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Abstract. Let H be a graph with χ(H) = r+1. Simonovits’s theorem states that, if H is edge-

critical, the unique largest H-free subgraph of Kn is its largest r-partite subgraph, provided that

n is sufficiently large. We show that the same holds with Kn replaced by the binomial random

graph Gn,p whenever H is also strictly 2-balanced and p ⩾ (θH + o(1))n
− 1

m2(H) (logn)
1

eH−1 for

some explicit constant θH , which we believe to be optimal. This (partially) resolves a conjecture

of DeMarco and Kahn.
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1. Introduction

The celebrated theorem of Turán [23] states that, for every r ⩾ 2 and all n, the unique largest

Kr+1-free subgraph of the complete graph Kn is its largest r-partite subgraph. The starting

point of our work is the following generalisation of this result, proved by Simonovits [22]. We

call a graph H edge-critical if χ(H \ e) < χ(H) for some e ∈ H.

Theorem 1.1 ([22]). If a graph H is edge-critical and n is a large enough integer, then every

largest H-free subgraph of Kn is (χ(H) − 1)-partite.

We will say that a graph G is H-Simonovits if every largest H-free subgraph of G is (χ(H)−1)-

partite, so that Theorem 1.1 can be concisely restated as: ‘If H is edge-critical, then every

sufficiently large complete graph is H-Simonovits.’ On the other hand, observe that when

H is not edge-critical, no graph with chromatic number at least χ(H) can be H-Simonovits;

indeed, adding one edge to a (χ(H) − 1)-partite graph cannot introduce a copy of H unless H

is edge-critical.

This research was supported by: the Israel Science Foundation grant 2110/22; the grant 2019679 from the

United States–Israel Binational Science Foundation (BSF) and the United States National Science Foundation

(NSF); and the ERC Consolidator Grant 101044123 (RandomHypGra).
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In this work, we study the following question, which, to the best of our knowledge, was first

explicitly considered by Babai, Simonovits, and Spencer [4].

Question 1.2. Suppose that H is an edge-critical graph. For what p is the binomial random

graph Gn,p a.a.s. H-Simonovits?

The main result of [4] was that, for every ℓ ⩾ 1, the random graph Gn,p is typically C2ℓ+1-

Simonovits as long as p ⩾ 1/2 − εℓ for some (small) positive constant εℓ that depends only on

ℓ. Answering a challenge raised by the authors of [4], Brightwell, Panagiotou, and Steger [6]

proved that Gn,p is a.a.s. Kr+1-Simonovits, for every r ⩾ 2, already when p ⩾ n−cr for some

(small) positive constant cr.

What are the necessary conditions on p in Question 1.2? A standard deletion argument

shows that, when p ≫ n−2 and nvF peF ≪ n2p for some nonempty subgraph F ⊆ H, the random

graph Gn,p a.a.s. contains an H-free subgraph with (1 − o(1))
(
n
2

)
p edges; on the other hand, if

p ≫ n−1, then no r-partite subgraph of Gn,p can have more than (1 − 1/r + o(1))
(
n
2

)
p edges.

This simple reasoning shows that, in order for Gn,p to be a.a.s. H-Simonovits, one has to assume

that p = Ω(n−1/m2(H)), where

m2(H) := max

{
eF − 1

vF − 2
: F ⊆ H, eF ⩾ 2

}
(1)

is the so-called 2-density of H.

On the other hand, when p ≫ n−1/m2(H), then Gn,p typically becomes approximately H-

Simonovits, even when H is not edge-critical. This was first conjectured by Kohayakawa,  Luczak,

and Rödl [16] and later proved in the breakthrough work of Conlon and Gowers [7], under the

technical assumption that H is strictly 2-balanced (see below), which was later removed by the

second author [20], using an adaptation of the argument of Schacht [21].

Theorem 1.3 ([7, 20]). For every nonbipartite graph H and every β > 0, there exist a positive

C such that, when p ⩾ Cn−1/m2(H), then a.a.s. every largest H-free subgraph of Gn,p can be

made (χ(H) − 1)-partite by removal of at most βn2p edges.

Unfortunately, the methods of proof of Theorem 1.3 are not sufficiently accurate for addressing

the more delicate Question 1.2; in particular, they are insensitive to the assumption that the

forbidden subgraph H is edge-critical. Only in subsequent tour de force work, DeMarco and

Kahn showed that adding an extra polylogarithmic factor in the lower-bound assumption on p

suffices for Gn,p to a.a.s. become exactly H-Simonovits in the case where H is a clique, first in

the case H = K3 [8] (where the corresponding approximate statement had been proved already

in [16]) and then H = Kr+1 for all r ⩾ 2 [9].

Theorem 1.4 ([8, 9]). For every integer r ⩾ 2, there is a constant Cr such that, if

p ⩾ Crn
− 1

m2(Kr+1) (log n)
1

e(Kr+1)−1 ,

then Gn,p is a.a.s. Kr+1-Simonovits.

A key feature of Theorem 1.4 is that the lower-bound assumption on p is best-possible, up to a

multiplicative constant factor. This is because, when n−1 ≪ p ⩽ crn
−1/m2(Kr+1)(log n)1/(e(Kr+1)−1)

for a sufficiently small positive constant cr, one can a.a.s. find in Gn,p a subgraph G with chro-

matic number larger than r such that no edge of G belongs to a copy of Kr+1 in Gn,p. (This

was first observed in [6] in the case r = 2 and the subgraph being a copy of the 5-cycle.) In
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particular, as every maximal Kr+1-free subgraph of Gn,p must contain all edges that do not

belong to a copy of Kr+1, this means that no largest Kr+1-free subgraph of Gn,p is r-partite.

The main result of our work is a generalisation of Theorem 1.4 from cliques to arbitrary

edge-critical graphs that are strictly 2-balanced. A graph H is called strictly 2-balanced if the

maximum in the definition of the 2-density m2(H), given in (1), is achieved uniquely at F = H.

It is not difficult to check that all cliques, as well as all cycles, are strictly 2-balanced, so our

result is indeed a generalisation of Theorem 1.4, as well as the results of Babai, Simonovits, and

Spencer [4].

Our lower-bound assumption on p involves an explicit constant that we now define. Given

integers m and r, denote by Kr(m) the m-blowup of Kr, that is, the balanced, complete r-partite

graph with rm vertices and denote by Kr(m)+ the graph obtained from Kr(m) by adding to it

an arbitrary edge (contained in one of the r colour classes). Suppose now that H is an edge-

critical graph and note that H ⊆ Kχ(H)−1(m)+ for all m ⩾ vH . Denoting the number of copies

of H in a graph G by N(H,G), we let

πH := lim
m→∞

N
(
H,Kχ(H)−1(m)+

)
mvH−2

> 0 (2)

and let θH be the constant satisfying

(χ(H) − 1)2−vHπHθeH−1
H = 2 − 1

m2(H)
. (3)

We are now ready to state the main result of this work.

Theorem 1.5. If H is a nonbipartite, edge-critical, strictly 2-balanced graph and

p ⩾ (θH + ε) · n− 1
m2(H) (log n)

1
eH−1 , (4)

for some positive constant ε, then Gn,p is a.a.s. H-Simonovits.

It is not hard to check that the function pH := θH ·n− 1
m2(H) (log n)

1
eH−1 is the sharp threshold

for the property that, for some fixed equipartition Π = {V1, . . . , Vχ(H)−1} of the vertices of Kn,

every edge e of Gn,p whose both endpoints lie in the same Vi extends to a copy of H in Gn,p

whose all remaining edges have endpoints in different Vis (i.e., H ⊆ e ∪ (Gn,p ∩ ext(Π)) using

the notation introduced below). We strongly believe that our lower-bound assumption on p is

optimal. Our belief contradicts the prediction made by DeMarco and Kahn [9], who suggested

that it is enough to assume that p is above the threshold for the (weaker) property that every

edge of Gn,p extends to some copy of H (without the additional restriction that the copy of H

needs to cross the fixed equipartition Π).

One of the key ingredients in our proof of Theorem 1.5 requires the assumption that p =

1 − Ω(1). Luckily, in the complementary range p = 1 − o(1), Theorem 1.5 is a straightforward

consequence of the following result of Alon, Shapira, and Sudakov [1] and the fact that δ(Gn,p) ⩾

(p− o(1))n asymptotically almost surely.

Theorem 1.6 ([1]). For every edge-critical graph H, there exists a positive constant µ such that

every n-vertex graph with minimum degree at least (1 − µ)n is H-Simonovits.

We remark that [1, Theorem 6.1] proves only the marginally weaker assertion that, in every

n-vertex graph with minimum degree at least (1 − µ)n, the largest size of an H-free subgraph

equals the largest size of an r-partite subgraph. However, a minor adjustment of the proof of [1,
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Theorem 6.1] yields the stronger Theorem 1.6. For the sake of completeness, we include this

modified argument in Appendix A.

1.1. Related work. There is a closely related body of work concerning the structure of a

random H-free graph (as opposed to the structure of largest subgraphs of a random graph).

This problem was first considered by Erdős, Kleitman, and Rothschild [12], who proved that

a random K3-free graph is typically bipartite. The analogous statement with K3 replaced by

Kr+1 for an arbitrary r ⩾ 2 (and bipartite with r-partite) was proved by Kolaitis, Prömel,

and Rothschild [17]; this was further generalised by Prömel and Steger [19], who proved that a

random H-free graph is typically (χ(H) − 1)-partite whenever H is edge-critical.

In the past two decades, the results of [12, 17, 19] have been extended into the sparse regime,

where interesting threshold phenomena emerge. For a graph H and integers m,n satisfying

0 ⩽ m ⩽ ex(n,H), let Fn,m(H) denote the family of all H-free graphs with vertex set JnK and

precisely m edges. The following theorem combines the results of Osthus, Prömel, and Taraz [18]

(the case where H is an odd cycle) and Balogh, Morris, Samotij, and Warnke [5] (the case where

H is a clique).

Theorem 1.7 ([5, 18]). If H is an odd cycle or a clique and Fn,m ∈ Fn,m(H) is chosen uniformly

at random, then

lim
n→∞

P
(
Fn,m is (χ(H) − 1)-partite

)
=

1, m ⩾ (1 + ε)mH(n),

0, n ≪ m ⩽ (1 − ε)mH(n),

where mH(n) := θ′Hn
− 1

m2(H) (log n)
1

eH−1 for some explicit constant θ′H > 0.

Finally, we mention that Engelberg, Samotij, and Warnke [10] have recently extended Theo-

rem 1.7 to all edge-critical graphs; however, their result determines the threshold for the property

that Fn,m is (χ(H) − 1)-partite only up to a constant factor.

1.2. Notation. We briefly discuss the notation that will be used throughout the paper. An

r-cut (or simply a cut) in a graph is an ordered r-partition Π = (V1, . . . , Vr) of its vertex set. We

say that Π is δ-balanced if each of its parts has size (1±δ)·n/r, where n is the number of vertices of

the graph. Following DeMarco and Kahn [9], given a tuple Π = (V1, . . . , Vr) of pairwise-disjoint

sets of vertices (not necessarily a cut), we will denote by ext(Π) the set of all pairs of vertices

meeting two distinct Vis (the ‘external’ edges of Π) and by int(Π) :=
(
V1∪···∪Vr

2

)
\ ext(Π) the set

of all pairs of vertices that are contained in a single Vi (the ‘internal’ edges of Π). For a graph

G and a family of cuts C,

bC(G) := max
Π∈C

e(G ∩ ext(Π))

is the largest number of edges of G that cross some cut in C. The deficit of a cut Π ∈ C in G

with respect to the family C is the difference

defC(Π;G) := bC(G) − e(G ∩ ext(Π))

between the number of edges of G that cross Π and the number of edges of G that cross a largest

cut from C. An JrK-coloured graph is a graph whose vertices are coloured with colours from JrK;
this colouring does not have to be proper. For an JrK-coloured graph Q and k ∈ JrK, we denote

by V k(Q) the vertices of Q with colour k. We say that an r-tuple Π = (V1, . . . , Vr) of pairwise

disjoint sets of vertices (e.g., an r-cut) is compatible with Q if V k(Q) ⊆ Vk for every k ∈ JrK.
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Suppose that G is a hypergraph on a finite vertex set V . Given a subset W ⊆ V of vertices of G,

we write G[W ] to denote the subhypergraph of G induced by W , i.e., G[W ] := {A ∈ G : A ⊆ W}.

Further, ν(G) denotes the matching number of G, that is, the largest size of a collection of

pairwise-disjoint edges of G. Finally, given a vertex e ∈ V , the link hypergraph of e (the

neighbourhood of e) is the hypergraph

∂eG := {A \ {e} : e ∈ A ∈ G}; 1

we further let ∂G :=
⋃

e∈V ∂eG. Since we will often consider induced subhypergraphs in various

link graphs, we use the convention that the operators ∂e and ∂ bind stronger than the operation

of taking induced subhypergraphs, that is, ∂G[W ] = (∂G)[W ].

2. Outline of the proof

Suppose that H is an edge-critical and strictly 2-balanced graph with χ(H) = r + 1, where

r ⩾ 2. Define

pH := θH · n− 1
m2(H) (log n)

1
eH−1 ,

let ε > 0 be an arbitrary constant and suppose that G ∼ Gn,p for some p ⩾ (1 + ε)pH . We

may clearly assume that ε < 1 and, in light of Theorem 1.6, that p ⩽ p0 for some p0 < 1

that depends only on H. We will also assume that G satisfies a number of properties that are

typical of graphs with density p, ranging from the simple requirement that all vertex degrees are

(1 ± o(1))np to much more intricate conditions concerning the distribution of edges and copies

of various subgraphs of H. This will be made more precise in Section 4.

Let F be a largest H-free subgraph of G and let ΠF = (V1, . . . , Vr) be an r-cut that maximises

e(ext(ΠF )∩F ) and has the largest e(F [V1]) among all such r-cuts; clearly, we may choose such

ΠF for every H-free graph F ⊆ Kn in some canonical way. Note that we may assume that

e(F [V1]) > 0, as otherwise F is r-partite and we have nothing left to prove. On the other hand,

in light of Theorem 1.3, we may assume that e(F [V1]) ⩽ e(int(ΠF ) ∩ F ) ≪ n2p.

Since every r-partite subgraph of G is trivially H-free, the following must be true for every

family C of r-cuts that includes ΠF :

e(G ∩ ext(ΠF )) + defC(ΠF ;G) = bC(G) ⩽ e(F ) = e(F ∩ ext(ΠF )) + e(F ∩ int(ΠF )).

In particular, we will obtain the desired contradiction (to the assumption that e(F [V1]) > 0) if

we manage to show that, for some family C of r-cuts that includes ΠF ,

e
(
(G \ F ) ∩ ext(ΠF )

)
> e(F ∩ int(ΠF )) − defC(ΠF ;G). (5)

How can one bound e
(
(G \ F ) ∩ ext(ΠF )

)
from below? The following definition is key.

Definition 2.1. Given an r-tuple Π of pairwise-disjoint sets of vertices and a graph Q, we say

that a copy K of H (in Kn) is Q-supported and Π-crossing if K ⊆ Q ∪ ext(Π).

The key point is that at least one edge of every copy of H in G that is F -supported and

ΠF -crossing must belong to (G \ F ) ∩ ext(ΠF ), as otherwise F would contain a copy of H. In

particular, for every Q ⊆ F , the graph (G \ F ) ∩ ext(ΠF ) must have at least as many edges as

the largest size of a matching in the subhypergraph of

FQ := {K \Q : K is a copy of H in Kn}

1This notation seems natural if one identifies G with the polynomial
∑

A∈G
∏

e∈A e.
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that is induced by G ∩ ext(ΠF ), that is,

e
(
(G \ F ) ∩ ext(ΠF )

)
⩾ ν

(
FQ[G ∩ ext(ΠF )]

)
.

Since (5) holds vacuously whenever defC(ΠF ;G) > e(F ∩ int(ΠF )), it suffices to show that

ν
(
FQ[G∩ext(Π)]

)
> e(F∩int(ΠF )) for some Q ⊆ F and every cut Π ∈ C satisfying defC(Π;G) ⩽

e(F ∩ int(ΠF )). This discussion naturally leads one to formulating the following plan for the

proof of Theorem 1.5.

Plan. We will construct

• a family Q of JrK-coloured subgraphs of Kn and

• sequences (dQ)Q∈Q of integers and (CQ)Q∈Q of r-cuts

such that G has the following two properties asymptotically almost surely:

(P1) Every largest H-free subgraph F ⊆ G contains some Q ∈ Q (coloured by ΠF ) such that

dQ ⩾ e(F ∩ int(ΠF )) and ΠF ∈ CQ.

(P2) For every Q ∈ Q with Q ⊆ G and every r-cut Π ∈ CQ with defCQ(Π;G) ⩽ dQ, we have

ν
(
FQ[G ∩ ext(Π)]

)
> dQ.

2.1. Constants. There are a number of interdependent constants that will appear throughout

our proof. We have already introduced ε and p0, which appear in the assumed bounds (1+ε)pH ⩽

p ⩽ p0 on the density. The remaining constants are:

• Ĉ, Cθ, C∂ , Clow : constants that depend only on H that we use in place of complicated,

explicit expressions;

• α = α(r, p0, ε) : the parameter from the definition of rigidity given in Section 7;

• δ = δ(r, p0, α) : the parameter from the definition of a balanced cut;

• Z = Z(r, p0, α) : the constant from the statement of Proposition 8.1;

• κ = κ(H, Ĉ, Cθ, Clow, ε, δ) : the parameter from the definition of the family QL of low-

degree graphs given in subsection 2.2;

• η = η(H,C∂ , Z, ε, κ) : the parameter from the definition of the family QH of high-degree

graphs given in subsection 2.2;

• chigh = chigh(H, η) : the constant from the statement of Lemma 6.1.

Finally, we will also denote by β = β(n) ≪ 1 the function that is implicit in the statement

of Theorem 1.3 invoked with p ⩾ pH ≫ n−1/m2(H). That is, asymptotically almost surely, for

every largest H-free subgraph of F ⊆ G, we have e(F ∩ int(ΠF )) ⩽ βn2p ≪ n2p.

2.2. Constructing the family Q. In this section, we construct the family Q and the sequences

(dQ)Q∈Q of integers and (CQ)Q∈Q of r-cuts and show that they satisfy property (P1) from the

above plan. We start by defining the notions of ‘low-degree’ and ‘high-degree’ graphs.

Definition 2.2. Denote by QL the set of all graphs Q ⊆ Kn with ∆(Q) ⩽ κnp/ log n whose all

vertices are coloured 1. Further, denote by QH the family of all graphs Q ⊆ Kn that contain

an independent set XQ ⊆ V 1(Q) of size o(n) that dominates all edges of Q and such that every

vertex v ∈ XQ has exactly ηnp neighbours in each of the r colour classes; we will refer to the

vertices of XQ as the centre vertices of Q and denote their number by k(Q). Finally, we let

Q := QL ∪QH .

