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Abstract

This work studies the typical behavior of random integer-valued Lipschitz functions on ex-

pander graphs with sufficiently good expansion. We consider two families of functions: M -Lip-

schitz functions (functions which change by at most M along edges) and integer-homomorphisms

(functions which change by exactly 1 along edges). We prove that such functions typically exhibit

very small fluctuations. For instance, we show that a uniformly chosen M -Lipschitz function

takes only M+1 values on most of the graph, with a double exponential decay for the probability

to take other values.

1 Introduction

In this work we investigate the typical behavior of random Lipschitz functions on expander graphs.

We focus on the following two models: An M -Lipschitz function on a graph G is an integer-valued

function on the vertices of G which changes by at most M between adjacent vertices. Similarly, a

Z-homomorphism (or simply a homomorphism) on G is an integer-valued function on the vertices

of G which changes by exactly one between adjacent vertices. Taking the graph G to be a finite

expander graph, we consider the typical properties of functions chosen uniformly at random from

one of these families (fixing the function value to be zero at some fixed vertex).

One motivation for this work comes from previous investigations of Z-homomorphisms on several

tree-like graphs [1], on the hypercube [7, 10] and on (finite boxes in) the lattice Zd for large d [11].

These suggest that typical Lipschitz functions on highly connected graphs tend to exhibit very

small fluctuations. Indeed, such behavior can also be expected from a comparison with random

surface models in statistical mechanics, such as the Gaussian free field (see also [2]). Expander

graphs are natural candidates to test this paradigm, as they are highly connected graphs which

are important for many applications, see the survey [8]. It is also well-known that most graphs are

expanders.
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Additional motivation is to try and understand to what extent the local behavior of typical Lipschitz

functions on a graph is affected by the global features of the graph. Many expander graphs locally

have the structure of a tree, though globally they are very far from being a tree. Will the typical

Lipschitz function on an expander graph exhibit locally large fluctuations, as it does on a tree, or

will it exhibit locally small fluctuations, as suggested by the global structure?

Our results apply to expander graphs with sufficiently good expansion, in a certain quantitative

sense (see Definitions III and VI). We show that on such graphs, the typical Lipschitz function

exhibits very small fluctuations. Thus, although the graph may look like a tree locally, it is the

global structure of it which determines the local fluctuations. More specifically, we find that a

random M -Lipschitz function will take only M+1 different values on most of the graph. Moreover,

the probability that at any fixed vertex the function takes a value which is further than tM from

this set of M + 1 values decays like a double exponential in t. As a result, the maximum value of

the function is, with high probability, of order log(log n), where n is the number of vertices of the

graph1.

Similar results are obtained for Z-homomorphisms, where it is required that the underlying graph

is bipartite. There, we find that the typical function takes predominantly one value on one of the

color classes and two values on the other color class, again with a double exponential decay of

the probability to take other values. In a somewhat different setting, our methods yield also that

grounded Lipschitz functions on d-ary trees, i.e., functions constrained to take the value zero on all

leaves of the tree, exhibit similarly small fluctuations.

While our methods require the graph to have sufficiently good expansion, it is not clear to what

extent is this requirement necessary. A discussion with several open questions is presented in

Section 6.

1.1 M-Lipschitz functions

M -Lipschitz functions on graphs are defined as follows.

Definition I (M -Lipschitz functions). Let v0 be a fixed vertex in a graph G and let M be a positive

integer. Denote by Lipv0(G;M) the family of M -Lipschitz functions from the vertex set of G to

Z that send v0 to the origin, that is, the family of maps f : V (G) → Z such that f(v0) = 0 and

|f(u)− f(v)| ≤M for every {u, v} ∈ E(G).

We note for later use that if G is a finite connected graph, then Lipv0(G;M) is a finite set.

There are several equivalent definitions of expander graphs. Our definition is inspired by the so-

called expander mixing lemma (see [8]), which relates the edge distribution of a regular graph to

the spectral properties of its adjacency matrix. For two subsets A,B of the vertices of a graph

G, denote by E(A,B) the set of pairs (a, b) ∈ A × B such that {a, b} is an edge of G and denote

e(A,B) = |E(A,B)|.

1Logarithms in this text are of base e.
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Definition II (expander). A d-regular n-vertex graphG is called a λ-expander if for all S, T ⊆ V (G)

we have ∣∣∣∣e(S, T )− d

n
|S||T |

∣∣∣∣ ≤ λ√|S||T |.
Every d-regular graph is an expander with λ = d and hence the definition becomes meaningful only

for λ < d. Simple examples show that expanders cannot be too good: for S = {v} and T the d

neighbors of v in G we obtain λ ≥
√
d(1 − d/n) and for S = T = {v} we have λ ≥ d/n so that in

particular, λ ≥ 1/2.

In our theorems, we consider sufficiently good expanders in the sense that λ is required to be

smaller than some specific function of d and M . It can be shown that if d is sufficiently large, then

most d-regular graphs are good expanders. For example, Friedman showed that for every d > 2

and every ε > 0, with probability tending to 1 as n tends to infinity, a uniformly chosen random

n-vertex d-regular graph is a (2
√
d− 1 + ε)-expander [6].

Definition III (M -good expander). A graph G is an M -good expander if G is a d-regular λ-ex-

pander with λ ≤ d
32(M+1) log(9Md2)

.

Our main result shows that a typical M -Lipschitz function on an M -good expander is locally very

flat. In particular, such a function takes values in a set of M + 1 consecutive integers at all but

an exponentially small fraction of the vertices, where exponentially small is with respect to the

parameters of the expander. The first step towards establishing this property is to note that every

M -Lipschitz function takes values in a set of M + 1 consecutive integers at all but a polynomially

small fraction of the vertices.

Lemma 1.1. Let G be an n-vertex d-regular λ-expander and v0 ∈ V (G). For every f ∈ Lipv0(G;M),

there exists k ∈ Z such that∣∣{v : f(v) /∈ {k, k + 1, . . . , k +M}
}∣∣ ≤ 2λn

d
. (1)

Moreover, there is a way to associate to each f ∈ Lipv0(G;M) which is not identically zero, an

interval of the form {k, k + 1, . . . , k + M} satisfying (1), which we denote by phase(f), in such a

manner that phase(−f) = −phase(f).

The lemma allows us to define phase(f) for M -Lipschitz functions which are not identically zero.

For completeness, we define the phase of the zero function as {0}. The lemma does not provide

information about the range of values which the function can take. Indeed, the diameter of an

n-vertex expander graph G is of the order of log n (see also Corollary 2.6 below) and hence there

exist Lipschitz functions on G taking order log n distinct values (though they still must satisfy

Lemma 1.1). The next theorem and corollary, which are our main results, show that such large

fluctuations are highly atypical.

To discuss the typical properties of an M -Lipschitz function, we consider the uniform probability

measure on Lipv0(G;M). Restricting to finite connected graphs G, we denote by f ∈R Lipv0(G;M)

a uniform random element in Lipv0(G;M). To describe our results, we use the metric of G (the

3



distance between a pair (u, v) of vertices is the length of a shortest path connecting u and v in G)

and we denote by B(v, t) the ball of radius t around a vertex v. Finally, for an integer b and a

non-empty set A ⊆ Z, define dist(b, A) = mina∈A |b− a|.

Theorem 1.2. Let G be a connected M -good expander and v0 ∈ V (G). Let f ∈R Lipv0(G;M).

For every positive integer t and every v ∈ V (G),

P
(
dist(f(v),phase(f)) > (t− 1)M

)
≤ exp

(
− |B(v, t)|

5(M + 1)

)
. (2)

Let us make a few comments:

(1) Proposition 2.5 below shows that in any expander, |B(v, t)| grows at least exponentially in t.

Thus, under the conditions of Theorem 1.2, we have

P
(
dist(f(v),phase(f)) > (t− 1)M

)
≤ exp

(
−Ct

)
for some C = C(d, λ) > 1; the value of C can be calculated from (2) and (12). If the girth of

G is at least 2t+ 1, we have |B(v, t)| ≥ d(d− 1)t−1, which can improve the estimate further.

