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Abstract

A grounded M -Lipschitz function on a rooted d-ary tree is an integer-valued map on the
vertices that changes by at most M along edges and attains the value zero on the leaves. We
study the behavior of such functions, specifically, their typical value at the root v0 of the tree.
We prove that the probability that the value of a uniformly chosen random function at v0 is
more than M+t is doubly-exponentially small in t. We also show a similar bound for continuous
(real-valued) grounded Lipschitz functions.

1 Introduction

This note studies the typical behavior of grounded Lipschitz functions on trees. We consider the
rooted d-ary tree, d ≥ 2, of depth k, that is, the tree whose each non-leaf vertex, including the
root, has d children. We denote this tree by T (d, k) and its root by v0. We consider two models
for Lipschitz functions on such a tree:

(i) We call a real-valued function f on the vertices of a graph Lipschitz if |f(u) − f(v)| ≤ 1 for
every pair u, v of adjacent vertices. Let L∞(d, k) be the family of all such Lipschitz functions
on T (d, k) that take the value zero on all leaves. Observe that L∞(d, k) is naturally endowed
with Lebesgue measure. Indeed, letting V be the set of internal (non-leaf) vertices of T (d, k),
one may naturally view L∞(d, k) as a convex polytope P ⊆ RV (of full dimension).

(ii) For an integer M ≥ 1, we call an integer-valued function f on the vertices of a graph M -
Lipschitz if |f(u) − f(v)| ≤ M for every two adjacent vertices u and v. Let LM (d, k) be the
set of all M -Lipschitz functions on T (d, k) that take the value zero on all leaves. Observe that
LM (d, k) is a finite set. For example, LM (d, 1) has 2M + 1 elements, one element for each of
the possible values of f(v0) between −M and M .

In this work we study the distribution of the value at the root vertex v0 for a uniformly chosen
function in L∞(d, k) and LM (d, k). Our main result is that this value is very tightly concentrated
around 0 for every M ≥ 1 and d ≥ 2.
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Theorem 1.1. Let d ≥ 2 and k ≥ 1. If f is chosen uniformly at random from L∞(d, k), then for
every x > 0,

Pr(f(v0) ≥ 1 + x) ≤ 2d+2 · (9/10)d
dxe−1

.

Moreover, if d ≥ 3, then the constant 9/10 above may be replaced by (3/4)d.

This theorem follows as a corollary from the result on M -Lipschitz functions described next, by
taking a limit as M tends to infinity.

Theorem 1.2. Let d ≥ 2 and M,k ≥ 1. If f is chosen uniformly at random from LM (d, k), then
for every integer t ≥ 1,

Pr(f(v0) = M + t) ≤ (9/10)d
b(t−1)/Mc · Pr(f(v0) = 0). (1.1)

Moreover, if d ≥ 3, then the constant 9/10 above may be replaced by (3/4)d. In addition,

Pr(f(v0) = 0) ≤ 1

1 + 21−dM
.

Of course, by symmetry, the theorems imply a corresponding bound on the lower tail of the
distribution of f(v0). We prove Theorem 1.2 by induction on k. The argument has three steps.
The first step establishes that p(t) := Pr(f(v0) = t) is unimodal in t with maximum at t = 0. The
second step shows that p(t) decays at least exponentially in t/M , i.e., that p(t+M) ≤ 9p(t)/10 for
t ≥ 1. In the third step, inequality (1.1) is derived by induction on t.

2 Motivation, related work and discussion

The study of Lipschitz functions on graphs may be seen as a special case of the study of random
surfaces in statistical mechanics. In that context, one usually considers a real-valued function on
the vertices of a finite graph G, often a box in the integer lattice Zd, which is sampled from a
non-uniform distribution, with the density (with respect to Lebesgue measure) of a function f
proportional to

exp

− ∑
{x,y}∈E(G)

V (f(x)− f(y))

 .

for some potential function V , assumed symmetric. The study of such random surfaces is especially
well developed when the potential V is twice continuously differentiable with c ≤ V ′′ ≤ C for some
C, c > 0. However, the understanding of such surfaces is quite lacking when this condition fails [9].

