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Abstract

In this paper we extend a classical theorem of Corrádi and Hajnal into the setting of sparse

random graphs. We show that if p(n) � (log n/n)1/2, then asymptotically almost surely every

subgraph of G(n, p) with minimum degree at least (2/3 + o(1))np contains a triangle packing that

covers all but at most O(p−2) vertices. Moreover, the assumption on p is optimal up to the (log n)1/2

factor and the presence of the set of O(p−2) uncovered vertices is indispensable. The main ingredient

in the proof, which might be of independent interest, is an embedding theorem which says that if

one imposes certain natural regularity conditions on all three pairs in a balanced 3-partite graph,

then this graph contains a perfect triangle packing.

1 Introduction

1.1 Triangle packings in subgraphs of random graphs

Let H be a fixed graph on h vertices, let G be a graph on n vertices. An arbitrary collection of

vertex-disjoint copies of H in G is called an H-packing in G. A perfect H-packing (an H-factor) is

an H-packing that covers all vertices of the host graph. In other words, G has an H-factor (contains

a perfect H-packing) if n is divisible by h and G contains n/h vertex-disjoint copies of H. It has

been long known that for every graph H, if the minimum degree of G is sufficiently large, then G

contains an H-factor. For example, by the Dirac’s Theorem on Hamiltonian cycles [11], if H is a path

of length h − 1, then δ(G) ≥ n/2 guarantees that G has an H-factor. Corrádi and Hajnal [9] proved

that δ(G) ≥ 2n/3 is sufficient to guarantee a K3-factor and Hajnal and Szemerédi [15] showed that

δ(G) ≥ (1− 1/k)n suffices to guarantee a Kk-factor for an arbitrary k. Moreover, all these results are

easily seen to be best possible.

Finding a similar optimal condition on the minimum degree that guarantees an H-factor for an

arbitrary graph H has turned out to be significantly harder. The first result in this direction was

obtained by Alon and Yuster [2], who showed that δ(G) ≥ (1 − 1/χ(H))n implies the existence

of n/h − o(n) vertex-disjoint copies of H in G. Later, the same authors [4] showed that δ(G) ≥
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(1 − 1/χ(H))n + o(n) guarantees an H-factor. Finally, Komlós, Sárközy, and Szemerédi [25] showed

that merely δ(G) ≥ (1 − 1/χ(H))n + c(H), where c(H) is a (small) constant depending only on H,

suffices. Moreover, it was observed in [4] that there are graphs H for which the above constant c(H)

cannot be omitted. Recently, Kühn and Osthus [30] replaced χ(H) in the above inequality by another

parameter χ∗(H), which depends on the relative sizes of the color classes in the optimal colorings of

H and satisfies χ(H)− 1 < χ∗(H) ≤ χ(H). Furthermore, they proved that the ratio (1− 1/χ∗(H)) in

the lower bound for δ(G) is optimal for every H. For further information on H-factors in graphs with

large minimum degree, we refer the reader to [29, 30].

An independent direction of research concerned with H-factors has been determining the thresholds

for the edge probability p for the property that the Erdős-Rényi random graph G(n, p) contains an

H-factor. The case H = K2 was solved by Erdős and Rényi [12], who proved that log n/n is the

threshold for the existence of a perfect matching in G(n, p). The solution for the case when H is

a path is a direct consequence of the result of Pósa [32]. Alon and Yuster [3] and, independently,

Ruciński [33] determined the threshold for every H whose fractional arboricity1 is larger than its

minimum degree. Later, partial results for the case H = K3 were obtained by Krivelevich [26] and

Kim [19] (a related work of Krivelevich, Sudakov, and Szabó [28] studied this case when the host

graph is a sparse pseudo-random regular graph). Finally, Johansson, Kahn, and Vu [18] determined

the thresholds for all strictly balanced H and determined them up to a sub-polynomial factor for

arbitrary H.

Much less is known about common extensions of the results of the above two types. To make it

precise, we would like to know whether it is true that for sufficiently large p, a.a.s. every spanning

subgraph of G(n, p) with sufficiently large minimum degree has an H-factor. Questions like these can

be naturally expressed in the framework of resilience, also called fault tolerance. Following Sudakov

and Vu [34], we state the following definition.

Definition 1.1. Let P be a monotone increasing graph property. The local resilience of a graph G

with respect to P is the minimum number r such that by deleting at most r edges at each vertex of

G, one can obtain a graph without P.

Using this terminology, one can restate, e.g., the aforementioned theorem of Corrádi and Hajnal [9]

by saying that the local resilience of the complete graph Kn with respect to the property of having a

triangle-factor is (at least) n/3.

Rephrasing our previous question, we would like to determine the local resilience of the random

graph G(n, p) with respect to the property of containing an H-factor for some fixed graph H. Sudakov

and Vu [34] showed that it is (1/2 + o(1)) when H = K2 and p � log n/n or when H is a path and

p � (log n)4/n; Lee and Sudakov [31] showed that the assumption p � log n/n suffices also in the

latter case. Recently, Huang, Lee, and Sudakov [17] addressed this problem for an arbitrary H in the

case when the edge probability p is a constant.

Theorem 1.2. Let H be a fixed graph on h vertices, let p ∈ (0, 1], and let γ be a positive real.

1. If H has a vertex that is not contained in any triangle, then a.a.s. every spanning subgraph

G ⊂ G(n, p) with δ(G) ≥ (1 − 1/χ(H) + γ)np has a perfect H-packing, provided that n is

divisible by h.

1The fractional arboricity of a graph H is the quantity max
{
|E(H′)|
|V (H′)|−1

}
, where the maximum is taken over all

subgraphs H ′ of H with |V (H ′)| > 1.
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2. If every vertex of H is contained in a triangle, then a.a.s. every spanning subgraph G ⊂ G(n, p)

with δ(G) ≥ (1− 1/χ(H) + γ)np contains an H-packing covering all but at most Dp−2 vertices

of G, where D is a constant that depends only on χ(H).

Moreover, it was shown in [17] that in the case when each vertex of H belongs to some triangle,

the Dp−2 error term cannot be removed as a.a.s. G(n, p) has a spanning subgraph with large minimum

degree such that at least Ω(p−2) of its vertices are not contained in a triangle (and hence they are not

contained in a copy of H). For other results on local resilience of random graphs with respect to the

property of containing spanning or nearly spanning subgraphs, see [5, 6, 7, 10, 13, 27].

In this paper, we extend the result of Huang, Lee, and Sudakov to the sparse random graph

setting in the case H = K3. A rather straightforward argument using the conjecture of Kohayakawa,

 Luczak, and Rödl [21, Conjecture 23], which is known to be true for triangles, shows that if p �
n−1/2, then a.a.s. every subgraph of G(n, p) whose minimum degree exceeds (2/3 + o(1))np contains a

triangle-packing that covers all but at most εn vertices, where ε is an arbitrary positive constant (see

Remark 2.8). Our main theorem proves that under the same assumptions, one can make the set of

uncovered vertices significantly smaller. More precisely, we prove the following statement.

Theorem 1.3. For all positive γ, there exist constants C and D such that if p ≥ C(log n/n)1/2, then

a.a.s. every subgraph G ⊂ G(n, p) with δ(G) ≥ (2/3 + γ)np contains a triangle packing that covers all

but at most Dp−2 vertices.

Clearly, the ratio 2/3 in the statement of Theorem 1.3 is best possible as for every positive γ,

a.a.s. G(n, p) has a subgraph G with δ(G) ≥ (2/3 − γ)np whose largest triangle packing covers no

more than (1 − γ)n vertices (e.g., we may let G be the intersection of G(n, p) with the complete

3-partite graph with color classes of sizes (1 +γ)n/3, n/3, and (1−γ)n/3). Furthermore, even though

it was proved in [18] that p� n−2/3(log n)1/3 guarantees that G(n, p) a.a.s. has a triangle-factor, the

lower bound on p in Theorem 1.3 cannot be relaxed by more than the (log n)1/2 factor as if p� n−1/2,

then a.a.s. one can remove all triangles from G(n, p) by deleting only o(np) edges incident to every

vertex. Finally, the presence of the exceptional set of Dp−2 is indispensable, see Proposition 4.6

and [17, Proposition 6.3].

1.2 Embedding theorem for sparse regular triples

One of the main ingredients in the proof of Theorem 1.3 is an embedding theorem for large triangle

packings in sparse regular triples. Before we state this result (Theorem 1.4 below), we recall a few

basic definitions and briefly summarize what is known about embedding large graphs into regular

triples.

Let G be a graph on a vertex set V . Given a pair of disjoint subsets V1, V2 ⊂ V , let e(V1, V2)

denote the number of edges of G with one endpoint in V1 and the other endpoint in V2, and let

the density d(V1, V2) of the pair (V1, V2) be the quantity e(V1, V2)/(|V1||V2|). The pair (V1, V2) is

called (ε, p)-regular if for all V ′1 ⊂ V1 and V ′2 ⊂ V2 with |V ′1 | ≥ ε|V1| and |V ′2 | ≥ ε|V2|, we have

|d(V1, V2)− d(V ′1 , V
′

2)| ≤ εp. An (ε, 1)-regular pair is simply called ε-regular. The concept of regularity,

first developed by Szemerédi [35], proved to be of extreme importance in modern combinatorics and

played a central rôle in proofs of a range of results in extremal graph theory, Ramsey theory, and

others. For example, it is well-known that every triple of sets (V1, V2, V3) such that (Vi, Vj) is ε-

regular and has sufficiently large density for all distinct i, j contains a triangle. An ε-regular pair
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(V1, V2) is called (δ, ε)-super-regular if it satisfies the additional condition that every vertex in V1 has

at least δ|V2| neighbours in V2 and, vice versa, every vertex in V2 has at least δ|V1| neighbours in V1.

Komlós, Sárközy, and Szemerédi [24] proved that super-regular triples are even more powerful than

mere regular triples. For instance, every triple (V1, V2, V3) such that |V1| = |V2| = |V3| and (Vi, Vj)

is (δ, ε)-super-regular and has sufficiently large density for all distinct i, j contains not only a single

triangle, but also a family of vertex-disjoint triangles that cover all vertices of the triple.

However, if p� 1, then the power of (ε, p)-regular pairs turns out to be significantly weaker. For

example,  Luczak (see [22]) observed that there are (ε, p)-regular triples which do not contain even

a single triangle. Still, Kohayakawa,  Luczak, and Rödl [21] proved that most (ε, p)-regular triples

contain a triangle provided that p is sufficiently large and conjectured that an analogous result holds

for arbitrary graphs (see the survey [14]).