(2) If we apply Theorem 1.2 with v = v0, we obtain bounds on the probability distribution of

phase(f).

(3) As a simple consequence of Theorem 1.2 and Proposition 2.5, we see that the variance of f(v)

is uniformly bounded for all v ∈ V (G) by C1M
2, where C1 is an absolute constant.

We can use Theorem 1.2 and Proposition 2.5 to obtain a bound on the maximum of f (or alterna-

tively, on the range of values f takes). By applying a union bound over all vertices of G we obtain

the following estimate.

Corollary 1.3. Let G be a connected M -good expander and v0 ∈ V (G). Let f ∈R Lipv0(G;M).

There exists an absolute constant C such that

P
(

max(f) >
C

log(d/λ)
M log(log n)

)
≤ 1

n2
.

In particular, E[max(f)] ≤ 2C
log(d/λ)M log(log n).

It appears that by applying the techniques of Benjamini et al. [3] one may obtain a converse to

the above corollary, showing that E[max(f)] ≥ cM log(log n) for some c depending only on d and

λ. We do not explore this direction here, but mention that the general approach is to consider the

possibility that f grows quickly in a ball of small radius and then use the fact that there are many

such disjoint balls.
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1.2 Homomorphisms

We also study the typical behavior of graph homomorphisms from G to Z or, as we will refer to

them in the sequel, homomorphism height functions or simply homomorphisms.

Definition IV (homomorphisms). Let v0 be a fixed vertex in the graph G. Denote by Homv0(G)

the family of graph homomorphism from G to Z that send v0 to the origin, that is, the family of

maps f : V (G)→ Z so that f(v0) = 0 and |f(u)− f(v)| = 1 for every {u, v} ∈ E(G).

The family Homv0(G) is non-empty if and only if G is bipartite. It is finite if and only if G is finite,

connected and bipartite. Let G be bipartite with color classes V0 and V1 and assume that v0 is in

V0. Then, every f ∈ Homv0(G) takes even values on vertices of V0 and odd values on V1.

Since bipartite graphs contain very large independent sets, they clearly are not expanders in the

sense of Definition II. Therefore, we shall consider the following (standard) bipartite analogue of

expander graphs.

Definition V (bi-expander). A d-regular bipartite graph G with 2n vertices2 is called a λ-bi-

expander if the following holds. Let V0 and V1 be the two color classes of G. For all S ⊆ V0 and

T ⊆ V1, ∣∣∣∣e(S, T )− d

n
|S||T |

∣∣∣∣ ≤ λ√|S||T |.
Similarly as in the case of (non-bipartite) λ-expanders, every d-regular bipartite graph is a λ-bi-

expander with λ = d and hence Definition V becomes meaningful only for λ < d. In our theorems,

we consider sufficiently good expanders, in the sense that λ is required to be smaller than some

function of d. Similarly as in the non-bipartite case, it can be shown that most d-regular bipartite

graphs are good bi-expanders, provided that d is sufficiently large.

Definition VI (good bi-expander). A graph G is a good bi-expander if G is a d-regular λ-bi-

expander with λ ≤ d
300 log d .

We will show that homomorphism height functions on good bi-expanders are very flat in the sense

that a typical function is nearly constant on one of the two color classes. Here, nearly constant will

mean constant on all but an exponentially (in the parameters of the expander) small fraction of

the vertices. As in the M -Lipschitz case, we first note that every homomorphism height function

is constant on one of the two color classes, apart from a polynomially small fraction of the vertices.

Lemma 1.4. Let G be a 2n-vertex d-regular λ-bi-expander and v0 ∈ V (G). For every f ∈
Homv0(G), there exist i ∈ {0, 1} and k ∈ Z such that

∣∣{v ∈ Vi : f(v) 6= k}
∣∣ ≤ 2λn

d
. (3)

2Since every regular bipartite graph has an even number of vertices, we choose to denote this number by 2n. This

is somewhat inconsistent with our notation from Section 1.1, but will make later formulas look considerably cleaner.
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Let i∗ ∈ {0, 1} be the smallest i so that there exists a k satisfying (3) with Vi. Denote by phase(f)

the smallest k satisfying (3) for i∗. The parity of phase(f) is i∗. Moreover, if λ < d/3, then∣∣{v ∈ V (G) : |f(v)− phase(f)| ≥ 2}
∣∣ ≤ 3λn

d
. (4)

As before, we restrict our attention to finite, connected and bipartite G and let f ∈R Homv0(G)

denote a uniform random element in Homv0(G). The following theorem is our main result for

homomorphism height functions.

Theorem 1.5. Let G be a connected good bi-expander and v0 ∈ V (G). Let f ∈R Homv0(G). For

every integer t ≥ 1 and every v ∈ V (G),

P(|f(v)− phase(f)| > t) ≤ exp

(
−|B(v, t)|

3

)
. (5)

Similar comments as after Theorem 1.2 apply here as well: Proposition 2.10 shows that |B(v, t)|
grows at least exponentially in t and hence, under the assumptions of the theorem,

P(|f(v)− phase(f)| > t) ≤ exp
(
−Ct

)
for some C = C(d, λ) > 1; the value of C can be calculated from (5) and (14). Additionally, by

taking v = v0 we may obtain bounds on the distribution of phase(f) and so the theorem implies

that maxv∈V (G) Var f(v) is bounded above by an absolute constant.

Observing that the diameter of 2n-vertex bi-expanders is logarithmic in n, see Corollary 2.11, we see

that every homomorphism height function can take at most order log n values. Our next statement

sharpens this bound considerably by showing that the typical order of magnitude of the range of

the random homomorphism height function is log(log n). The lower bound in this theorem follows

from the results of [3].

Theorem 1.6. Let G be a good 2n-vertex bi-expander and let v0 ∈ V (G). There exist a constant

c > 0, which depends only on d and λ, and an absolute constant C such that if f ∈R Homv0(G),

then

P
(
c log(log n) ≤ max(|f |) ≤ C

log(d/λ)
log(log n)

)
≥ 1− 1

n2
.

1.3 Grounded Lipschitz functions on trees

As a final example of the applicability of our methods, we study Lipschitz functions on trees. We

denote by Tdh the complete (d− 1)-ary tree of height h ≥ 1 (in which all internal vertices, including

the root, have degree d), denote its root vertex by vr and the set of its leaves by VL. By definition,

Tdh is a tree with d(d − 1)h−1 leaves, all at distance exactly h from vr. It is a simple observation

that a uniformly chosen function from Homvr(Tdh) will behave like a random walk along branches

of the tree and thus typically take values of order
√
h at the leaves of the tree and reach a value of

order h at its maximum; similarly, a uniformly chosen function from Lipvr(T
d
h;M) typically takes

values of order M
√
h at the leaves of the tree and reaches a value of order Mh at its maximum.
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We consider instead a different probabilistic model. We let LipVL(Tdh;M) be the set of M -Lipschitz

functions on Tdh which equal zero on VL and similarly HomVL(Tdh) be the set of homomorphism

height functions on Tdh which equal zero on VL. We call such functions grounded. Benjamini et

al. [1] investigated typical grounded homomorphism functions on Tdh and showed that they exhibit

very different behavior from homomorphism functions normalized at the root of the tree. For

example, they showed that for any d > 2, if f ∈R HomVL(Tdh), then

P(|f(vr)| > t) ≤ 2cd
t

where c = c(d) ≤ 2−d+1, so that, in particular, the distribution of f(vr) is tight as h → ∞. Using

the same techniques as for expander graphs, we establish similar results for grounded M -Lipschitz

functions on trees. Also, in the next section, we explain our argument briefly in the context

of grounded homomorphism functions. Our method seems simpler than that of [1] but has the

disadvantage that it does not apply for small d.