The following two lemmas will help us choose a graph Q ∈ QL ∪QH for every largest H-free

subgraph F ⊆ G, provided that G has some typical properties. Given a graph F , a vertex
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v ∈ V (F ), and a subset W of vertices of F , we will denote by degF (v,W ) the number of

neigbours of v in W .

Lemma 2.3. For every graph I and integer d ⩽ ∆(I), there is a subgraph Q ⊆ I satisfying

∆(Q) = d and e(Q) ⩾ d
∆(I)+1 · e(I).

Proof. Denote ∆(I) by D. By Vizing’s theorem, we can find a proper edge-colouring φ : E(I) →
JD + 1K; without loss of generality,

|φ−1(1)| ⩾ · · · ⩾ |φ−1(D + 1)|. (6)

Let Q := φ−1(1) ∪ · · · ∪ φ−1(d) and note that e(Q) ⩾ d
D+1 · e(I) follows from (6). Further,

∆(Q) ⩽ d, as φ induces a proper edge-colouring of Q with d colours. If ∆(Q) < d, we can add

to Q further edges of I until ∆(Q) = d. □

Lemma 2.4. If Π = (V1, . . . , Vr) is a largest r-cut in a graph F , then

degF (v, V1) ⩽ degF (v, Vi) for all v ∈ V1 and i ∈ JrK. (7)

Proof. Indeed, if (7) were not true for some v ∈ V1 and i ∈ JrK, then moving a vertex v from V1

to Vi would result in a cut Π′ with e(ext(Π′)∩F ) > e(ext(Π)∩F ), contradicting the maximality

of Π. □

Proposition 2.5. Suppose that F ⊆ Kn and let ΠF = (V1, . . . , Vr) be its canonical largest r-cut.

There exists QF ⊆ F , which we JrK-colour according to ΠF , such that one of the following holds:

(Q1) QF ∈ QL and e(QF ) ⩾ e(F [V1])/2;

(Q2) QF ∈ QL and e(QF ) ⩾ max
{

κnp
logn ,

κ
4η logn · e(F [V1])

}
;

(Q3) QF ∈ QH and k(QF ) ⩾ e(F [V1])/(16∆(F )).

Proof. Let IL be a largest subgraph of I := F [V1] of maximum degree at most 2ηnp. We consider

two cases:

Case 1. e(IL) ⩾ e(I)/2. Let d := κnp/ log n. If ∆(IL) ⩽ d, then we simply choose QF := IL, as

it satisfies (Q1). Otherwise, Lemma 2.3 applied to IL yields a subgraph Q ⊆ IL with ∆(Q) = d

and

e(Q) ⩾
κ

2η log n
· e(IL) ⩾

κ

4η log n
· e(I).

Since e(Q) ⩾ ∆(Q) = d as well, we may take QF := Q, as it satisfies (Q2).

Case 2. e(IL) < e(I)/2. Let Y be the set of vertices whose I-degree is larger than 2ηnp and

let Q̃ ⊆ I be the graph containing all edges with at least one endpoint in Y . Since at least one

endpoint of every edge of I \ IL lies in Y , we have

e(Q̃) ⩾
1

2

∑
v∈Y

degQ̃(v) ⩾
1

2

∑
v∈Y

degI\IL(v) ⩾
e(I \ IL)

2
⩾

e(I)

4
.

Let Σ = (W1,W2) be a largest 2-cut of Q̃. By maximality, for both j ∈ {1, 2}, every vertex

v ∈ Wj has at least as many neighbours in W3−j as in Wj , see Lemma 2.4. In particular, for

each j ∈ {1, 2}, the subgraph of Q̃ ∩ ext(Σ) induced by (Wj ∩ Y,W3−j) is a union of stars of

degree at least ηnp each. Let Q be the larger of these two graphs; without loss of generality, Q

is the graph induced by (W1 ∩ Y,W2). We have

e(Q) ⩾
eQ̃(W1 ∩ Y,W2) + eQ̃(W1,W2 ∩ Y )

2
⩾

e(Q̃ ∩ ext(Σ))

2
⩾

e(Q̃)

4
⩾

e(I)

16
.
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Finally, let QF be the graph obtained by arbitrarily adding, for each v ∈ W1 ∩ Y , a set of ηnp

Q-neighbours of v in W2 ⊆ V1 and, for each i ∈ {2, . . . , r}, a set of ηnp F -neighbours of v in Vi.

This is possible, as assumption (7) implies that, for every v ∈ Y and i ∈ {2, . . . , r},

degF (v, Vi) ⩾ degF (v, V1) = degQ̃(v) ⩾ degQ(v) ⩾ ηnp.

Note that QF ∈ QH (the dominating independent set is X := W1 ∩ Y ) and that k(QF ) =

|W1 ∩ Y | ⩾ e(Q)/∆(Q) ⩾ re(Q)/∆(F ) ⩾ re(I)/(16∆(F )), where the second inequality follows

as degF (v) =
∑r

i=1 degF (v, Vi) ⩾ r degQ(v) for every vertex v. □

We denote by Q1
L and Q2

L the sets of graphs corresponding to cases (Q1) and (Q2) in the

above proposition. More precisely, let

Q1
L := {Q ∈ QL : e(Q) < κnp/ log n} and Q2

L := {Q ∈ QL : e(Q) ⩾ κnp/ log n}.

Definition 2.6. Define, for every Q ∈ QL ∪QH ,

dQ :=


8re(Q), Q ∈ Q1

L and p > CθpH ,

min{βn2p,
√
ηe(Q) log n}, Q ∈ Q2

L or (Q ∈ Q1
L and p ⩽ CθpH),

32k(Q)np, Q ∈ QH .

Proposition 2.7. If G satisfies the assertion of Theorem 1.3 and ∆(G) ⩽ 2np, then dQF
⩾

e(F ∩ int(ΠF )) for every largest H-free F ⊆ G, provided n is sufficiently large.

Proof. Let F ⊆ G be a largest H-free subgraph of G. Since ΠF = (V1, . . . , Vr) has the largest

value of e(F [V1]) among all largest r-cuts of F , we have e(F ∩ int(ΠF )) ⩽ re(F [V1]). Moreover,

since G is assumed to satisfy the assertion of Theorem 1.3, we also know that e(F ∩ int(ΠF )) ⩽

βn2p. Consequently, it is enough to verify that dQF
⩾ re(F [V1]) under the assumption that

dQF
< βn2p.

If QF ∈ Q1
L, then QF must satisfy (Q1) in Proposition 2.5 and thus

dQF
⩾ min {8re(QF ),

√
ηe(QF ) log n} = 8re(QF ) ⩾ 4re(F [V1]),

provided that n is sufficiently large. If QF ∈ Q2
L, then QF must satisfy one of (Q1) or (Q2) in

Proposition 2.5 and thus

dQF
=

√
η · e(QF ) log n ⩾

√
η · min

{
κ

4η
,

log n

2

}
· e(F [V1])

and the desired inequality follows as η ⩽ η(κ) and n is large. Finally, if Q ∈ QH , then

dQF
= 32k(QF )np ⩾ 16k(QF )∆(QF ) ⩾ re(F [V1]),

where the first inequality follows as QF ⊆ F ⊆ G and ∆(G) ⩽ 2np. □

Finally, for every graph Q ∈ QL ∪ QH , we let CQ be the family of all δ-balanced cuts that

are compatible with Q. Since QF inherits its r-colouring from ΠF , it is clearly compatible

with this cut. The following proposition shows that, asymptotically almost surely, ΠF is also

o(1)-balanced for every largest H-free subgraph F of G.

Proposition 2.8. For every constant δ > 0, a.a.s. the cut ΠF is δ-balanced for every largest

H-free subgraph F ⊆ G.
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Proof. Assume by contradiction that ΠF is not δ-balanced. It is easy to check that, for some

positive cδ that depends only on δ,

ext(ΠF ) ⩽

(
1 − 1

r
− cδ

)(
n

2

)
.

Furthermore,

e(F ) = e(F ∩ ext(ΠF )) + e(F ∩ int(ΠF )) ⩽ e(G ∩ ext(ΠF )) + e(F ∩ int(ΠF )). (8)

Suppose now that assertions of Theorem 1.3 and Lemma 4.2 hold in G. Since every r-partite

subgraph of G is H-free, letting Π be some fixed largest r-cut of Kn, we have

e(F ) ⩾ e(G ∩ ext(Π)) ⩾ ext(Π) · p− o(n2p) ⩾

(
1 − 1

r
− o(1)

)(
n

2

)
p.

On the other hand, by the assumed conclusion of Lemma 4.2,

e(G ∩ ext(ΠF )) ⩽ ext(ΠF ) · p + o(n2p) ⩽

(
1 − 1

r
− cδ + o(1)

)(
n

2

)
p;

moreover, e(F ∩ int(ΠF )) = o(n2p) by the assumed conclusion of Theorem 1.3. Substituting

these three estimates into (8) yields a contradiction. □

2.3. Large matchings in cuts with small deficits. In this section, we outline the proof

of (P2) from the above plan, which constitutes the bulk of this paper. Since we can afford a

union bound over all Q ∈ Q, we will treat Q as fixed.

Let Π ∈ CQ be a δ-balanced r-cut that is compatible with Q. The probability of the event

ν
(
FQ[G ∩ ext(Π)]

)
⩽ dQ can be bounded from above using a version of Janson’s inequality

that we state (and prove) as Theorem 3.3 below in terms of the quantities µp(FQ[ext(Π)])

and ∆p(FQ[ext(Π)]), defined in subsection 3.1, that should be familiar to all users of Janson’s

inequality. Having said that, in order to obtain bounds on these parameters that would translate

to an error probability that is sufficiently small to allow a union bound over all Q ∈ Q, we

have to replace FQ by its (carefully chosen) subhypergraph F ′
Q. Whereas the construction of an

appropriate F ′
Q in the ‘low-degree’ case Q ∈ QL, presented in Section 5, is rather straightforward,

the construction of F ′
Q in the ‘high-degree’ Q ∈ QH , presented in Section 6, is a subtle argument

that crucially uses the assumption that G is a typical sample from Gn,p, which gives us control

on the interactions between neighbourhoods of the vertices in XQ (see Lemma 4.6 below). Our

presentation here is inspired by [5, 10].

A major challenge in executing the above strategy is that, unless dQ ≫ n, we cannot afford

a union bound over all Π ∈ CQ. This is no accident – when Q is small and p is not very close to

one, one will find many cuts Π ∈ CQ for which FQ[G ∩ ext(Π)] is empty. Luckily, (P2) does not

require us to show that ν
(
FQ[G ∩ ext(Π)]

)
> dQ for all Π ∈ CQ but only for cuts Π with small

deficit. This is where we employ and adapt the beautiful ideas of DeMarco and Kahn [9] that

are centred around the concept of rigidity.

Roughly speaking, a graph G is rigid if there is a collection S = {S1, . . . , Sr} of pairwise-

disjoint vertex sets of size at least (1 − 4rα) · n/r each such that ext(S) ⊆ ext(Π) for every

maximum r-cut of G; a canonically chosen collection S with this property is called the core

of G and denoted by core(G). An ingenious argument employing Harris’s inequality, due to

DeMarco and Kahn [9], can be used to show that the probability that G is rigid and ν
(
FQ[G∩

ext(core(G))]
)
⩽ dQ is not larger than the maximum value of the probability that ν

(
FQ[G ∩
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ext(S)]
)
⩽ dQ over all collections S of potential cores (i.e., collections of r pairwise-disjoint sets

of size at least (1 − 4rα) · n/r each). In other words, the DeMarco–Kahn correlation inequality

reduces the problem of bounding the lower tail of ν
(
FQ[G ∩ ext(core(G))]

)
to the problem of

bounding the lower tail of ν
(
FQ[G ∩ ext(S)]

)
for a fixed ‘almost’ r-cut S. Section 7 contains

the formal definition of rigidity and the statement and proof of the DeMarco–Kahn correlation

inequality.

Since ext(core(G)) ⊆ ext(Π), and thus FQ[G ∩ ext(Π)] ⊇ FQ[G ∩ ext(core(G))], for every

largest r-cut Π of G, the argument described in the previous paragraph suffices to control all

cuts with zero deficit. What to do about cuts with larger deficit? Following DeMarco and

Kahn [9], we show that, asymptotically almost surely, G has the following property: For every

Π with def(Π;G) ⩽ dQ, there are ‘many’ graphs G′ that are rigid, have Π among their largest

r-cuts, and are ‘close’ to G in terms of the number of edges in their symmetric difference. The

precise notion of both ‘many’ and ‘close’ are too technical to be stated here, but the bottom

line is that the notion of proximity implies that, for each G′,

ν
(
FQ[G ∩ ext(Π)]

)
⩾ ν

(
FQ[G′ ∩ ext(core(G′))]

)
−O(dQ)

whereas the notion of multitude yields that the probability that ν
(
FQ[G ∩ ext(Π)]

)
⩽ dQ for

some cut Π with def(Π;G) ⩽ dQ is bounded from above by

P
(
ν
(
FQ[G′ ∩ ext(core(G′))]

)
⩽ O(dQ)

)
· err(dQ),

where err(dQ) is an error term that is, roughly speaking, of the form exp(O(dQ)). Proposition 8.1

is a rather concise statement that encapsulates this. Our proof of the proposition, which takes

the bulk of Section 8, is a very delicate switching argument that is based on the work of DeMarco

and Kahn [9], but departs from it in significant ways in order to provide a better estimate on

err(dQ).

Finally, the proof of Theorem 1.5 culminates in Section 9, where the various ingredients

developed in earlier sections are finally mixed together. Our argument there stumbles on yet

another technical (described at the start of Section 9) issue that occurs when Q ∈ Q2
L and

p > CθpH . We solve this issue by replacing the family F ′
Q with its random sparsification, see

subsection 9.1. The final stretch is mere four pages of simple calculations.

3. Tools and preliminaries

3.1. Janson’s inequality. In order to successfully execute the plan sketched in Section 2,

we will need to bound the probability that a binomial random subset of vertices of a given

hypergraph induces a subhypergraph that does not have a large matching. We will derive

a suitable lower-tail estimate for the matching number of a random induced subhypergraph,

Theorem 3.3 below, from the well-known inequality of Janson [14]; our derivation follows the

arguments of [2, Section 8.4].

Given a set V and a real p ∈ [0, 1], we denote by Vp the random subset of V obtained by

independently retaining each element of V with probability p. Further, given a hypergraph H
with vertex set V , we define the following two quantities:

µp(H) :=
∑
A∈H

p|A| and ∆p(H) :=
∑

A,B∈H
A ̸=B,A∩B ̸=∅

p|A∪B|,
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where the second sum is over unordered pairs of edges; in other words, µp(H) is just the expected

number of edges of H[Vp] and ∆p(H) is the expected number of pairs of distinct edges of H[Vp]

that intersect.

Theorem 3.1 (Janson’s inequality [14]). Let H be a hypergraph on a finite vertex set V . For

all p ∈ [0, 1],

P(H[Vp] = ∅) ⩽ exp
(
− µp(H) + ∆p(H)

)
.

Before we state our version of Janson’s inequality for matchings, we recall a well-known

lower-tail estimate for the Poisson distribution.

Proposition 3.2. For every nonnegative real µ and all α ∈ [0, 1],

P
(
Pois(µ) ⩽ αµ

)
⩽ exp

(
−
(
1 − α log(e/α)

)
· µ
)
.

Theorem 3.3. Let H be a hypergraph on a finite vertex set V and let α, η, p ∈ [0, 1]. Writing

µ and ∆ for µp(H) and ∆p(H), we have

P
(
ν(H[Vp]) ⩽ αµ

)
⩽ exp

(
− (1 − α log(e/α) − αp− η) · µ + (1 + 2αp/η) · ∆

)
.

Proof. An edge A ∈ H will be called η-good if

δ(A) :=
∑
B∈H

A ̸=B,A∩B ̸=∅

p|B\A| ⩽
2∆

ηµ
.

Let H′ ⊆ H be the hypergraph obtained by removing from H all non-η-good edges. Observe

that

2∆ =
∑
A∈H

p|A|δ(A) ⩾
∑

A∈H\H′

p|A|δ(A) ⩾ µp(H \H′) · 2∆

ηµ
,

which implies that

µp(H′) = µp(H) − µp(H \H′) ⩾ (1 − η)µ.

Denote by M the collection of all matchings of size at most αµ in H′. Given an M ∈ M, let

PM denote the probability that M is a maximal matching in H′[Vp]. It follows from Janson’s

inequality that, letting H′
M := H′ −

⋃
M be the collection of all edges of H′ that are disjoint

from the union of all edges of M ,

PM ⩽ P
(⋃

M ⊆ Vp and H′
M [Vp] = ∅

)
= P

(⋃
M ⊆ Vp

)
· P(H′

M [Vp] = ∅)

=
∏
A∈M

p|A| · P(H′
M [Vp] = ∅) ⩽

∏
A∈M

p|A| · exp
(
−µp(H′

M ) + ∆p(H′
M )
)
.

As, clearly, ∆p(H′
M ) ⩽ ∆ and

µp(H′) − µp(H′
M ) ⩽

∑
A∈M

∑
B∈H′

A∩B ̸=∅

p|B| ⩽
∑
A∈M

p|A| + δ(A) · max
B∈H′

A∩B ̸=∅

p|B∩A|


⩽
∑
A∈M

(p + δ(A) · p) ⩽ |M | · p ·
(

1 +
2∆

ηµ

)
⩽ αp · µ +

2αp

η
· ∆.

We may thus conclude that, for every M ∈ M,

PM ⩽
∏
A∈M

p|A| · exp

(
−(1 − αp− η) · µ +

(
1 +

2αp

η

)
· ∆

)
.
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Since H′ ⊆ H, the inequality ν(H[Vp]) ⩽ αµ implies that some M ∈ M must be a maximal

matching in H′[Vp]. Therefore, by the union bound,

P
(
ν(H[Vp]) ⩽ αµ

)
⩽
∑

M∈M

∏
A∈M

p|A| · exp

(
−(1 − αp− η) · µ +

(
1 +

2αp

η

)
· ∆

)
.

In order to complete the proof, it suffices to observe that∑
M∈M

∏
A∈M

p|A| ⩽
∑
s⩽αµ

1

s!

(∑
A∈H′

p|A|

)s

⩽
∑
s⩽αµ

µs

s!
= eµ · P

(
Pois(µ) ⩽ αµ

)
and invoke Proposition 3.2. □

The following two simplified versions of Theorem 3.3 will be more convenient to use in our

arguments. The first version, which yields an essentially optimal upper bound on the probability

that ν(H[Vp]) ≪ µp(H) in the case where ∆p(H) ≪ µp(H), is obtained from Theorem 3.3 by let-

ting α = η/2 = γ2. The second version gives a non-optimal upper bound on the probability that

H[Vp] contains no large matchings, but it is applicable in the cases where ∆p(H) = Ω(µp(H)).

Corollary 3.4. Let H be a hypergraph on a finite vertex set V and let p ∈ [0, 1]. For every

γ ⩽ 1/10, writing µ and ∆ for µp(H) and ∆p(H), we have

P
(
ν(H[Vp]) ⩽ γ2µ

)
⩽ exp

(
− (1 − γ)µ + 2∆

)
.