It is not much of a surprise that even less is known about embedding large graphs into sparse

regular pairs. Böttcher, Kohayakawa, and Taraz [7] proved that if the regular pair is a subgraph of

a random graph and each part has size n, then (asymptotically almost surely) one can embed into

the pair all bipartite graphs with bounded maximum degree whose color classes both have size at

most (1 − η)n, where η is a fixed positive real. Since in an (ε, p)-regular pair (V1, V2), each set Vi
can have as many as cε|Vi| isolated vertices, one cannot hope to embed spanning graphs into the pair

without imposing some further restrictions. Let us now consider sparse regular triples. Observe that

imposing merely a minimum degree condition as in the dense case is not sufficient since we can remove

all triangles that contain a fixed vertex by deleting all edges in its neighbourhood (this will not effect

regularity of the triple since the neighbourhoods of this vertex have size o(n)). We suggest one possible

strengthening of the notion of super-regularity, which we call strong-super-regularity, and show that

a sparse strong-super-regular triple in a subgraph of a random graph contains a collection of vertex-

disjoint triangles that cover all the vertices of the triple. The definition of a strong-super-regular triple

is given in Definition 2.11.

Theorem 1.4. For all positive δ and ξ there exist ε(δ) and C(δ, ξ) such that if p(n) ≥ C(log n/n)1/2,

then G(n, p) a.a.s. satisfies the following. Every (δ, ε, p)-strong-super-regular triple (V1, V2, V3) that is

a subgraph of G(n, p) with |V1| = |V2| = |V3| ≥ ξn contains a collection of vertex-disjoint triangles that

cover all the vertices.

It is possible that one can derive the same conclusion from weaker assumptions than strong-super-

regularity. However, we will later show that the restriction we imposed is not too strong to make our

theorem useless, as Theorem 1.4 will form an essential part in the proof of Theorem 1.3.

1.3 Outline of the paper

In Section 2, we recall some known definitions and results and introduce a few notions that will be of

great importance in all subsequent sections. Section 3 contains an outline of the proof of Theorem 1.3.

In Section 4, we establish some properties of the random graph G(n, p) that we will frequently invoke

in subsequent sections. In Sections 5, 6, and 7, we prove a series of technical lemmas that culminate

in the proof of Theorem 1.3 and 1.4. For a brief outline of this part of the paper, we refer the reader

to Section 3. Finally, Section 8 contains a few concluding remarks.
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1.4 Notation

Let G be a graph with vertex set V and edge set E. For a vertex v ∈ V , we denote its neighbourhood

in G by N(v) and let deg(v) be its degree. The minimum degree of the graph is denoted by δ(G).

For a set X ⊂ V , we let e(X) be the number of edges of G with both endpoints in the set X,

and deg(v,X) = |N(v) ∩ X|. We say that two edges are independent if they do not share a vertex.

For two subsets X,Y ⊂ V , we let e(X,Y ) be the number of ordered pairs (x, y) such that x ∈ X,

y ∈ Y and xy is an edge of G; note that e(X,X) = 2e(X). If X and Y are disjoint, we refer to

the quantity e(X,Y )/(|X||Y |), denoted by d(X,Y ), as the density of the pair (X,Y ). With a slight

abuse of notation, we will sometimes write (X,Y ) to denote the set of all edges xy with x ∈ X and

y ∈ Y . Let X,Y, Z ⊂ V be three pairwise disjoint sets. We say that the triple (X,Y, Z) is balanced if

|X| = |Y | = |Z|. The minimum density of the triple is the minimum of the numbers d(X,Y ), d(X,Z),

and d(Y, Z). A triangle across (X,Y, Z) is any triangle with one vertex in each of X, Y , and Z. When

the implicit graph we are considering is not clear from the context, we will use subscripts to prevent

ambiguity. For example, degG(v) is the degree of v in the graph G.

We write y = 1 ± x to abbreviate y ∈ [1 − x, 1 + x]. We omit floor and ceiling signs when-

ever they are not crucial. Throughout the paper, log will always denote the natural logarithm. Fi-

nally, we often use subscripts such as in c3.6 to explicitly indicate that the constant c3.6 is defined in

Claim/Lemma/Proposition/Theorem 3.6.

2 Preliminaries

2.1 Sparse regularity lemma

Let G be a graph on a vertex set V . Recall that a pair (V1, V2) of disjoint subsets of V is (ε, p)-regular

if for all V ′1 ⊂ V1 and V ′2 ⊂ V2 with |V ′1 | ≥ ε|V1| and |V ′2 | ≥ ε|V2|, |d(V1, V2)− d(V ′1 , V
′

2)| ≤ εp. We

call a triple (V1, V2, V3) of disjoint subsets of V (ε, p)-regular if (Vi, Vj) forms an (ε, p)-regular pair for

every {i, j} ⊂ {1, 2, 3}. Let G(K3, (n1, n2, n3), (d12, d23, d31), (ε, p)) be the collection of all (ε, p)-regular

triples (V1, V2, V3) such that |Vi| = ni for all i and d(Vi, Vj) = dijp for every {i, j} ⊂ {1, 2, 3}.
Below we establish two simple hereditary properties of regular pairs.

Proposition 2.1. Let positive reals ε1, ε2, and p satisfying ε1 < ε2 ≤ 1/2 be given. Let (V1, V2) be

an (ε1, p)-regular pair and for i ∈ {1, 2}, let V ′i ⊂ Vi be an arbitrary subset with |V ′i | ≥ ε2|Vi|. Then

(V ′1 , V
′

2) is an (ε1/ε2, p)-regular pair of density d(V1, V2)± ε1p.

Proof. By regularity of the pair (V1, V2), for every pair of subsets V ′′i ⊂ V ′i such that |V ′′i | ≥
(ε1/ε2)|V ′i | ≥ ε1|Vi| for i ∈ {1, 2}, we have

|d(V ′′1 , V
′′

2 )− d(V ′1 , V
′

2)| ≤ |d(V ′′1 , V
′′

2 )− d(V1, V2)|+ |d(V ′1 , V
′

2)− d(V1, V2)| ≤ 2ε1p.

Since max{ε1/ε2, 2ε1} = ε1/ε2, the pair (V ′1 , V
′

2) is (ε1/ε2, p)-regular. The density condition immedi-

ately follows from the definition of regularity.

Proposition 2.2. Let (V1, V2) be an (ε, p)-regular pair in a graph G and let G′ be a subgraph of G

obtained by removing at most ε3p|V1||V2| edges from (V1, V2). Then (V1, V2) is (3ε, p)-regular in G′.
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Proof. For i ∈ {1, 2}, let Ui be a subset of Vi of size at least ε|Vi|. Note that

|dG(U1, U2)− dG′(U1, U2)| ≤ eG(U1, U2)− eG′(U1, U2)

|U1||U2|
≤ ε3p|V1||V2|
|U1||U2|

≤ εp.

The conclusion easily follows from the triangle inequality.

An (ε, p)-regular partition of an n-vertex graph G is a partition (Vi)
k
i=0 of its vertex set such that

(i) the exceptional class V0 has size at most εn, (ii) V1, . . . , Vk have equal sizes, and (iii) all but at

most εk2 of the pairs (Vi, Vj) are (ε, p)-regular. Given a collection of subsets (Wi)
k
i=0 of the vertex

set V (G), the (δ, ε, p)-reduced graph R of the collection is the graph on the vertex set [k] such that

i, j ∈ [k] are adjacent if and only if Wi and Wj form an (ε, p)-regular pair of density at least δp. Note

that when considering reduced graphs, the partition (Wi)
k
i=0 is not necessarily a regular partition and

we ignore the set W0. For a graph R′ on the vertex set [k], we say that G is (δ, ε, p)-regular over

R′ if for every edge {i, j} of R′, the pair (Vi, Vj) is ε-regular with density at least δ. Let η and b be

reals such that η ∈ (0, 1], and b ≥ 1. We say that G is (η, b, p)-upper-uniform if d(V1, V2) ≤ bp for all

disjoint sets V1, V2 with |V1|, |V2| ≥ η|V |. With the above definitions at hand, we may now state a

version of Szemerédi’s regularity lemma for upper-uniform graphs (see, e.g., [20, 23]).

Theorem 2.3. For every positive ε, b, and k0 with b, k0 ≥ 1, there exist constants η(ε, b, k0) and

K(ε, b, k0) with K ≥ k0 such that for every positive p, every (η, b, p)-upper-uniform graph with at least

k0 vertices admits an (ε, p)-regular partition (Vi)
k
i=0 such that k0 ≤ k ≤ K, and each part forms a

regular pair with at least (1− ε)k other parts.

The version of the regularity lemma stated above is slightly different from those given in [20, 23],

which say that the total number of irregular pairs is at most εk2. However, by using some standard

techniques, one can derive the ‘minimum degree’ version from the results in [20, 23].

2.2 Typical vertices and super-regularity

We start this section by introducing the notions of typical vertices and triples.

Definition 2.4. Let (V1, V2, V3) be a triple of sets (not necessarily regular) with densities dijp between

Vi and Vj .

(A) Fix a vertex v ∈ V1 and for i ∈ {2, 3}, let Ni = N(v) ∩ Vi. We say that v is ε-typical if for

i ∈ {2, 3},

(i) |Ni| = (1± ε)d1ip|Vi| and

(ii) there exists N ′i ⊂ Ni satisfying |N ′i | ≥ (1− ε)|Ni| such that (N ′2, N
′
3) is an (ε, p)-regular pair

with density (1± ε)d23p.

(B) The triple (V1, V2, V3) is ε-typical if it is (ε, p)-regular and for each i, all but at most ε|Vi| vertices

in Vi are ε-typical.

Remark 2.5. Since the property of being ε-typical depends not only on ε but also on p, we should

rather speak of (ε, p)-typical vertices and triples. Nevertheless, since the parameter p will be always

clear from the context, we will suppress it from the notation for the sake of brevity.
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It turns out that an overwhelming majority of all regular triples are also typical. The following

lemma, which is a straightforward generalization of [14, Lemma 5.1], makes the above statement

precise. We omit its proof as it can be easily read out from the proof of [14, Lemma 5.1].

Lemma 2.6. For all positive β, δ, ε′, and ξ, there exist constants ε0(β, δ, ε′) and C(δ, ε′, ξ) such that

if ε ≤ ε0, d12, d13, d23 ≥ δ, ξn ≤ n1, n2, n3 ≤ n, and p ≥ Cn−1/2, then all but at most

βδξ
2n2p

(
n1n2

d12pn1n2

)(
n1n3

d13pn1n3

)(
n2n3

d23pn2n3

)
graphs in G(K3, (n1, n2, n3), (d12, d13, d23), (ε, p)) are ε′-typical provided that n is sufficiently large.

The following proposition justifies why the notion of ε-typical triples can be useful for our purposes.

Proposition 2.7. For every positive α, δ, and p, there exists an ε(α, δ) such that every ε-typical

(ε, p)-regular triple (V1, V2, V3) of minimum density at least δp contains (1−α) mini |Vi| vertex-disjoint

triangles.