Theorem 1.7. For any M ≥ 1, d > 40(M + 1) log(M + 1) and h ≥ 1, if f ∈R LipVL(Tdh;M), then

P(|f(v)| > tM) ≤ exp

(
−d(d− 1)t−1

5(M + 1)

)
.

for all vertices v of Tdh and integers t ≥ 1.

In Section 6, we discuss extensions of the above theorem to any d > 2 and M ≥ 1.

1.4 Proof idea

We now shortly discuss the general idea behind the proofs. Our goal is to show that a certain set is

small (the set of functions f so that f(v) is far from phase(f)). The basic tool we use is extremely

simple: By definition, a set P is not larger than another set Q if there exists a one-to-one map from

P to Q. To show that P is much smaller than Q, we just need to find a few-to-many map T from

P to Q, as the following (trivial) lemma shows.

Lemma 1.8. Let P and Q be finite sets. Let T be a map on P such that T (p) ⊆ Q for all p ∈ P .

If there are α, β > 0 such that for each p ∈ P and each q ∈ Q,

|T (p)| ≥ β and |{p′ ∈ P : q ∈ T (p′)}| ≤ α,

then |P |/|Q| ≤ α/β.

Proof. We have β|P | ≤
∑

p∈P |T (p)| =
∑

q∈Q |{p′ ∈ P : q ∈ T (p′)}| ≤ α|Q|.

The heart of the proof is constructing such a map T and establishing that it is few-to-many. Let

us focus on the specific case of grounded homomorphisms on trees since it is the simplest case to

explain and already captures the essence of our approach. Let G = Tdh be the complete (d − 1)-

ary tree of height h ≥ 1 (in which all internal vertices have degree d). Recall that a grounded
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homomorphism on G is a function f : V (G) → Z changing by exactly one along every edge and

having f(v0) = 0 for every leaf v0. The goal is to estimate the probability that a random grounded

homomorphism takes a large value at some fixed vertex v of G. More precisely, for some integer

t ≥ 1, we want to estimate P(f(v) > t). By symmetry, this is the same as P(f(v) < −t). An

interesting case to keep in mind is the case when v is the root vertex. While it is possible for a

grounded homomorphism function to take a large value at the root, we will show that this behavior

is highly atypical.

We denote by Q the set of all grounded homomorphisms on G and by P the set {f ∈ Q : f(v) > t}.
We wish to show that the size of P is much smaller than the size of Q and we will do so by

constructing a few-to-many map T from P to Q and invoking Lemma 1.8. For fixed f in P , we

now describe how to define T (f).

Let G≤2 be the graph defined on the same vertex set as G so that two vertices are connected in

G≤2 if their distance in G is at most 2. Consider A = A(f), where

A(f) is the connected component of v in the subgraph of G≤2

induced by the set of vertices w having f(w) ≥ 2.

Let X = X(f) be the outer boundary of A in G, i.e., the set of vertices w which are not in A but

are connected to A by an edge. Let Y = Y (f) be the outer boundary of A∪X in G. So, we have a

set A and two “shells” of it, X and Y . Since f changes by exactly one along edges, we must have

that

f(X) = {1} and f(Y ) = {0}. (6)

Also, since f(v) > t and f changes by exactly one along edges, we must have B(v, t) ⊆ A ∪ X,

which implies that

|X| ≥ d(d− 1)t−1. (7)

From f we can define many other homomorphisms: for every s ∈ {−1, 1}X , we can define

hs(w) =


f(w)− 2 w ∈ A,
sw w ∈ X,
f(w) w 6∈ A ∪X,

and it follows easily from (6) that hs is indeed a homomorphism. Thus we define

T (f) =
{
hs : s ∈ {−1, 1}X

}
.

We now study the few-to-many property of T . It is convenient to partition the set of functions P

according to the sizes of A and X. We let

Pα,β := {f ∈ P : |A(f)| = α and |X(f)| = β}.

We claim that T is few-to-many from Pα,β to Q. On the one hand,

|T (f)| = 2|X(f)| = 2β (8)
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for all f ∈ Pα,β. On the other hand, to recover f from hs we just need to describe the set A(f)

(since given A we know X, f on A is a translate of hs, f on X is 1, and f on the complement of

A ∪X equals hs). Since A is connected in G≤2, the number of possible sets A of a given size α is

at most d4α (see Lemma 2.1 below). Thus, for every h in Q,∣∣{f ∈ Pα,β : h ∈ T (f)
}∣∣ ≤ d4α. (9)

Now, we use the fact that subsets of (the vertex set of) the tree which do not contain leaves expand

very well (see Claim 4.1 below). Since A(f) does not contain leaves by its definition and the fact

that f equals zero on the leaves, we have

(d− 2)|A(f)| < |X(f)| (10)

for all f ∈ P . Putting together (8), (9) and (10) and applying Lemma 1.8 gives

|Pα,β|
|Q|

≤ d4α

2β
≤ d4β/(d−2)

2β
≤ 2−β/2

for large d. By summing over all possibilities for α and β and using (7) we may conclude that

P(f(v) > t) =
|P |
|Q|
≤ exp

(
−1

5
d(d− 1)t−1

)
,

for all large d, as we wanted to prove.

1.5 Readers’ guide

Section 2 gives some preliminary results on graphs. Sections 3 and 4 contain our investigation of

the behavior of Lipschitz functions on good expanders and on trees, respectfully. In Section 5, we

study the behavior of homomorphisms on good bi-expanders. Finally, Section 6 consists of a short

summary and suggestions for future research.

2 Preliminaries

We start with fixing some notation. In the following, G is an arbitrary graph. We recall that

the graph G≤2 is defined as follows: it has the same vertex set as G and {u, v} ∈ E(G≤2) iff

distG(u, v) ≤ 2, where distG is the graph distance in G, that is, the length of a shortest path

connecting a pair of vertices in G. For a set A of vertices of G, define the neighborhood of A by

N(A) = {b ∈ V (G) : there exists an a ∈ A so that {a, b} ∈ E(G)}.

Define the outer boundary of A as

∂(A) = N(A) \A.

The 2-outer boundary of A is

∂2(A) = N(N(A)) \ (A ∪N(A)).
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Denote balls in (the graph metric on) G by

B(v, t) = {w ∈ V (G) : distG(v, w) ≤ t}.

Finally, for a finite set X, denote by P(X) the family of all subsets of X.

In the remainder of this section, we list and prove some preliminary, simple facts.

2.1 Counting connected sub-graphs

The following lemma uses depth-first search to bound the number of connected sets in a graph.

Lemma 2.1. Let a be an integer, let H be an arbitrary graph with maximum degree ∆ and let

v ∈ V (H). The number of connected sets A ⊆ V (H) such that v ∈ A and |A| = a does not exceed

∆2a−2.

Proof. For every such A, we fix an arbitrary spanning tree TA of A. We perform a depth-first

search on TA, starting and ending at v and passing through every edge exactly twice. Since every

spanning tree of A has exactly a− 1 edges, the number of possibilities for such a walk (and hence

for A) is not larger than the number of walks of length 2a− 2 in H that start at v.

2.2 Expanders

In this section, we establish some basic properties of λ-expanders. Some of them were already

mentioned in our discussion in Section 1.1. Our proof of Lemma 1.1 relies on the fact that every

pair of sufficiently large vertex sets in a λ-expander is connected by an edge, which follows directly

from Definition II.

Proposition 2.2 (connectivity). Let G be a d-regular n-vertex λ-expander. Then for every two

sets A,B ⊆ V (G) satisfying min{|A|, |B|} > λn
d , there is an edge of G joining A and B.

Proof. Since d
n |A||B| > λ

√
|A||B|, it follows from Definition II that e(A,B) > 0.

We can now define the phase of a function and prove its properties.

