is an (s, t)-graph.

Proposition 5.2. Let (H,L) be a strictly balanced pair of finite families of graphs satisfying
m2(H) > m2(L) and suppose that at least one of the following conditions holds:

(a) χ(L) ⩾ 3 for all L ∈ L;
(b) χ(H) > m2(H,L) + 1 for every H ∈ H;
(c) m1(L) > 2 for all L ∈ L;
(d) every H ∈ H contains an (s, t)-graph as a subgraph, for some integers s ⩽ t satisfying

1

s + 1
+

1

t + 1
<

1

m2(H,L)
;

(e) ⌈m2(H,L)⌉ < m2(H);

Then any graph G with m(G) ⩽ m2(H,L) is not Ramsey for (H,L).

Cases (a)–(c) all follow fairly easily from known coloring techniques; we supply the details
in the remainder of this section. Case (d) is proved by a short inductive argument, see below.
Case (e) follows from our partial progress on Conjecture 1.5, namely, that we are able to prove
it when m(G) is an integer; we present the proof of this result in Appendix B. We end this
section with short derivations of Theorems 1.4 and 1.7 from the proposition.

Proof of Theorem 1.4. Assume that m2(L) > 11
5 . By passing to a subgraph with the same

2-density, we may assume that L is strictly 2-balanced. Thanks to cases (a) and (c) of Propo-
sition 5.2, we are done unless m1(L) ⩽ 2 and L is bipartite. The bounds on m1(L) and m2(L)
imply that 2vL − 2 ⩾ eL > 11

5 (vL − 2) + 1, which yields vL < 7. However, as L is bipartite on
at most six vertices, we have m2(L) ⩽ m2(K3,3) = 2, a contradiction. □

16



Proof of Theorem 1.7. Cases (a), (b), (c), and (f) follow immediately7 from Proposition 5.2.
For Theorem 1.7(d), note that a graph with minimum degree d is a (d, d)-graph. Thus, if
H1 has degeneracy at least d, then it contains some (d, d)-graph as a subgraph. Similarly,
Theorem 1.7(e) follows, since if s ⩽ t, then Ks,t is an (s, t)-graph satisfying 1/m2(Ks,t) =
(s + t− 2)/(st− 1) ⩾ 1/(s + 1) + 1/(t + 1). □

5.1. Auxiliary results. We start with a helpful observation relating m(G) and the degeneracy
of G. We say that a graph is d-degenerate if its degeneracy is at most d.

Lemma 5.3. Every graph G is ⌊2m(G)⌋-degenerate.

Proof. For every G′ ⊆ G, we have

δ(G′) ⩽

⌊
2eG′

vG′

⌋
⩽ ⌊2m(G)⌋,

where δ(G′) is the minimum degree of G′. □

Our second lemma allows us to compare between the various densities.

Lemma 5.4. For every graph H, we have m2(H) ⩽ m1(H) + 1
2 ⩽ m(H) + 1.

Proof. Notice that both e−1
v−2 ⩽ e

v−1 + 1
2 and e

v−1 ⩽ e
v + 1

2 are equivalent to e ⩽
(
v
2

)
, so both

inequalities hold whenever v, e are the numbers of vertices and edges, respectively, of any graph.
In particular, if v, e correspond to the subgraph of H that achieves m2(H), we find that m2(H) =
e−1
v−2 ⩽ e

v−1 + 1
2 ⩽ m1(H) + 1

2 . The second inequality follows in the same way, now passing to

the subgraph that achieves m1(H). □

Our next lemma gives a lower bound on the average degree of an (s, t)-graph. We remark
that this inequality is tight for Ks,t and that it can be restated as eH/vH ⩾ m(Ks,t).

Lemma 5.5. If H is an (s, t)-graph, then

1

s
+

1

t
⩾

vH
eH

.

Proof. The assumption that H is an (s, t)-graph implies that, for every uv ∈ E(H), we have
1/ deg(u) + 1/ deg(v) ⩽ 1/s + 1/t. This means that

eH ·
(

1

s
+

1

t

)
⩾

∑
uv∈H

(
1

deg(u)
+

1

deg(v)

)
= vH . □

The next lemma supplies a decomposition of a graph of bounded degeneracy.

Lemma 5.6. If a graph G is (dk − 1)-degenerate, for some positive integers d, k, then there is
a partition V (G) = V1∪· · ·∪Vk such that the graphs G[V1], . . . , G[Vk] are all (d−1)-degenerate.