Corollary 3.5. Let H be a hypergraph on a finite vertex set V and let p ∈ [0, 1]. Writing µ and

∆ for µp(H) and ∆p(H) and letting Λ := min{µ, µ2/∆}, we have

P
(
ν(H[Vp]) ⩽ Λ/1000

)
⩽ exp(−Λ/10).

Proof. Assume first that ∆ ⩽ µ/4. Since Λ ⩽ µ, it follows from Corollary 3.4 that

P
(
ν(H[Vp]) ⩽ Λ/100

)
⩽ exp(−9µ/10 + 2∆) ⩽ exp(−2µ/5) ⩽ exp(−Λ/10).

Assume now that ∆ > µ/4, so that q := µ/(4∆) < 1. Let Hq be the random hypergraph

obtained from H by retaining each of its edges independently with probability q and define the

random variables µ′ := µp(Hq) and ∆′ := ∆p(Hq). By Corollary 3.4,

P
(
ν(Hq[Vp]) ⩽ µ′/100 | Hq

)
⩽ exp(−9µ′/10 + 2∆′). (9)

The key observation is that

E
[

9µ′

10
− 2∆′

]
=

9qµ

10
− 2q2∆ =

(
9

40
− 2

16

)
· µ

2

∆
=

µ2

10∆
⩾

Λ

10
.

Since ν(Hq[Vp]) ⩽ ν(H[Vp]) with probability one, evaluating (9) on the (nonempty) event that

µ′ ⩾ 9µ′10 − 2∆′ ⩾ Λ/10 gives the claimed inequality. □

3.2. An upper-tail inequality. Our second tool is an upper-tail inequality for the number of

edges that a binomial random subset induces in a uniform hypergraph. Roughly speaking,

it states that the probability that a p-random subset of vertices of an n-vertex, ℓ-uniform

hypergraph with o(nℓ) edges induces Ω(nℓpℓ) edges is exponentially small in np. Even though

an estimate on this probability can be easily derived from [5, Lemma 3.6], which is a respective

estimate for the hypergeometric distribution, we supply a simple, self-contained proof that is

based on an elegant argument of Janson, Oleszkiewicz, and Ruciński [15] (see also [13]).
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Lemma 3.6. For every α > 0 and positive integer ℓ, there is a ρ > 0 such that the following

holds for every n-vertex, ℓ-uniform hypergraph H with e(H) ⩽ ρnℓ. For every p ∈ [0, 1], letting

R ∼ V (H)p, we have

P
(
e(H[R]) ⩾ α · (np)ℓ

)
⩽ exp (−ρnp) .

Proof. Given an α > 0 and a positive integer ℓ, set ρ := min{α,1}
(2ℓ+1)e and let H be an n-vertex,

ℓ-uniform hypergraph with e(H) ⩽ ρnℓ. Suppose that R ∼ V (H)p and let X := e(H[R]). If we

denote, for each A ∈ H, the indicator random variable of the event A ⊆ R by YA, we may write,

for every positive integer k,

E[Xk] =
∑

A1,...,Ak∈H
E[YA1 · · ·YAk

]

=
∑

A1,...,Ak−1∈H
E[YA1 · · ·YAk−1

]
∑

Ak∈H
E[YAk

| YA1 · · ·YAk−1
= 1]

=
∑

A1,...,Ak−1∈H
E[YA1 · · ·YAk−1

] · E[X | YA1 · · ·YAk−1
= 1]

⩽ E[Xk−1] · max
A1,...,Ak−1∈H

E[X | YA1 · · ·YAk−1
= 1].

(10)

The following claim bounds the conditioned expectation in the above inequality:

Claim 3.7. For every S ⊆ V (H) of size at most ρℓnp,

E[X | S ⊆ R] ⩽ (2ℓ + 1)ρ · (np)ℓ.

Proof. Let S be an arbitrary set of at most ρℓnp vertices of H. Since every i-element subset of

S is contained in at most nℓ−i edges of H, we have

E[X | S ⊆ R] − E[X] ⩽
ℓ∑

i=1

(
|S|
i

)
nℓ−ipℓ−i ⩽ (np)ℓ ·

ℓ∑
i=1

(
|S|
np

)i

⩽
ρℓ

1 − ρℓ
· (np)ℓ,

where the last inequality follows from our assumption that |S| ⩽ ρℓnp. Since ρ ⩽ 1/(2ℓ), we

have

E[X | S ⊆ R] ⩽ E[X] +
ρℓ

1 − ρℓ
· (np)ℓ ⩽ e(H) · pℓ + 2ρℓ · (np)ℓ ⩽ (2ℓ + 1)ρ · (np)ℓ,

as claimed. □

A straightforward inductive argument turns (10) and Claim 3.7 into the bound

E[Xk] ⩽
(
(2ℓ + 1)ρ

)k · (np)ℓk,

valid for all k ⩽ ⌈ρnp⌉. By Markov’s inequality, letting k = ⌈ρnp⌉,

P
(
X ⩾ α · (np)ℓ

)
⩽

E[Xk]

αk · (np)kℓ
⩽

(
(2ℓ + 1)ρ

α

)k

⩽ exp(−ρnp),

as claimed. □

4. Typical properties of random graphs

In this section, we establish several key properties concerning the distribution of edges and

of copies of various subgraphs of H that the binomial random graph Gn,p possesses with prob-

ability very close to one. We begin with a non-probabilistic inequality that proves useful while

estimating various expectations throughout the paper.
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Lemma 4.1. Let H be a 2-balanced graph and suppose that p ⩾ Cn−1/m2(H) for some C > 0.

Then, nvH′−2peH′−1 ⩾ CeH′−1 for every nonempty subgraph H ′ ⊆ H. Moreover, if H is strictly

2-balanced, then there exists a λ > 0 that depends only on H such that nvH′−2peH′−1 ⩾ CeH′−1nλ

for every H ′ ⊆ H with 1 < eH′ < eH .

Proof. Let H ′ be a nonempty subgraph of H. Since the assertion of the lemma holds vacuously

if eH′ = 1, we may assume that eH′ > 1. By our assumption on p,

nvH′−2peH′−1 ⩾ nvH′−2
(
Cn

− 1
m2(H)

)eH′−1

= CeH′−1n
vH′−2−

eH′−1

m2(H) .

Now, recall that the definition of m2(H) implies that vH′−2 ⩾ eH′−1
m2(H) and that, when H is strictly

2-balanced, this inequality is strict unless H ′ = H. Thus, the exponent of n is non-negative and

it is positive if H is strictly 2-balanced and 1 < eH′ < eH . □

4.1. Distribution of edges. The next lemma states that the number of edges in the intersec-

tion of Gn,p with the graphs ext(Π) and int(Π) is typically close to its expectation not only for

every fixed r-cut Π, but in fact for all sequences Π of pairwise disjoint sets, irrespective of their

length, simultaneously.

Lemma 4.2. If p ≫ n−1 log n, then a.a.s. G ∼ Gn,p satisfies the following for all m and every

sequence of pairwise disjoint sets Π = (V1, . . . , Vm):

e(G ∩ ext(Π)) =
(
ext(Π) ± o(n2)

)
· p and e(G ∩ int(Π)) =

(
int(Π) ± o(n2)

)
· p.

Proof. Note first that, for every sequence Π = (V1, . . . , Vm) of pairwise disjoint sets of vertices,

we have ext(Π) ∪ int(Π) = int({V1 ∪ · · · ∪ Vm}). Further, there are at most (n + 1)n different

such sequences. Consequently, it suffices to show that, for each sequence Π and all fixed ζ > 0,

P
(∣∣e(G ∩ int(Π)) − e(int(Π)) · p

∣∣ ⩾ ζn2p
)
⩽ n−2n

for all sufficiently large n. Since e(G ∩ int(Π)) ∼ Bin(e(int(Π)), p), the above estimate easily

follows from standard tail estimates for binomial random variables and our assumption that

n2p ≫ n log n. □

4.2. The number of subgraphs leaning on an edge or a vertex. Our next lemma is an

upper-tail estimate for the number of copies of all graphs of the form H \ f , where f ∈ H,

that contain a given edge of (resp. a given vertex of) Gn,p. Its proof utilises the high-moment

argument of Janson, Oleszkiewicz, and Ruciński [15]. We recall that ∂e and ∂ bind stronger

than the operation of taking induced subhypergraphs and thus ∂∂eH[Gn,p] = (∂∂eH)[Gn,p] and

∂Hv[Gn,p] = (∂Hv)[Gn,p].

Lemma 4.3. Let H be a strictly 2-balanced graph and suppose that p ⩾ n−1/m2(H).

(i) For every edge e ∈ Kn, letting H denote all copies of H in Kn,

P
(∣∣∂∂eH[Gn,p]

∣∣ ⩾ 4e2HnvH−2peH−2
)
⩽ n−6.

(ii) For every vertex v, letting Hv denote all copies of H in Kn that contain v,

P
(∣∣∂Hv[Gn,p]

∣∣ ⩾ 2vHeHnvH−1peH−1
)
⩽ n−6.

Proof. Denote, for every edge e ∈ Kn and every vertex v ∈ V (Kn),

Xe :=
∣∣∂∂eH[Gn,p]

∣∣ and Xv :=
∣∣∂Hv[Gn,p]

∣∣
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and note that E[Xe] ⩽ 2e2HnvH−2peH−1 and E[Xv] ⩽ vHeHnvH−1peH−1. In particular, it suffices

to show that the probability that either of Xe or Xv exceeds twice its expectation is at most

n−6. Since Markov’s inequality implies that, for every positive integer ℓ and each nonnegative

random variable X,

P
(
X ⩾ 2E[X]

)
= P

(
Xℓ ⩽ (2E[X])ℓ

)
⩽

E[Xℓ]

(2E[X])ℓ
,

it suffices to show that E[Xℓ
e] ⩽ (3E[Xe]/2)ℓ for every e ∈ Kn and all ℓ = O(log n), and that the

analogous bound holds for each Xv.

To this end, for every ω ⊆ Kn, write Yω for the indicator random variable of the event that

ω ⊆ Gn,p. We may now write

Xe =
∑

ω∈∂∂eH
Yω and Xv =

∑
ω∈∂Hv

Yω,

and, further, for every positive integer ℓ and every edge e,

E[Xℓ
e] =

∑
ω1,...,ωℓ∈∂∂eH

E[Yω1 · · ·Yωℓ
]

=
∑

ω1,...,ωℓ−1∈∂∂eH
E[Yω1 · · ·Yωℓ−1

]
∑

ωℓ∈∂∂eH
E[Yωℓ

| Yω1 · · ·Yωℓ−1
= 1]

=
∑

ω1,...,ωℓ−1∈∂∂eH
E[Yω1 · · ·Yωℓ−1

] · E[Xe | ω1 ∪ · · · ∪ ωℓ−1 ⊆ Gn,p];

(11)

similarly, for every vertex v,

E[Xℓ
v] =

∑
ω1,...,ωℓ−1∈∂Hv

E[Yω1 · · ·Yωℓ−1
] · E[Xv | ω1 ∪ · · · ∪ ωℓ−1 ⊆ Gn,p]. (12)

Our next two claims bound the conditioned expectations in the above sums.

Claim 4.4. For any edge e and all G ⊆ Kn with e(G) = O(log n),

E[Xe | G ⊆ Gn,p] − E[Xe] ≪ E[Xe].

Claim 4.5. For any vertex v and all G ⊆ Kn with e(G) = O(log n),

E[Xv | G ⊆ Gn,p] − E[Xv] ≪ E[Xv].

Proof of Claim 4.4. Let G be an arbitrary graph with O(log n) edges. For every nonempty

J ⊆ H, set

ΩJ := {ω ∈ ∂∂eH : (ω ∩G) ∪ e ∼= J}

and note that

E[Xe | G ⊆ Gn,p] − E[Xe] ⩽
∑
J⊆H

1<eJ<eH

|ΩJ | · peH−eJ−1.

It is not hard to see that, for every nonempty J ⊆ H,

|ΩJ | ⩽ O
(
e(G)eJ−1nvH−vJ

)
= O

(
nvH−vJ (log n)eH

)
;

indeed, every ω ∈ ΩJ intersects G in eJ − 1 edges. We conclude that

E[Xe | G ⊆ Gn,p] − E[Xe] ⩽ nvH−2peH−2 ·
∑
J⊆H

1<eJ<eH

n2−vJp1−eJ ·O
(
(log n)eH

)
.
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Finally, since H is strictly 2-balanced and p ⩾ n−1/m2(H), Lemma 4.1 implies that each term

in the above sum is at most n−λ, for some positive constant λ that depends only on H. This

implies the claimed estimate, as E[Xe] = Θ
(
nvH−2peH−2

)
. □

Proof of Claim 4.5. Let G be an arbitrary graph with O(log n) edges. For every nonempty

J ⊆ H, set

ΩJ := {ω ∈ ∂Hv : ω ∩G ∼= J},

where we always include v in the vertex set of ω ∩ G (so that J might contain one isolated

vertex). Note that

E[Xv | G ⊆ Gn,p] − E[Xv] ⩽
∑
J⊆H

1⩽eJ<eH

|ΩJ | · peH−eJ−1

and, similarly as before, for every J ⊆ H,

|ΩJ | ⩽ O
(
e(G)eJnvH−vJ

)
= O

(
nvH−vJ (log n)eH

)
.

We conclude that

E[Xv | G ⊆ Gn,p] − E[Xv] ⩽ nvH−1peH−1 ·
∑
J⊆H

1<eJ<eH

n1−vJp−eJ ·O
(
(log n)eH

)
.

Finally, since H is 2-balanced and p ⩾ n−1/m2(H), Lemma 4.1 implies that each term in the

above sum is at most (np)−1. Since np ⩾ n1−1/m2(H) ⩾ nλ for some positive constant λ that

depends only on H and since E[Xv] = Θ
(
nvH−1peH−1

)
, the claimed estimate follows. □

By Claim 4.4 and (11), we conclude that, for every e ∈ Kn and all ℓ = O(log n),

E[Xℓ
e] ⩽

∑
ω1,...,ωℓ−1∈∂∂eH

E
[
Yω1 · · ·Yωℓ−1

]
· (1 + o(1))E[Xe] ⩽ 3/2 · E[Xℓ−1

e ] · E[Xe];

this implies, via induction on ℓ, that E[Xℓ
e] ⩽ (3/2)ℓ · E[Xe]

ℓ holds for all ℓ = O(log n).

Analogously, Claim 4.5 and (12) yield E[Xℓ
v] ⩽ (3/2)ℓ · E[Xv]ℓ for every v ∈ V (Kn) and all

ℓ = O(log n). □

4.3. Interactions between neighbourhoods. Our next lemma concerns interactions between

neighbourhoods of the centre vertices of graphs Q ∈ QH such that Q ⊆ Gn,p. Roughly speaking,

it states that (a.a.s.) these neighbourhoods do not overlap significantly. The precise statement

involves a uniform hypergraph whose edges are subsets of the neighbourhoods of the centre

vertices of a Q ∈ QH that contain a prescribed number of vertices from every colour class of Q.

Suppose that l = (ℓ1, . . . , ℓr) ∈ Nr is a vector with ℓ := ℓ1 + · · · + ℓr ⩾ 1. For a graph Q ∈ QH

and a centre vertex v ∈ XQ, denote by N l
Q(v) all the ℓ-element sets U of vertices such that

|U ∩NQ(v) ∩ V k(Q)| = ℓk for every k ∈ JrK.

The following lemma constructs a subhypergraph G ⊆ N l
Q :=

⋃
v∈XQ

N l
Q(v) whose edges are

‘well-distributed’. For a nonnegative integer j, we write ∆j(G) for the maximum number of

edges of G that contain any given set of j vertices; in particular ∆0(G) = e(G).

Lemma 4.6. For every l = (ℓ1, . . . , ℓr) ∈ Nr with ℓ := ℓ1 + · · · + ℓr ⩾ 1, there exist positive

constants c and C ⩾ 1 that depend only on ℓ and η such that a.a.s. the following holds for every

Q ∈ QH with Q ⊆ Gn,p, provided that p ≫ log n/n. There is a hypergraph G ⊆ N l
Q with the

following properties:
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(i) e(G) ⩾ c · min
{
nℓ, k(Q) · (np)ℓ

}
,

(ii) ∆j(G) ⩽ max
{

4(np)ℓ−j , C · e(G)
nj

}
for every j ∈ {0, . . . , ℓ}.

We will use the following simple corollary of Lemma 4.6 to estimate the number of vertices

in each Q ∈ QH that is contained in Gn,p.

Corollary 4.7. There exists a positive constant c that depends only on η such that when p ≫
log n/n, then a.a.s., for every Q ∈ QH with Q ⊆ Gn,p and every k ∈ JrK,

|V k(Q)| ⩾
∣∣∣ ⋃
v∈V (Q)

NQ(v) ∩ V k(Q)
∣∣∣ ⩾ c · min{n, k(Q) · np}.

Proof of Lemma 4.6. Given an ordered sequence v1, . . . , vk of vertices, we will categorise them

as good or bad, based only on the knowledge of their neighbourhoods in Gn,p. This will be done

in such a way that, for every Q ∈ QH with Q ⊆ Gn,p whose centre vertices are v1, . . . , vk, every

good vertex will contribute at least (ηnp/ℓ)ℓ/2 edges to G, unless G already has Ω(nℓ) edges.

We will assume that

∆(Gn,p)
ℓ ⩽ 2(np)ℓ, (13)

which holds in Gn,p a.a.s. We first define a few constants. Let ρ be the constant whose existence

is asserted by Lemma 3.6 invoked with α := (η/ℓ)ℓ/2 and set D := 2ℓ+1/ρ.

The first vertex v1 is good. Fix some i ∈ Jk − 1K and suppose that we have already categorised

v1, . . . , vi as good or bad. Let Wi denote the set of good vertices among {v1, . . . , vi}. Define

Ĝi :=
⋃

v∈Wi

(
NGn,p(v)

ℓ

)
and, for every j ∈ Jℓ− 1K,

∆
(i)
j := max

{
2(np)ℓ−j ,

De(Ĝi)

nj

}
,

M
(i)
j :=

{
T ∈

(
JnK
j

)
: degĜi

T ⩾ ∆
(i)
j

}
.

We further define the ‘closure’ Ḡi of Ĝi by

Ḡi := Ĝi ∪
ℓ−1⋃
j=1

{
U ∈

(
JnK
ℓ

)
: U ⊇ T for some T ∈ M

(i)
j

}
.

We call vi+1 a good vertex if∣∣∣∣(NGn,p(vi+1) \ {v1, . . . , vi}
ℓ

)
∩ Ḡi

∣∣∣∣ ⩽ 1

2

(ηnp
ℓ

)ℓ
; (14)

otherwise, call vi+1 a bad vertex. We stress again that the property that vi+1 is a good/bad

vertex depends only on the neighbourhoods in Gn,p of the previously considered vertices v1, . . . , vi

(and their order).