Proof of Lemma 1.1. Let G be a d-regular n-vertex λ-expander and let v0 be an arbitrary vertex

of G. Fix an f ∈ Lipv0(G;M) and let k be the smallest integer such that

∣∣{v ∈ V (G) : f(v) ≤ k}
∣∣ > λn

d
. (11)

Since f is M -Lipschitz, there are no edges in G between the sets {v : f(v) ≤ k} and {v : f(v) >

k + M}. It follows from Proposition 2.2 and (11) that the latter set has at most λn
d elements.

Hence, by minimality of k,

|{v : f(v) 6∈ {k, . . . , k +M}}| = |{v : f(v) < k}|+ |{v : f(v) > k +M}| ≤ 2λn

d
.
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This shows that the set of integers k satisfying (3) is non-empty for all f . We now describe a

way to define phase(f) so that phase(−f) = −phase(f) for f which is not identically zero. Fix

some total order on Lipv0(G;M) (e.g., the lexicographic order). For every f ∈ Lipv0(G;M) which

is not identically zero, let b(f) be the larger in this total order between f and −f , and let s(f)

be the smaller of the two. Define phase(b(f)) as the interval {k, . . . , k + M} for the minimal k

satisfying (3) for b(f) and define phase(s(f)) = −phase(b(f)).

The following standard proposition shows vertex expansion in expanders.

Proposition 2.3 (expansion). Let G be a d-regular n-vertex λ-expander. Then for every A ⊆ V (G),

|N(A)| ≥ min

{
n

2
,
d2

4λ2
|A|
}
.

Proof. Let A ⊆ V (G). We may assume that A 6= ∅ and |N(A)| < n/2. Since there are no edges

between A and the complement of N(A), then by Definition II,

d|A| = e(A,N(A)) ≤ d

n
|A||N(A)|+ λ

√
|A||N(A)| ≤ d|A|

2
+ λ
√
|A||N(A)|.

Proposition 2.3 has the following immediate corollary.

Corollary 2.4 (large boundary). Let G be a d-regular n-vertex λ-expander. Then for every A ⊆
V (G) with |A| ≤ n

4 ,

|∂(A)| ≥ min

{
n

4
,

(
d2

4λ2
− 1

)
|A|
}
.

The following proposition gives an estimate on the growth of balls in expanders.

Proposition 2.5 (volume growth). Let G be a d-regular n-vertex λ-expander. Then for every

non-negative integer t and every v ∈ V (G),

|B(v, t)| ≥ min

{
n

2
,

(
d

2λ

)2t
}
. (12)

Proof. Fix v and prove (12) by induction on t. The bound trivially holds for t = 0. Assume that

(12) holds for t ≥ 0. Since B(v, t+ 1) ⊇ N(B(v, t)), Proposition 2.3 implies that

|B(v, t+ 1)| ≥ min

{
n

2
,
d2

4λ2
|B(v, t)|

}
.

Proposition 2.5 implies the following bound on the diameter of expanders.

Corollary 2.6 (diameter). Let G be a d-regular n-vertex λ-expander. If λ < d/2, then

diam(G) ≤
(

log
d

2λ

)−1
· log n.

11



Proof. Let v and w be two arbitrary vertices of G and let t be the minimum integer such that both

B(v, t) and B(w, t) contain more than λn/d vertices. Since λn/d < n/2, by Proposition 2.5,

t ≤
(

2 log
d

2λ

)−1
· log

(
λn

d

)
≤
(

2 log
d

2λ

)−1
· log n− 1

2
.

By Proposition 2.2, B(v, t) and B(w, t) are joined by an edge and hence distG(v, w) ≤ 2t+ 1.

2.3 Bi-expanders

In this section, we present some basic properties of λ-bi-expanders. As most of these properties

are natural bipartite analogues of the statements presented in Section 2.2 (and given the obvious

similarity between Definitions II and V), we leave most of the proofs as an exercise for the reader.

Proposition 2.7 (connectivity). Let G be a d-regular 2n-vertex λ-bi-expander and let V0 and V1 be

the two color classes of G. Then for every two sets A ⊆ V0 and B ⊆ V1 satisfying min{|A|, |B|} >
λn
d , there is an edge of G joining A and B.

We can now define the phase of a homomorphism function on a λ-bi-expander and prove its prop-

erties.

Proof of Lemma 1.4. Let G be a d-regular 2n-vertex λ-bi-expander, let V0 and V1 be the two color

classes of G and let v0 be an arbitrary vertex of G. Fix f ∈ Homv0(G), let k be the smallest integer

such that

|{v ∈ V1−i : f(v) < k}| > λn

d
(13)

for some i ∈ {0, 1} and fix (the unique) such i. Since f is a homomorphism, there are no edges in

G between the sets {v ∈ V1−i : f(v) < k} and {v ∈ Vi : f(v) > k}. It follows from Proposition 2.7

and (13) that the latter set has at most λn
d elements. Since all values taken by f on Vi have the

same parity, it follows from the minimality of k that {v ∈ Vi : f(v) < k} = {v ∈ Vi : f(v) < k − 1}
and hence

|{v ∈ Vi : f(v) 6= k}| = |{v ∈ Vi : f(v) < k − 1}|+ |{v ∈ Vi : f(v) > k}| ≤ 2λn

d
.

Finally, suppose that λ < d/3. Let k = phase(f) and let i = i∗ be such that (3) holds. Since

f is a homomorphism, there are no edges in G between the sets {v ∈ Vi : f(v) = k} and {v ∈
V1−i : |f(v) − k| ≥ 2}. By the definition of phase and the assumption on λ, it follows that the

former set has more than λn
d elements and hence, by Proposition 2.7, the latter set has at most λn

d

elements. Therefore,

|{v ∈ V (G) : |f(v)− k| ≥ 2}| = |{v ∈ Vi : f(v) 6= k}|+ |{v ∈ V1−i : |f(v)− k| ≥ 2}| ≤ 3λn

d
.

Proposition 2.8 (expansion). Let G be a d-regular 2n-vertex λ-bi-expander. Then for every A ⊆
V (G),

|N(A)| ≥ min

{
n

2
,
d2

4λ2
|A|
}
.

12



Corollary 2.9 (large boundary). Let G be a d-regular 2n-vertex λ-bi-expander. Then for every

A ⊆ V (G) with |A| ≤ n
4 ,

|∂(A)| ≥ min

{
n

4
,

(
d2

4λ2
− 1

)
|A|
}
.

Proposition 2.10 (volume growth). Let G be a d-regular 2n-vertex λ-bi-expander. Then for every

non-negative integer t and every v ∈ V (G),

|B(v, t)| ≥ min

{
n

2
,

(
d

2λ

)2t
}
. (14)

Corollary 2.11 (diameter). Let G be a d-regular 2n-vertex λ-bi-expander. If λ ≤ d/8, then

diam(G) ≤
(

log
d

2λ

)−1
· log n+ 1.

3 Lipschitz functions

Assume that G is a connected d-regular n-vertex λ-expander that is M -good, which roughly means

that λ � d/(M log d). Let v and v0 be two (not necessarily distinct) vertices of G and let t be a

positive integer. Recall the definition of phase from Lemma 1.1. We will estimate the probability

that a uniformly chosen random function f ∈R Lipv0(G;M) is in the event

Ω =
{
f ∈ Lipv0(G;M) : dist(f(v),phase(f)) > (t− 1)M

}
.

We first briefly describe our strategy. Our proof of Theorem 1.2 is divided into two (independent)

parts.

In the first part, described in Sections 3.1 and 3.2, we construct a map T : Ω → P(Lipv0(G;M))

such that the set T (f) is large for every f ∈ Ω. Moreover, for every g, we bound the size of the

set {f ∈ Ω: g ∈ T (f)}. This is crucial in estimating the probability of Ω using Lemma 1.8. In this

part of the proof, we do not use the assumption that G is a λ-expander.

In the second part of the proof, Section 3.3, we derive the claimed bound on P(Ω) using the prop-

erties of the transformation T and the underlying graph G. Here, we strongly use the assumption

that G is a good expander.