Continuous Lipschitz functions naturally embed in the above setup when the potential V is the
so-called hammock potential

V (x) :=

{
0 |x| ≤ 1

∞ |x| > 1
.

The hammock potential is not twice continuously differentiable and it is the case that when G is a
box in Zd, there is no non-trivial bound on the variance of f at a given vertex, or on the expected
range of values taken by f . The problem of finding such non-trivial bounds was mentioned already
by Brascamp, Lieb, and Lebowitz [3]. Similar questions may be asked for M -Lipschitz functions
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on boxes in Zd and similarly no non-trivial facts are known, except in the case M = 1 when it is
known that a typical 1-Lipschitz function is quite ‘flat’ when the dimension d is sufficiently large [6].
Given the apparent difficulty of studying Lipschitz functions on the integer lattice, it is natural to
study this model on more general graphs, in particular on trees, and this is the main motivation
for our work.

In order to define a uniform distribution over Lipschitz functions on a finite connected graph,
one needs to put certain boundary conditions. For instance, one can fix the value of the function
at one given vertex to be zero. When the graph is a tree, it is natural to take this vertex to be
the root. However, such a boundary condition on a tree leads to the model of a branching random
walk, since the differences of the function along edges of the tree are independent. Such a model is
closer in spirit to an ordinary random walk than to a random surface on a highly-connected graph
such as Zd for d ≥ 2. In contrast, by choosing the boundary condition differently, one may obtain
a model sharing more of the features of random surfaces on highly-connected graphs. The most
natural alternative seems to be to fix the values of the function at all leaves of the tree to be zero,
as we do in this paper.

We briefly survey some related work. Benjamini, Häggström, and Mossel [1] initiated the study
of a related model, the model of random graph homomorphisms. An integer-valued function f on
the vertices of a graph is called a graph homomorphism (or a homomorphism height function) if
|f(u) − f(v)| = 1 for every pair u, v of adjacent vertices. Graph homomorphisms are similar to
1-Lipschitz functions (see the Yadin bijection described in [6] for a precise connection). Results for
this model were obtained for: tree-like graphs [1], the hypercube [4, 5], and finite boxes in the integer
lattice Zd for large d [6]. A lower bound on the typical range of random graph homomorphisms on
general graphs was established in [2].

In [1], a result analogous to our Theorem 1.2 was proved for random graph homomorphisms,
using a similar, though somewhat simpler, method. Both approaches rely on a recursive formula
relating the number of functions on trees with different depths. However, our analysis is made more
complicated by the fact that certain symmetries present in the formula for graph homomorphisms
used in [1] are no longer available for the M -Lipschitz model. This necessitates a different analysis
employing unimodality and requiring a more careful consideration of the exact relation of d and
M .

The behavior of M -Lipschitz functions on trees and on regular expander graphs was studied
in [8], where results similar to Theorem 1.2 were obtained under an additional assumption that
M is small with respect to the degree of the graph and its expansion properties. For trees, the
assumption in [8] is that

M ≤ cd/ log d (2.1)

for some small absolute constant c. This assumption on M , while allowing the study of the model
on a wider class of graphs, precluded the study of real-valued Lipschitz functions, or M -Lipschitz
functions for large M , using the methods of that work.

We end the introduction with a discussion of the role of the assumption (2.1). In a forthcoming
paper [7] we extend the methods and results of [8], showing that under the assumption (2.1), more
is true of a uniformly chosen function from LM (d, k). In fact, at a vertex which is at even distance
from the leaves, the function will take the value 0 with high probability, namely, with probability at
least 1−2 exp(−cd/M) for some absolute constant c > 0. That is, the function value is concentrated
on a single number. Note that this implies that for a vertex at odd distance from the leaves, with
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a similarly high probability, the function value at all of its neighbors is zero, and that conditioned
on this event, the value at the vertex is uniform on {−M, . . . ,M}.

We expect that such a strong concentration of the values of the random function fails when
M � d, or in the model of real-valued Lipschitz functions. More precisely, let us fix M,d such that
M � d and denote by Lk the distribution of the value at the root for a tree of depth k. We believe
that Lk is no longer concentrated on a single value when k is even. Moreover, we suspect that Lk
has a limit as k tends to infinity (so that there is asymptotically no distinction between even and
odd depths). It would be interesting to establish such a transition phenomenon between the cases
M � d and M � d.