Proof. Note that without loss of generality, we may assume that α ≤ 1/2. Furthermore, let ε =

min{δ/4, α/20} and let ε′ = 2ε/α. Let us greedily remove triangles from (V1, V2, V3) until we cannot

do it anymore and denote the remaining triple by (V ′1 , V
′

2 , V
′

3). If |V ′i | ≤ α|Vi| for some i, then there

is nothing left to prove, so we may assume that |V ′i | > α|Vi| for all i. Let Wi be the set of all those

vertices in V ′i that were ε-typical in the original triple and note that |Wi| ≥ |V ′i | − ε|Vi| ≥ (α/2)|Vi|.
By Proposition 2.1, the triple (W1,W2,W3) is (ε′, p)-regular and the density of each pair (Wi,Wj) is

at least (dij − ε)p. Since ε′ < 1/2, there is a vertex v ∈ W1 with deg(v,Wi) ≥ (dij − ε − ε′)p|Wi| for

i ∈ {2, 3}. For i ∈ {2, 3}, let Ni and N ′i be the sets from the definition of an ε-typical vertex for v and

let Mi = Ni ∩Wi and M ′i = N ′i ∩Wi. Since

|M ′i | ≥ |Mi| − |Ni \N ′i | ≥ (d1i − ε− ε′)p|Wi| − ε(1 + ε)d1ip|Vi|
≥
[
(1− ε/δ − ε′/δ)(α/2)− ε(1 + ε)

]
d1ip|Vi| ≥ ε(1 + ε)d1ip|Vi| ≥ ε|N ′i |

and (N ′2, N
′
3) was (ε, p)-regular with density at least (1− ε)δp and (1− ε)δp > εp, the pair (M ′2,M

′
3)

has positive density. It follows that (W1,W2,W3) contains a triangle, but this is impossible.

Remark 2.8. It is quite easy to see that the combination of Theorems 2.3 and 2.16, Lemma 2.6

(see Proposition 4.8), and Proposition 2.7 implies the following statement. For all positive constants

γ and ε, there exists a C such that if p(n) ≥ Cn−1/2, then a.a.s. every subgraph G ⊂ G(n, p) with

δ(G) ≥ (2/3 + γ)np contains a triangle packing that covers all but at most εn vertices of G.

The following concept will serve us as a generalization of super-regularity to the sparse setting.

Definition 2.9. A triple (V1, V2, V3) is (δ, ε, p)-super-regular if each pair (Vi, Vj) is (ε, p)-regular with

density at least δp and for every i, all vertices in Vi are ε-typical.

We close this section with the following proposition, which tells us how to trim a typical regular

triple in order to get a super-regular one.
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Proposition 2.10. For all positive ε′ and δ, there exists an ε(ε′, δ) such that the following holds. Let

(V1, V2, V3) be an (ε, p)-regular triple, where for each i and j, the density of (Vi, Vj) is dijp, where

dij ≥ δ. For each i, let Xi be an arbitrary subset of Vi with |Xi| ≤ ε|Vi|. Then every vertex v ∈ V1 \X1

that is ε-typical and satisfies deg(v,Xj) ≤ εp|Vj | for every j ∈ {2, 3} becomes an ε′-typical vertex in

(V1 \X1, V2 \X2, V3 \X3).

Proof. Let v ∈ V1 be any such vertex and for j ∈ {2, 3}, let Nj = N(v) ∩ Vj . Since v is ε-typical,

(1 − ε)d1jp|Vj | ≤ |Nj | ≤ (1 + ε)d1jp|Vj |. Moreover, there exist subsets N ′j ⊂ Nj satisfying |N ′j | ≥
(1−ε)|Nj | such that (N ′2, N

′
3) is an (ε, p)-regular pair with density dvp, where dv ∈ [(1−ε)d23, (1+ε)d23].

Moreover, let Mj = Nj \Xj and similarly let M ′j = N ′j \Xj .

For each i, let Wi = Vi \Xi and recall that (1− ε)|Vi| ≤ |Wi| ≤ |Vi|. For every i and j, let d′ijp be

the density of the pair (Wi,Wj). Since (Vi, Vj) is (ε, p)-regular, d′ij ∈ [dij − ε, dij + ε]. It follows that

|Mj | ≤ |Nj | ≤ (1 + ε)d1jp|Vj | ≤ (1 + ε)(1− ε)−1(d′1j + ε)p|Wj |.

And by the given condition deg(v,Xj) ≤ εp|Vj |, we have

|Mj | ≥ |Nj | − εp|Vj | ≥ (1− ε− ε/δ)d1jp|Vj | ≥ (1− ε− ε/δ)(d′1j − ε)p|Wj |.

Moreover, since |Nj | ≥ (1− ε)δp|Vj |, we have

|M ′j | ≥ |N ′j | − εp|Vj | ≥ (1− ε)|Nj | − εp|Vj | ≥ (1− ε− ε/((1− ε)δ))|Nj |
≥ (1− ε− ε/((1− ε)δ))|Mj | ≥ |Mj |/2.

By Proposition 2.1, the pair (M ′2,M
′
3) is (2ε, p)-regular with density d′vp satisfying

(1− ε)(d′23 − ε)− ε ≤ d′v ≤ (1 + ε)(d′23 + ε) + ε.

Therefore, if ε is sufficiently small, then deg(v,Wj) = |Mj | ∈ [(1 − ε′)pd′1j |Wj |, (1 + ε′)pd′1j |Wj |],
|M ′j | ≥ (1−ε′)|Mj |, and (M ′2,M

′
3) is (ε′, p)-regular with density d′vp, where d′v ∈ [(1−ε′)d′23, (1+ε′)d′23].

It follows that v is ε′-typical in (W1,W2,W3).

2.3 Good edges and good vertices

As we established in Section 2.2 (see Remark 2.8), imposing certain regularity conditions on the

vertices of a regular triple suffices to guarantee the existence of an almost perfect triangle packing. In

order to assure that a triangle-factor can be found, we will need to impose some conditions also on the

edges of the triple. With hindsight (see the discussion in Section 3.2), we now introduce the notions

of good edges and good vertices.

Definition 2.11. Let (V1, V2, V3) be a triple of sets (not necessarily regular) with densities dijp between

Vi and Vj .

(A) We say that an edge between V2 and V3 is ε-good if its endpoints have at least (1− ε)d12d13p
2|V1|

common neighbourhoods in V1.

(B) We say that an ε-typical vertex v ∈ V1 is ε-good if (N(v) ∩ V2, N(v) ∩ V3) contains at most

εd12d13d23p
3|V2||V3| edges that are not ε-good.
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(C) We say that the triple (V1, V2, V3) is (δ, ε, p)-strong-super-regular if it is (δ, ε, p)-super-regular and

for every i, all vertices in Vi are ε-good.

Next, we show that super-regular triples are not very far from being strong-super-regular. More

precisely, we prove that requiring a triple to be merely typical (recall Definition 2.4) and all pairs in

this triple to have non-zero densities forces most of its edges and vertices to be good.

Proposition 2.12. Let ε, ε′, and δ be positive constants satisfying 3ε+ε/δ ≤ ε′ and let (V1, V2, V3) be

an ε-typical (ε, p)-regular triple, where the density dijp of each pair (Vi, Vj) is at least δp. Then there

are at most 4εd23p|V2||V3| edges between V2 and V3 which are not ε′-good.

Proof. For an ε-typical vertex v ∈ V2, let N1 = N(v) ∩ V1 and N3 = N(v) ∩ V3. Recall from

Definition 2.4 that |Ni| ≥ (1 − ε)d2ip|Vi| and that there exist N ′i ⊂ Ni with |N ′i | ≥ (1 − ε)|Ni| for

i ∈ {1, 3} such that (N ′1, N
′
3) is (ε, p)-regular and has density at least (1 − ε)d13p. It follows that at

least (1− ε)|N ′3| vertices w ∈ N ′3 have at least ((1− ε)d13− ε)p|N ′1| common neighbours with v in N ′1.

Since

((1− ε)d13 − ε)p|N ′1| ≥ (1− ε− ε/δ)(1− ε)d13p|N1| ≥ (1− 3ε− ε/δ)d12d13p
2|V1|,

and 3ε+ ε/δ ≤ ε′, each such edge {v, w} is ε′-good. Since there are at least (1− ε)|V2| typical vertices

in V2 and

(1− ε)|N ′3| ≥ (1− ε)3d23p|V3| ≥ (1− 3ε)d23p|V3|,

the total number of ε′-good edges between V2 and V3 is at least (1− 4ε)d23p|V2||V3|. Finally, since the

number of edges between V2 and V3 is exactly d23p|V2||V3|, the total number of non-ε′-good edges is

at most 4εd23p|V2||V3|.

Proposition 2.13. For every ε′ and δ, there exists a positive ε(ε′, δ) such that the following holds. Let

(V1, V2, V3) be an ε-typical (ε, p)-regular triple with minimum density at least δp. Moreover, assume

that the endpoints of no edge in (V2, V3) have more than 4p2|V1| common neighbours in V1. Then V1

contains at most ε′|V1| vertices that are not ε′-good.

Proof. Let ε = min{ε′/4, ε′δ/4, (ε′δ)2/32}. By Proposition 2.12, at most 4εd23p|V2||V3| edges in

(V2, V3) are not ε′-good. Let α|V1| be the number of ε-typical vertices in V1 that are not ε′-good.

By definition, the neighbourhood of every such vertex contains at least ε′d12d13d23p
3|V2||V3| edges

that are not ε′-good. Therefore, our assumption on the maximum number of common neighbours of

the endpoints of edges in (V2, V3) implies that

α|V1| · ε′d12d13d23p
3|V2||V3| ≤ 4p2|V1| · 4εd23p|V2||V3|

and hence α ≤ 16ε/(ε′d12d13) ≤ ε′/2. Finally, since at most ε|V1| vertices in V1 are not ε-typical and

ε ≤ ε′/2, the number of vertices in V1 that are not ε′-good is at most ε′|V1|.

We end this section by showing that the neighbourhood of every typical (good) vertex contains a

subgraph with bounded maximum degree and many (good) edges.

Proposition 2.14. Let ε, δ, and p be positive constants with ε < 1/2. Let (V1, V2, V3) be a triple of

sets such that for all i and j, the density of (Vi, Vj) is dijp, where dij ≥ δ. Then for every ε-typical

vertex v ∈ V1, there exist sets N ′′j ⊂ N(v) ∩ Vj for j ∈ {2, 3} such that
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(i) there are at least (1 − 6ε − 2ε/δ)d12d13d23p
3|V2||V3| edges in (N ′′2 , N

′′
3 ) and if v is ε-good, then

there are at least that many ε-good edges in (N ′′2 , N
′′
3 ), and

(ii) for all j and k with {j, k} = {2, 3}, no vertex in N ′′j has more than (1+2ε/δ)(1+ε2)d1kd23p
2|Vk|

neighbours in N ′′k .

Proof. Fix an ε-typical vertex v ∈ V1. For each j ∈ {2, 3}, let Nj = N(v) ∩ Vj . Since v is ε-typical,

there are N ′j ⊂ Nj with |N ′j | ≥ (1− ε)|Nj | ≥ (1− ε)2pd1j |Vj | such that (N ′2, N
′
3) is (ε, p)-regular with

density d′23p, where (1 − ε)d23 ≤ d′23 ≤ (1 + ε)d23. Let N ′′j be the set of vertices in N ′j that have at

most (d′23 + ε)p|N ′k| neighbours in N ′k and note that |N ′′j | ≥ (1− ε)|N ′j | by (ε, p)-regularity of (N ′2, N
′
3).