In fact, we partition Ω into two parts and argue as above on each part:

Ω+ = {f ∈ Ω: f(v) > max phase(f)} and Ω− = {f ∈ Ω: f(v) < min phase(f)}.

Since phase(−f) = −phase(f) by the definition of the phase, the map f 7→ −f is a bijection

between Ω+ and Ω−. Thus,

P(Ω) ≤ P(Ω+) + P(Ω−) ≤ 2P(Ω+). (15)

Hence, from now on we can focus our attention on the event Ω+.
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3.1 Constructing the transformation T

Let f ∈ Ω+ and observe that f is not the zero function. In other words, let f ∈ Lipv0(G;M) satisfy

f(v) > k + tM , where k is the unique integer such that {k, . . . , k +M} = phase(f). To make our

argument more general, for the remainder of this section and in Section 3.2, let us disregard the

fact that G is an M -good expander and the precise definition of k. Let us only assume that G is

an arbitrary finite connected graph with two (not necessarily distinct) fixed vertices v0 and v, that

an arbitrary function k : Lipv0(G;M)→ Z is given and that Ω+ is a subset of all f ∈ Lipv0(G;M)

satisfying f(v) > k + M for k = k(f). Our only requirement on the function k is that for each

f ∈ Lipv0(G;M) there exists some vertex w on which f(w) ≤ k +M for k = k(f). Let

A(f) be the connected component of the vertex v in the subgraph of G≤2

induced by the set of vertices {w : f(w) > k +M}.

Our requirement on k implies that A(f) does not contain all vertices of G. Let us further partition

the event Ω+. Let Cv be the family of all sets of vertices A ⊆ V (G) such that v ∈ A and A is

connected in G≤2. For every A ∈ Cv, let

Ω+
A = {f ∈ Ω+ : A(f) = A}.

Claim 3.1. Let A ∈ Cv and f ∈ Ω+
A. Set X = ∂(A). Then, the following properties hold:

1. min f(A) > k +M ,

2. f(X) ⊆ {k + 1, k + 2, . . . , k +M} and

3. max f(∂2(A)) ≤ k +M .

Proof. 1. Follows since A is a subset of the set of vertices w such that f(w) > k +M .

2. Since A is defined as a connected component, if w in X satisfies f(w) > k+M , then w is in A

as well, which is a contradiction (X ∩A = ∅). Since f is M -Lipschitz and min f(A) > k+M ,

we have min f(X) ≥ min f(N(A)) > k.

3. Similarly to 2., if w ∈ ∂2(A) and satisfies f(w) > k + M , then, since A is defined as a

connected component in G≤2, we have w ∈ A, a contradiction.

For the discussion, fix an f ∈ Ω+
A for some A ∈ Cv and set X = ∂(A). Here is a first hint on how

to define T (f). For any s ∈ ZX , define hs = hs(f), a map from V (G) to Z, by

hs(w) =


k +M w ∈ A,
k + sw w ∈ X,
f(w) w 6∈ A ∪X.

Clearly, not every s ∈ ZX gives rise to an M -Lipschitz function hs. Still, it is quite easy to identify

a large subset of ZX that does have this property. To this end, for every x ∈ X, let

ux = ux(f) = min ({f(w) +M − k : w ∈ N(x), w /∈ A ∪X} ∪ {M})
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and

`x = `x(f) = max{f(w)−M − k : w ∈ N(x) ∩A}.

The following propositions clarifies the relation between the sequences defined above.

Proposition 3.2. Let A ∈ Cv, let f ∈ Ω+
A and let X = ∂(A). Then, for every x ∈ X,

1 ≤ `x(f) ≤ f(x)− k ≤ ux(f) ≤M. (16)

The proposition shows that ux is an upper bound on the value of f(x)− k and `x is a lower bound.

Proof. Fix x ∈ X. There are four inequalities to prove. First, let wx be an element of N(x) ∩ A
such that `x(f) = f(wx)−M−k. Since wx ∈ A, it follows from 1 in Claim 3.1 that f(wx) > k+M ,

which proves `x(f) ≥ 1. Second, since {x,wx} is an edge of G and f is M -Lipschitz, it follows

that f(x) ≥ f(wx) −M = `x(f) + k. Third, because f(x) ≤ k + M (see 2 in Claim 3.1) and

f(x) ≤ f(w) +M for every w ∈ N(x),

f(x)− k ≤ min ({f(w) +M − k : w ∈ N(x), w /∈ A ∪X} ∪ {M}) = ux(f).

Finally, the inequality ux(f) ≤M follows directly from the definition of ux(f).

Using the sequence (ux), we can define a large family of Lipschitz functions. Let

S = S(f) =
{
s ∈ ZX : sx ∈ {0, . . . , ux(f)} for every x ∈ X

}
.

Claim 3.3. For every f in Ω+ and for every s ∈ S(f), the map hs = hs(f) is an M -Lipschitz

function (but there is no guarantee that hs(v0) = 0).

Proof. Fix s ∈ S and let {w1, w2} be an edge of G. It suffices to show that |hs(w1)−hs(w2)| ≤M .

In order to prove this inequality, we consider several cases depending on the locations of the vertices

w1 and w2.

Case 1. If w1, w2 ∈ A, then |hs(w1)− hs(w2)| = 0.

Case 2. If w1, w2 ∈ X, then |hs(w1)− hs(w2)| = |sw1 − sw2 | ≤ max{uw1 , uw2} ≤M .

Case 3. If w1, w2 6∈ A ∪X, then |hs(w1)− hs(w2)| = |f(w1)− f(w2)| ≤M .

Case 4. If w1 ∈ A and w2 ∈ X, then |hs(w1)− hs(w2)| = |k +M − k − sw2 | ≤M .

Case 5. If w1 ∈ X and w2 6∈ A ∪X, then, by definition of uw1 ,

hs(w1)− hs(w2) = k + sw1 − f(w2) ≤ k + uw1(f)− f(w2) ≤M.

On the other hand, by 3 in Claim 3.1,

hs(w1)− hs(w2) = k + sw1 − f(w2) ≥ k − k −M = −M.

Since there are no edges between A and (A ∪X)c, the proof is now complete.
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One might be tempted to suggest T (f) = {hs : s ∈ S(f)}. Although this is a reasonable guess, one

needs to be somewhat careful. As v0 is arbitrary, it might happen that hs(v0) 6= 0 for some s ∈ S.

Luckily, the following claim reassures us that this is not a serious issue. For this, we define the

“shift” operator Pv0 on functions h : V (G)→ Z by

Pv0(h) = h− h(v0).

Clearly, Pv0(h)(v0) = 0 and if h is M -Lipschitz, so is Pv0(h).

Claim 3.4. Let f ∈ Ω+ and S = S(f). The shift Pv0 is one-to-one on {hs : s ∈ S}.

Proof. Let s ∈ S. Since hs(v) = k +M and hs − Pv0(hs) is a constant function,

hs = Pv0(hs) + (k +M − Pv0(hs)(v)).

Finally, define T : Ω+ → P(Lipv0(G;M)) by

T (f) = {Pv0(hs) : s ∈ S(f)} . (17)

3.2 Properties of T

Before we establish the key properties of T , we need to further refine our partition of Ω+. For every

A ∈ Cv, let

S(A) =
{
S(f) : f ∈ Ω+

A

}
and for every S ∈ S(A), let

Ω+
A,S =

{
f ∈ Ω+

A : S(f) = S
}
.

We are now ready to prove a key lemma.

Lemma 3.5. Let A ∈ Cv and X = ∂(A). For every S =
∏
x∈X{0, . . . , ux} in S(A), the following

holds:

1. If f ∈ Ω+
A,S, then |T (f)| = |S|.

2. For every h ∈ Lipv0(G;M), we have

|{f ∈ Ω+
A,S : h ∈ T (f)}| ≤M(2|A|+ 1)(2M + 1)|A|

∣∣S−∣∣,
where

S− =
∏
x∈X
{1, . . . , ux}.