Claim 4.8. For every i ∈ JkK, either e(Ḡi) < ρnℓ or |Wi| ⩾ ρ/(4pℓ).

Proof. We first observe that, for every j ∈ Jℓ− 1K,

e(Ĝi) ⩾
|M (i)

j |(
ℓ
j

) · ∆
(i)
j ⩾

|M (i)
j |(
ℓ
j

) · De(Ĝi)

nj
,
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which yields the bound |M (i)
j | ⩽

(
ℓ
j

)
nj/D. Since every element of M

(i)
j contributes at most nℓ−j

edges to Ḡi, we have

e(Ḡi) ⩽ |Wi| ·
(

∆(Gn,p)

ℓ

)
+

ℓ−1∑
j=1

|M (i)
j | · nℓ−j ⩽ |Wi| · 2(np)ℓ +

ℓ−1∑
j=1

(
ℓ

j

)
· n

ℓ

D

⩽ 2|Wi| · (np)ℓ +
2ℓ

D
· nℓ = 2|Wi| · (np)ℓ +

ρ

2
nℓ.

Finally, if e(Ḡi) ⩾ ρnℓ, then the above inequality yields |Wi| ⩾ ρ/(4pℓ). □

Claim 4.9. Asymptotically almost surely, for every k and each sequence v1, . . . , vk of distinct

vertices of Gn,p, at least min{k/2, ρ/(4pℓ)} of them are good.

Proof. Fix an arbitrary sequence v1, . . . , vk of distinct vertices of Gn,p. For each i ∈ JkK, let

Σi denote the σ-algebra generated by exposing the neighbourhoods of v1, . . . , vi. Observe that

conditioned on Σi, the set NGn,p(vi+1)\{v1, . . . , vi} is still a p-random subset of JnK\{v1, . . . , vi}.

We may thus use Lemma 3.6 to conclude that, for every i,

P
(
vi+1 is bad and e(Ḡi) < ρnℓ | Σi

)
⩽ exp(−ρnp). (15)

Let B denote the event that the sequence v1, . . . , vk contains fewer than the claimed number

of good vertices. In particular, there are at least k/2 bad vertices among them and, for each

i ⩽ k, we have |Wi| < ρ/(4pℓ) and thus e(Ḡi) < ρnℓ, by Claim 4.8. By the union bound,

P(B) ⩽
∑

I⊆Jk−1K
|I|⩾k/2

P(vi+1 is bad and e(Ḡi) < ρnℓ for all i ∈ I).

Since the event that vi+1 is bad and e(Ḡi) < ρnℓ is Σi+1-measurable, we may use the chain rule

and the estimate (15) to bound each term in the sum from above by exp(−ρ|I|np) and conclude

that

P(B) ⩽ 2k · exp(−ρknp/2) ⩽ n−2k,

where the last inequality follows from our assumption that p ≫ log n/n. Taking the union

bound over all k and all sequences gives the desired result. □

Fix some Q ∈ QH , let k := k(Q), and let v1, . . . , vk be an arbitrary ordering of the centre

vertices of Q. We will show that under the assumption that at least min{k/2, ρ/(4pℓ)} of those

k vertices are good (which, by Claim 4.9, holds simultaneously for all Q ∈ QH), we may build

a hypergraph G ⊆ N l
Q with the desired properties. We will do so iteratively, by first defining a

sequence G0, . . . ,Gk and then setting G := Gk.

First, we let G0 be the empty hypergraph. Second, suppose that i ∈ JkK and that we have

already defined G0, . . . ,Gi−1. If vi is a good vertex, we obtain Gi by adding to Gi−1 some 1
2

(ηnp
ℓ

)ℓ
sets U ⊆ NGn,p(vi)\{v1, . . . , vk} that belong to N l

Q(vi)\Ḡi−1 (where we assume that Ḡ0 is empty).

Note that this is possible, since

|N l
Q(vi)| =

r∏
j=1

(
|NQ(vi) ∩ V j(Q)|

ℓj

)
⩾

r∏
j=1

(ηnp
ℓ

)ℓj
=
(ηnp

ℓ

)ℓ
and the assumption that vi is a good vertex implies that at most half of those sets belong to

Ḡi−1, see (14). Finally, if vi is a bad vertex, we simply let Gi := Gi−1.
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Since Gi−1 ⊆ Ĝi−1 ⊆ Ḡi−1 for every i, each good vertex contributes at least 1
2

(ηnp
ℓ

)ℓ
distinct

edges to G, which means that e(Gi) ⩾
|Wi|
2

(ηnp
ℓ

)ℓ
. This fact and our assumed lower bound on the

number of good vertices proves assertion (i) of the lemma with a positive constant c that depends

only on η, ℓ, and ρ = ρ(η, ℓ). Further, by (13), we have e(Ĝi) ⩽ |Wi| · 2(np)ℓ ⩽ 4
(

ℓ
η

)ℓ
· e(Gi).

Hence,

∆
(i)
j ⩽ max

{
2(np)ℓ−j ,

4Dℓℓ

ηℓ
· e(Gi)

nj

}
for each i ∈ JkK and all j ∈ Jℓ− 1K. When we add edges to Gi−1 to form Gi, we only increase

the degrees of sets that do not belong to
⋃ℓ−1

j=1M
(i)
j . Moreover, since we add only subsets of the

neighbourhood of vi in Gn,p, assumption (13) implies that, for every T ∈
(JnK

j

)
, we increase the

degree of T by at most 2(np)ℓ−j . Thus, for every i ∈ JkK and every j ∈ Jℓ− 1K,

∆j(Gi) ⩽ ∆
(i−1)
j + 2(np)ℓ−j ⩽ 2∆

(i)
j .

This immediately gives (ii) from the statement of the lemma with a constant C that depends

only on ℓ, η, D = D(ℓ, ρ), and ρ = ρ(η, ℓ); indeed, the claimed upper bounds on ∆0(G) = e(G)

and ∆ℓ(G) = 1 hold vacuously. □

4.4. Summary. Suppose, as in Section 2, that G ∼ Gn,p for some p ⩾ (1+ε)pH . We are finally

ready to define the notion of ‘pseudo-randomness’ that we will assume our graph G to have. We

let T be the intersection of the following events:

(T1) degG(v) = (1 ± o(1))np for every v ∈ V (G);

(T2) e(G ∩ int(Π)) = e(int(Π)) · p ± o(n2p) and e(G ∩ ext(Π)) = e(ext(Π)) · p ± o(n2p) for

every family Π of pairwise-disjoint sets of vertices (see Lemma 4.2);

(T3)
∣∣∂∂eH[G]

∣∣ ⩽ 4e2HnvH−2peH−2 for every e ∈ Kn and
∣∣∂Hv[G]

∣∣ ⩽ 2vHeHnvH−1peH−1 for

every vertex v (see Lemma 4.3);

(T4) e(F ∩ int(ΠF )) ⩽ βn2p for every largest H-free subgraph F ⊆ G (see Theorem 1.3);

(T5) |V k(Q)| ⩾ c · min{n, k(Q) · np} for every Q ∈ QH such that Q ⊆ G and every k ∈ JrK
(see Corollary 4.7);

(T6) G satisfies the assertion of Lemma 4.6, and thus also the assertion of Lemma 6.1;

(T7) if p > 1/(10r3), then e(G∩ext({A,B})) = (1+o(1))ext({A,B})p for all pairs of disjoint

sets A and B with |A||B| ≫ n.

It is clear that G ∈ T asymptotically almost surely.

5. Low-degree case

Recall that H denotes the family of all copies of H in Kn. Given a graph Q ⊆ Kn, define

Hlow
Q := {A ∈ H : e(A ∩Q) = 1 and e(Q[V (A)]) = 1}.

In other words, Hlow
Q comprises only those copies of H that contain exactly one edge of Q and

whose vertex set induces no additional edges of Q. Note that this definition guarantees that

A \Q ̸= B \Q whenever A and B are two distinct elements of Hlow
Q . In particular, if we define

F low
Q := {A \Q : A ∈ Hlow

Q },

then, for each graph ω ∈ F low
Q , there is a unique A ∈ Hlow

Q with ω = A \Q; we will denote this

A with ω+.
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Lemma 5.1. For every r-tuple S = (S1, . . . , Sr) of pairwise-disjoint sets of vertices and every

graph Q with V (Q) ⊆ S1, we have

|F low
Q [ext(S)]| ⩾

(
1 −

v2H · ∆(Q)

|S1| − vH

)
· e(Q) ·N(H,K+

S ),

where K+
S := ext(S) ∪ uv, where u and v are two distinct vertices of S1.

Proof. Let e be a uniformly chosen random edge of Q and let G := ext(S) ∪ e. Note that

G ∼= K+
S , as we assumed that V (Q) ⊆ S1. Further, let A be a uniformly chosen random copy

of H in the random graph G; note that e ∈ A, as H is edge-critical and χ(H) = r + 1. Observe

that A \ e ∈ F low
Q [ext(S)] if and only if e is the only edge that R := V (A)∩S1 induces in Q and

thus

|F low
Q [ext(S)]| = P

(
e(Q[R]) = 1

)
· e(Q) ·N(H,K+

S ).

It now suffices to bound the above probability from below.

To this end, note that 2 ⩽ |R| ⩽ vH and that, conditioned on the event |R| = i, the set R

is a uniformly random i-element subset of S1 containing e. Fix some i, condition on the event

|R| = i, let e = {w1, w2}, and let {w3, . . . , wi} be a random ordering of the elements of R \ e.
The key observation is that, for every j ⩾ 3, the probability that wj is adjacent (in Q) to one

of w1, . . . , wj−1 is |NQ({w1, . . . , wj−1})|/(|S1| − j + 1). Consequently,

P
(
e(Q[R]) = 1 | |R| = i

)
⩾ 1 −

i∑
j=3

(j − 1) · ∆(Q)

|S1| − j + 1
⩾ 1 −

v2H · ∆(Q)

|S1| − vH
.

Since the final lower bound above holds for every value of i, it holds without the conditioning

as well. □

Lemma 5.2. There exists a positive constant Clow such that the following holds for every r-tuple

S = (S1, . . . , Sr) of pairwise-disjoint sets of vertices of size at least n/(2r) each, every graph

Q ∈ QL with V (Q) ⊆ S1, and all p ⩾ n−1/m2(H):

µp

(
F low
Q [ext(S)]

)
⩾ (πH − o(1)) · e(Q) ·

(
mini |Si|

)vH−2 · peH−1,

∆p(F low
Q )

µp

(
F low
Q [ext(S)]

) ⩽
Clowκ · nvH−2peH−1

log n
,

where πH is the constant defined in (2).

Proof. We will abbreviate F low
Q by F and F low

Q [ext(S)] by F(S). For an edge e ∈ Q, define

Fe := {ω ∈ F : ω+ = ω ∪ e},

so that F :=
⋃

e∈QFe. Lemma 5.1 and the assumption that |S1| ⩾ n/(2r) and ∆(Q) = o(n)

imply that

µ := µp(F(S)) = |F(S)| · peH−1 ⩾ (1 − o(1)) · e(Q) ·N(H,K+
S ) · peH−1, (16)

where K+
S is the graph defined in the statement of Lemma 5.1. Further, since K+

S contains a

subgraph isomorphic to Kr(mini |Si|)+, we have

N(H,K+
S ) ⩾ N

(
H,Kr(mini |Si|)+

)
= (πH − o(1)) ·

(
mini |Si|

)vH−2
,

where the last equality holds as mini |Si| ⩾ n/(2r), see the definition of πH given in (2).
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We now turn to bounding the correlation term ∆ := ∆p(F). By definition,

∆ =
∑
ω1∈F

∑
ω2∈F\{ω1}
ω1∩ω2 ̸=∅

p2(eH−1)−e(ω1∩ω2)

⩽ |F| · p2(eH−1) · max
ω1∈F

∑
ω2∈F\{ω1}
ω1∩ω2 ̸=∅

p−e(ω1∩ω2).
(17)

Further, for every ω1 ∈ F , letting e1 ∈ Q be the unique edge such that ω1 ∈ Fe1 ,∑
ω2∈F\{ω1}
ω1∩ω2 ̸=∅

p−e(ω1∩ω2) =
∑

∅≠H′⊊H

∑
ω2∈F\{ω1}
ω+
1 ∩ω+

2
∼=H′

p−eH′+1[ω2∈Fe1 ]. (18)

The following claim will allow us to bound the right-hand side of the above inequality.

Claim 5.3. For each e1 ∈ Q, every ω1 ∈ Fe1, and all H ′ ⊆ H:

(i)
∣∣{ω2 ∈ Fe1 : ω1 ∩ ω2 ̸= ∅ ∧ ω+

1 ∩ ω+
2
∼= H ′}∣∣ ⩽ 1[eH′ > 1] ·O (nvH−vH′ ).

(ii)
∣∣{ω2 ∈ F \ Fe1 : ω1 ∩ ω2 ̸= ∅ ∧ ω+

1 ∩ ω+
2
∼= H ′}∣∣ ⩽ O

(
∆(Q) · nvH−vH′−1

)
.

Proof. Fix some e1 ∈ Q, ω1 ∈ Fe1 , and H ′ ⊆ H. To see the first item, note that the set in the

left-hand side of (i) is nonempty only if eH′ > 1; indeed, if ω1 ∩ ω2 ̸= ∅ for some ω2 ∈ Fe1 , then

ω+
1 ∩ ω+

2 contains e1 and at least one more edge. We may thus assume that eH′ > 1 and count

the number of ω2 ∈ Fe1 such that ω1 ∩ ω2 ̸= ∅ and ω+
1 ∩ ω+

2
∼= H ′ as follows: First, there are at

most v
vH′−2
H ways to choose the vH′ − 2 vertices of ω1 that certify ω+

1 ∩ω+
2
∼= H ′. Second, there

are at most nvH−v′H options for the remaining vertices of ω2. Finally, there are O(1) choices to

assign the roles that these vertices play in the copy of H.

For the second item, we separately count those ω2 that belong to Fe2 for some edge e2 ∈
Q \ {e1} that shares an endpoint with e1 and those ω2 that belong to Fe2 for some edge e2 ∈ Q

that is disjoint from e1.

There are at most 2∆(Q) edges e2 of the former type. For each such edge, we have at most

v
vH′−1
H options for the vH′ − 1 vertices of ω1 that certify ω+

1 ∩ ω+
2
∼= H ′. Moreover, there are at

most nvH−vH′−1 ways to choose the remaining vertices of ω2. Finally, there are O(1) choices for

the roles that these vertices play in the copy of H. Thus, total the number of choices for ω2 in

this case is O
(
∆(Q) · nvH−vH′−1

)
.

There are at most e(Q) edges e2 that are disjoint from e1. For each such edge, there are

now at most v
vH′
H options to choose the vH′ vertices of ω1 that certify ω+

1 ∩ ω+
2

∼= H and at

most nvH−vH′−2 options to choose the remaining vertices of ω2. Finally, as before, there are

O(1) choices for the roles that these vertices play in the copy of H. Thus, the total number

of choices for ω2 in this case is O
(
e(Q) · nvH−vH′−2

)
. The claimed bound follows as clearly

e(Q) ⩽ ∆(Q)n. □

By (16), (17), (18), and Claim 5.3, for some constant C that depends only on H,

∆

µ
⩽ C · |F|

|F(S)|
·
∑

∅̸=H′⊊H

nvH−2peH−1

nvH′−2peH′−1
·
(

∆(Q)

np
+ 1[eH′ > 1]

)
.

Lemma 4.1 and our assumption that p ⩾ n−1/m2(H), imply that nvH′−2peH′−1 ⩾ 1 for all

nonempty H ′ ⊆ H and, further, that there exists a constant λ > 0 depending only on H such that

nvH′−2peH′−1 ⩾ nλ for all H ′ ⊊ H with eH′ > 1. Further, we clearly have |F| ⩽ e(Q) · eHnvH−2,



SIMONOVITS’S THEOREM IN RANDOM GRAPHS 22

whereas we have shown above that |F(S)| ⩾ e(Q) · (πH − o(1))nvH−2. We may thus conclude

that, for some constant C ′ that depends only on H,

∆

µ
⩽ C ′ · nvH−2peH−1 ·

(
∆(Q)

np
+ n−λ

)
⩽

2κC ′ · nvH−2peH−1

log n
,

where the final inequality holds as ∆(Q) ⩽ κnp/ log n for every Q ∈ QL. □

6. High-degree case

Suppose that Q ∈ QH . We start by defining a collection Hhigh
Q of copies of H in Kn. Let

X = XQ be the set of centre vertices of Q and, for every v ∈ X and k ∈ JrK, write Nk(v) :=

NQ(v)∩V k(Q) to denote the neighbours of v that are coloured k. Fix an edge f ∈ H such that

χ(H \ f) = r, denote by h one of the endpoints of f , and let ℓ := degH h be the degree of h in

H. Let φ : H \ f → JrK be a proper colouring of H \ f such that φ(h) = 1. We let Hhigh
Q be the

collection of all copies of H in Kn that are constructed as follows:

(i) map h to some vertex v ∈ X,

(ii) map the ℓ neighbours of h in H into the sets N1(v), . . . , N r(v), accordingly with the

colouring φ,

(iii) map the remaining vH − ℓ− 1 vertices of H arbitrarily to the complement of X.

Further, define

Fhigh
Q := {A \Q : A ∈ Hhigh

Q } ⊆ FQ.

Lemma 6.1. There exists a positive constant chigh that depends only on H and η such that the

following holds for each graph Q ∈ QH such that Q ⊆ G for some G ∈ T . There exists a family

F ⊆ Fhigh
Q such that, for every r-tuple (S1, . . . , Sr) of pairwise disjoint sets that is compatible

with Q and satisfies minj |Sj | ⩾ n/(2r),

µp(F [ext(S)]) ⩾ chigh · min
{
k(Q) · nvH−1peH , n2p

}
≫ k(Q) · np,

µ2
p(F [ext(S)])

∆p(F)
⩾ chigh · min

{
k(Q) · nvH−1peH , k(Q) · n1+λHp, n2p

}
≫ k(Q) · np,

where λH is a positive constant that depends only on H.

Proof. Fix some Q ∈ QH and set k = k(Q). Let l :=
(
|φ−1(j) ∩NH(h)|

)r
j=1

and let G ⊆ N l
Q be

the hypergraph from the statement of Lemma 4.6; we may find such a G due to our assumption

that Q ⊆ G for some G ∈ T . Further, denote the two constants from the statement of Lemma 4.6

by c4.6 and C4.6 and observe that they both depend only on η and H. Recall from the definition

of N l
Q that, for every edge U ∈ G, there is a v ∈ XQ that is adjacent in Q to all ℓ vertices of

U ; denote some such v by vU and let Eh(U) be the set of ℓ edges connecting vU to the vertices

of U . Finally, set

F := {ω ⊆ Kn \Q : ω ∪̇Eh(U) ∼= H for some U ∈ G} ⊆ Fhigh
Q .