Since 1/d′23 ≤ 1/((1− ε)d23) ≤ 2/δ, we have

(d′23 + ε)p|N ′k| ≤ (1 + 2ε/δ)d′23p|Nk| ≤ (1 + 2ε/δ)(1 + ε)2d1kd23p
2|Vk|,

and then (ii) follows. Note that |N ′′j | ≥ (1− ε)|N ′j | ≥ (1− ε)2d1jp|Vj | and

e(N ′′2 , N
′′
3 ) ≥ (d′23 − ε)p|N ′′2 ||N ′′3 | ≥ (1− 2ε/δ)d′23p|N ′′2 ||N ′′3 | ≥ (1− 2ε/δ)(1− ε)5d12d13d23p

3|V2||V3|.

Moreover, if v is ε-good, then at most εd12d13d23p
3|V2||V3| edges in (N ′′2 , N

′′
3 ) are not ε-good. Now (i)

follows.

2.4 Graph theory

The following proposition, which we will be using several times in the proof of our main result, is a

simple corollary from Hall’s marriage theorem [16] and gives a sufficient condition for a bipartite graph

to have a perfect matching.

Proposition 2.15. Let H be a bipartite graph on the vertex set A ∪ B with |A| = |B|. Suppose that

there is an integer L such that

(i) |N(S)| ≥ |S| for each S ⊂ A with |A \ S| ≥ L and

(ii) |N(T )| ≥ |T | for each T ⊂ B with |T | ≤ L.

Then H has a perfect matching.

Recall that the following theorem was proved by Corrádi and Hajnal [9].

Theorem 2.16. Every graph on n vertices with minimum degree at least 2n/3 contains a perfect

K3-packing provided that n is divisible by 3.

2.5 Bounding large deviations

Throughout the proof, we will extensively use the following standard estimate on the tail probabilities

of binomial random variables, see [1, Appendix A]. We denote by Bi(n, p) the binomial random variable

with parameters n and p, i.e., the number of successes in a sequence of n independent Bernoulli trials

with success probability p.

Theorem 2.17 (Chernoff’s inequality). Let p ∈ (0, 1) and let n be a positive integer. Then for every

positive a with a ≤ 2np/3,

P
(
|Bi(n, p)− np| > a

)
≤ exp(−a2/(6np)).
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3 Outline of the proof of Theorem 1.3

Let G be a subgraph of G(n, p) with minimum degree at least (2/3+o(1))np. Throughout this section,

we will tacitly condition on a few events that hold in G(n, p) asymptotically almost surely. The proof

of Theorem 1.3 breaks down into the following four simple steps.

1. Apply the sparse regularity lemma (Theorem 2.3) and Theorem 2.16 to partition the vertex set

of G into regular triples with positive density and a small exceptional set of vertices.

2. Remove from G a collection of vertex-disjoint triangles so that all but at most O(p−2) remaining

vertices lie in balanced super-regular triples.

3. Decompose each of those super-regular triples into a triangle packing, a balanced strong-super-

regular triple, and a set of O(p−1) leftover vertices.

4. Find a triangle-factor in each strong-super-regular triple.

Since step 1 is a straightforward application of the regularity lemma (Theorem 2.3) and Theo-

rem 2.16, we will only describe the basic ideas of steps 2, 3, and 4 in this section. The details of these

steps will be given in Sections 5, 6, and 7, respectively.

3.1 Step 2

In order to construct super-regular triples from the regular triples we obtained in step 1, we first move

all non-typical vertices to the exceptional set V0. Since we have no control over V0 and |V0| can be

linear in n, we need to cover most of it with vertex-disjoint triangles. At the same time, we do not

want to use too many vertices from any of the regular triples in order not to destroy their structure,

i.e., to keep them close to being super-regular. This will be achieved by an application of Lemma 4.5,

which allows us to find such triangles. After we absorb the exceptional vertices into a triangle packing,

some triples in the remaining graph might become imbalanced. Since in order for any triple to have

a triangle-factor (or at least an almost perfect triangle packing), the sizes of all three of its parts

must be equal, we have to balance the sizes of the remaining triples. We will do that by adding to

our triangle packing some triangles whose vertices lie in two different triples, see Lemma 5.1. Finally,

since at the beginning we removed all non-typical vertices from each triple and later we did not alter

it too much, we can make every triple super-regular by deleting at most O(p−1) of its vertices (see

Proposition 2.10).

3.2 Steps 3 and 4

Our general strategy for finding a triangle-factor in a super-regular triple (V1, V2, V3) can be summa-

rized as follows.

(i) For each {i, j} ⊂ {1, 2, 3}, randomly select a small set Mij of independent edges in (Vi, Vj).

(ii) Find an almost perfect triangle packing that does not hit any endpoints of the edges in any Mij .

(iii) Match the remaining vertices with the edges in the sets Mij in order to extend the triangle

packing to a triangle-factor.
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Assume that the first two steps have been performed. Then, in order to verify Hall’s condition

(see Proposition 2.15) to prove that an appropriate matching can be found in (iii), we need to know,

in particular, that the endpoints of each edge in M23 have many common neighbours in the remaining

part of V1 and that each vertex in V1 is incident to both endpoints of many edges in M23 (and that

similar conditions hold for other choices of indices). Therefore, it would be convenient if M23 consisted

only of good edges and V1 contained only good vertices (see Section 2.3). Unfortunately, super-regular

triples can generally contain vertices that are not good. This is the reason why in step 3, we need to

break down each super-regular triple into a triangle packing and a strong-super-regular triple.

Therefore, we will perform the above described process twice. First, in step 3, we will absorb all

the non-good vertices into a small triangle packing by performing (i) and (iii), see Theorem 6.6. In

step 4, once we are left with a balanced strong-super-regular triple (after deleting at most O(p−1)

further vertices), we can finally perform (i)–(iii), now using only good edges to construct Mijs, to find

a triangle-factor inside this triple, see Theorem 1.4.

4 Properties of Random Graphs

In this section we establish several properties of the random graph that will be useful in later sections.

Proposition 4.1. For every positive real ρ, there exists a constant C(ρ) such that if p ≥ C(log n/n)1/2,

then G(n, p) a.a.s. satisfies the following properties.

(i) Every vertex has degree (1± ρ)np.

(ii) Every pair of distinct vertices has (1± ρ)np2 common neighbours.

(iii) For all X,Y ⊂ V with |X|, |Y | ≥ ρnp, we have e(X,Y ) = (1 ± ρ)|X||Y |p. In particular,

e(X) = e(X,X)/2 = (1± ρ)|X|2p/2 for all X of size at least ρnp.

Proposition 4.2. For every ρ ∈ (0, 1/2), G(n, p) satisfies the following.

(i) Let D be a positive real. For a fixed set W ⊂ V , with probability 1− e(1−ρ2D/12)n, all but at most

nDp−1/|W | vertices in V \W satisfy

deg(v,W ) = (1± ρ)|W |p.

(ii) For every positive real ξ, there exists a constant D(ρ, ξ) such that a.a.s. the following holds. For

all W ⊂ V with |W | ≥ ξn, all but at most Dp−1 vertices in V \W satisfy

deg(v,W ) = (1± ρ)|W |p.

Proof. To prove (i), as a first step, we fix a set W ⊂ V . We may assume that Dp−1n/|W | ≤ n as

otherwise, the claim is vacuously true. Suppose that there are Dp−1n/|W | vertices v ∈ V \W such

that deg(v,W ) 6= (1 ± ρ)|W |p. Then there exists a set B ⊂ V \W of size Dp−1n/(2|W |) such that

either deg(v,W ) > (1 + ρ)|W |p for all v ∈ B or deg(v,W ) < (1 − ρ)|W |p for all v ∈ B. This clearly

implies that e(B,W ) 6= (1± ρ)|B||W |p for some B as above. Since e(B,W ) is a sum of independent

binomial random variables and E[e(B,W )] = |B||W |p = Dn/2, by Chernoff’s inequality,

P
(
e(B,W ) 6= (1± ρ)|B||W |p

)
≤ e−ρ2Dn/12.

By the union bound, the probability that such a set B exists is at most 2ne−ρ
2Dn/12.

Now that (i) is proved, we easily get (ii) by applying the union bound.
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Proposition 4.3. For all ξ ∈ (0, 1), there exists a C(ξ) such that if p ≥ C(log n/n)1/2, then a.a.s. for

every x ∈ [1, ξn/2], G(n, p) does not contain a set W of x vertices and a set E of x independent edges

outside W (i.e., no edge in E has an endpoint in W ) such that either the endpoints of each edge in E

have at least ξnp2 common neighbours in W or each vertex in W is adjacent to both endpoints of at

least ξnp2 edges in E.

Proof. Fix x, W , and E as in the statement of this proposition. For a vertex w ∈ W and an edge

{u, v} ∈ E, let B(u, v, w) denote the event that w is adjacent to both u and v. Let X be the

random variable denoting the number of events B(u, v, w) that occur in G(n, p). Note that each of the

“bad” events described in the statement of this lemma implies that X ≥ ξnp2x ≥ 2x2p2. Moreover,

observe that X ≤ x2, so we can restrict our attention to the case x ≥ ξnp2. Since all B(u, v, w)

are mutually independent, X has binomial distribution with parameters x2 and p2, and hence by

Chernoff’s inequality,

P (X ≥ ξnp2x) ≤ e−cξnp2x

for some absolute positive constant c. Since for each x, there are at most
(
n
x

)
n2x pairs (W,E) with

|W | = |E| = x, the probability that some “bad” event occurs is at most

ξn/2∑
x=ξnp2

(
n

x

)
n2xe−cξnp

2x.

Finally, note that (
n

x

)
n2xe−cξnp

2x ≤ e3x logn−cξnp2x ≤ n−2,

provided that np2 ≥ (4/cξ) log n.

Proposition 4.4. Let p� n−1/2. For every positive reals ε and ρ, there exists a positive real D(ε, ρ)

such that G(n, p) a.a.s. satisfies the following property. For every set X with |X| ≥ Dp−2, there are

at most εn2p edges {v, w} in G[V \X] such that v and w do not have (1±ρ)|X|p2 common neighbours

in X.

Proof. The constant D(ε, ρ) will be chosen later. Let X be a fixed set of size at least Dp−2. Without

loss of generality we may assume that ρ ≤ 1/2.

First expose the edges between X and V \X and call a pair of vertices {v, w} ∈ V \X bad if v and

w do not have (1 ± ρ)|X|p2 common neighbours in X. By Proposition 4.2 (i), with probability 1 −
e(1−ρ2D1/2/50)n, there are at most D1/2p−1n/|X| vertices that do not satisfy deg(v,X) = (1±ρ/2)|X|p.
Even if each of these vertices forms bad pairs with all n vertices, there are at most D1/2p−1n2/|X|
such bad pairs. For each vertex that satisfies deg(v,X) = (1± ρ/2)|X|p, again by Proposition 4.2 (i),

with probability 1 − e(1−ρ2D1/2/50)n, there are at most 2D1/2p−1n/(|X|p) other vertices w which do

not have (1±ρ)|X|p2 common neighbours with w in X. Therefore, if D is sufficiently large, then with

probability at least 1− e−2n, the total number of bad pairs is at most

D1/2p−1n2

|X|
+

2D1/2p−1n2

|X|p
≤ 3D−1/2n2 ≤ εn2/2.