Proof. 1. By (17) and Claim 3.4,

|T (f)| = |{Pv0(hs) : s ∈ S}| = |S|.

2. Fix some h ∈ Lipv0(G;M). Assume that we are given an integer k and some function f0 : A∪X →
Z. We claim that there is at most one f ∈ Ω+

A,S such that
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• h ∈ T (f),

• k = k(f) and

• f(w) = f0(w) for all w ∈ A ∪X.

It suffices to check that if there exists such an f , then we can uniquely reconstruct its values on

all vertices w /∈ A ∪ X using only the fact that h ∈ T (f) and the data in h, f0 and k. Recall

that h = Pv0(hs) for some s ∈ S and that f(w) = hs(w) for all w 6∈ A ∪ X. Hence, it suffices to

reconstruct hs(v0). But hs(v0) = hs(v)− h(v) = k +M − h(v).

Therefore, in order to bound the number of possible fs with h ∈ T (f), it suffices to bound the

number of pairs (k, f0) for which there exists an f as above.

First, we bound the number of possibilities for k. If v0 /∈ A ∪ X, then since hs(v0) = f(v0) = 0,

we have h(v) = k +M and hence k is uniquely determined by h. If v0 ∈ A ∪X, observe that since

any f ∈ Ω+
A,S satisfies f(v0) = 0 and can change by at most M along each edge of G, there exists

some x0 ∈ X such that |f(x0)| ≤ M |A| for all f ∈ Ω+
A,S . It follows from part 2. of Claim 3.1 that

k ∈ [−M |A|−M,M |A|−1] and hence there are at most M(2|A|+1) options for k(f) for f ∈ Ω+
A,S .

Now, fix k and bound the number of possibilities for f0. Start by bounding the number of possible

values of f0 on X. Let f ∈ Ω+
A,S be such that h ∈ T (f). Since S = S(f) by the definition of Ω+

A,S ,

by Proposition 3.2, 1 ≤ f(x)− k ≤ ux for every x ∈ X. In other words, (f0(x)− k)x∈X ∈ S−.

Finally, we bound the number of possible values of f0 on A. Fix some s ∈ S− and suppose that

f0(x) = k + sx for every x ∈ X. We bound the number of ways we can extend an M -Lipschitz f0
from X to A ∪X. Let A′ ⊆ A be a connected component of A in G. Observe that to specify f0
on A′ it suffices to fix a spanning tree of A′ in G and specify the difference of values of f0 on the

edges of this spanning tree and on a single edge leading from A′ to X. Since the spanning tree has

exactly |A′| − 1 edges, there are at most (2M + 1)|A
′| possibilities to extend f0 to A′. Multiplying

this quantity over all connected components of A in G, we see that there are at most (2M + 1)|A|

ways to extend f0 from X to A.

Lemma 3.5 already allows us to prove an estimate on |Ω+
A,S | using Lemma 1.8.

Corollary 3.6. For every A ∈ Cv and S ∈ S(A),∣∣Ω+
A,S

∣∣∣∣T (Ω+
A,S)

∣∣ ≤M(2|A|+ 1)(2M + 1)|A|
(

M

M + 1

)|∂(A)|
.

Proof. The claimed estimate follows directly from Lemmas 1.8 and 3.5 and the fact that

|S−|
|S|

=
∏
x∈X

ux
ux + 1

≤
(

M

M + 1

)|X|
with X = ∂(A).

To derive a bound on |Ω+
A|, we use the following property of the transformation T .
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Claim 3.7. For every A ∈ Cv and every S 6= S′ in S(A),

T (Ω+
A,S) ∩ T (Ω+

A,S′) = ∅.

Proof. Fix some A ∈ Cv and let X = ∂(A). Let f ∈ Ω+
A and fix an arbitrary h ∈ T (f). To prove

the claim, we show that we can reconstruct (ux(f))x∈X from h. Recall that hs(w) = f(w) for every

w 6∈ A ∪X. Hence, for w 6∈ A ∪X,

f(w) +M − k = hs(w)− hs(v) + 2M = h(w)− h(v) + 2M,

where the first equality follows from the fact that hs(v) = k +M , and the second equality follows

from the fact that h is a “shift” of hs. Therefore, for every x ∈ X,

ux(f) = min ({f(w) +M − k : w ∈ N(x), w /∈ A ∪X} ∪ {M})
= min ({h(w)− h(v) + 2M : w ∈ N(x), w /∈ A ∪X} ∪ {M}) .

Concluding, Corollary 3.6 and Claim 3.7 imply the following bound on the probability of Ω+
A.

Corollary 3.8. For every A ∈ Cv,

P(Ω+
A) ≤M(2|A|+ 1)(2M + 1)|A|

(
M

M + 1

)|∂(A)|
.

3.3 Bounding P(Ω)

Proof of Theorem 1.2. Let us again assume that G is a connected d-regular n-vertex λ-expander

that is M -good and recall that Ω+ is the family of f ∈ Lipv0(G;M) that satisfy f(v) > k + tM ,

where k = k(f) = min phase(f). Fix some f ∈ Ω+, recall the definition of A(f) from Section 3.1

and observe that by (1) in Lemma 1.1,

|A(f)| ≤ |{w : f(w) > k +M}| ≤ |{w : f(w) 6∈ phase(f)}| ≤ 2λn

d
.

Moreover, since f(v) > k + tM and f is M -Lipschitz, it follows that BG(v, t− 1) ⊆ A(f). Let

Av =

{
A ∈ Cv : B(v, t− 1) ⊆ A and |A| ≤ 2λn

d

}
.

Clearly, the sets Ω+
A defined in Section 3.1, with A ∈ Av, form a partition of Ω+.

We are now ready to derive a bound on P(Ω). Essentially, the bound follows from Corollary 3.8 by

showing that the expansion properties of G imply that |∂(A)| is much larger than |A| for A ∈ Av.
For an integer α, let

Av,α = {A ∈ Av : |A| = α}.

Since every A ∈ Av is connected in G≤2 and the maximum degree of G≤2 is at most d2, then by

Lemma 2.1,

|Av,α| ≤ d4α. (18)
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Let α be such that Av,α is non-empty. In particular, |B(v, t− 1)| ≤ α ≤ 2λn
d . Let

bα = min {|∂(A)| : A ∈ Av,α} .

By Corollary 2.4, since λ ≤ d
8 and hence α ≤ n

4 ,

bα ≥ min

{
n

4
,
d2

5λ2
α

}
≥ dα

8λ
, (19)

where the last inequality holds as α ≤ 2λn/d. Hence, by Corollary 3.8 and (18),∑
A∈Av,α

P(Ω+
A) ≤ d4α ·M(2α+ 1)(2M + 1)α

(
M

M + 1

)bα
(20)

≤ d4αMαe2α(3M)α exp

(
− bα
M + 1

)
≤ exp

(
− bα
M + 1

+ 2 log(9Md2)α

)
(21)

≤ exp

(
−bα

(
1

M + 1
− 16λ log(9Md2)

d

))
≤ exp

(
− bα

2(M + 1)

)
,

where the last two inequalities follow from (19) and our assumption that λ ≤ d
32(M+1) log(9Md2)

,

respectively. Let us adopt the convention that when we write
∑

α we mean a sum over {α : |Av,α| 6=
0}. Since A ∪ ∂(A) ⊇ B(v, t) for every A ∈ Av, then |B(v, t)| ≥ α + bα for every α as above and

hence (15) and (20) give

P(Ω) ≤ 2P(Ω+) = 2
∑
A∈Av

P(Ω+
A) = 2

∑
α

∑
A∈Av,α

P(Ω+
A) ≤ 2

∑
α

exp

(
− bα

2(M + 1)

)

= 2
∑
α

exp

(
−bα + α− α

2(M + 1)

)
≤ 2 exp

(
− |B(v, t)|

5(M + 1)

)∑
α

exp

(
− 3bα

10(M + 1)
+

α

5(M + 1)

)
,

Thus we need only estimate the last sum. Applying (19) and our assumption that λ ≤ d
32(M+1) log(9Md2)

we have∑
α

exp

(
− 3bα

10(M + 1)
+

α

5(M + 1)

)
≤
∑
α

exp

(
−
(

3d

80λ(M + 1)
− 1

5(M + 1)

)
α

)
≤
∑
α

exp

(
−
(

96 log(9Md2)

80
− 1

10

)
α

)
≤
∑
α

exp(−2α) ≤ 1

2
,

as required.