Proof. We may construct the desired partition in the following way. Initialize V1 = · · · = Vk = ∅
and let v1, . . . , vn be an ordering of the vertices of G such that every vi has at most dk − 1
neighbors preceding it. We distribute the vertices one-by-one, each time putting vi in a set Vj

where, at the time, vi has the smallest number of neighbors. By the pigeonhole principle, this
number is at most ⌊dk−1

k ⌋ = d− 1. □

Finally, we quote Nash-Williams’s theorem on partitions of graphs into forests.

Theorem 5.7 (Nash-Williams [21]). A graph G can be partitioned into t forests if and only if
⌈m1(G)⌉ ⩽ t.

5.2. Proof of Proposition 5.2. We are now ready to prove Proposition 5.2. Denote α :=
m2(H,L) and let G be an arbitrary graph satisfying m(G) ⩽ α. We will argue that (the edge
set of) G can be partitioned into an H-free graph and an L-free graph. We split into cases,
depending on which condition is satisfied by the pair (H,L).

7Proposition 5.2(c) implies Theorem 1.7(b) thanks to Nash-Williams’s theorem (Theorem 5.7 below).
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Cases (a) and (b). Let k := ⌊α⌋ + 1, so that m(G) ⩽ α < k, and note that Lemma 5.3 implies
that G is (2k − 1)-degenerate. Consequently, Lemma 5.6 yields two partitions of the edges
of G: a partition into a 1-degenerate graph and a k-colorable graph; and a partition into a
(k − 1)-degenerate graph and a bipartite graph. The existence of the first partition proves (b),
as every 1-degenerate graph is L-free whereas the assumption on H implies that χ(H) > k for
every H ∈ H. We now argue that the existence of the second partition proves (a). To this end,
note that the assumption there implies that every bipartite graph is L-free, so it is enough to
show that δ(H) ⩾ k for every H ∈ H and thus every (k− 1)-degenerate graph is H-free. To see
that this is the case, consider an arbitrary H ∈ H and let v ∈ V (H) be its vertex with smallest
degree. As H is strictly m2(·,L)-balanced, Lemma 3.5 gives δ(H) = eH − eH\v > α, unless
vH = 3, in which case H = K3 and we still have δ(H) ⩾ 2 = m2(H) ⩾ m2(H) > α. Since δ(H)
is an integer, we actually have δ(H) ⩾ ⌊α⌋ + 1 = k, as needed.

Case (c). It is enough to show that G can be partitioned into an H-free graph and a union of two
forests; indeed, if m1(L) > 2 for all L ∈ L, then no union of two forests can contain a member of
L as a subgraph, by (the easy direction of) Theorem 5.7. Let m1(H) := min{m1(H) : H ∈ H}.
By Lemma 5.4 and the assumption m(G) ⩽ m2(H,L) < m2(H), we find that

m1(G) ⩽ m(G) +
1

2
⩽ m2(H) +

1

2
⩽ m1(H) + 1.

As a result, if we let t := ⌈m1(H)⌉, we find that ⌈m1(G)⌉ ⩽ t + 1 and therefore Theorem 5.7
supplies a partition G into t + 1 forests G1, . . . , Gt+1. Taking G′ := G1 ∪ · · · ∪Gt−1, we arrive
at a partition G = G′ ∪ (Gt ∪ Gt+1). By (the easy direction of) Theorem 5.7, we know that
m1(G

′) ⩽ t − 1 < m1(H), so G′ is H-free. As Gt and Gt+1 are forests, we get the desired
decomposition.

Case (d). It is enough to show that G can be decomposed into a forest and an (s, t)-avoiding
graph. Assume that this is not the case and let G be a smallest counterexample with m(G) ⩽ α.
It is enough to show that G is an (s + 1, t + 1)-graph, as then Lemma 5.5 gives

1

s + 1
+

1

t + 1
⩾

vG
eG

⩾
1

m(G)
⩾

1

α
,

a contradiction.
Suppose first that G has a vertex v of degree at most s. By minimality of G, we can decompose

the edges of G \ v into an (s, t)-avoiding graph K and a forest F . Adding an arbitrary edge
incident with v to F and the remaining edges to K maintains F being a forest and K being
(s, t)-avoiding, as any (s, t)-subgraph of K would have to use v, which has degree at most s− 1
in K. This contradicts our assumption on indecomposability of G.