Finally, expose the edges within V \ X. By Chernoff’s inequality, with probability 1 − e−εn2p/20, at

most εn2p bad pairs will form an edge.
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Since n2p � n, if we fix the set X, both of the above events happen with probability at least

1− e−2n. Since there are at most 2n choices for X, we can take the union bound over all choices of X

to derive the conclusion.

Using the above propositions, we now prove the following generalization of [17, Lemma 6.4].

Lemma 4.5. There exist C, D, and ε such that if p ≥ C(log n/n)1/2, then G(n, p) a.a.s. has the

following property. For every spanning subgraph G′ ⊂ G(n, p) with δ(G′) ≥ (2/3)np and every set

T ⊂ V (G′) with |T | ≤ εn, all but at most Dp−2 vertices of V \T are contained in a triangle of G which

does not intersect T .

Proof. For the sake of brevity, denote G(n, p) by G and let V = V (G). Let ε be a small posi-

tive constant (we will fix it later), let C = C4.1(ε), and let D0(ε) be a constant satisfying D0 ≥
max{D4.2(ii)(ε, ε), D4.4(ε, ε), 1}.

Without loss of generality we may assume that |T | = εn. Let X0 ⊂ V \ T be an arbitrary

set of size 2D0p
−2. By assuming that the events from Propositions 4.1, 4.2 (ii), and 4.4 hold, we

will show that there exists a triangle in G′ which intersects X0 but not T . This will prove that

there are at most 2D0p
−2 vertices that are not contained in triangles that do not hit T . Let T ′

be the collection of all the vertices v that satisfy deg(v,X0 ∪ T ) ≥ (1 + ε)|X0 ∪ T |p and note that

|T ′| ≤ D0p
−1 by Proposition 4.2 (ii). Let T ′′ = T ∪ T ′ and X = X0 \ T ′. Note that |T ′′| ≤ 2εn and

|X| ≥ |X0| − |T ′| ≥ D0p
−2. Let D be the constant defined by |X| = Dp−2 and note that D ≥ D0. It

suffices to show that there exists a triangle in G′ which contains a vertex from X but not from T ′′.

Let Y = V \ (X ∪ T ′′) and fix a vertex x ∈ X. Note that

degG′(x, Y ) = degG′(x)− degG′(x,X ∪ T ′′) ≥ degG′(x)− degG′(x,X0 ∪ T )− |T ′|
≥ (2/3)np− (1 + ε)|T ∪X0|p−D0p

−1 ≥ (2/3− 3ε)np,

where the last two inequalities follow from the fact that x 6∈ T ′ and our assumption on p. Finally, let

Nx = NG(x) ∩ Y and fix an arbitrary subset N ′x ⊂ NG′(x) ∩ Y of size (2/3− 3ε)np.

It suffices to show that the number of triangles xy1y2 in G′ such that x ∈ X and y1, y2 ∈ N ′x is

nonzero. Let this number be M . To bound M from below, first bound the number of triangles xy1y2

in G such that x ∈ X, y1, y2 ∈ Nx, and y1y2 is an edge of the graph G′ (we will later subtract the

number triangles whose y1 or y2 is not in N ′x). Let this number be M0. Since |X ∪ T ′′|, |Y | ≥ εn, by

Proposition 4.1 (iii), we have

eG′(Y ) ≥ eG′(V )− eG′(Y,X ∪ T ′′)− eG′(X ∪ T ′′) ≥
2

3
· n

2p

2
− 4εn2p =

(
2

3
− 8ε

)
n2p

2
.

By Proposition 4.4, the number of edges {v, w} in G′[Y ] that form a triangle in G with fewer than

(1− ε)D vertices in X is at most εn2p given that D0 is large enough. Thus,

M0 ≥
(
eG′(Y )− εn2p

)
(1− ε)D ≥

(
2

3
− 11ε

)
Dn2p

2
.

To obtain a bound on M from M0, we can subtract the number of triangles xy1y2 as above such that

either y1 or y2 is not in N ′x. Since |Nx| ≤ (1 + ε)np by Proposition 4.1 (i), we have

|Nx \N ′x| = |Nx| − |N ′x| ≤ (1 + ε)np− (2/3− 3ε)np = (1/3 + 4ε)np.

14



Thus, if ε is small enough, by Proposition 4.1 (iii) we have,

M ≥M0 −
∑
x∈X

(
eG′(Nx \N ′x, N ′x) + eG′(Nx \N ′x)

)
≥M0 −

∑
x∈X

(1 + ε)

((
1

3
+ 4ε

)
2

3
n2p3 +

(
1

3
+ 4ε

)2 n2p3

2

)

≥
(

2

3
− 11ε

)
Dn2p

2
−
∑
x∈X

(
5

9
+ 10ε

)
n2p3

2
=

(
1

9
− 21ε

)
Dn2p

2
.

Therefore there exists a triangle as claimed, provided that ε is sufficiently small.

The following proposition establishes the fact that it is necessary to have Ω(p−2) vertices not

covered by triangles. Its proof closely follows the argument from [17, Proposition 6.3].

Proposition 4.6. Let ε > 0. There exists a positive constant C(ε) such that if Cn−1/2 ≤ p� 1, then

G(n, p) a.a.s. contains a spanning subgraph of minimum degree at least (1− ε)np such that Ω(p−2) of

its vertices are not contained in a triangle.

Proof. Let C be a constant satisfying C ≥ 2 and eC
2/15 ≥ 8e/ε. If p ≥ (log n/n)1/2, then by

Proposition 4.1, a.a.s. δ(G(n, p)) ≥ (1− ε/4)np and each pair of vertices of G(n, p) has at most 2np2

common neighbours. If Cn−1/2 ≤ p < (log n/n)1/2, then still a.a.s. δ(G(n, p)) ≥ (1 − ε/4)np, but

G(n, p) may contain some edges whose endpoints have more than 2np2 common neighbours. Let H be

the subgraph consisting of all such edges, and let v be an arbitrary vertex. By Chernoff’s inequality,

the probability that v and some other vertex have more than 2np2 common neighbours is at most

e−np
2/15. Therefore,

P (degH(v) ≥ (ε/4)np) ≤
(

n

(ε/4)np

)(
p · e−np2/15

)(ε/4)np
≤
(

4enp

εnp
· e−C2/15

)(ε/4)np

= o(n−1),

so a.a.s. ∆(H) < (ε/4)np. Finally, let G = G(n, p) − H. Clearly, the endpoints of every edge of

G have at most 2np2 common neighbours. Moreover, by Proposition 4.1 (i), we may assume that

δ(G) > (1− ε/2)np.

Let X be an arbitrary fixed set of (ε/4)p−2 vertices of G and let W = {v /∈ X : deg(v,X) ≥
2|X|p}. By Chernoff’s inequality, the probability that a vertex v belongs to W is e−Ω(p−1) and these

events are independent for different vertices. Since p � e−Ω(p−1), Chernoff’s inequality implies that

a.a.s. |W | ≤ (ε/4)np. Moreover, since our assumption on p implies that |X| ≤ (ε/8)n, we can apply

Chernoff’s inequality and deduce that a.a.s. deg(u,X) ≤ (ε/4)np for every vertex u.

Let G′ be the subgraph of G obtained by deleting all edges within X, all edges between X and W ,

and deleting edges incident to any y /∈ X ∪W according to the following rule – for every triangle xyz

in G with x ∈ X and z /∈ X ∪W , remove the edge yz. It is quite easy to see that no vertex of X is

contained in a triangle in G′. Let us now estimate δ(G′). Since a vertex u ∈ X ∪W lost only edges

connecting it to X and W , we have

degG′(u) > (1− ε/2)np− deg(u,X)− deg(u,W ) ≥ (1− ε/2)np− deg(u,X)− |W | ≥ (1− ε)np.

Since a vertex y /∈ X ∪W is incident to at most (ε/2)p−1 vertices x ∈ X and it has at most 2np2

common neighbours with each such x, we then have

degG′(y) > (1− ε/2)np− (ε/4)p−1 · 2np2 ≥ (1− ε)np.
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Thus G′ has the required properties.

We end this section with two propositions whose proofs are farily standard and are omitted.

Proposition 4.7 asserts that in a typical random graph G(n, p), the reduced graph of a regular partition

of a subgraph G ⊂ G(n, p) inherits the minimum degree condition that we impose on G. The final

proposition, Proposition 4.8 can be proved using Lemma 2.6, and asserts that every regular triple in

a random graph is typical.

Proposition 4.7. Let γ > 0 and p� n−1. There exist ε0(γ) and δ0(γ) such that if ε ≤ ε0 and δ ≤ δ0,

then the following holds asymptotically almost surely. Given a subgraph G of G(n, p), let (Vi)
k
i=1 be

an (ε, p)-regular partition of G such that |Vi| ≤ εn for all i and every part forms an (ε, p)-regular pair

with at least (1 − ε)k other parts. Let R be its (δ, ε, p)-reduced graph. If G has minimum degree at

least (2/3 + γ)np, then R has minimum degree at least (2/3 + γ/2)k.

Proposition 4.8. Let p � n−1/2. For all positive ε′, δ, and ξ, there exists a constant ε0(ε′, δ) such

that a.a.s. in G(n, p), every copy of a graph from G(K3, (n1, n2, n3), (d12, d23, d31), (ε, p)) is ε′-typical

provided that ε ≤ ε0, d12, d23, d31 ≥ δ, and n1, n2, n3 ≥ ξn.

5 Obtaining balanced super-regular triples

In Section 3.1, we mentioned that the process of absorbing exceptional vertices into a triangle packing

may cause some regular triples in our graph to become slightly unbalanced. The following lemma

describes a greedy procedure that finds a small triangle packing which restores the balance in each of

these triples.

Lemma 5.1. Let p� n−1/2. For all positive reals δ, ε′, and γ, there exists an ε0(δ, ε′, γ) such that if

ε < ε0, then the following holds asymptotically almost surely. Let G be a subgraph of G(n, p) and let

V1, . . . , V3k be disjoint subsets of V (G) satisfying |Vi| ∈ [(1− ε)m, (1 + ε)m] for some m = Ω(n). Let

R be a graph on the vertex set [3k] of minimum degree at least (2 + γ)k such that {3t − 2, 3t − 1, 3t}
forms a triangle for all t ∈ [k] and assume that (Vi)

3k
i=1 is (δ, ε, p)-regular over R.

Then there exist subsets B and S of V (G) such that the following holds.

(i) |B| ≤ 4k,

(ii) G[S] contains a perfect triangle packing,

(iii) |Vi ∩ (B ∪ S)| ≤ ε′m for all i ∈ [3k], and

(iv) Vi \ (B ∪ S) have equal sizes for all i.