4 Lipschitz functions on trees

In this section, we prove Theorem 1.7. Recall the definitions of Tdh, vr, VL and LipVL(Tdh;M) from

Section 1.3. Fix integers M ≥ 1, d ≥ 40(M + 1) log(M + 1), t ≥ 1 and a non-leaf vertex v of Tdh
(since the theorem is trivial for leaf vertices). We will estimate the probability that a uniformly

chosen random function f ∈R LipVL(Tdh;M) is in the event

Ω =
{
f ∈ LipVL(Tdh;M) : |f(v)| > tM

}
.
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By symmetry, P(Ω) = 2P(Ω+) where

Ω+ = {f ∈ LipVL(Tdh;M) : f(v) > tM}.

Hence it suffices to bound the probability of Ω+. It is convenient to introduce an auxiliary graph

T̃dh by taking the graph Tdh and gluing the set of leaves VL to one new vertex v0. It is clear from

the definition that the probability distribution of f(v) is the same when f ∈R LipVL(Tdh;M) and

when f ∈R Lipv0(T̃dh;M). Hence we may focus on bounding the probability of the event

Ω̃+ = {f ∈ Lipv0(T̃dh;M) : f(v) > (t− 1)M}.

We may now use the results of Sections 3.1 and 3.2 to the graph T̃dh with the function k(f) ≡ 0

defined on Lipv0(T̃dh). In particular, defining Cv and

Ω̃+
A = {f ∈ Ω̃+ : A(f) = A}.

as in Section 3.1, we deduce from Corollary 3.8 that for every A ∈ Cv,

P(Ω̃+
A) ≤M(2|A|+ 1)(2M + 1)|A|

(
M

M + 1

)|∂(A)|
. (22)

As in Section 3.3 we again have that for every f ∈ Ω̃+, BG(v, t− 1) ⊆ A(f). In addition, denoting

A = A(f), we have (A ∪ ∂(A)) ∩ VL = ∅ by Claim 3.1, since f(VL) = {0}. Thus, letting

Av = {A ∈ Cv : B(v, t− 1) ⊆ A and (A ∪ ∂(A)) ∩ VL = ∅} ,

the sets Ω̃+
A with A ∈ Av form a partition of Ω̃+. It remains to use (22) to bound the probability

of Ω̃+. For this we will need that subsets of the tree which do not contain leaves have large vertex

expansion.

Claim 4.1. If A is a non-empty subset of vertices of Tdh which does not contain any leaves, then

|∂(A)| > (d− 2)|A|.

Proof. By induction on |A|. If |A| = 1, then |∂(A)| = d. If |A| > 1, let w be a vertex in A which

is farthest from the root and let A′ = A \ {w}. By the induction hypothesis and our choice of w,

|∂(A)| ≥ |∂(A′)| − 1 + (d− 1) > (d− 2)|A′|+ d− 2 = (d− 2)|A|.

The above claim applies also to sets A ∈ Av since subsets A of vertices of Tdh which satisfy (A ∪
∂(A)) ∩ VL = ∅ have the same boundary ∂(A) in both Tdh and T̃dh. We continue to define Av,α and

bα exactly as in Section 3.3 and note that even though v0 has very high degree in T̃dh, it is still true

that |Av,α| ≤ d4α as in (18).
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Combining (22), the bound on |Av,α| and the above claim, and using a similar calculation to (20),

we have ∑
A∈Av,a

P(Ω̃+
A) ≤ d4α ·M(2α+ 1)(2M + 1)α

(
M

M + 1

)bα
(23)

≤ exp

(
− bα
M + 1

+ 2 log(9Md2)α

)
(24)

≤ exp

(
−bα

(
1

M + 1
− 2 log(9Md2)

d− 2

))
≤ exp

(
− bα

2(M + 1)

)
, (25)

where the last inequality follows by noting that our assumption that d ≥ 40(M + 1) log(M + 1)

implies

4(M + 1) log(9Md2) + 2 ≤ 5(M + 1) log(9Md2) = 5(M + 1) log(9M) + 10(M + 1) log d

≤ 5(M + 1) log(9M) +
d

2
≤ 20(M + 1) log(M + 1) +

d

2
≤ d.

We continue exactly as in Section 3.3, using that bα > (d − 2)α and our assumption that d ≥
40(M + 1) log(M + 1), and obtain

P(Ω) ≤ exp

(
−
|BT̃dh

(v, t)|
5(M + 1)

)
where BT̃ dh

(v, t) denotes the graph ball of radius t around v in T̃ dh . It remains to note that if

distTdh
(v, VL) ≤ t, then P(Ω) is trivially zero since f is M -Lipschitz, so that we can replace BT̃ dh

(v, t)

by BTdh
(v, t). Finally we note that when distTdh

(v, VL) ≥ t, we have |BTdh
(v, t)| ≥ d(d− 1)t−1.

5 Homomorphisms

Assume that G is a d-regular 2n-vertex λ-bi-expander that is good (λ � d/ log d). Let V0 and

V1 be the two color classes of G and let v and v0 be two (not necessarily distinct) vertices of G.

Without loss of generality, we assume that v0 ∈ V0. Recall the definition of phase from Lemma 1.4.

We estimate the probability that, given an integer t ≥ 2, a uniformly chosen random function

f ∈R Homv0(G) is in the event

Ω = {f ∈ Homv0(G) : |f(v)− phase(f)| > t}.

Our proof of Theorem 1.5 closely follows the proof of Theorem 1.2 given in Section 3. We construct

a map T : Ω → P(Homv0(G)) such that the set T (f) is large for every f ∈ Ω and the set {f ∈
Ω: g ∈ T (f)} is small for every g. We then derive a bound on P(Ω) using Lemma 1.8 and some

easy counting. We start by splitting Ω into two parts:

Ω+ = {f ∈ Ω: f(v) > phase(f) + t} and Ω− = {f ∈ Ω: f(v) < phase(f)− t}.

By definition of phase, since G is a good expander, for every f ∈ Ω there is exactly one k satisfying

(3) with i∗. This implies that the map f 7→ −f is one-to-one from Ω+ to Ω−, and vice versa. We

can, therefore, focus on the event Ω+.
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5.1 Defining the transformation T

For f ∈ Ω+, write k = k(f) = phase(f) and let A(f) be the connected component of the vertex v

in the subgraph of G≤2 induced by the set of vertices {w : f(w) > k+ 1}. We further partition the

event Ω+. Let Cv be the family of all A ⊆ V (G) such that v ∈ A and A is connected in G≤2. For

every A ∈ Cv, let

Ω+
A = {f ∈ Ω+ : A(f) = A}.

Claim 5.1. Let A ∈ Cv and f ∈ Ω+
A. Set X = ∂(A). Then the following properties hold:

1. min f(A) > k + 1,

2. f(X) = {k + 1} and

3. f(∂2(A)) = {k}.

The proof is immediate from the definition of A(f) and the definition of homomorphism height

functions. Here is a reasonable guess on how to define T (f) for f ∈ Ω+. Write A = A(f) and

X = ∂(A), and for any s ∈ {−1, 1}X , define hs : V (G)→ Z by

hs(w) =


f(w)− 2 w ∈ A,
k + sw w ∈ X,
f(w) w 6∈ A ∪X,

The following statement is a direct consequence of Claim 5.1. We omit its proof, which is a simple

case analysis similar to the proof of Claim 3.3.