Second, suppose that G contains an edge uv with deg(u),deg(v) ⩽ t. By minimality of G,
we can decompose G′ := G \ uv into a forest F and an (s, t)-avoiding graph K. Adding uv to
F must close a cycle, meaning that both u and v are incident to at least one F -edge of G′ and
thus the K-degrees of u and v in G′ are at most t− 2. This means, however, that we can add
uv to K while still keeping the degrees of both its endpoints strictly below t. Again, we find
that K contains no (s, t)-subgraph, a contradiction.

Case (e). Let k := ⌈m2(H,L)⌉. Since we assume that m2(H) > k, it is enough to decom-
pose G into a forest and a graph K with m2(K) ⩽ k. The following theorem, which implies
Conjecture 1.5 in the case that m(G) is an integer, supplies such a decomposition.

Theorem 5.8. Let k be an integer, and let G be a graph with m(G) ⩽ k. Then there exists a
forest F ⊆ G such that m2(G \ F ) ⩽ k.

The proof of Theorem 5.8 is substantially more involved, as it relies on techniques from
matroid theory. We are hopeful that similar techniques may be used to prove Conjecture 1.5 in
its entirety. We defer the proof of Theorem 5.8 to Appendix B.
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[8] E. Friedgut, V. Rödl, and M. Schacht, Ramsey properties of random discrete structures,
Random Structures Algorithms 37 (2010), 407–436.

[9] L. Gugelmann, R. Nenadov, Y. Person, N. Škorić, A. Steger, and H. Thomas, Symmetric
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[25] V. Rödl and A. Ruciński, Lower bounds on probability thresholds for Ramsey properties, in
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Appendix A. The three-color setting

In this section, we explain what about the proof needs to change to handle the case r ⩾ 3, and
prove Theorem 1.6. As many of these results are essentially identical to the results discussed
previously, we omit or shorten several of the proofs. We begin by defining a natural three-color
analogue of cores.

Definition A.1. Let H1,H2,H3 be three finite families of graphs. A tuple (G,F1,F2,F3) is
an (H1,H2,H3)-core if G is a graph and Fi ⊆ FHi [G] for all i ∈ J3K are families satisfying the
following properties:

• The hypergraph F1 ∪ F2 ∪ F3 is connected and spans E(G).

• For every i ∈ J3K, every Ĥi ∈ Fi, every edge e ∈ Ĥi, and every j ∈ J3K \ {i}, there is

some Ĥj ∈ Fj with Ĥi ∩ Ĥj = {e}.

We say that G supports a core if there exists a core (G,F1,F2,F3).

The following simple lemma is a straightforward generalization of Lemma 3.2, so we omit the
proof.

Lemma A.2. Let G be a graph that is minimally Ramsey for (H1,H2,H3), in the sense that
any proper subgraph G′ ⊊ G is not Ramsey for (H1,H2,H3). Then G supports a core.

It would be very convenient if every (H1,H2,H3)-core were also an (H1,H2)-core. At first
glance this seems true, since the intersection property in Definition A.1 easily implies the in-
tersection property in Definition 3.1. Unfortunately, it may be the case that the hypergraph
F1 ∪ F2 ∪ F3 is connected, but that the hypergraph F1 ∪ F2 is disconnected. Nonetheless, this
is the only obstruction, and the following result is true.

Lemma A.3. Let (G,F1,F2,F3) be (H1,H2,H3)-core for some families of graphs H1,H2,H3.
Then (G,F1,F2 ∪ F3) is an (H1,H2 ∪H3)-core.

Proof. First note that the hypergraph F1 ∪ (F2 ∪ F3) is simply the same as the hypergraph

F1 ∪ F2 ∪ F3, so it is connected and spans E(G) by assumption. For every Ĥ1 ∈ F1 and

every edge e ∈ Ĥ1, we may apply Definition A.1 with j = 2 to see that there exists some

Ĥ2 ∈ F2 ⊆ F2 ∪ F3 such that Ĥ1 ∩ Ĥ2 = {e}. Similarly, applying Definition A.1 with j = 1,

we see that for every Ĥ23 ∈ F2 ∪ F3 and every edge e ∈ Ĥ23, there is some Ĥ1 ∈ F1 such that

Ĥ1 ∩ Ĥ23 = {e}. Thus, (G,F1,F2 ∪ F3) is an (H1,H2 ∪H3)-core. □

The key (trivial) observation is that if m2(H2) = m2(H3), then m2(H2 ∪ H3) is also equal
to both these numbers, as m2(H2 ∪ H3) = min{m2(H2),m2(H3)}. Now, suppose we are given
families H1,H2,H3 with m2(H1) > m2(H2) = m2(H3). By passing to families of subgraphs,
we may assume that H2,H3 are strictly 2-balanced and that H1 is strictly m2(·,H2)-balanced.
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We now define H = H1 and L = H2 ∪ H3. By Lemma 4.1, we know that there exists some
c > 0 such that if p ⩽ cn−1/m2(H,L), then a.a.s. Gn,p contains no subgraph G which supports an
(H,L)-core and satisfies m(G) > m2(H,L).