Proof. Let ε1 = ε2.7(1
2 , δ) and ε0 = min{ ε′

4(3/γ+1) , ε4.8(ε1,
δ
2), δ2 , ε1}. Assume that ε ∈ (0, ε0) is given.

Let Ct = {3t − 2, 3t − 1, 3t} for t ∈ [k] be triangles of the graph R. For each vertex i ∈ [3k], call

an index t ∈ [k] i-rich or rich with respect to i if i is adjacent to all three vertices of Ct, and assume

that there are gi i-rich indices. Then by the minimum degree condition on R, we have

3gi + 2(k − gi) ≥ (2 + γ)k,

which is equivalent to gi ≥ γk. Thus for each vertex i ∈ [3k] of R, we can assign an i-rich index t ∈ [k]

to it so that every index in [k] is chosen by at most (3k)/(γk) = 3/γ vertices.
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Consider the following process that adjusts the parts one by one. Throughout the process, we will

maintain sets B ⊂ V (G) and Zi ⊂ Vi for each i ∈ [3k]; they are empty at the beginning. Call a triangle

Ct balanced if the sets V3t−2 \Z3t−2, V3t−1 \Z3t−1, and V3t \Z3t have equal cardinalities. Assume that

the triangles C1, . . . , Ct−1 are already balanced and we are trying to balance the triangle Ct. Without

loss of generality, we may assume that |V3t−i \Z3t−i|− |V3t \Z3t| = xim and 0 ≤ xi ≤ 2ε for i ∈ {1, 2}.
Thus we have to remove xim vertices from V3t−i for i ∈ {1, 2} in order to make Ct balanced. By

moving at most 2 arbitrary vertices from each set V3t−1 and V3t−2 to B and also to Z3t−1 and Z3t−2,

respectively, we may assume that both x1m and x2m are divisible by 3. First consider the set V3t−1

and let s be the rich index with respect to 3t−1 which we have chosen above. As we will later establish,

for every i ∈ [3k], |Vi \ Zi| ≥ m/2 throughout the process. Therefore by Proposition 2.1, the triple

(V3t−1 \Z3t−1, V3s−j \Z3s−j , V3s−k \Z3s−k) inherits the regularity of (V3t−1, V3s−j , V3s−k) and is always

(2ε, p)-regular of density at least δ/2 for every pair {j, k} ⊂ {0, 1, 2}. By Proposition 4.8, a.a.s. it must

also be ε1-typical. Thus by Proposition 2.7 we can find x1n/3 triangles across this triple. Do this for

each pair {j, k} and update the sets Z3t−1, Z3s−2, Z3s−1, and Z3s by placing all the vertices of these

triangles into corresponding parts. Note that even though the sizes of the sets in Cs have decreased,

the number by which they decreased is the same for all three of them and thus after performing the

same procedure for V3t−2, the triangles C1, . . . , Ct will be balanced.

Note that in the end, |B| ≤ 4k. Moreover, throughout the process, by the restriction that every

index is the chosen rich index for at most 3/γ other indices, we always have, |Zi| ≤ 2εm · (3/γ + 1) ≤
min{ε′m,m/2} as claimed. Define S =

(
∪3k
i=1 Zi

)
\B and we have the sets B and S as claimed.

Below is the main theorem of this section. It says that we can partition our graph into balanced

super-regular triples, a collection of vertex-disjoint triangles, and a set of at most O(p−2) exceptional

vertices. We would like to remark that the upper bound imposed on the sizes of the common neigh-

bourhoods in (v) will come in handy in the proof of Theorem 6.6, where we show that the triples

(W3t−2,W3t−1,W3t) are close to being strong-super-regular, see Proposition 2.13.

Theorem 5.2. For an arbitrary γ, there exist δ(γ) and ε0(γ) such that for all ε ∈ (0, ε0), there exist

constants C(ε), D(ε), and ξ(ε) satisfying the following. If p ≥ C(log n/n)1/2, then a.a.s. for every

spanning subgraph G′ ⊂ G(n, p) with δ(G′) ≥ (2/3 + γ)np, there exist a further subgraph G′′ ⊂ G′ and

a partition of V (G) into sets B, S, and (Wi)
3k
i=1, where k ≤ D, such that

(i) |B| ≤ Dp−2.

(ii) G′[S] contains a perfect triangle packing.

(iii) (W3t−2,W3t−1,W3t) is a (δ, ε, p)-super-regular triple in G′′ for all t ∈ [k].

(iv) |W3t−2| = |W3t−1| = |W3t| ≥ ξn for all t ∈ [k].

(v) In the graph G′′, for all t ∈ [k], the endpoints of every edge in (W3t−2,W3t−1) have at most

4|W3t|p2 common neighbours in W3t and a similar statement holds for other choices of indices.

Proof. Given a γ, let δ = δ4.7(γ) and ε0 = ε4.7(γ). Moreover, for a given ε ∈ (0, ε0), let ε1 ≤
min{ε/2, ε2.10(ε, δ), δ/2}, ε2 ≤ min{ε2

4.5/362, ε2
1/400, ε5.1(δ, ε1/3, γ/2)}, ε3 ≤ (1/27) min{ε4.8(ε2, δ)

3, ε2}.
Let K = K2.3(ε3, 2, 1/ε3), η = min{η2.3(ε3, 2, 1/ε3), 1}, ξ = ε3/(4K), C = max{C4.1(η), C4.5}, and

D = max{3D4.5, 18KD4.2(ii)(1/3, ξ), 24K}.
Proposition 4.1 (iii) implies that G(n, p) is a.a.s. (η, 2, p)-upper-uniform. Thus we can apply the

regularity lemma, Theorem 2.3, to obtain an (ε3, p)-regular partition V0, V1, . . . , V3k of the graph G′,
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where each part forms a regular pair with at least (3 − 3ε3)k other parts. Let m = |Vi|, note that

m ≥ n/(2K), and let R be the reduced graph with parameter δ. Since G′ has minimum degree at least

(2/3 + γ)np, by Proposition 4.7, a.a.s. the reduced graph has minimum degree at least (2 + γ/2)k.

Thus by Theorem 2.16, we may assume that (V3t−2, V3t−1, V3t) forms an (ε3, p)-regular triple of density

at least δ for all t ∈ [k]. By Proposition 4.4, a.a.s. there are at most (ε3/2)pm2 edges in (V3t−1, V3t−2)

whose endpoints have more than 2|V3t|p2 common neighbours in V3t. Similar estimate holds for the

edges in (V3t−2, V3t) and (V3t−1, V3t). Delete all such edges for all t ∈ [k] to obtain the subgraph G′′.

Then in the graph G′′, each triple (V3t−2, V3t−1, V3t) is (3ε
1/3
3 , p)-regular by Proposition 2.2.

By Proposition 4.8, we may assume that every (3ε
1/3
3 , p)-regular triple of density at least δ is ε2-

typical. Thus for each index i, if we let Xi ⊂ Vi be the collection of non ε2-typical vertices, then

|Xi| ≤ ε2|Vi|. Furthermore, for each t ∈ [k], add to X3t the collection of those vertices v ∈ V3t such

that deg(v, V3t−j) 6= (1±ε2)d3t,3t−jp|V3t−j | for some j ∈ {1, 2} and define X3t−1 and X3t−2 accordingly

(there are at most 4ε2n such vertices by regularity). By adding arbitrary vertices to Xi if necessary,

we may assume that |Xi| = 5ε2|Vi|. Move all the vertices in Xi from Vi to V0 and denote the resulting

partition by (V ′i )3k
i=0. We then have |V ′0 | ≤ |V0|+

∑
i |Xi| ≤ 6ε2n.

Consider the following process of finding triangles that absorbs the vertices in V ′0 . Let T be the

empty set; we will update it throughout the process. Apply Lemma 4.5 to find a triangle which hits

V ′0 but not T and move all the vertices of this triangle into T . If |T ∩V ′i | ≥
√
ε2|V ′i |−3 for some index

i ∈ [3k], then move all the vertices of V ′i into T . This way, we will have

|T | ≤ 3|V ′0 | · (1/
√
ε2) + 3|V ′0 | ≤ 36

√
ε2n ≤ ε4.5n

throughout the process. Terminate the process when we cannot find such triangles anymore. Then,

a.a.s. we must have |V ′0 | ≤ (D/3)p−2. Let B0 be the collection of all the remaining vertices of V ′0 , and

S0 be the set of vertices in the copies of the triangles that we found. Let V ′′i = V ′i \S0 = Vi \ (B0 ∪S0)

and note that for all i, since |Vi ∩ (B0 ∪ S0)| ≤ |Xi|+
√
ε2|Vi| ≤ (ε1/6)|Vi|, then |V ′′i | ≥ (1− ε1/6)|Vi|.

By Proposition 2.1, (V ′′3t−2, V
′′

3t−1, V
′′

3t) forms a (2ε3, p)-regular triple of density at least δ−ε3 ≥ δ/2
for all t ∈ [k]. Apply Lemma 5.1 to (V ′′i )3k

i=1 to obtain sets B1 and S1. Observe that |B0 ∪ B1| ≤
(D/3)p−2 + 4K ≤ (2D/3)p−2 and G[S0 ∪S1] contains a perfect triangle packing. Also, most crucially,

if we let BS = B0 ∪S0 ∪B1 ∪S1 and Wi = Vi \BS = V ′′i \ (B1 ∪S1), then all Wi have equal sizes and

moreover, |Wi| ≥ (1− ε1/6− ε1/3)m ≥ (1− ε1/2)m.

We will remove some vertices from each set Wi to make the triples (W3t−2,W3t−1,W3t) super-

regular for all t ∈ [k]. Since ξn ≤ |Xi| ≤ |BS ∩ Vi| ≤ (ε1/2)m for all i, by Proposition 4.2 (ii), there

are at most (D/(18K))p−1 vertices which have more than (2ε1/3)pm neighbours in BS ∩ Vi for each

fixed i ∈ [3k]. Let Y1 be the collection of such vertices for the set BS ∩ V2 and BS ∩ V3 which lie in

V1 and similarly define Y2, Y3. By placing arbitrary vertices into Y1, Y2, or Y3 as necessary, we may

assume that |Y1| = |Y2| = |Y3| ≤ (D/(9k))p−1. Consider the set W ′i = Wi \ Yi for i ∈ {1, 2, 3}. Then

since |Yi|+ |BS∩Vi| ≤ (D/(9K))p−1 +(ε1/2)m ≤ ε1m, in total we removed at most ε1m vertices from

each part of (V1, V2, V3) to obtain (W ′1,W
′
2,W

′
3). By the definition of the sets Xi at the beginning,

all the vertices in W ′1 were ε1-typical in the triple (V1, V2, V3), and by the choice of Y1, they have

at most (2ε1/3)pm + |Y2| ≤ ε1pm neighbours in the deleted portion in V2 (similar for V3). Thus by

Proposition 2.10, all the vertices in W ′1 are ε-typical in the triple (W ′1,W
′
2,W

′
3). Also, since all the

vertices of V1 not in X1 had (1 ± ε1)d12p|V2| neighbours in V2, they will still have (1 ± 2ε1)d12p|V2|
neighbours in W ′2 and similar for other choices of indices. Moreover, the triple (W ′1,W

′
2,W

′
3) inherits

the regularity of (V1, V2, V3) and is (2ε3, p)-regular of density at least δ−ε3 > δ/2, see Proposition 2.1.
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Thus by the fact 2ε1 < ε and 2ε3 < ε, (W ′1,W
′
2,W

′
3) is (δ/2, ε, p)-super-regular. Repeat the above

process for all other triples. Let B be the union of B0, B1, and Yi for all i ∈ [3k] as above so that

|B| ≤ (2D/3)p−2 + (D/3)p−1 = Dp−1 and S = S0 ∪ S1. We also have the bound |W ′i | ≥ |Vi|/2 ≥ ξn

for all i. Moreover, (v) will hold since in G′′ all the edges between W ′2 and W ′3 have at most 2|Vi|p2

common neighbours in V1, and therefore at most 4|W ′1|p2 in W ′1 (similar for other indices).