It is not hard to see that, for some absolute positive constants c′ and c′′,

|F [ext(S)]| ⩾ c′ · e(G) ·
(

min
j

|Sj | − vH − k − ηnp

)vH−ℓ−1

⩾ c′′ · e(G) · nvH−ℓ−1,

and, consequently,

µp(F [ext(S)]) =
∑
ω∈F

pe(ω) ⩾ c′′ · e(G) · nvH−ℓ−1peH−ℓ.
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Further, we claim that

∆p(F) =
∑

ω,ω′∈F
ω∩ω′ ̸=∅

1ω∪ω′⊆Gn,p

⩽ C ′ · e(G)

ℓ∑
j=0

∆j(G)
∑

∅≠H′⊆H−h
|V (H′)∩NH(h)|=j

n2vH−2ℓ−2−vH′+jp2eH−2ℓ−eH′ ,

where C ′ is a constant that depends only on H. Indeed, we may enumerate all pairs of inter-

secting elements of F as follows. First, we choose an edge U ∈ G that contains the images

of the ℓ neighbours of h in H in its copy ω. Second, we choose the size j ∈ {0, . . . , ℓ} of the

intersection of this set with the respective set in ω′; there are at most
(
ℓ
j

)
· ∆j(G) edges U ′ ∈ G

with |U ∩ U ′| = j. Third, we choose a subgraph H ′ ⊆ H which is isomorphic to the inter-

section of ω and ω′. Fourth, we then choose the vH − ℓ − 1 remaining vertices of ω and the

vH − ℓ − 1 − (vH′ − j) remaining vertices of ω′. Note that the union of ω and ω′ has exactly

2(eH − ℓ) − eH′ edges. The constant factor C ′ accounts for the choices of the roles that the

vertices of ω ∩ ω′ play in H ′.

Claim 6.2. For some positive constant c that depends only on η and H,

µp

(
F [ext(S)]

)
⩾ c · min

{
knvH−1peH , n2p

}
.

Proof. It suffices to show that, for some c > 0 that depends only on η and H,

e(G) · nvH−ℓ−1peH−ℓ ⩾ c · min
{
knvH−1peH , n2p

}
.

We consider two cases, depending on which of the two terms achieves the minimum in Lemma 4.6 (i).

First, if e(G) ⩾ c4.6k(np)ℓ, then

e(G) · nvH−ℓ−1peH−ℓ ⩾ c4.6k · nvH−1peH .

Second, if e(G) ⩾ c4.6n
ℓ, then

e(G) · nvH−ℓ−1peH−ℓ ⩾ c4.6n
vH−1peH−ℓ.

Since vH − 1 and eH − ℓ are the numbers of vertices and edges of the graph H − h ⊆ H,

Lemma 4.1 implies that

nvH−1peH−ℓ ⩾ n2p. □

Claim 6.3. For some positive constants c that depends only on η and H,

µp

(
F [ext(S)]

)2
∆p(F)

⩾ c · min
{
knvH−1peH , kn1+λp, n2p},

where λ is the constant from the statement of Lemma 4.1.

Proof. We first note that, for some positive constant c′,

µp

(
F [ext(S)]

)2
∆p(F)

⩾
c′ · e(G)

max {∆j(G) · nj−vH′p−eH′ : ∅ ≠ H ′ ⊆ H − h with |V (H ′) ∩NH(h)| = j}
.

Fix some nonempty H ′ ⊆ H − h and an integer j ∈ {0, . . . , ℓ}. We consider two cases,

depending on which of the two terms achieves the maximum in Lemma 4.6 (ii). First, if
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∆j(G) ⩽ C4.6e(G)/nj , then, by Lemma 4.1,

e(G)

∆j(G)nj−vH′p−eH′
⩾

nv′Hpe
′
H

C4.6
⩾

n2p

C4.6
.

We may thus suppose that e(G)/nj ⩽ C4.6e(G)/nj < ∆j(G) ⩽ 4(np)ℓ−j ; note that this implies

that j ⩾ 1, as ∆0(G) = e(G). We consider two further subcases, depending on which of the two

terms achieves the minimum in Lemma 4.6 (i). If e(G) ⩾ c4.6k(np)ℓ, then

e(G)

∆j(G)nj−vH′p−eH′
⩾

c4.6kn
vH′peH′+j

4
.

We now note that vH′ + 1 and eH′ + j are the numbers of vertices and edges of the graph

H ′ + h ⊆ H. If vH′ + 1 = vH and eH′ + j = eH , then there is nothing left to prove. Otherwise,

the graph H ′ + h is a proper subgraph of H with at least two edges (as H ′ ̸= ∅ and j ⩾ 1)

and thus Lemma 4.1 implies that nvH′peH′+j ⩾ n1+λp for some λ > 0 that depends only on H.

Finally, if e(G) ⩾ c4.6n
ℓ, then

e(G)

∆j(G)nj−vH′p−eH′
⩾

c4.6n
vH′peH′+j−ℓ

4
⩾

c4.6n
vH′peH′

4
⩾

c4.6n
2p

4
,

where the last inequality follows from Lemma 4.1. □

In order to complete the proof of the lemma, we just point out that, by Lemma 4.1 and our

the assumption that k = o(n),

min
{
k(Q) · nvH−1peH , k(Q) · n1+λp, n2p

}
≫ k(Q) · np. □

7. Rigidity and correlation

Recall that, for a graph G, a set of cuts C, and Π ∈ C, we defined

bC(G) := max
Π′∈C

e(ext(Π′) ∩G),

defC(Π;G) := bC(G) − e(ext(Π) ∩G).

Additionally, we now also set

maxcutC(G) := {Π ∈ C : e(G ∩ ext(Π)) = bC(G)}.

Following DeMarco and Kahn [9], we define an equivalence relation ≡C,G on V (G) by:

x ≡C,G y ⇐⇒ x and y are in the same part for every cut in maxcutC(G).

The equivalence classes of ≡C,G will be called (C, G)-components, or simply components if the

identities of C and G are clear. The following definition, again borrowed from DeMarco and

Kahn [9], is key.

Definition 7.1. Given a family C of r-cuts, and a graph G, we say that G is C-rigid if the

number of equivalent pairs of vertices under ≡C,G is at least (1 − α)n2/(2r).

A key property of graphs G that are rigid with respect to a family C of balanced cuts is that

all cuts Π ∈ maxcutC(G) agree on most of the vertices of G. This statement is made precise by

the following proposition, which is essentially [9, Proposition 10.1].

Proposition 7.2. Suppose that C is a family of balanced r-cuts. If G is C-rigid, then there are

distinct (C, G)-components S1, . . . , Sr, each of size greater than (1 − 4rα) · n/r.
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Proof. Let ᾱ := 4rα and let λn be the number of vertices of G that belong to (C, G)-components

of size at most (1−ᾱ)·n/r. Further, denote by P the number of ≡C,G-equivalent pairs of vertices.

Since C contains only δ-balanced cuts, no (C, G)-component can be larger than (1 + δ) · n/r.

Consequently,

(1 − α)
n2

r
⩽ 2P ⩽ (1 − λ)n · (1 + δ)

n

r
+ λn · (1 − ᾱ)

n

r
= (1 + δ − λ(δ + ᾱ))

n2

r
,

which implies that (since we may assume that δ ⩽ α)

λ ⩽
α + δ

ᾱ + δ
⩽

2α

ᾱ
=

1

2r
.

On the other hand, if fewer than r components had size larger than (1 − ᾱ) · n/r, then

(1 − λ)n ⩽ (r − 1) · (1 + δ)
n

r
⩽

(
1 − 1

r

)(
1 +

1

2r

)
n <

(
1 − 1

2r

)
n,

as we may assume that δ ⩽ 1/(2r). This completes the proof of the proposition. □

For a C-rigid graph G, we will call the (necessarily unique) collection {S1, . . . , Sr} in the

assertion of Proposition 7.2 the C-core of G and denote it by coreC(G). Note that, in contrast

to our convention for cuts, we think of the core as unordered. We will say that (the vertex set

of) a coloured graph Q is contained in the core if each of the sets V 1(Q), . . . , V k(Q) of vertices

of Q coloured 1, . . . , r, respectively, is contained in a distinct element of the core.

Our next lemma, which is the key result of this section, is a variant of [9, Lemma 10.2].

Lemma 7.3. Let Q be an JrK-coloured graph, let C be a family of balanced r-cuts compatible

with Q, and let ξ ⩽ 1. Suppose that, for each tuple S = (S1, . . . , Sr) that is contained in some

cut from C and satisfies mini |Si| ⩾ (1 − 4rα) · n/r, we have an event F (S1, . . . , Sr) that is

decreasing, determined by ext(S), and satisfies

P
(
F (S1, . . . , Sr) | Q ⊆ Gn,p

)
⩽ ξ.

Let R be the event that Gn,p is C-rigid, with {S1, . . . , Sr} = coreC(G), labeled so that V i(Q) ⊆ Si

for every i ∈ JrK, and F (S1, . . . , Sr) holds. Then P(R | Q ⊆ Gn,p) ⩽ r! · ξ.

Proof. For an ordered tuple of pairwise-disjoint vertex sets S = (S1, . . . , Sr) that is compatible

with Q and satisfies mini |Si| ⩾ (1 − 4rα)n/r, denote by E({S1, . . . , Sr}) the event that Gn,p

is C-rigid, with core {S1, . . . , Sr}. We claim that this event is increasing in ext(S). Indeed, if

G ∈ E({S1, . . . , Sr}), then adding to G an edge e ∈ ext(S) does not change the set of largest

cuts of G; in particular, the graph G ∪ e is rigid and has the same core as G. By Harris’s

inequality,

P
(
E({S1, . . . , Sr}) ∩ F (S1, . . . Sr) | Q ⊆ Gn,p

)
⩽ P

(
E({S1, . . . , Sr}) | Q ⊆ Gn,p

)
· P
(
F (S1, . . . Sr) | Q ⊆ Gn,p

)
.

Consequently,

P(R | Q ⊆ Gn,p) =
∑

(S1,...,Sr)

P
(
E({S1, . . . , Sr}) ∩ F (S1, . . . Sr) | Q ⊆ Gn,p

)
⩽

∑
(S1,...,Sr)

P(E({S1, . . . , Sr}) | Q ⊆ Gn,p) · ξ ⩽ r! · ξ,
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where the sums are over all ordered tuples (S1, . . . , Sr) as above and the last inequality follows

since the core is unique and its elements can be ordered in no more than r! different ways. □

8. Approximating cuts with small deficit by cores

Recall that, for a Q ∈ Q, we defined CQ to be the family of all δ-balanced r-cuts that are

compatible with Q. It will be convenient to define, for an JrK-coloured graph Q,

vmin(Q) := min{|V k(Q)| : k ∈ JrK and V k(Q) ̸= ∅}.

Let BQ,F (d, x) denote the set of all graphs G ⊇ Q that admit an r-cut Π ∈ CQ with defCQ,G(Π) ⩽

d and ν
(
F [G∩ext(Π)]

)
⩽ x, cf. (P2) in the plan of the proof presented in Section 2. The following

statement will allow us to bound the probability of BQ,F ′
Q

(dQ, dQ) from above in terms of the

probability of the event that ν
(
F ′
Q[Gn,p ∩ ext(coreCQ(Gn,p))]

)
⩽ dQ, which we will be able to

estimate, in view of Lemma 7.3, using Janson’s inequality and the calculations performed in

Section 5 and Section 6.

Proposition 8.1. Suppose that an JrK-coloured graph Q ∈ Q, integers d, D, m, and x, and a

family F of subgraphs of Kn \Q satisfy:

d, e(Q) ≪ n2p and d ⩽ vmin(Q) · min{np, δ/(2r3) · n}.

Denote

ξ := P
(
Gn,p is CQ-rigid and ν(F [Gn,p ∩ ext(coreCQ(Gn,p))]) ⩽ x + m + r2(d + 1) | Q ⊆ Gn,p

)
.

Then, for any positive constant K, the probability that min
{(

n
2

)
, |∂F [Gn,p]|

}
⩽ Dm/p and

Gn,p ∈ T ∩ BQ,F (d, x) is at most

pe(Q) ·Dd ·
(
Zd · ξ + e−Kd log(n2p/d)

)
,

where Z depends only on α, p0, and r.

Proof. Let

G :=
{
G ⊆ Kn : G ∈ T ∩ BQ,F (d, x) and min

{(
n
2

)
, |∂F [G]|

}
⩽ Dm/p

}
;

we may clearly assume that G is nonempty, as otherwise there is nothing to prove. Further, set

ᾱ :=
α

4
and γ :=

ᾱ

6r
,

let Γ be a large constant (that depends on α, δ, p0, and r), and set

L := ΓKd log(n2p/d) ≪ n2p.

In what follows, maximum cuts, critical edges, cores, and deficits are defined relative to CQ;

in particular, we write core and maxcut in place of coreCQ and maxcutCQ . Further, following

DeMarco and Kahn [9], given a graph G, let

crit(G) :=
⋂

Π∈maxcut(G)

ext(Π) ∩G

be the set of critical edges of G and note that crit(G) ⊇ ext(core(G)) ∩G.

Pick G0 ∼ Gn,p conditioned on Gn,p ∈ G, so that, for every G0 ∈ G,

P(G0 = G0) =
P(Gn,p = G0)

P(Gn,p ∈ G)
(19)
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and let F0 be the empty graph. Further, let Π ∈ CQ be an arbitrary r-cut witnessing the fact

that G0 ∈ BQ,F (d, x). We will now define a random sequence
(
(Gi,Fi)

)T
i=0

, where T ⩽ L is a

random stopping time.

Algorithm. For i = 0, . . . , L− 1, do the following. Let

Xi := {ω ∈ F : ω ⊆ Gi ∩ crit(Gi ∪ Fi) and ω ∩ int(Π) ̸= ∅}.

and let Ui :=
⋃

ω∈Xi
ω ∩ int(Π).

(a) If |Ui| ⩾ m, then set Gi+1 := Gi \ e for a uniformly chosen edge e ∈ Ui.

(b) Otherwise, if e
(
crit(Gi ∪ Fi) ∩ int(Π)

)
⩾ γn2p, then set Gi+1 := Gi \ e for a uniformly

chosen e ∈
(
Gi ∩ crit(Gi ∪ Fi) ∩ int(Π)

)
\Q.

(c) Otherwise, if Gi ∪ Fi is not rigid, then set Gi+1 := Gi \ e for uniformly chosen e ∈
(Gi ∩ int(Π)) \ (crit(Gi ∪ Fi) ∪Q).

(d) Otherwise, if Gi∪Fi is rigid but Q is not contained in the core, do the following. Suppose

that the core is {S1, . . . , Sr} and let k ∈ JrK be an index such that the (nonempty) set

V k(Q) and some Sj are in the same part of at least one but not all cuts in maxcut(Gi ∪
Fi). We then set Fi+1 := Fi ∪ e for a uniformly chosen edge e ∈ ext(Π) \ (Gi ∪Fi) that

connects V k(Q) and the union of all such Sj .

(e) Otherwise, Gi ∪ Fi is rigid and Q is contained in the core. Set T = i and stop the

algorithm.

If the algorithm defined GL and FL (instead of stopping in (e) with i < L), set T = L.

A sequence
(
(Gi, Fi)

)t
i=0

will be called legal if it can be produced by the above algorithm,

that is, if with nonzero probability T = t and (Gi,Fi) = (Gi, Fi) for all i. The following lemma

describes several key properties of every legal sequence.

Lemma 8.2. Every legal sequence
(
(Gi, Fi)

)t
i=0

has the following properties:

(i) The graph Gt contains Q.

(ii) For every i ∈ {0, . . . , t}, we have i = e(G0) − e(Gi) + e(Fi) and Gi ∩ Fi = ∅.
(iii) At most d steps are of types (a) or (b).

(iv) At most r2(d + 1) steps are of type (d) and thus e(Fi) ⩽ r2(d + 1) for every i.

Proof. The first item holds as Q ⊆ G0 by the definition of G and, while choosing an edge e to be

removed from Gi while defining Gi+1 in steps (a)–(c), we always make sure that e /∈ Q (recall

that each graph in F is disjoint from Q by assumption).

The second item holds as F0 is empty and each step of the algorithm either removes an edge

from Gi or adds to Fi an edge that does not belong to Gi. This means, in particular, that

e(Gi)−e(Gi+1)+e(Fi+1)−e(Fi) = 1 for each i ∈ {0, . . . , t−1}; the identity i = e(G0)−e(Gi)+

e(Fi) easily follows, as e(F0) = 0.

For the third item, notice that every step of type (a) or (b) removes a critical edge of Gi ∪Fi

that lies in int(Π) and therefore the deficit of Π with respect to Gi∪Fi drops by one. Moreover,

none of the other steps increases this deficit, as we either remove an edge from int(Π) or add

an edge to ext(Π). Since the deficit of Π with respect to G0 ∪ F0 is at most d and it is always

nonnegative, there can be at most d steps of types (a) and (b).

The fourth item is an easy consequence of the following stronger property: Every block of

consecutive steps of type (d) has length at most r2 and the step immediately following it cannot
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be of type (c). To see this, assume first that the step i → i + 1 is of type (d), that is, Gi ∪ Fi

is rigid, say with core {S1, . . . , Sr}, and Q is not contained in the core. Let j, k ∈ JrK be the

indices defined in (d). Observe that:

(1) Since the sets V k(Q) and Sj are in different parts of some maximum cut in Gi∪Fi, adding

any edge connecting V k(Q) to Sj can only shrink the set of maximum cuts; consequently

maxcut(Gi+1 ∪ Fi+1) ⊆ maxcut(Gi ∪ Fi). Moreover, no cut that puts V k(Q) and Sj in

the same part can be a maximum cut in Gi+1 ∪ Fi+1.

(2) Further, suppose that i′ > i is such that all the steps i → · · · → i′ are of type (d).

As maxcut(Gi′ ∪ Fi′) ⊆ maxcut(Gi ∪ Fi), by (1), the graph Gi′ ∪ Fi′ is also rigid and

the elements of its core can be labeled as S′
1, . . . , S

′
r so that Sj ⊆ S′

j for every j ∈ JrK.
Further, S′

j ⊇ Sj and V k(Q) cannot be in the same part of a maximum cut of Gi′ ∪ Fi′

and thus the pair j and k of indices cannot be chosen in step i′ → i′ + 1.