On the other hand, if Gn,p is Ramsey for (H1,H2,H3), then it must contain some minimally
Ramsey subgraph G. By Lemmas A.2 and A.3, G supports an (H,L)-core. Moreover, by the
above, we must have m(G) ⩽ m2(H,L) = m2(H1,H2), for otherwise G ⊈ Gn,p a.a.s. Given
this, the following deterministic lemma concludes the proof.

Lemma A.4. Let H1,H2,H3 satisfy m(H1) ⩾ m(H2) ⩾ m(H3) > 1. If G is Ramsey for
(H1,H2,H3), then m(G) > m2(H1,H2).

Proof. We will actually prove that m(G) > m2(H1), which implies the desired result since
m2(H1) ⩾ m2(H1,H2). Suppose for contradiction that m(G) ⩽ m2(H1). By Theorem 5.7 (cf.
the proof of Proposition 5.2(c)), we know that G is the union of an H1-free graph and two
forests. As m2(H2) ⩾ m2(H3) > 1, every graph in H2 ∪H3 contains a cycle, and hence each of
these forests is H2 ∪ H3-free. Using one color for the H1-free graph and one color for each of
the two forests, we see that G is not Ramsey for (H1,H2,H3). □

Appendix B. Proof of Conjecture 1.5 in the integer case

In this section, we present the proof of Theorem 5.8, which implies Conjecture 1.5 in the
case that m(G) is an integer. We will use some well-known results from matroid theory; all
definitions and proofs can be found in any standard reference on matroid theory, such as Oxley’s
book [23].

The main result we will need is the following matroid partitioning theorem, originally due
to Edmonds [5]. We remark that this theorem easily implies Nash-Williams’s theorem (Theo-
rem 5.7), which was used in the proof of Proposition 5.2(c).

Theorem B.1. Let M1,M2 be matroids on the same ground set E, with rank functions r1, r2,
respectively. Then E can be partitioned as E = I1 ∪ I2, with Ii independent in Mi for i = 1, 2,
if and only if

r1(X) + r2(X) ⩾ |X|
for every X ⊆ E.

A slightly weaker statement appears as [23, Theorem 11.3.12], where the result is only stated
when M1 = M2. However, it is clear and well-known that the same proof proves Theorem B.1,
using the formula for the rank of a matroid union, as given in [23, Theorem 11.3.1].

In our application, we will set E = E(G) and let M1 be the graphic matroid of G, whose
independent sets are precisely the acyclic subgraphs of G. We may view any subset of E(G) as
a subgraph J of G; we then use eJ rather than |J | to denote the size of this subset of E(G).
Additionally, we use vJ to denote the number of vertices incident to any edge of J , and ωJ to
denote the number of connected components of J . It is well-known (e.g. [23, equation 1.3.8])
that the rank function of M1 is given by r1(J) = vJ − ωJ for all J ⊆ E(G).

The second matroid we use will be one whose independent sets are precisely those subgraphs
K ⊆ G with m2(K) ⩽ k. The fact that this is a matroid is the content of the next lemma.

Lemma B.2. Let G be a graph and let k be a positive integer. Then the family of subgraphs
K ⊆ G with m2(K) ⩽ k is the collection of independent sets of a matroid.