3 The proofs

In this section, we prove Theorems 1.1 and 1.2. First, we establish a series of lemmas that culminate
in the proof of Theorem 1.2. At the end, we derive from it Theorem 1.1.

Fix integers d ≥ 2 and M ≥ 1. For integers t and k ≥ 1, we let

G(t, k) = |{f ∈ LM (d, k) : f(v0) = t}|.

Several times in our proofs, we will use the fact that G(t, k) = G(−t, k) for every t and k, which
follows by symmetry.

3.1 A recursive formula

Since for every k > 1, the children of the root of T (d, k) can be regarded as roots of isomorphic
copies of T (d, k − 1), we have

G(t, k) =
∑

t−M≤t1,...,td≤t+M

d∏
s=1

G(ts, k − 1) =

(
M∑

i=−M
G(t+ i, k − 1)

)d

. (3.1)

3.2 Unimodality

The following claim establishes unimodality.

Claim 3.1. If k ≥ 1 and t ≥ 0, then G(t+ 1, k) ≤ G(t, k).

Proof. We prove the claim by induction on k. If k = 1, then G(t, k) = 1 if 0 ≤ t ≤ M and
G(t, k) = 0 if t > M . Assume that k > 1 and t ≥ 0. By (3.1), it suffices to show that

G(t+M + 1, k − 1) ≤ G(t−M,k − 1). (3.2)

To see this, we consider two cases. First, if t−M ≥ 0, then (3.2) follows directly from the inductive
assumption. Otherwise, we note that t+M+1 ≥M−t > 0 and hence by symmetry and induction,

G(t+M + 1, k − 1) ≤ G(M − t, k − 1) = G(t−M,k − 1).
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3.3 Exponential decay of G(t, k)

The following claim establishes exponential decay of G(t, k). We start with the case d ≥ 3. The
case d = 2 is more elaborate and we handle it separately later on.

Lemma 3.2. If d ≥ 3 and k, t ≥ 1, then G(t+M,k) ≤ (3/4)d ·G(t, k).

Proof. Fix some d ≥ 3. We prove the lemma by induction on k. Suppose that t ≥ 1. If k = 1, then
G(t + M,k) = 0 and the claimed inequality holds vacuously. Assume that k > 1. To simplify the
notation, we let

α = (3/4)d and G(s) = G(s, k − 1) for each s ∈ Z.

Moreover, for a set S ⊆ Z, we let

G(S) =
∑
s∈S

G(s).

If t > M , then by the inductive assumption, G(t+M + i) ≤ αG(t+ i) for every −M ≤ i ≤M , so
(3.1) implies that

G(t+M,k) = G({t, . . . , t+ 2M})d ≤ (α ·G({t−M, . . . , t+M}))d = αd ·G(t, k).

Assume that 1 ≤ t ≤M , let

A = G({0, . . . , t− 1}), B = G({1, . . . ,M − t}), and C = G({t, . . . , t+M}),

and observe that, by (3.1) and symmetry,

G(t, k) = (A+B + C)d.

On the other hand, since

{t+M + 1, . . . , t+ 2M} = ({1, . . . , t}+ 2M) ∪ ({t+ 1, . . . ,M}+M), (3.3)

then (3.1), the inductive assumption, and Claim 3.1 imply that

G(t+M,k) ≤
(
α2G({1, . . . , t}) + αG({t+ 1, . . . ,M}) + C

)d ≤ (α2A+ αB + C)d.

Moreover, Claim 3.1 implies

(M + 1)(A+B) ≥MC and MA ≥ (A+B).