The second of the above two observations implies that there can be at most r2 steps of type (d)

in a row. Moreover, since the graph Gi+1 ∪ Fi+1 produced by a step i → i + 1 of type (d) is

rigid (as Gi ∪ Fi is rigid and maxcut(Gi+1 ∪ Fi+1) ⊆ maxcut(Gi ∪ Fi)), the step i + 1 → i + 2

cannot be of type (c). □

Denote by Ta, Tb, Tc, and Td the random variables counting the number of steps of types

(a), (b), (c), and (d), respectively, in the sequence
(
(Gi,Fi)

)T
i=0

defined above. Further, let

T 1
d , . . . , T

r
d be the random variables counting the number of times that a step of type (d) was

executed with k = 1, . . . , r, respectively, so that Td = T 1
d + · · ·+T r

d . Since each of these random

variables takes values in {0, . . . , L} and
∑L

t=0(2(t + 1))−2 ⩽ 1, there are ta, tb, tc, and t1d, . . . , t
r
d

such that

P
(
(Ta, Tb, Tc, T

1
d , . . . , T

r
d ) = (ta, tb, tc, t

1
d, . . . , t

r
d)
)

⩾
(
2r+3(ta + 1)(tb + 1)(tc + 1)(t1d + 1) · · · (trd + 1)

)−2
⩾ (2t + 2r + 6)−2r−6,

where t := ta + tb + tc + t1d + · · ·+ trd. Denote the above event by W and let S the corresponding

set of legal sequences. For every Σ ∈ S, denote by AΣ the event that Σ was produced by the

algorithm. Finally, write td := t1d + · · ·+ trd, note that t = ta + tb + tc + td is the common length

of all the sequences in S (minus one), and define

E :=
{
Gt ∪ Ft :

(
(Gi, Fi)

)t
i=0

∈ S
}
.

The following two lemmas imply the assertion of the proposition.

Lemma 8.3. If t < L, then every G ∈ E is rigid and satisfies

ν(F [G ∩ ext(core(G))]) ⩽ x + m + r2(d + 1).

Lemma 8.4. We have

P(Gn,p ∈ G) ⩽ pe(Q) ·Dd ·

Zd · P(Gn,p ∈ E | Q ⊆ Gn,p), t < L,

e−Kd log(n2p/d), t = L.

Proof of Lemma 8.3. Let G ∈ E and write G = Gt ∪ Ft, where (Gt, Ft) is the terminal element

of some sequence in S. Let M be a largest matching in F [G ∩ ext(core(G))]. Remove from M
all ω ∈ F that intersect Ft and denote the resulting matching by M′. Since e(Ft) ⩽ r2(d + 1),

by Lemma 8.2 (iv), we have |M′| ⩾ |M| − r2(d + 1). Further, remove from M′ all ω ∈ F that
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intersect int(Π) and denote the resulting matching by M′′. Since (Gt, Ft) does not satisfy the

condition of step (a) in the algorithm, every matching in F [Gt∩ ext(core(G))] ⊆ F [Gt∩ crit(G)]

contains fewer than m subgraphs that intersect int(Π) and hence |M′′| ⩾ |M′| − m ⩾ |M| −
r2(d + 1) − m. Note that M′′ is a matching in F [Gt ∩ ext(Π)] ⊆ F [G0 ∩ ext(Π)] and thus

|M′′| ⩽ x, as G0 ∈ BQ,F (d, x) and Π witnesses this fact. It follows that

ν(F [G ∩ ext(core(G))]) = |M| ⩽ |M′′| + m + r2(d + 1) ⩽ x + m + r2(d + 1),

as desired. □

Proof of Lemma 8.4. Recall the definitions from the paragraph preceding the statement of

Lemma 8.3. We have

(2t + 2r + 6)−2r−6 ⩽ P(W ) =
∑

Σ=((Gi,Fi))i∈S

P(G0 = G0) · P(AΣ | G0 = G0). (20)

Since, for every sequence
(
(Gi, Fi)

)t
i=0

∈ S,

e(Gt ∪ Ft) = e(Gt) + e(Ft) = e(G0) + 2e(Ft) − t = e(G0) + 2td − t,

see Lemma 8.2 (ii), we have

P(G0 = G0)
(19)
=

P(Gn,p = G0)

P(Gn,p ∈ G)
=

P(Gn,p = Gt ∪ Ft)

P(Gn,p ∈ G)
·
(

p

1 − p

)t−2td

.

Consequently, multiplying both sides of (20) by P(Gn,p ∈ G), we obtain

P(Gn,p ∈ G)

(2t + 2r + 6)2r+6
⩽

(
p

1 − p

)t−2td ∑
Σ=((Gi,Fi))i∈S

P(Gn,p = Gt ∪ Ft) · P(AΣ | G0 = G0)

⩽

(
p

1 − p

)t−2td

· P(Gn,p ∈ E) · max
G∈E

∑
Σ=((Gi,Fi))i∈S

Gt∪Ft=G

P(AΣ | G0 = G0)

︸ ︷︷ ︸
⋆

.
(21)

The next two claims will allow us to bound the maximum in the right-hand side of the above

inequality. Set tc̄ := ta + tb + td = t− tc and N := n2/2.

Claim 8.5. For each G ∈ E, the number of sequences
(
(Gi, Fi)

)t
i=0

∈ S such that Gt ∪ Ft = G

is at most(
3et

tc̄

)tc̄ (Dm

p

)ta

N tb+tc̄

(
(1 − α/2)N(1 − p)

r

)tc−tc̄ r∏
k=1

(
2r3e|V k(Q)|np

)tkd .
Claim 8.6. For every Σ =

(
(Gi, Fi)

)t
i=0

∈ S,

P(AΣ | G0 = G0) ⩽

(
1

m

)ta ( 1

γNp

)tb
(

r

(1 − ᾱ)Np

)tc r∏
k=1

(
4r

(1 − p0)|V k(Q)|n

)tkd
.

Before proving Claim 8.5 and Claim 8.6, we first show how they imply the assertion of the

lemma. By the two claims, the maximum ⋆ in the right-hand side of (21) can be bounded from
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above as follows (recall that tc̄ = ta + tb + td):

⋆ ⩽

(
3et

tc̄

)tc̄ (D

p

)ta ( 1

γp

)tb
(

(1 − α/2)(1 − p)

(1 − ᾱ)p

)tc ( r

(1 − α/2)(1 − p)

)tc̄ ( 8r4ep

1 − p0

)td

⩽

(
C⋆t

tc̄

)tc̄

Dta

(
1 − α/2

1 − ᾱ

)t

·
(

1 − p

p

)ta+tb+tc−td

,

where C⋆ depends only on α, ᾱ, γ, p0, and r (recall our assumption that p ⩽ p0 < 1). Sub-

stituting this estimate back into (21) and using the identity ta + tb + tc − td = t − 2td, we

obtain
P(Gn,p ∈ G)

(2t + 2r + 6)2r+6
⩽

(
C⋆t

tc̄

)tc̄

Dta

(
1 − α/2

1 − ᾱ

)t

· P(Gn,p ∈ E).

Since ta ⩽ d, by Lemma 8.2 (iii), denoting

τ :=
tc̄
t

and λ := log

(
1 − ᾱ

1 − α/2

)
> 0,

we obtain
P(Gn,p ∈ G)

P(Gn,p ∈ E)
⩽ Dd · (2t + 2r + 6)2r+6 · exp

(
τt log

C⋆

τ
− λt

)
. (22)

Observe that, since x log(1/x) → 0 as x → 0, there must be some τ0 = τ0(C⋆, λ) = τ0(α, ᾱ, γ, p0, r)

such that τ log(C⋆/τ) ⩽ λ/2 for all τ ⩽ τ0. We also note that items (iii) and (iv) in Lemma 8.2

imply that

τt = tc̄ = ta + tb + td ⩽ (r2 + 1)(d + 1) ⩽ 4r2d. (23)

In order to estimate the right-hand side of (22), we consider two cases.

Case 1 (t = L). In this case, τ ⩽ 4r2/Γ ⩽ τ0, since Γ ⩾ Γ(τ0, r) = Γ(α, ᾱ, γ, p0, r). Consequently,

exp

(
τt log

C⋆

τ
− λt

)
⩽ exp

(
−λt

2

)
= exp

(
−λL

2

)
,

Finally, as L = ΓKd log(n2p/d) ⩾ Γ and Γ ⩾ Γ(λ, r) = Γ(α, ᾱ, r), we have, by (22),

P(Gn,p ∈ G) ⩽ Dd · (2L + 2r + 6)2r+6 · e−λL/2 ⩽ Dd · e−λL/3 ⩽ Dd · e−Kd log(n2p/d).

Case 2 (t < L). Since τ log(C⋆/τ) ⩽ λ/2 when τ ⩽ τ0 and log(C⋆/τ) ⩽ log(C⋆/τ0) otherwise,

exp

(
τt log

C⋆

τ
− λt

)
⩽ exp

(
τt log

C⋆

τ0
− λt

2

)
⩽

(
C⋆

τ0

)4r2d

exp

(
−λt

2

)
,

where the last inequality uses (23). Finally, since (2t + 2t + 6)2r+6 exp(−λt/2) is bounded by a

constant that depends only on r and λ, we may conclude from (22) that

P(Gn,p ∈ G) ⩽ Dd · Zd · P(Gn,p ∈ E)

for some Z = Z(α, ᾱ, γ, p0, r). Finally, since every graph in E contains Q, by Lemma 8.2 (i), we

have P(Gn,p ∈ E) = pe(Q) · P(Gn,p ∈ E | Q ⊆ Gn,p)

Proof of Claim 8.5. Fix some G ∈ E . We bound the number of different ways to construct a

sequence
(
(Gi, Fi)

)t
i=0

∈ S such that G = Gt ∪ Ft.

First, we should choose the types of the t steps 0 → . . . → t in the above algorithm. There

are tc̄ steps of type other than (c) and thus there are at most
(
t
tc̄

)
3tc̄ choices for all the types.

Second, we bound the number of different choices for the sequence (Fi)
t
i=0. In order to choose

the partition G = Gt∪Ft, we need to decide which td edges of G belong to Ft. By construction,

Ft can be partitioned into sets of sizes t1d, . . . , t
r
d such that the kth part contains only edges
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incident with V k(Q). Since Gt ⊆ G0 ∈ T , the number of such edges is at most

|V k(Q)| · ∆(Gt) + e(Ft) ⩽ |V k(Q)| · 2np + r2(d + 1) ⩽ 2r2|V k(Q)|np,

where the first inequality follows from Lemma 8.2 (iv) and the second inequality is true because

d ⩽ vmin(Q) · np. Since the sequence (Fi)
t
i=0 increases by one edge at steps i → i + 1 that were

designated to be of type (d) and remains constant otherwise, the number of possible sequences

(Fi)
t
i=0 is at most(

td
t1d, . . . , t

r
d

)
·

r∏
k=1

(
2r2|V k(Q)|np

)tkd ⩽
r∏

k=1

(
2r3|V k(Q)|np

)tkd .
Finally, we bound the number of ways to choose the sequence (Gi)

t
i=0. Recall that this

sequence remains constant at steps i → i+1 that were designated to be of type (d) and decreases

by one edge at all the remaining steps. We may thus reconstruct it from the knowledge of Gt

as follows:

• For any i, the number of ways to build Gi from Gi+1 is not more than N .

• If the step i → i + 1 is of type (a), then in order to build Gi from Gi+1, we need

to add an edge which completes an element of F with the rest of Gi+1. There are

clearly no more than min
{(

n
2

)
, |∂F [Gi+1]|

}
such edges; since Gi+1 ⊆ G0 ∈ G, and thus

∂F [Gi+1] ⊆ ∂F [G0], this number is at most Dm/p.

• If both the steps i → i + 1 → i + 2 are of type (c), then Gi+1 ∪ Fi+1 is not rigid and

b(Gi ∪ Fi) = b(Gi+1 ∪ Fi+1), as the edge removed from Gi while forming Gi+1 was not

critical in Gi ∪ Fi. This means that, in order to build Gi from Gi+1, we need to add an

edge so that b(Gi+1∪Fi+1) does not increase, i.e., an edge whose both endpoints belong

to the same (CQ, Gi+1 ∪ Fi+1)-component (see Section 7). In other words, denoting by

Π′ the set of such components, we must add an edge of int(Π′). Since Gi+1 ∪Fi+1 is not

rigid, we have e(int(Π′)) ⩽ (1 − α)n2/(2r) and thus the number of possible edges is at

most

e
(
int(Π′) \Gi+1

)
⩽ e(int(Π′)) − e

(
G0 ∩ int(Π′)

)
+ e(G0) − e(Gi+1).

Since G0 ∈ G ⊆ T , we have e
(
G0 ∩ int(Π′)

)
= e(int(Π′)) · p ± o(n2p). Furthermore,

e(G0) − e(Gi+1) ⩽ i + 1 ⩽ L ≪ n2p. Consequently,

e
(
int(Π′) \Gi+1

)
⩽ e(int(Π′)) · (1 − p) + o(n2p) ⩽ (1 − α/2)n2/(2r) · (1 − p),

where the last inequality follows as 1 − p ⩾ 1 − p0 > 0.

Summarising, since there are at least tc − tc̄ indices i such that the steps i → i + 1 → i + 2 are

both of type (c), we may bound the number of sequences (Gi)
t
i=0 by(

Dm

p

)ta

·
(

(1 − α/2)n2(1 − p)

2r

)tc−tc̄

·N tb+tc̄ .

The claimed bound now follows by multiplying the three above bounds, for the numbers

of choices of steps and the sequence (Fi)
t
i=0 and (Gi)

t
i=0, and using the standard estimate(

t
tc̄

)
⩽ (et/tc̄)

tc̄ . □

Since, for every i, the random pair (Gi+1,Fi+1) is obtained from (Gi,Fi) by removing from

Gi or adding to Fi an edge chosen uniformly from some collection, in order to prove Claim 8.6,
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it suffies to establish the following lower bounds on the sizes of these collections, depending on

the type of the step.

Subclaim 8.6.1. For every step of type (a), there are at least m choices.

Subclaim 8.6.2. For every step of type (b), there are at least γn2p/2 choices.

Proof. If (Gi,Fi) falls into (b), then the number of choices for the edge to be removed from Gi

is at least

e
((
Gi ∩ crit(Gi ∪ Fi) ∩ int(Π)

)
\Q
)

⩾ e
(
crit(Gi ∪ Fi) ∩ int(Π)

)
− e(Fi) − e(Q) ⩾ γn2p− e(Fi) − e(Q).

Finally, our assumptions and Lemma 8.2 (iv) imply that e(Fi) ⩽ r2(d + 1) ≪ n2p and e(Q) ≪
n2p. □

Subclaim 8.6.3. For every step of type (c), there are at least (1−ᾱ)n2p
2r choices.

Proof. If (Gi,Fi) falls into (c), then the number of choices for the edge to be removed from Gi

is at least

e
(
Gi ∩ int(Π)

)
− e
(
crit(Gi ∪ Fi) ∩ int(Π)

)
− e(Q).

Since G0 ∈ T , we have

e
(
Gi ∩ int(Π)

)
⩾ e
(
G0 ∩ int(Π)

)
− i ⩾ e(int(Π)) · p− o(n2p) − i.

Crucially, since (Gi,Fi) did not fall into (b), we have e
(
crit(Gi ∪Fi)∩ int(Π)

)
< γn2p. Finally,

since i+ e(Q) ⩽ L+ e(Q) ≪ n2p and Π ∈ CQ is balanced (and δ is small as a function of α and

thus also of γ), we may conclude that the number of choices is at least

e(int(Π))p− 2γn2p ⩾
n2p

2r
− 3γn2p = (1 − ᾱ) · n

2p

2r
,

as (sub)claimed. □

Subclaim 8.6.4. For every step of type (d), there are at least (1 − p0)|V k(Q)|n/(4r) choices.

Proof. Suppose that (Gi,Fi) falls into (d), that is, that Gi ∪Fi is rigid, with core {S1, . . . , Sr}
and Q is not contained in the core. This means that there are indices j, k ∈ JrK such that the

nonempty set V k(Q) and Sj are in the same part of some but not all maximum cuts of Gi ∪Fi.

Note crucially that, for each such k, there must be at least two different indices j; indeed, if

V k(Q) and Sj are not in the same part of some maximum cut, then V k(Q) shares its part with

some Sj′ with j′ ̸= j.

We now argue that min{|Sj ∩Vk|, |Sj′ ∩Vk|} <
√

2γn, where Vk ⊇ V k(Q) is the kth set in the

(ordered) r-cut Π. If this were not true, then ext
(
{Sj ∩ Vk, Sj′ ∩ Vk}

)
would be a set of at least

2γn2 edges of int(Π). Moreover, since G0 ∈ T , we would have

e
(
ext({Sj ∩ Vk, Sj′ ∩ Vk}) ∩G0

)
⩾ 2γn2p− o(n2p)

and thus

e
(
ext({Sj ∩ Vk, Sj′ ∩ Vk}) ∩Gi

)
⩾ 2γn2p− i− o(n2p) ⩾ γn2p.

However, ext({Sj ∩ Vk, Sj′ ∩ Vk}) ∩Gi ⊆ crit(Gi ∪ Fi) ∩ int(Π), contradicting the assumption

that the step i → i + 1 did not trigger case (b) in our algorithm.
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We may thus assume, without loss of generality, that |Sj ∩ Vk| <
√

2γn and thus

|Sj \ Vk| = |Sj | − |Sj ∩ Vk| ⩾
(

1 − 4rα−
√

2γr
) n

r
⩾

n

2r
, (24)

where the last inequality holds as α (and thus γ) is small. Since we may add to Fi any edge of

ext({V k(Q), Sj \ Vk}) \ (Gi ∪ Fi) and

e(ext({V k(Q), Sj \ Vk})) = |V k(Q)| · |Sj \ Vk| ⩾ |V k(Q)| · n/(2r),

it is enough to argue that

e
(
ext({V k(Q), Sj \ Vk}) ∩ (Gi ∪ Fi)

)
⩽ (1 + p0)/2 · e

(
ext({V k(Q), Sj \ Vk})

)
. (25)

To this end, observe that

e
(
ext({V k(Q), Sj \ Vk}) ∩ (Gi ∪ Fi)

)
⩽ e
(
ext({V k(Q), Sj \ Vk}) ∩G0

)
+ e(Fi)

and that, by Lemma 8.2 (iv),

e(Fi) ⩽ r2(d + 1) ⩽ vmin(Q) · 2r2d ⩽ |V k(Q)| · min
{

2r2np, δn/r
}
. (26)

Consequently, the left-hand side of (25) is clearly not larger than |V k(Q)| · (∆(G0) + 2r2np).

Since ∆(G0) ⩽ 2np, as G0 ∈ G ⊆ T , the desired inequality holds if p ⩽ 1/(10r3), say. We

may thus assume for the remainder of the proof that p > 1/(10r3). If |V k(Q)| ≫ 1, then the

assumption that G0 ∈ T implies that

e
(
ext({V k(Q), Sj \ Vk}) ∩G0

)
⩽ (1 + o(1)) · e

(
ext({V k(Q), Sj \ Vk})

)
· p,

which again implies (25), as e(Fi) ⩽ r2(d + 1) ⩽ vmin(Q) · δn/r ⩽ |V k(Q)| · δn/r, p ⩽ 1 − p0,

and δ ⩽ δ(r, p0), so we may further assume that |V k(Q)| = O(1). But this means that Q ∈ QL

(every graph in QH has Ω(np) vertices) and thus k = 1 and V 2(Q) = . . . = V r(Q) = ∅.