Proof. Define a function f : 2E(G) → Z by f(J) = k(vJ − 2) + 1, for every J ⊆ E(G). Note
that this function is integer-valued since k ∈ Z. Additionally, it is clear that f is increasing, in
the sense that f(J) ⩽ f(J ′) whenever J ⊆ J ′. Finally, we claim that f is submodular. This is
easiest to see by recalling that the function g(J) = vJ is submodular (see e.g. [23, Proposition
11.1.6]); as f is obtained from g by multiplying by a positive constant and adding a constant,
we find that f is submodular as well.
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Now, by [23, Corollary 11.1.2], we find that there exists a matroid M(f) on E(G) whose
independent sets are precisely those K ⊆ E(G) with the property that eJ ⩽ f(J) for all non-
empty J ⊆ K. Note that, for a graph J with at least three vertices, the inequality eJ ⩽ f(J)
is equivalent to d2(J) ⩽ k, where d2(J) = (eJ − 1)/(vJ − 2). If J is non-empty and has only
two vertices, then it must have one edge and eJ ⩽ f(J) always holds. Thus, we see that K is
independent in M(f) if and only if max{(eJ − 1)/(vJ − 2) : J ⊆ K, vJ ⩾ 3} ⩽ k. This condition
is precisely the condition that m2(K) ⩽ k. □

In order to apply Theorem B.1 to the matroids M1,M2, we need a way of lower-bounding
the rank function of M2. This is achieved by the following lemma.

Lemma B.3. Let k be a positive integer. If J is a graph with m(J) ⩽ k, then there is a subgraph
J ′ ⊆ J with m2(J

′) ⩽ k and eJ ⩽ eJ ′ + vJ − 1.

Proof. A well-known theorem of Hakimi [10], which is itself a simple consequence of Theo-
rem B.1, implies that since m(J) ⩽ k, we can partition J into graphs J1, . . . , Jk, with m(Ji) ⩽ 1
for all i (i.e. every component of every Ji has at most one cycle). We may assume without loss
of generality that Jk is non-empty. Let e be an edge of Jk and define J ′ = J1 ∪ · · · ∪ Jk−1 ∪{e}.
We claim that m2(J

′) ⩽ k and eJ ⩽ eJ ′ + vJ − 1.
The second claim is fairly easy to see, as

eJ ′ = 1 +
k−1∑
i=1

eJi = 1 + (eJ − eJk) ⩾ 1 + eJ − vJk ⩾ eJ − vJ + 1,

where the second equality uses the fact that J1, . . . , Jk partition J , and the two inequalities
follow from eJk ⩽ vJk ⩽ vJ , since m(Jk) ⩽ 1 and Jk ⊆ J .

So it remains to prove that m2(J
′) ⩽ k, i.e. that d2(L) ⩽ k for all L ⊆ J ′. If vL ⩽ 2k − 1,

then

d2(L) ⩽

(
vL
2

)
− 1

vL − 2
=

1

2
·
v2L − vL − 2

vL − 2
=

1

2
(vL + 1) ⩽ k,

as claimed. So we may assume that vL ⩾ 2k. As m(Ji) ⩽ 1 for all i, we see that eL ⩽
(k − 1)vL + 1. Therefore,

d2(L) =
eL − 1

vL − 2
⩽

(k − 1)vL
vL − 2

⩽
kvL − 2k

vL − 2
= k. □

With all of these preliminaries, we are ready to prove Theorem 5.8.

Proof of Theorem 5.8. Let G be a graph with m(G) ⩽ k and let E = E(G). Let M1 be the
graphic matroid on the ground set E and let M2 be the matroid given by Lemma B.2, whose
independent sets are those K ⊆ G with m2(K) ⩽ k. We wish to prove that E can be partitioned
into an independent set from M1 and an independent set from M2; by Theorem B.1, it suffices
to prove that r1(J) + r2(J) ⩾ eJ for all J ⊆ G.

So fix some J ⊆ G, and let its connected components be J1, . . . , Jt. We then have that
r1(J) = vJ − ωJ = vJ − t. As m(G) ⩽ k, we certainly have that m(Ji) ⩽ k for all i, and hence
Lemma B.3 implies that there exist J ′

i ⊆ Ji with m2(J
′
i) ⩽ k and eJi ⩽ eJ ′

i
+ vJi − 1. Let

J ′ = J ′
1 ∪ · · · ∪ J ′

t. If J ′ is a matching, then m2(J
′) ⩽ 1 ⩽ k. If not, then its maximal 2-density

is attained on some connected component, hence m2(J
′) = maxim2(J

′
i) ⩽ k. Therefore, J ′ is

independent in M2, which implies that

r2(J) ⩾ r2(J
′) = eJ ′ =

t∑
i=1

eJ ′
i
⩾

t∑
i=1

(eJi − (vJi − 1)) = eJ − (vJ − t).

Recalling that r1(J) = vJ − t, we conclude that r1(J) + r2(J) ⩾ eJ , as claimed. □
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