It therefore follows that

G(t+M,k)

G(t, k)
≤
(
α2A+ αB + C

A+B + C

)d

≤
(
α2A+ αB + (1 + 1/M)(A+B)

A+B + (1 + 1/M)(A+B)

)d

=

(
(1 + α+ 1/M)(A+B)− (α− α2)A

(2 + 1/M)(A+B)

)d

≤
(

1 + α+ (1− α+ α2)/M

2 + 1/M

)d

≤
(

max

{
1 + α

2
,
2 + α2

3

})d

≤ α,

where the final inequality holds by our assumption that d ≥ 3.
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Remark 3.3. It follows from the proof of Lemma 3.2 that even when d = 2, the statement of the
lemma still holds as long as we replace the constant (3/4)d with some constant α < 1 that satisfies(

1 + α+ (1− α+ α2)/M

2 + 1/M

)d

≤ α. (3.4)

Unfortunately, the smallest solution to (3.4) tends to 1 as M → ∞. We thus need a more careful
analysis to handle the case d = 2. Our proof in the case d = 2 shall require a mild lower bound on
M . We therefore note that if M ≤ 10 and α = 9/10, then (3.4) is satisfied.

Lemma 3.4. Suppose that d = 2. For all k, t ≥ 1, we have G(t+M,k) ≤ (9/10) ·G(t, k).

Proof. By Remark 3.3, we can safely assume that M ≥ 11. Choose the following parameters:

α = 9/10, µ = 1/4, β = 1/3 and m = dµMe.

We are going to prove the following stronger statement by induction on k:

G(t+M,k) ≤

{
α ·G(t, k) if t ∈ {1, . . . ,m− 1},
α2 ·G(t, k) if t ≥ m.

(3.5)

If k = 1, then (3.5) holds vacuously as G(t+M,k) = 0 for every t ≥ 1. Assume that k > 1 and fix
some t ≥ 1. To simplify notation, for every s ∈ Z, we let

G(s) = G(s, k − 1)

and for a set S ⊆ Z,

G(S) =
∑
s∈S

G(s).

If t > M , then by the inductive assumption and (3.1), we have

G(t+M,k) = G({t, . . . , t+ 2M})2 ≤ (α ·G({t−M, . . . , t+M}))2 = α2 ·G(t, k).

Assume that 1 ≤ t ≤M , let

A = G({0, . . . , t− 1}), B = G({1, . . . ,M − t}) and C = G({t, . . . , t+M}),

and observe that by (3.1) and symmetry,

G(t, k) = (A+B + C)2.

We split the proof into two cases, depending on the value of t.

Case 1: t ≥m. Identity (3.1), the inductive assumption, and Claim 3.1 imply that (recall (3.3))

G(t+M,k)1/2 ≤ α2 · α ·G({1, . . . , t}) + α2 ·G({t+ 1, . . . ,M}) + C

≤
(
t

M
· α3 +

M − t
M

· α2

)
· (A+B) + C

≤ (µα3 + (1− µ)α2) · (A+B) + C
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and Claim 3.1 implies that
(M + 1)(A+B) ≥MC. (3.6)

It hence follows that

G(t+M,k)

G(t, k)
≤
(

(µα3 + (1− µ)α2) · (A+B) + C

A+B + C

)2

≤
(

1 + µα3 + (1− µ)α2 + 1/M

2 + 1/M

)2

< α2,

where in the last inequality we used the assumption that M ≥ 11.

Case 2: t <m. Identity (3.1), the inductive assumption, and Claim 3.1 imply that (recall (3.3))

G(t+M,k)1/2 ≤ α3 ·G({1, . . . , t}) + α ·G({t+ 1, . . . ,m− 1}) + α2 ·G({m, . . . ,M}) + C. (3.7)

We now further split into two cases, depending on whether or not the following inequality is satisfied:

G({m, . . . ,M}) ≥ β ·G({1, . . . ,M}). (3.8)

If (3.8) holds, then by (3.7) and Claim 3.1,

G(t+M,k)1/2 ≤ (βα2 + (1− β)α) ·G({1, . . . ,M}) + C

≤ (βα2 + (1− β)α) · (A+B) + C.

Consequently, by (3.6),

G(t+M,k)

G(t, k)
≤
(

(βα2 + (1− β)α) · (A+B) + C

A+B + C

)2

≤
(

1 + βα2 + (1− β)α+ 1/M

2 + 1/M

)2

< α,

where in the last inequality we again used the assumption that M ≥ 11.
If (3.8) does not hold, then we let

D = G({t, . . . ,m− 1}) and E = G({1, . . . ,M}).