Claim 5.2. For every f ∈ Ω+ and s ∈ {−1, 1}X , the function hs is a homomorphism function, i.e.,

|hs(v)−hs(w)| = 1 whenever v and w are adjacent in G (but there is no guarantee that hs(v0) = 0).

Again, we use the “shift” operator Pv0 defined by Pv0(h) = h − h(v0). Recall that h ∈ Hom(G) if

and only if Pv0(h) ∈ Homv0(G).

Claim 5.3. For every f ∈ Ω+, Pv0 is one-to-one on {hs : s ∈ {−1, 1}X}.

Proof. Let s ∈ {−1, 1}X and let w ∈ A ∩ N(X). Claim 5.1, since f is a homomorphism, tells us

that f(w) = k + 2. So, hs(w) = f(w)− 2 = k. Since hs − Pv0(hs) is a constant function,

hs = Pv0(hs) + (k − Pv0(hs)(w)).

Finally, define T : Ω+ → P(Homv0(G)) by

T (f) =
{
Pv0(hs) : s ∈ {−1, 1}X

}
. (26)
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5.2 Properties of T

Lemma 5.4. For every A ∈ Cv, the following holds:

1. If f ∈ Ω+
A, then |T (f)| = 2|∂(A)|.

2. For every h ∈ Homv0(G), we have

|{f ∈ Ω+
A : h ∈ T (f)}| ≤ 2.

Proof. 1. Follows directly from (26) and Claim 5.3.

2. Let X = ∂(A) and fix some h ∈ Homv0(G) and an integer k. We claim that there is at most

one f ∈ Ω+
A such that h ∈ T (f) and phase(f) = k. First, since f ∈ Ω+

A, we have f(w) = k + 1

for all w ∈ X. Next, recall that h = Pv0(hs) for some s ∈ {−1, 1}X , that f(w) = hs(w) for all

w 6∈ A ∪ X, and that f(w) = hs(w) + 2 for all w ∈ A. Hence, it suffices to reconstruct hs which

amounts to reconstructing hs(v0). For this, fix an arbitrary w ∈ A ∩N(X) and observe, as in the

proof of Claim 5.3, that hs(v0) = hs(w)− h(w) = k − h(w).

Therefore, in order to bound the number of possibilities for f , it suffices to bound the number of

integers k for which there exists an f as above.

Recall that hs(w) = k = hs(v0)+h(w) for any w ∈ A∩N(X). There are two cases. (i) If v0 /∈ A∪X,

then hs(v0) = f(v0) = 0 and so k is determined by h. (ii) If v0 ∈ A ∪X, then hs(v0) can only take

values 0 and −2 and hence k can take at most 2 values.

Concluding this part of the discussion, Lemmas 1.8 and 5.4 imply the following bound on the

probability of Ω+
A.

Corollary 5.5. For every A ∈ Cv,

P(Ω+
A) ≤ 21−|∂(A)|.

5.3 Deriving the bound on P(Ω)

Proof of Theorem 1.5. Fix some f ∈ Ω+ and let k = phase(f). Recall the definition of A(f) from

Section 5.1 and observe that by (4) in Lemma 1.4,

|A(f)| ≤ |{w : f(w) > k + 1}| ≤ |{w : |f(w)− k| ≥ 2}| ≤ 3λn

d
.

Since f(v) > k + t and f is a homomorphism, B(v, t− 1) ⊆ A(f). Let

Av =

{
A ∈ Cv : B(v, t− 1) ⊆ A and |A| ≤ 3λn

d

}
.

Clearly, the sets Ω+
A defined in Section 5.1, with A ∈ Av, form a partition of Ω+.

We are now ready to derive our bound on P(Ω). For an integer α, let

Av,α = {A ∈ Av : |A| = α}.
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Since every A ∈ Av is connected in G≤2 and the maximum degree of G≤2 is at most d2, by

Lemma 2.1,

|Av,α| ≤ d4α. (27)

Let α be such that Av,α is non-empty. In particular, |B(v, t− 1)| ≤ α ≤ 3λn
d . Let

bα = min {|∂(A)| : A ∈ Av,α} .

By Corollary 2.9 and since α ≤ 3λn
d and λ ≤ d

12 ,

bα ≥ min

{
n

4
,
d2

5λ2
α

}
≥ d

12λ
α. (28)

Hence, by Corollary 5.5, (27),(28) and since G is a good bi-expander, for every α,∑
A∈Av,α

P(Ω+
A) ≤ d4α · 21−bα ≤ exp (4α log d− (bα − 1) log 2) ≤ 2 exp(−bα/2). (29)

Finally, a computation analogous to the one given in the end of Section 3.3 shows that (29) implies

P(Ω) ≤ 2P(Ω+) ≤ exp

(
−|B(v, t)|

3

)
.

6 Summary and future work

This work investigates the typical behavior of Lipschitz functions on expander graphs. The general

understanding obtained is that if the graph is a “good” expander (in an exact numerical sense),

then a random Lipschitz function on it is unlikely to fluctuate much at any given vertex and is

unlikely to have its maximum value larger than O(log(log n)), where n is the number of vertices

in G. Similar results are obtained also for homomorphism height functions on bi-expanders and for

grounded Lipschitz functions on regular trees.

There are 3 parameters influencing our results: the regularity d of the graph, the expansion param-

eter λ of the graph and the maximal slope M of our functions. Our results for Lipschitz functions

hold under the assumption that

λ ≤ d

32(M + 1) log(9Md2)
.

It is natural to ask how sharp is this condition. For example, do similar results continue to hold

when λ is only slightly less than d (e.g., λ = (1 − ε)d)? or when d is very small (e.g., 3-regular

expanders)? In another direction, recalling that λ cannot be significantly smaller than
√
d, we see

that even on the best of expanders, our results are limited to M < O(
√
d/ log d). Do similar results

continue to hold for larger M? Here, one may ask the same question for the limiting continuous

model (as M → ∞) in which one samples a random continuous Lipschitz function f : V (G) → R,

i.e., a uniform function (in the sense of Lebesgue measure) from the set of real-valued functions

satisfying |f(v)− f(w)| ≤ 1 for adjacent v and w, and f(v0) = 0 for some fixed vertex v0.
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We remark that our results for grounded Lipschitz functions on trees apply under the weaker

assumption that M < O(d/ log d), see Theorem 1.7. In a subsequent work [12], using a different

approach than the one used here, we will show that variants of our theorem for d-regular trees

continue to hold for arbitrary M .

Investigating random Lipschitz functions is of interest on many graphs. Can one obtain general

necessary and sufficient conditions on the graph for typical Lipschitz functions to be flat? As in the

theory of random surfaces, can the behavior of random Lipschitz functions be related to the behavior

of the Gaussian free field (see also [2])? As mentioned already in the introduction, the behavior of

random homomorphism functions is now reasonably understood on the hypercube [7, 10] and on

(finite boxes in) the lattice Zd with large d [11]. In addition, Engbers and Galvin [5, 4] use entropy

methods (first introduced by Kahn [9]) to obtain very general results on graph homomorphisms on

hypercube and certain bipartite graphs. In a subsequent work [13], we will show how the methods

developed in this paper can be adapted to yield similar results about general graph homomorphisms

on expanders. It seems natural to ask what the entropy methods used by Engbers, Galvin and

Kahn would yield for the fluctuations of M -Lipschitz functions.

Lastly, we mention the tantalizing question of understanding random homomorphism and Lipschitz

functions on the two-dimensional lattice Z2. It is conjectured that flatness no longer holds for this

graph but very little is known. Investigating this model is related to well-known models of statistical

physics such as square-ice, the 6-vertex model and 3-colorings (the antiferromagnetic 3-state potts

model). See [11] for a discussion and simulation results.

Acknowledgement We thank Itai Benjamini for suggesting the problem of understanding the

typical behavior of Lipschitz functions on expander graphs.
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