6 Obtaining balanced strong-super-regular triples

In the previous section, we managed to decompose the graph into balanced super-regular triples, a

triangle packing, and a small set of exceptional vertices. In this section, we will show how by slightly

enlarging the triangle packing and the exceptional set, we can make these triples strong-super-regular.

Our main tool, which will also be used in the next section, is the following lemma, which con-

structs small quasi-random matchings in super-regular triples. For the application in this section, in

Theorem 6.6 below, V ′i s will be the sets of non-good vertices in each part of a regular partition of

the host graph. We want to find vertex disjoint triangles that cover these sets of non-good vertices.

As an intermediate step, we construct random matchings M ′ij which later can be coupled with the

non-good vertices in order to construct vertex-disjoint triangles. See the discussion in Section 3.2 for

more detailed description. We would like to remark that even though the stronger assumption (A1)

implies the weaker assumption (A2), we state both of them, as (A1) is much simpler and in one of the

two applications of Lemma 6.1, we can verify that this stronger condition is satisfied. Also note that

the statement of this lemma holds not only for strong-super-regular triples coming from subgraphs of

random graphs, but also for general strong-super-regular triples.

Lemma 6.1. For all positive δ and η with η < 1/140, there exist ε(δ) and C(δ, η) such that the

following holds. Let (V1, V2, V3) be a (δ, ε, p)-super-regular triple with m = |V1| = |V2| = |V3| and

p ≥ C(logm/m)1/2. For each i and j, let dijp be the density of (Vi, Vj), let qij = η/(dijpm), and

let Eij be a subgraph of (Vi, Vj) with |Eij | ≤ ηdijpm
2. Form a set M ′ij by selecting every edge in

(Vi, Vj) \ Eij independently with probability qij and let Mij ⊂ M ′ij be the set of all selected edges in

(Vi, Vj) that are not incident to any other edge in M ′12 ∪M ′13 ∪M ′23. Moreover, for each i, let Qi be

the set of all vertices in Vi that are covered by some edge in M12 ∪M13 ∪M23. Assume that for each

i, j, and k, there is a set V ′i such that

(A1) the neighbourhood of every v ∈ V ′i contains at most ηdijdikdjkp
3m2 edges of Ejk or

(A2) for every v ∈ V ′i , every subgraph (N ′′j , N
′′
k ) of (N(v) ∩ Vj , N(v) ∩ Vk) such that deg(w,N ′′k ) ≤

2dikdjkp
2m for all w ∈ N ′′j and deg(w,N ′′j ) ≤ 2dijdjkp

2m for all w ∈ N ′′k contains at most

ηdijdikdjkp
3m2 edges of Ejk.

Then M12 ∪M13 ∪M23 is a matching and with probability tending to 1 as m tends to infinity, for each

i, j, and k,

(M1) (η/2)m ≤ |Mij | ≤ 2ηm,

(M2) every v ∈ Vi has at most 3ηdijpm neighbours in Qj,

(M3) the neighbourhood of every v ∈ V ′i contains at least (η/2)δ2p2m edges of Mjk, and
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(M4) the endpoints of each η-good edge in (Vj , Vk) have at least (1− 4η)dijdikp
2m common neighbours

in Vi \Qi.

Proof. Let ε = min{1/100, δ/50}. Fix i, j, and k with {i, j, k} = {1, 2, 3}. For each vertex v ∈ Vi, let

Nj = N(v) ∩ Vj and Nk = N(v) ∩ Vk. By construction, M12 ∪M13 ∪M23 is a matching.

Claim 6.2. With probability 1− o(1), (η/2)m ≤ |Mij | ≤ 2ηm.

Proof. By our assumption on |Eij |, there are at least (1−η)dijpm
2 edges in (Vi, Vj)\Eij , so E[|M ′ij |] ≥

(1−η)dijpm
2qij = (1−η)ηm, and Chernoff’s inequality implies that |M ′ij | ≥ (3η/4)m with probability

1−o(1). In order to estimate |Mij |, note that |M ′ij |− |Mij | is at most the number of vertices in Vi∪Vj
that are incident to an edge of M ′ij and some other edge in M ′12∪M ′13∪M ′23. Let Aw denote the event

that w is such a “bad” vertex. Since (V1, V2, V3) is (δ, ε, p)-super-regular, deg(v, Vj) ≤ (1 + ε)dijpm

and deg(v, Vk) ≤ (1 + ε)dikpm for every v ∈ Vi. Hence, if w ∈ Vi, then

P (Aw) ≤ deg(w, Vj)qij · (deg(w, Vj)qij + deg(w, Vk)qik) ≤ (1 + ε)22η2

and the expected number of such “bad” vertices in Vi is at most (1+ε)22η2m. The events {Aw : w ∈ Vi}
are mutually independent, so by Chernoff’s inequality, with probability at least 1− o(m−1), there are

at most 3η2m “bad” vertices in Vi and similarly, there are at most 3η2m “bad” vertices in Vj . Hence,

|Mij | ≥ (3/4 − 6η)ηm ≥ (η/2)m with probability 1 − o(1). Finally, since the number of edges in

(Vi, Vj) \Eij is at most dijpm
2, we have E[|M ′ij |] ≤ dijpm2qij = ηm, and Chernoff’s inequality implies

that |Mij | ≤ |M ′ij | ≤ 2ηm with probability 1− o(1).

Claim 6.3. For each fixed vertex v, with probability 1− o(m−1), we have deg(v,Qj) ≤ 3ηdijpm.

Proof. Let Q′i be the set of vertices in Vi that are covered by some edge in M ′ij ∪M ′ik and note that

Q′i ⊃ Qi (similarly define Q′j and Q′k). For a vertex w ∈ Vj , let Bw denote the event that w ∈ Q′j .
Since (V1, V2, V3) is (δ, ε, p)-super-regular, deg(w, Vi) ≤ (1 + ε)dijpm and deg(w, Vk) ≤ (1 + ε)djkpm.

Hence,

P (Bw) ≤ deg(w, Vj)qij + deg(w, Vk)qik ≤ 2(1 + ε)η.

The events {Bw : w ∈ Vj} are mutually independent and |Nj | ≥ (δ/2)pm, so by Chernoff’s inequality,

|Nj ∩Q′j | ≤ (5η/2)|Nj | with probability at least 1− e−cηδpm for some absolute positive constant c. It

follows that

deg(v,Qj) ≤ deg(v,Q′j) = |Nj ∩Q′j | ≤ (5η/2)(1 + ε)dijpm ≤ 3ηdijpm

with probability 1− o(m−1).

Claim 6.4. For each fixed v ∈ V ′i , with probability 1 − o(m−1), the pair (Nj , Nk) contains at least

(η/2)dijdikp
2m edges of Mjk.

Proof. Without loss of generality, we may assume that (i, j, k) = (1, 2, 3). Since v is ε-typical, (1 +

ε2)(1 + 2ε/δ) ≤ 2, and 5ε + 2ε/δ ≤ 1/7, Proposition 2.14 implies that there are sets N ′′2 ⊂ N2

and N ′′3 ⊂ N3 such that (N ′′2 , N
′′
3 ) contains at least (6/7)d12d13d23p

3m2 edges, no vertex in N ′′2 has

more than 2d13d23p
2m neighbours in N ′′3 , and vice versa, no vertex in N ′′3 has more than 2d12d23p

2m
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neighbours in N ′′2 . Since at most ηd12d13d23p
3m2 edges among (N ′′2 , N

′′
3 ) belong to E23 by either (A1)

or (A2), it follows that

E[|M ′23 ∩ (N ′′2 , N
′′
3 )|] ≥ (5/7)d12d13d23p

3m2q23 = (5/7)d12d13ηp
2m.

Since |M ′23 ∩ (N ′′2 , N
′′
3 )| is a sum of independent indicator random variables, Chernoff’s inequality

implies that for some absolute constant c,

P
(
|M ′23 ∩ (N ′′2 , N

′′
3 )| ≥ (4/7)d12d13ηp

2m
)
≥ 1− e−cηδ2p2m ≥ 1− 1/m2,

provided that C is sufficiently large.

In order to estimate |M23 ∩ (N ′′2 , N
′′
3 )|, note that |M ′23 ∩ (N ′′2 , N

′′
3 )| − |M23 ∩ (N ′′2 , N

′′
3 )| is at most

the number of vertices in N ′′2 ∪ N ′′3 that are incident to an edge in M ′23 ∩ (N ′′2 , N
′′
3 ) and some other

edge in M ′12 ∪M ′13 ∪M ′23. Let Cw denote the event that w is such a “bad” vertex. If w ∈ N ′′2 , then

P (Cw) ≤ deg(w,N ′′3 )q23 · (deg(w, V3)q23 + deg(w, V1)q12)

≤ 2d13d23p
2mq23 · ((1 + ε)d23pmq23 + (1 + ε)d12pmq12) = (1 + ε)4η2d13η

2p.

Since |N ′′2 | ≤ |N2| ≤ (1 + ε)d12pm, the expected number of such “bad” vertices in N ′′2 is at most

(1+ε)24η2d12d23p
2m. The events {Cw : w ∈ N ′′2 } are mutually independent, so by Chernoff’s inequality,

for some absolute constant c, with probability at least 1− e−cδ2η2p2m, there are at most 5η2d12d13p
2m

“bad” vertices in N ′′2 and similarly, there are at most 5η2d12d13p
2m “bad” vertices in N ′′3 . Hence, with

probability 1− o(m−1),

|M23 ∩ (N ′′2 , N
′′
3 )| ≥ (4/7− 10η)d12d13ηp

2m ≥ (η/2)d12d13p
2m,

provided that C is sufficiently large.

Claim 6.5. With probability 1 − o(1), the endpoints of every η-good edge in (Vj , Vk) have at least

(1− 4η)dijdikp
2m common neighbours in Vi \Qi.