Identity (3.1), Claim 3.1, and the converse of (3.8) imply

G(t+M,k)1/2 = D +G({m, . . . , 2M + t}) ≤ D +
2M + t−m+ 1

M −m+ 1
·G({m, . . . ,M})

< D +
2M

M −m+ 1
· β · E ≤ D +

2

1− µ
· β · E.

On the other hand, again by symmetry and Claim 3.1, we have that

G(t, k)1/2 = G({t−M, . . . , t+M}) ≥ D + E.

So, as D ≤ E,

G(t+M,k)

G(t, k)
≤
(

1− 1− µ− 2β

1− µ
· E

D + E

)2

≤
(

1− 1− µ− 2β

2− 2µ

)2

< α.
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3.4 Doubly exponential decrease

The exponential decay established in Lemmas 3.2 and 3.4 easily implies the following.

Corollary 3.5. If k, t ≥ 1, then

G(t+M,k) ≤ αdb(t−1)/Mc
G(t, k), (3.9)

where α = 9/10 if d = 2 and α = (3/4)d if d ≥ 3.

Proof. We prove the statement by induction on k. If k = 1, then G(t + M,k) = 0. Assume that
k > 1. When 1 ≤ t ≤ M , we have b(t − 1)/Mc = 0, and (3.9) follows directly from Lemmas 3.2
and 3.4. If t ≥M + 1, then by the inductive assumption and (3.1) we have

G(t+M,k) =
(
G(t, k − 1) + . . .+G(t+ 2M,k − 1)

)d
≤
(
αdb(t−M−1)/Mc

(G(t−M,k − 1) + . . .+G(t+M,k − 1))
)d

= αd1+b(t−M−1)/Mc
G(t, k) = αdb(t−1)/Mc

G(t, k).

3.5 Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.2. The first part of the theorem follows immediately from Corollary 3.5. The
upper bound on Pr(f(v0) = 0) follows from the inequality G(M,k) ≥ 2−dG(0, k), which we prove
below, together with symmetry and Claim 3.1. If k = 1, we have G(M,k) = G(0, k) = 1. If k > 1,
identity (3.1) and symmetry imply that(

G(M,k)

G(0, k)

)1/d

≥ 1

2
.

Proof of Theorem 1.1. Let f be a uniformly chosen random element of L∞(d, k) and let x > 0. The
claimed bound on the probability that f(v0) exceeds 1 + x follows fairly easily from Theorem 1.2.
To see this, let, for every positive integer M , fM be a uniformly chosen random element of LM (d, k).
A moment of thought reveals that the sequence fM/M converges to f in distribution.

Indeed, letting V be the set of internal (non-leaf) vertices of T (d, k), one may naturally view
L∞(d, k) as a convex polytope P ⊆ RV (of full dimension). Let µ and µM be the distributions of
f and fM/M , respectively. Observe that µ = λ/vol(P ), where λ is the |V |-dimensional Lebesgue
measure, and that µM is the uniform measure on the (finite) set P ∩( 1

MZ)V . Since P is compact (as
clearly P ⊆ [−k, k]V ), every continuous function g : P → R is uniformly continuous and therefore,

lim
M→∞

∫
P
g dµM =

∫
P
g dµ.

Now, Theorem 1.2 implies that for M ≥ 1/x, letting α be as in the statement of Corollary 3.5,

Pr

(
fM (v0)

M
≥ 1 + x

)
=
∑
t≥xM

Pr(fM (v0) = M + t) ≤ Pr(fM (v0) = 0) ·
∞∑

s=bx−1/Mc

Mαds

≤ M

1 + 21−dM
· αdbx−1/Mc ·

(
1 +

∞∑
r=1

αdr/2

)
≤ 8M

1 + 21−dM
· αdbx−1/Mc

,
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where in the last inequality we used the fact that αdr/2 ≤ (9/10)2
r−1

, and hence

Pr(f(v0) ≥ 1 + x) = lim
M→∞

Pr

(
fM (v0)

M
≥ 1 + x

)
≤ 2d+2 · αddxe−1

.
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