Here, our argument is somewhat more involved: We will show that (25) must hold, or other-

wise a cut that places V 1(Q) and Sj in the same part cannot be a largest cut in Gi ∪ Fi. Let

Π′ = (V ′
1 , . . . , V

′
r ) ∈ maxcut(Gi ∪ Fi) be an arbitrary maximum cut that puts V 1(Q) and Sj in

the same part V ′
1 and let Π′′ be a cut obtained from Π′ by choosing ℓ ∈ JrK uniformly at random

and swapping V 1(Q) and a uniformly chosen random subset R ⊆ V ′
ℓ of the same size (so that

Π′′ = Π′ with probability 1/r). Since Π′′ is compatible with Q (for some ordering of its colour

classes) and its colour classes have the same sizes as the colour classes of Π′, it belongs to CQ
with probability one. Since Π′ ∈ maxcut(Gi ∪ Fi), the difference

e
(
ext(Π′′) ∩ (Gi ∪ Fi)

)
− e
(
ext(Π′) ∩ (Gi ∪ Fi)

)
is nonpositive. This difference can be rewritten as (letting U := V 1(Q))

E1︷ ︸︸ ︷
e
(
ext({U, V ′

1 \ U}) ∩ (Gi ∪ Fi)
)
−

E2︷ ︸︸ ︷
e
(
ext({U, V ′

ℓ \ U}) ∩ (Gi ∪ Fi)
)

+ e
(
ext({R, V ′

ℓ \R}) ∩ (Gi ∪ Fi)
)︸ ︷︷ ︸

E3

− e
(
ext({R, V ′

1 \R}) ∩ (Gi ∪ Fi)
)︸ ︷︷ ︸

E4

.

We now estimate the expected values of E1, . . . , E4. First, since we assumed that the sets U

and Sj are disjoint and both contained in V ′
1 , we have E1 ⩾ e

(
ext({U, Sj})∩ (Gi∪Fi)

)
. Second,



SIMONOVITS’S THEOREM IN RANDOM GRAPHS 34

since each vertex appears in V ′
ℓ with probability exactly 1/r, we have

E[E2] =
e
(
ext({U, V \ U}) ∩ (Gi ∪ Fi)

)
r

⩽
|U | · ∆(G0) + e(Fi)

r
⩽

|U | · (np + δn + o(n))

r
,

where the last inequality follows as ∆(G0) ⩽ np+o(n), since G0 ∈ G ⊆ T , and e(Fi) ⩽ |U |·δn/r,

by (26). Third, since for every j ∈ JrK,∑
v∈R

degGi∪Fi
(v, V ′

j ) − |R|2 ⩽ e
(
ext({R, V ′

j \R}) ∩ (Gi ∪ Fi)
)
⩽
∑
v∈R

degGi∪Fi
(v, V ′

j )

and, recalling that R is a uniformly chosen random |U |-element subset of V ′
ℓ ,

E

[∑
v∈R

degGi∪Fi
(v, V ′

j ) | ℓ

]
=

|U |
|V ′

ℓ |
·
∑
v∈V ′

ℓ

degGi∪Fi
(v, V ′

j ),

we have

E[E3 − E4]

|U |
⩾

r − 1

r
· min
j ̸=1

{
2e
(
int({V ′

j }) ∩ (Gi ∪ Fi)
)

|V ′
j |

−
e
(
ext({V ′

1 , V
′
j }) ∩ (Gi ∪ Fi)

)
|V ′

j |
− |U |

}

⩾
r − 1

r
· min
j ̸=1

2e
(
int({V ′

j }) ∩G0

)
− e
(
ext({V ′

1 , V
′
j }) ∩G0

)
− e(Fi) − 2i

|V ′
j |

− |U |.

Further, as G0 ∈ G ⊆ T and e(Fi) ⩽ i ⩽ L ≪ n2p,

E[E3 − E4]

|U |
⩾

r − 1

r
· min
j ̸=1

{
|V ′

j | · p− |V ′
1 | · p− o(n)

}
⩾ −2δn

r
,

where the second inequality follows since Π′ is a balanced cut.

Recalling that E1 − E2 + E3 − E4 is always nonpositive, we may conclude that

e
(
ext({U, Sj}) ∩ (Gi ∪ Fi)

)
⩽ E1 ⩽ E[E2 − E3 + E4] ⩽

|U | · (np + 3δn + o(n))

r

and thus, by (24),

e
(
ext({U, Sj}) ∩ (Gi ∪ Fi)

)
⩽

p + 3δ + o(1)

1 − 2rα−
√

2γ
· |U | · |Sj \ Vk|.

Since p ⩽ p0 < 1 and α (and thus γ) and δ are sufficiently small with respect to 1 − p0 and r,

we obtain

e
(
ext({U, Sj}) ∩ (Gi ∪ Fi)

)
⩽

1 + p0
2

· |U | · |Sj \ Vk| =
1 + p0

2
· e
(
ext({U, Sj \ Vk})

)
,

which, recalling that U = V k(Q), implies (25). □

The proof of Claim 8.6 and thus of Lemma 8.4 is finally complete. □

Since we have already shown how Lemma 8.3 and Lemma 8.4 imply the assertion of the

proposition, the proof is complete. □

9. The proof

Recall that our goal is to prove that a.a.s., for every Q ∈ Q with Q ⊆ G and every r-cut

Π ∈ CQ with defCQ(Π;G) ⩽ dQ, the family FQ[G∩ext(Π)] contains a matching of size exceeding

dQ, see (P2) in the proof plan presented in Section 2. Note that this is precisely the complement

of the event BQ,FQ
(dQ, dQ) defined at the beginning of Section 8. For technical reasons, we

will actually bound from above the probability of the event BQ,F ′
Q

(dQ, dQ) ⊇ BQ,FQ
(dQ, dQ),
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where F ′
Q ⊆ FQ is a (carefully chosen) subfamily of FQ. Gearing up towards an application of

Proposition 8.1, we will also choose, for each Q ∈ Q, integers DQ and mQ and define DQ to be

the event min
{(

n
2

)
, |∂F ′

Q[G]|
}
⩽ DQmQ/p, so that

P
(
BQ,F ′

Q
(dQ, dQ) for some Q ∈ Q[G]

)
⩽ P(T c) + P

(
Dc

Q for some Q ∈ Q[G]
)

+
∑
Q∈Q

P
(
T ∩ DQ ∩ BQ,F ′

Q
(dQ, dQ)

)
.

What we would like to do is take F ′
Q := F low

Q for each Q ∈ QL and F ′
Q := Fhigh

Q for all

Q ∈ QH . In some cases (when Q ∈ Q2
L and p ≫ pH), however, choosing such large families F ′

Q

would make the event Dc
Q likely, unless the product DQmQ is large, in which case the upper

bound on the probability of T ∩ DQ ∩ BQ,F ′
Q

(dQ, dQ) provided by Proposition 8.1 (which is

increasing in both DQ and mQ) would not be sufficiently strong for our purposes. In order to

strike a balance between the events Dc
Q and T ∩ DQ ∩ BQ,F ′

Q
(dQ, dQ) in the problematic cases,

we will let F ′
Q be a (pseudo)random subfamily of F low

Q with an appropriate density.

To this end, given a family Ĥ ⊆ H of copies of H in Kn, define, for every Q ∈ QL,

F low
Q (Ĥ) := {A \Q : A ∈ Hlow

Q ∩ Ĥ},

cf. the definition of F low
Q given at the beginning of Section 5. We will let F ′

Q be the family

F low
Q (Ĥ) with Ĥ being (a typical sample from the distribution of) the binomial random hyper-

graph Hq, for an appropriately chosen q. The reason why we define F ′
Q via a random subset

Ĥ ⊆ H, rather than simply letting F ′
Q be a random subset of F low

Q or Fhigh
Q , is to avoid an

unnecessary union bound over all Q ∈ Q while estimating the probability of DQ failing for some

Q ∈ Q[G].

The remainder of this section is organised as follows. First, in subsection 9.1, we construct

the family F ′
Q in the problematic case Q ∈ Q2

L and p ≫ pH . Second, in subsection 9.2, we define

the parameters for the applications of Proposition 8.1 for all Q ∈ Q. Finally, in subsection 9.3,

we put everything together and conclude the proof of Theorem 1.5.

9.1. Sparsification. In order to obtain an upper bound on the probability of T ∩ DQ ∩
BQ,F ′

Q
(dQ, dQ) using Proposition 8.1, we need to establish an upper bound on the probabil-

ity that G is CQ-rigid and F ′
Q[ext(coreCQ(G))] contains no large matching (see the definition of

ξ in the statement of Proposition 8.1). To this end, we will use Theorem 3.3 in combination

with Lemma 7.3, which supply an upper bound on this probability (the said ξ) that is ex-

pressed in terms of the quantities ∆p(F ′
Q) and the minimum of µp(F ′

Q[ext(S)]) over all r-tuples

S = (S1, . . . , Sr) that are compatible with Q and satisfy mini |Si| ⩾ (1 − 4rα)n/r. Since the

upper tail of ∆p

(
F low
Q (Ĥ)

)
is likely too heavy to allow a union bound over all Q, instead of

choosing a single Ĥ for all Q, we sample a sequence of independent copies of Ĥ. It is straight-

forward to show that the probability that F low
Q (Ĥ) does not have the desired properties for all

random hypergraphs in the sequence is small enough to warrant a union bound over all Q ∈ Q;

this means that we can find at least one suitable Ĥ for each Q ∈ Q and define F ′
Q := F low

Q (Ĥ).

While defining our families F ′
Q, we will also need to make sure that DQ holds with probability

close to one simultaneously for all Q ∈ Q[G]. The following simple observation supplies an upper

bound on the size of ∂F ′
Q[G] in terms of two simple parameters of Q and a random variable that

depends only on the hypergraph Ĥ ⊆ H that we used to define F ′
Q. Recall that, for a vertex v,

we write Hv to denote the collection of all copies of H in Kn that contain v.
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Observation 9.1. The following holds for every family Ĥ ⊆ H and every G ⊆ Kn:

(1) For all Q ∈ QL, we have

|∂F low
Q (Ĥ)[G]| ⩽ e(Q) · max

e∈Kn

|∂∂eĤ[G]|.

(2) For all Q ∈ QH [G], we have

|∂Fhigh
Q [G]| ⩽ k(Q) · max

v∈V (Kn)
|∂Hv[G]|,

where k(Q) is the number of centre vertices of Q.

The following lemma will allow us to define an appropriate family F ′
Q for all Q ∈ Q2

L.

Lemma 9.2. There exist constants Ĉ and C∂ that depend only on H such that the following

holds for every q ∈ [0, 1] satisfying

q ⩾ max
Q∈Q2

L

Ĉ · n
3−vH

e(Q)
and nvH−2peH−2q ⩾ log n.

There are H1, . . . ,HN ⊆ H with the following properties:

(A) A.a.s., maxe∈Kn |∂∂eHi[Gn,p]| ⩽ C∂n
vH−2peH−2q for every i ∈ JNK.

(B) For every Q ∈ Q2
L, there exists an i ∈ JNK such that

(B1) For every r-tuple S = (S1, . . . , Sr), with V (Q) ⊆ S1, of disjoint subsets of vertices

of size at least n/(2r),

µp

(
F low
Q (Hi)[ext(S)]

)
⩾ (q/2) · µp(F low

Q [ext(S)]).

(B2) ∆p

(
F low
Q (Hi)

)
⩽ 2q2 · ∆p(F low

Q ).

Proof of Lemma 9.2. Let G ∼ Gn,p. Given an edge e ∈ Kn and a hypergraph Ĥ ⊆ H, denote

by AĤ
e the event that

|∂∂eĤ[G]| > C∂n
vH−2peH−2q

and let AĤ :=
⋃

e∈Kn
AĤ

e . Further, for each Q ∈ Q2
L, let BĤ

Q,1 denote the event that

µp

(
F low
Q (Ĥ)[ext(S)]

)
< (q/2) · µp(F low

Q [ext(S)]).

for some r-tuple S = (S1, . . . , Sr), with V (Q) ⊆ S1, of disjoint subsets of vertices of size at least

n/(2r) and let BĤ
Q,2 be the event that ∆p

(
F low
Q (Ĥ)

)
> 2q2 · ∆p(F low

Q ). The following two claims

easily imply the assertion of the lemma.

Claim 9.3. P
(
AHq | Hq

)
< n−1 with probability at least 1 − n−3.

Claim 9.4. P(BHq

Q,1 ∪ BHq

Q,2) ⩽ 2/3 for every Q ∈ Q2
L.

Indeed, let N = n2 and let H1, . . . ,HN be independent samples from the distribution of Hq.

Note first that Claim 9.3 and a simple union bound imply that, with probability at least 1−n−1

(in the choices of H1, . . . ,HN ), we have P(AHi) < n−1 for all i ∈ JNK, that is, assertion (A)

holds. Further, Claim 9.4 asserts that, for every fixed pair of Q ∈ Q and i ∈ JNK, the probability

that either (B1) or (B2) fails for this pair is at most 2/3. Since, for a given Q, these events are

independent for all i ∈ JNK, the probability that either (B1) or (B2) fails simultaneously for all

i ∈ JNK is at most (2/3)N . However, there are no more than 2(n2) graphs in Q2
L and thus the

probability that (B) fails is not more than 2(n2) · (2/3)n
2
⩽ (8/9)n

2/2.
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Proof of Claim 9.3. Denote by A the event that P
(
AHq | Hq

)
⩾ n−1 and observe that P(AHq) ⩾

P(A) · n−1. On the other hand, we may also bound the probability of AHq from above by first

conditioning on G. To this end, let Ae be the event that

|∂∂eH[G]| > C∂n
vH−2peH−2/(2v4H)

and note that P(Ae) ⩽ n−6 when C∂ is sufficiently large, by Lemma 4.3 (i). Consequently,

P(AHq) ⩽
∑
e∈Kn

P(AHq

e ) ⩽
∑
e∈Kn

(
P(Ae) + P

(
AHq

e | Ac
e

))
⩽

1

2n4
+
∑
e∈Kn

P
(
AHq

e | Ac
e

)
.

Gearing up to bound P
(
AHq

e | Ac
e

)
, define, for all e ∈ Kn and Ĥ ⊆ H,

ZĤ
e :=

∣∣{A ∈ Ĥ : e ∈ A and A \ (e ∪ f) ⊆ G for some f ∈ A
}∣∣

and observe that, for all e ∈ Kn,

v−2
H · |∂∂eĤ[G]| ⩽ ZĤ

e ⩽ v2H · |∂∂eĤ[G]|.

The advantage of working with ZĤ
e is that, conditioned on G, the variable Z

Hq
e is distributed

like Bin(ZH
e , q). Since ZH

e ⩽ C∂n
vH−2peH−2/(2v2H) on Ac

e whereas Z
Hq
e > C∂n

vH−2peH−2q/v2H
on AHq

e , it follows that (letting m := C∂n
vH−2peH−2/(2v2H) ⩾ C∂/(2v2H) · q−1 log n)

P
(
AHq

e | Ac
e

)
⩽ P

(
Bin(m, q) > 2mq

)
⩽ exp(−mq/8) ⩽ n−6,

where the last inequality holds provided that C∂ is sufficiently large. We conclude that

P(A) ⩽ n · P(AHq) ⩽ n ·
(

1

2n4
+

(
n

2

)
· 1

n6

)
⩽

1

n3
,

as claimed. □

Proof of Claim 9.4. Fix an arbitrary Q ∈ Q2
L. By construction, for each ω ∈ F low

Q , there is a

unique A ∈ H such that ω = A \Q. In particular, we have

E
[
∆p

(
F low
Q (Hq)

)]
= q2 · ∆p

(
F low
Q

)
and thus P(BHq

Q,2) ⩽ 1/2 by Markov’s inequality. It is therefore enough to show that P(BHq

Q,1) ⩽

1/6. To this end, note first that, since F low
Q is a uniform hypergraph, BHq

Q,1 is the event that

|F low
Q (Ĥ)[ext(S)]| < (q/2) · |F low

Q [ext(S)]| for some r-tuple S = (S1, . . . , Sr), with V (Q) ⊆ S1, of

disjoint subsets of vertices of size at least n/(2r). Further, observe that, for every r-tuple S of

interest,

|F low
Q (Hq)[ext(S)]| ∼ Bin

(
|F low

Q [ext(S)]|, q
)

and |F low
Q [ext(S)]| ⩾ (πH/2) · e(Q) · (n/(2r))vH−2 =: m, by Lemma 5.2. Since there are at most

(r + 1)n choices for the r-tuple S,

P(BHq

Q,1) ⩽ (r + 1)n · P
(
Bin(m, q) < mq/2

)
⩽ (r + 1)n · exp(−mq/8)

⩽ (r + 1)n · exp(−ĈπH/(2r)vH · n) ≪ 1,

provided that Ĉ is sufficiently large. □

The proof of the lemma is now complete. □

9.2. Choosing the parameters. We are finally ready to choose the parameters for our appli-

cation of Proposition 8.1. We first apply Lemma 9.2 with q := Ĉ log n/(κnvH−2peH−1) to obtain
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q dQ mQ DQ

p ⩽ CθpH
Q ∈ QL

√
ηe(Q) log n ∧ βn2p κnvH−2peH−1 · e(Q)

4e2H
κ

p > CθpH
Q ∈ Q1

L
8re(Q) 8re(Q) n2p

dQ

p > CθpH
Q ∈ Q2

L

Ĉ logn
κnvH−2peH−1

√
ηe(Q) log n ∧ βn2p κnvH−2peH−1q · e(Q) C∂

κ

Q ∈ QH 32k(Q)np 32k(Q)np 2vH ·M(k(Q))
mQ

Table 1. The choices of the parameters. (For brevity, a ∧ b denotes min{a, b}
and M(k) := knvH−1peH ∧ n2p.)

hypergraphs H1, . . . ,HN ⊆ H as in the assertion of the lemma. Note that we need to first verify

that nvH−2peH−2q = Ĉ/κ · p−1 log n ⩾ log n and that, for every Q ∈ Q2
L,

Ĉ log n

κnvH−2peH−1
⩾

Ĉn3−vH

e(Q)
,

which holds since e(Q) ⩾ κnp/ log n and eH ⩾ 2.

We now choose the families F ′
Q. If either Q ∈ QL and p ⩽ CθpH or Q ∈ Q1

L and p > CθpH ,

then we let F ′
Q := F low

Q . If Q ∈ Q2
L and p > CθpH , then we let F ′

Q := F low
Q (Hi(Q)), where

i(Q) ∈ JNK is the index from Lemma 9.2 (B). Finally, if Q ∈ QH , then we let F ′
Q be the

hypergraph F ⊆ Fhigh
Q from the assertion of Lemma 6.1.

The choices of the parameters mQ and DQ are described in Table 1, where we also recall the

definition of dQ originally given in Definition 2.6.

9.3. Calculations. We first estimate the probability that DQ fails for some Q ∈ Q[G]. (Recall

that DQ is the event that min
{(

n
2

)
, |∂F ′

Q[G]|
}
⩽ DQmQ/p.)

Lemma 9.5. A.a.s., DQ holds for all Q ∈ Q with Q ⊆ G.

Proof. We prove this lemma separately for each of the four rows in Table 1. First, if p ⩽ CθpH

and Q ∈ QL, then F ′
Q = F low

Q and thus on the event T , by Observation 9.1,

|∂F ′
Q[G]| ⩽ e(Q) · max

e∈Kn

|∂∂eH[G]| ⩽ 4e2HnvH−2peH−2 · e(Q) = DQmQ/p.

Second, if p > CθpH and Q ∈ Q1
L, then

(
n
2

)
< n2 = DQmQ/p and thus DQ holds almost surely.

Third, if p > CθpH and Q ∈ Q2
L, then F ′

Q = F low
Q (Hi(Q)) and thus, by Lemma 9.2 (A) and

Observation 9.1,

|∂F ′
Q[G]| ⩽ e(Q) · max

e∈Kn

|∂∂eHi(Q)[G]| ⩽ C∂n
vH−2peH−2q · e(Q) = DQmQ/p.

Fourth, if Q ∈ QH , then F ′
Q ⊆ Fhigh

Q and thus on the event T , by Observation 9.1,

|∂F ′
Q[G]| ⩽ k(Q) · max

v∈V (Kn)
|∂Hv[G]| ⩽ 2vH · k(Q)nvH−1peH−1;

moreover,
(
n
2

)
< n2. Hence, min

{(
n
2

)
, |∂F ′

Q[G]|
}
⩽ DQmQ/p. □

Moreover, denote by GQ the event T ∩ DQ ∩ BQ,F ′
Q

(dQ, dQ) ∩ {Q ⊆ G}.

Lemma 9.6. Suppose that there exists a positive constant c such that

P(Gn,p ∈ GQ) ⩽ pe(Q)e−(1+c)e(Q) log(n2p/e(Q))
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for every Q ∈ QL and that

P(Gn,p ∈ GQ) ⩽ pe(Q)e−2k(Q)np

for all Q ∈ QH . Then ∑
Q∈Q

P (Gn,p ∈ GQ) = o(1).

Proof. Denote N :=
(
n
2

)
. Since e(Q) ⩽ βNp for all Q ∈ QL with Q ⊆ Gn,p when Gn,p ∈ GQ ⊆ T ,

we have ∑
Q∈QL

P(Gn,p ∈ GQ) ⩽
βNp∑
m=1

(
N

m

)
pme−(1+c)m log(Np/m)

⩽
βNp∑
m=1

(
eNp

m

)m

e−(1+c)m log(Np/m) =

βNp∑
m=1

em−cm log(Np/m).

Let f(x) := x − cx log(Np/x) and note that f ′(x) = 1 + c − c log(Np/x). In particular, if

x ∈ (0, βNp), then f ′(x) ⩽ 1 + c − c log(1/β) ⩽ −1, provided that β is sufficiently small as a

function of c only. This implies that∑
Q∈QL

P(Gn,p ∈ GQ) ⩽
βNp∑
m=1

ef(m) ⩽
βNp∑
m=1

ef(1)+1−m ⩽
ef(1)

1 − 1/e
⩽ O

(
(Np)−c

)
.

Since each Q ∈ QH has a set of centre vertices that dominate all its edges,

∑
Q∈QH

P(Gn,p ∈ GQ) ⩽
n∑

k=1

(
n

k

)(∑
m⩾0

(
n

m

)
pm

)k

· e−2knp

=

n∑
k=1

(
n

k

)
(1 + p)nk · e−2knp ⩽

n∑
k=1

(
n

k

)
e−npk

= (1 + e−np)n − 1 ⩽ exp(ne−np) − 1 ⩽ 2ne−np,

since ne−np ⩽ 1. □

Fix an arbitrary Q ∈ Q. In order to bound P(Gn,p ∈ GQ), we will apply Proposition 8.1 with

d = x = dQ, m = mQ, D = DQ, and F = FQ. To do this, however, we will first have to check

that the various assumptions of the proposition are satisfied. Since e(Q) ⩽ βn2p ≪ n2p and FQ

is a family of subgraphs of Kn \Q, it will suffice to prove the following lemma.

Lemma 9.7. For every Q ∈ Q satisfying Q ⊆ G ∈ T ,

dQ ≪ n2p and dQ ⩽ vmin(Q) · κnp.

Proof. The asymptotic inequality dQ ≪ n2p is straightforward to verify. Indeed, recall that

e(Q) ≪ n2p for all Q ∈ Q and k(Q) ≪ n for all Q ∈ QH . To see that the second inequality

holds as well, consider first the case Q ∈ QL. Here, we have vmin(Q) = |V 1(Q)| ⩾ e(Q)/∆(Q) ⩾

e(Q) log n/(κnp) and thus

dQ
vmin(Q)

⩽ κnp · max

{
√
η,

8r

log n

}
⩽ κnp.
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Assume now that Q ∈ QH . Our assumption that Q ⊆ G ∈ T implies that vmin(Q) ⩾ c ·
min{n, k(Q)np} for some positive constant c that depends only on η and thus

dQ
vmin(Q)

⩽ c−1 · max{32, 32k(Q)p} ≪ np,

since k(Q) ≪ n. □

Define

νQ := mQ + (r2 + 1)(dQ + 1).

Proposition 8.1 with KQ = 3 implies that, for some constant Z = Z(α, p0, r),

P(Gn,p ∈ GQ) ⩽ pe(Q) ·DdQ
Q ·

(
ZdQ · ξQ + e−3dQ log(n2p/dQ)

)
, (27)

where

ξQ := P
(
Gn,p is CQ-rigid and ν(FQ[Gn,p ∩ ext(coreCQ(Gn,p))]) ⩽ νQ | Q ⊆ Gn,p

)
.

Gearing up towards bounding ξQ from above, let SQ denote the collection of all tuples S =

(S1, . . . , Sr) of pairwise disjoint sets of vertices that are compatible with Q and satisfy mini |Si| ⩾
(1 − 4rα) · n/r. Since, for every S ∈ SQ, the event ν(FQ[Gn,p ∩ ext(S)]) ⩽ νQ is decreasing,

determined by ext(S), and independent of the event Q ⊆ Gn,p, we may use Lemma 7.3 to

conclude that

ξQ ⩽ r! · max
S∈SQ

P
(
ν
(
FQ[Gn,p ∩ ext(S)]

)
⩽ νQ

)
.

Since we will bound ξQ from above with the use Corollary 3.4 and Corollary 3.5, it will be

convenient to define, for each S ∈ SQ,

µQ := min
S∈SQ

µp

(
FQ[ext(S)]

)
, ∆Q := ∆p(FQ), and ΛQ := min

{
µQ, µ

2
Q/∆Q

}
.

The following two lemmas are the heart of this section.

Lemma 9.8. The following holds for every Q ∈ QL:

(i) If p ⩽ CθpH , then µQ ⩾ (1 + ε)e(Q) log(n2p) and ∆Q, νQ ⩽ ε2/100 · µQ.

(ii) If p > CθpH , then ΛQ ⩾ 100r · e(Q) log(n2p) and νQ ⩽ ΛQ/1000.

Lemma 9.9. For every Q ∈ QH , we have ΛQ ≫ k(Q)np · logDQ and νQ ⩽ ΛQ/1000.

We first show how to use the two lemmas to complete the proof of Theorem 1.5. Note that it

is enough to show that the assumptions of Lemma 9.6 are satisfied. In view of (27), it suffices

to estimate (DQZ)dQ · ξQ and the quantity ΞQ defined by

ΞQ := D
dQ
Q · e−3dQ log(n2p/dQ).

Since DQ ⩽ n2p/dQ for all Q ∈ Q, we have

ΞQ ⩽ exp
(
− 2dQ log(n2p/dQ)

)
.

Further, since e(Q) ⩽ dQ ≪ n2p for all Q ∈ QL and the function x 7→ x log(a/x) is increasing

on (0, a/e), we further have

ΞQ ⩽ exp
(
− 2e(Q) log(n2p/e(Q))

)
.

Similarly, since k(Q)np ⩽ dQ ≪ n2p for all Q ∈ QH , we also have

ΞQ ⩽ exp
(
− k(Q)np log(n/k(Q))

)
⩽ exp(−3k(Q)np).
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In order to estimate (DQZ)dQ · ξQ, we split into three cases.

Case 1. p ⩽ CθpH and Q ∈ QL. By Lemma 9.8 (i), we may apply Corollary 3.4 with γ := ε/10

to obtain

ξQ ⩽ r! · exp
(
− (1 − ε/10) · µQ + 2∆Q

)
⩽ r! · exp

(
− (1 − ε/10 − ε2/50) · µQ

)
⩽ r! · exp

(
− (1 − ε/7)(1 + ε) · e(Q) log(n2p)

)
⩽ exp

(
− (1 + ε/2) · e(Q) log(n2p)

)
.

Further,

(DQZ)dQ ⩽

(
4eHZ

κ

)√
ηe(Q) logn

⩽ exp
(
ε/4 · e(Q) log(n2p)

)
.

We may thus conclude that

P(GQ)

pe(Q)
⩽ (DQZ)dQ · ξQ + ΞQ ⩽ e−(1+ε/4)e(Q) log(n2p) + e−2e(Q) log(n2p/e(Q)),

as needed.

Case 2. p > CθpH and Q ∈ QL. By Lemma 9.8 (ii) and Corollary 3.5, we have

ξQ ⩽ r! · exp(−ΛQ/10) ⩽ r! · exp
(
− 10r · e(Q) log(n2p)

)
.

Further,

(DQZ)dQ ⩽ max

{(
Zn2p

8re(Q)

)8re(Q)

,

(
C∂Z

κ

)√
ηe(Q) logn

}
⩽ exp

(
9re(Q) log(n2p)

)
,

We may thus conclude that

P(GQ)

pe(Q)
⩽ (DQZ)dQ · ξQ + ΞQ ⩽ r! · e−re(Q) log(n2p) + e−2e(Q) log(n2p/e(Q)),

as needed.

Case 3. Q ∈ QH . In this case, dQ = 32k(Q)np and thus, by Lemma 9.9, we may apply

Corollary 3.5 to obtain

(DQZ)dQ · ξQ ⩽ r! · exp
(
32 log(DQZ) · k(Q)np− ΛQ/10

)
⩽ exp(−3k(Q)np).

We conclude that
P(GQ)

pe(Q)
⩽ (DQZ)dQ · ξQ + ΞQ ⩽ 2e−3k(Q)np,

as needed.

Proof of Lemma 9.8. Assume first that p ⩽ CθpH . Since in this case we set F ′
Q = F low

Q , it

follows from Lemma 5.2 that

µQ ⩾ (πH − o(1)) · e(Q) ·
(
(1 − 4αr) · n/r

)vH−2
peH−1

⩾ (1 − 4αr − o(1))vH−2 · e(Q) · r2−vHπHnvH−2 · ((1 + ε)pH)eH−1.

Since eH ⩾ 3 and α ≪ ε, it follows from the definition of pH and (3) that

µQ ⩾ (1 + 2ε) · e(Q) · r2−vHπHθeH−1
H · log n

= (1 + 2ε) · e(Q) ·
(

2 − 1

m2(H)

)
· log n ⩾ (1 + ε) · e(Q) · log(n2p),
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where the last inequality follows as p ⩽ CθpH = O(n−1/m2(H) log n). Furthermore, Lemma 5.2

also yields

∆Q

µQ
⩽

Clowκn
vH−2peH−1

log n
⩽

Clowκn
vH−2(CθpH)eH−1

log n
= Clowκ(CθθH)eH−1 ⩽

ε2

100
.

Finally, note that

νQ = mQ + (r2 + 1)(dQ + 1) ⩽ κe(Q)nvH−2peH−1 + 2r2
√
ηe(Q) log n

⩽ κ(CθθH)eH−1e(Q) log n + 2r2
√
ηe(Q) log n ⩽ (ε2/100) · µQ.

Assume now that p > CθpH and Q ∈ Q1
L. Since in this case we also have F ′

Q = F low
Q , we may

again use Lemma 5.2 to conclude that

µQ ⩾ (πH − o(1)) · e(Q) ·
(
(1 − 4αr) · n/r

)vH−2
peH−1

⩾ (πH/2) · e(Q) · r−vHnvH−2(CθpH)eH−1

= (πH/2) · e(Q) · r−vH · (CθθH)eH−1 · log n ⩾ 100r · e(Q) log(n2p).

and that

µ2
Q

∆Q
=

µQ

∆Q/µQ
⩾

(πH/2) · e(Q) · (n/(2r))vH−2peH−1

κClownvH−2peH−1/ log n
⩾ 100r · e(Q) log(n2p). (28)

Finally, note that

νQ ⩽ (r2 + 2)(dQ + 1) ⩽ 10r3e(Q) ⩽ r3ΛQ/ log n ⩽ ΛQ/1000.

Last but not least, assume that p > CθpH and Q ∈ Q2
L. By the definition of F ′

Q (see

Lemma 9.2 (B1) and (B2)) and Lemma 5.2,

µQ ⩾ (q/2) · min
S∈S

µp(F low
Q [ext(S)]) ⩾ q · (πH/4) · e(Q) · (2r)2−vHnvH−2peH−1

⩾
ĈπH

(2r)vHκ
· e(Q) log n ⩾ 100r · e(Q) log(n2p),

whereas, for every S ∈ SQ, analogously to (28),

µ2
Q,S

∆Q
⩾

(q/2)2 · µp(F low
Q [ext(S)])2

2q2 · ∆p(F low
Q )

⩾
πH · e(Q) log n

16 · (2r)vH−2κClow
⩾ 100r · e(Q) log(n2p).

Finally, note that

νQ = mQ + (r2 + 1)(dQ + 1) ⩽ κnvH−2peH−1q · e(Q) + 5r3η/κ · e(Q) log n

= (Ĉ + 5r3η/κ) · e(Q) log n ⩽ 2Ĉ · e(Q) log n,

where the last inequality holds as Ĉ is a constant that depends only on H whereas η ⩽ η(H,κ).

Finally, since also Clow depends only on H and κ ⩽ κ(H), is follows that νQ ⩽ µQ/1000 as well

as νQ ⩽ µ2
Q/∆Q. This completes the proof of the lemma. □

Proof of Lemma 9.9. Since F ′
Q ⊆ Fhigh

Q is the hypergraph that satisfies the assertion of Lemma 6.1,

we have

ΛQ ⩾ chigh · min
{
k(Q) · nvH−1peH , k(Q) · n1+λp, n2p

}
≫ k(Q) · np.
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Suppose first that the minimum above is achieved at M ∈ {k(Q) · nvH−1peH , n2p}. Since

M ≫ k(Q)np and DQ ⩽ vHM
k(Q)np , we have

ΛQ ⩾
chigh
vH

· k(Q)np · vHM

k(Q)np
≫ k(Q)np · log

(
vHM

k(Q)np

)
⩾ k(Q)np · logDQ.

Suppose now that the minimum above is achieved at k(Q) · n1+λp. In this case, since clearly

DQ ⩽ n2, we have

ΛQ ⩾ chigh · k(Q)n1+λp ≫ k(Q)np · logDQ.

Finally, note that

νQ ⩽ mQ + (r2 + 1)(dQ + 1) ⩽ 40r2k(Q) · np ⩽ ΛQ/1000.

This completes the proof of the lemma. □

References

1. N. Alon, A. Shapira, and B. Sudakov, Additive approximation for edge-deletion problems, Ann. of Math. (2)

170 (2009), 371–411.

2. N. Alon and J. H. Spencer, The probabilistic method, fourth ed., Wiley Series in Discrete Mathematics and

Optimization, John Wiley & Sons, Inc., Hoboken, NJ, 2016.
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Appendix A. H-free subgraphs of dense graphs

In this short section, we present a proof of Theorem 1.6. Our argument is a minor adjustment

of the proof of [1, Theorem 6.1]. It relies on the following generalisation of the well-known result

of Andrásfai, Erdős, and Sós [3] due to Erdős and Simonovits [11].

Theorem A.1 ([3, 11]). Let H be an edge-critical graph with χ(H) = r+1 ⩾ 3. Every n-vertex,

H-free graph with minimum degree exceeding 3r−4
3r−1 · n is r-partite.

We will also make use of the following easy lemma.

Lemma A.2. Let r ⩾ 2 be an integer and suppose G′ is an r-partite subgraph of a graph G.

Then, G has an r-partite subgraph of size at least e(G′) + r−1
r · e(G− V (G′)).

Proof of Theorem 1.6. Suppose that an n-vertex graph G satisfies

δ(G) ⩾

(
1 − 3

4(r − 1)(3r − 1)

)
n + 1.

Let Γ be the largest r-partite subgraph of G and let F be the largest H-free subgraph of G.

Since Γ is H-free and by Lemma A.2, with G′ = ∅,

e(F ) ⩾ e(Γ) ⩾
r − 1

r
· e(G) ⩾

r − 1

r

((
1 − 3

4(r − 1)(3r − 1)

)
n + 1

)
· n

2

=
12r2 − 16r + 1

8r(3r − 1)
· n2 +

r − 1

2r
· n.

We now construct a sequence F = Fn ⊇ Fn−1 ⊇ · · · ⊇ Fs as follows: If Fk has a vertex of degree

at most 3r−4
3r−1 · k we delete that vertex to obtain Fk−1; otherwise, if δ(Fk) > 3r−4

3r−1 and let s = k.

Since Fs ⊆ F is H-free, Theorem A.1 implies that Fs is r-partite. Hence,

r − 1

2r
· s2 ⩾ e(Fs) ⩾ e(F ) −

n∑
k=s+1

3r − 4

3r − 1
· k = e(F ) − 3r − 4

3r − 1
· (n− s)(n + s + 1)

2

⩾
12r2 − 16r + 1

8r(3r − 1)
· n2 +

r − 1

2r
· n− 3r − 4

3r − 1
· n

2 − s2 + n

2

>
12r2 − 16r + 1

8r(3r − 1)
· n2 − 3r − 4

3r − 1
· n

2 − s2

2
.

This implies that s2

2r(3r−1) >
n2

8r(3r−1) and so s > n
2 . Let m := e(G− V (Fs)) and note that

m ⩾ (n− s) · δ(G) −
(
n− s

2

)
⩾

(
12r2 − 16r + 1

4(r − 1)(3r − 1)
· n + 1

)
· (n− s) − (n− s)2

2
.
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By Lemma A.2,

e(Γ) ⩾ e(Fs) +
r − 1

r
·m ⩾ e(F ) − 3r − 4

3r − 1
· (n− s)(n + s + 1)

2
+

r − 1

r
·m

⩾ e(F ) − 3r − 4

3r − 1
· n

2 − s2

2
+

r − 1

r

(
12r2 − 16r + 1

4(r − 1)(3r − 1)
· n(n− s) − (n− s)2

2

)
= e(F ) +

(n− s)(2s− n)

4r(3r − 1)
.

Since e(F ) ⩾ e(Γ) and s > n/2, it must be that s = n and thus δ(F ) = δ(Fn) > 3r−4
3r−1 · n.

Consequently, Theorem A.1 implies that F is r-partite. □
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