Proof. For an arbitrary vertex v ∈ Vi, let Dv denote the event that v ∈ Q′i. Clearly,

P (Dv) ≤ deg(v, Vj)qij + deg(v, Vk)qik ≤ 2(1 + ε)η.

Fix some η-good edge in (Vj , Vk) and let A ⊂ Vi be the set of common neighbours of its endpoints.

Then E[|A ∩Q′i|] =
∑

v∈A P (Dv) ≤ |A| · 2(1 + ε)η. Moreover by definition, |A| ≥ (1 − η)dijdikp
2m ≥

(1/2)δ2p2m. Since the events Dv are mutually independent, Chernoff’s inequality implies that

P (|A ∩Q′i| ≥ 3η|A|) ≤ e−cδ2ηp2m

for some absolute positive constant c. Hence, if C is sufficiently large, then with probability at least

1− 1/m3,

|A \Qi| ≥ |A \Q′i| ≥ (1− 3η)|A| ≥ (1− 3η)(1− η)dijdikp
2m ≥ (1− 4η)dijdikp

2m.

Since there are at most m2 good edges, the claim is proved.
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Finally, note that Claims 6.2–6.5 imply that (M1)–(M4) are satisfied with probability 1−o(1) (one

needs to apply the union bound over all choices of vertices in order to deduce (M2) and (M3) from

6.3 and 6.4).

Below is the main theorem of this section. It says that we can partition our graph into balanced

strong-super-regular triples, a collection of vertex-disjoint triangles, and a set of at most O(p−2)

exceptional vertices. In the next section, we will prove that each of those strong-super-regular triples

contains a triangle-factor.

Theorem 6.6. For an arbitrary positive γ, there exists a positive δ such that for all ε, there exist

constants C, D, and ξ that satisfy the following. If p ≥ C(log n/n)1/2, then a.a.s. every G ⊂ G(n, p)

with δ(G) ≥ (2/3 + γ)np contains a subgraph G′ ⊂ G whose vertex set can be partitioned into sets B,

S, and (W ′i )
3k
i=1, where k ≤ D, such that

(i) |B| ≤ Dp−2,

(ii) G[S] contains a perfect triangle packing,

(iii) (W ′3t−2,W
′
3t−1,W

′
3t) is a (δ, ε, p)-strong-super-regular in G′ for all t ∈ [k], and

(iv) |W ′3t−2| = |W ′3t−1| = |W ′3t| ≥ ξn for all t ∈ [k].

Proof. Let δ = min{δ5.2(γ)/2, 3/4}. Without loss of generality, we may assume that ε ≤ 2/δ. Further-

more, let ε3 = ε2.10(ε, 2δ), ε1 = min{εδ2/1180, ε3δ
2/40}, ε2 = min{ε2.13(ε1, 2δ), ε5.2(γ), ε6.1(δ), ε/2},

and ξ = ξ5.2(ε2)/2. Let η = 12ε1/δ
2. Moreover, let

D = (6/ξ) max{D5.2(ε2), D4.2(ii)(1/4, ε1ξ), D4.4(ε1ε2δ
3ξ2/4, 1/4)}

and C = max{C5.2(ε2), C4.3(3ε1ξ)}.
By Theorem 5.2, there exists a further subgraph G′ of G whose vertex set can be partitioned

into sets B0, S0, and (Wi)
3k
i=1 such that |B0| ≤ (D/2)p−2, G[S0] contains a perfect triangle packing,

and for all t ∈ {1, . . . , k}, the triple (W3t−2,W3t−1,W3t) is (2δ, ε2, p)-super-regular in G′ and satisfies

|W3t−2| = |W3t−1| = |W3t|. Moreover, the endpoints of no edge in (W3t−2,W3t−1) have more than

4|W3t|p2 common neighbours in W3t (and a similar statement holds for other choices of indices). We

will show that each such triple contains a slightly smaller (δ, ε, p)-strong-super-regular triple in such a

way that all but at most O(p−1) leftover vertices can be covered by vertex-disjoint triangles. Obviously,

this will imply the assertion of the theorem.

Without loss of generality, we will only consider the triple (W1,W2,W3). For the sake of brevity,

let m = |W1| = |W2| = |W3| and note that m ≥ 2ξn. Without loss of generality, we can condition on

the event that G(n, p) satisfies the assertions of

• Proposition 4.2 (ii) with ρ = 1/4 and ξ = ε1m/n,

• Proposition 4.4 with ε = ε1ε2δ
3m2/(4n2), and ρ = 1/4, and

• Proposition 4.3 with ξ = 6ε1m/(2n).

For each i, let Xi ⊂ Wi be the collection of vertices that are not ε1-good. By Proposition 2.13,

|Xi| ≤ ε1m and we may assume that |Xi| = ε1m. We perform the following cleaning-up procedure.

While constantly updating the sets X1, X2, and X3, repeat the following. If there exists an i and a

vertex v ∈Wi \Xi such that either
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(A) |N(v) ∩Xj | ≥ 4ε1pm for some j or

(B) the neighbourhood of v contains more than ε2d12d13d23p
3m2 edges whose endpoints have more

than 5ε1p
2m common neighbours in Xi,

then move v to Xi.

Claim 6.7. The cleaning-up procedure finishes with ε1m ≤ |Xi| ≤ 3ε1m for all i.

Proof. Suppose that at some point in time, |Xi| > 3ε1m for some i, and consider the earliest such

moment. Without loss of generality, we may assume that i = 1. Clearly, 3ε1m < |X1| ≤ 4ε1m

and |Xj | ≤ 3ε1m if j 6= 1. Since at the beginning, every X1 contained at most ε1m vertices, W1

contains either ε1m vertices satisfying (A) or ε1m vertices satisfying (B). The former is impossible,

since |Xj | ≤ 3ε1m for j 6= 1 and we assumed that G(n, p) satisfies the assertion of Proposition 4.2 (ii)

with ξ = ε1m/n. Since the endpoints of each edge in (W2,W3) have at most 4p2m common neighbours

in W1, the latter would imply that (W2,W3) contains

(ε1m) · (ε2d12d13d23p
3m2)/(4p2m) ≥ (ε1ε2δ

3/4)pm2

edges whose endpoints have more than 5ε1p
2m common neighbours in X1. Since |X1| ≤ 4ε1m,

this is impossible by our assumption that G(n, p) satisfies the assertion of Proposition 4.4 with ε =

ε1ε2δ
3m2/(4n2), and ρ = 1/4.

It is not hard to check that (W1 \ X1,W2 \ X2,W3 \ X3) is (δ/2, ε′, p)-strong-super-regular. Un-

fortunately, this conclusion does not help us at the moment as we first need to absorb X1 ∪X2 ∪X3

into vertex-disjoint triangles and in the process of absorbing those vertices, we may use some vertices

from the triple (W1 \X1,W2 \X2,W3 \X3).

For every i, let Yi ⊂ Xi be the set of vertices in Xi that have more than 4ε1pm neighbours in

Xj for some j with j 6= i. Since |Xj | ≤ 3ε1m and we assumed that G(n, p) satisfies the assertion of

Proposition 4.2 (ii) with ξ = ε1m/n, then |Yi| ≤ Dp−1/(6k). By adding arbitrary vertices of Xi to

Yi, we can guarantee that |Y1| = |Y2| = |Y3|. For every i and j, let Eij = (Xi,Wj) ∪ (Wi, Xj). Since

(Wi,Wj) is (ε2, p)-regular and |Xi| ≥ ε1|Wi| ≥ ε2|Wi|, we have

|Eij | ≤ (dij + ε)p(|Xi||Wj |+ |Wi||Xj |) ≤ (1 + ε/δ)6ε1dijpm
2 ≤ ηdijpm2.

Fix a vertex v ∈ Wi \ Yi. We check that (A2) in Lemma 6.1 is satisfied. Let (N ′′j , N
′′
k ) be as in (A2)

in Lemma 6.1. Since |N ′′j ∩Xj | ≤ |N(v) ∩Xj | ≤ 4ε1pm and similarly, |N ′′k ∩Xk| ≤ 4ε1pm, we have

|Ejk ∩ (N ′′j , N
′′
k )| ≤ 4ε1pm(2dijdjkp

2m+ 2dikdjkp
2m) ≤ (16ε1/δ)dijdikdjkp

3m2 ≤ ηdijdikdjkp3m2.

Lemma 6.1 implies that a.a.s. for each i and j, there exists an Mij ⊂ (Wi \ Xi,Wj \ Xj) such that

(M1)–(M4) in Lemma 6.1 are satisfied with Vi = Wi and V ′i = Wi \ Yi for each i. Let Qi be defined

as in Lemma 6.1.

Claim 6.8. The sets X1 \Y1, X2 \Y2, and X3 \Y3 can be covered by vertex-disjoint triangles that use

only vertices in Q1 ∪X1, Q2 ∪X2, and Q3 ∪X3.
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Proof. Since M12∪M13∪M23 is a matching whose edges are not incident to any vertex in X1∪X2∪X3,

it suffices to show that for each i, j, and k, the vertices of Xi \ Yi can be paired with some |Xi \ Yi|
edges of Mjk to form vertex-disjoint triangles.

Let H be the bipartite graph on the vertex set (Xi \ Yi) ∪Mjk, where a vertex w ∈ Xi \ Yi is

adjacent to an edge {u, v} ∈ Mjk if and only if {u, v, w} is a triangle in (W1,W2,W3). Clearly, it

suffices to prove that H contains a matching that covers Xi \Yi. We check that Hall’s condition holds

in H. Fix an arbitrary non-empty set S ⊂ Xi \ Yi. If |NH(S)| ≤ |S|, then there would be an x with

1 ≤ x = |S| ≤ |Xi| ≤ 3ε1m such that G(n, p) contains some x independent edges and x vertices,

each of which is adjacent to both ends of at least (η/2)δ2p2m of those edges, see (M3) in Lemma 6.1.

This would contradict our assumption that G(n, p) satisfies the assertion of Proposition 4.3 with

ξ = ηδ2m/(2n) = 6ε1m/(2n). Hence, |NH(S)| > |S| for all non-empty S ⊂ Xi \ Yi.

Fix any such triangle packing and for each i, let X ′i = Xi ∪ Ti, where Ti ⊂ Qi is the set of vertices

in Wi \ Xi that are covered by the triangle packing. Note that |Ti| = |Xj \ Yj | + |Xk \ Yk|. Let

W ′i = Wi \ X ′i. Since for each i, |X ′i| = |Xi| + |Ti| = |X1 \ Y1| + |X2 \ Y2| + |X3 \ Y3| + |Yi| and

|Y1| = |Y2| = |Y3|, the sets W ′1, W ′2, and W ′3 have the same number of elements. Denote this number

by m′ and note that m′ ≥ m− 9ε1m ≥ m/2 ≥ ξn.

Claim 6.9. The triple (W ′1,W
′
2,W

′
3) is (ε, δ, p)-strong-super-regular.

Proof. Since (W1,W2,W3) is (ε/2, p)-regular with density at least 2δp and m′ ≥ m/2, Proposition 2.1

implies that (W ′1,W
′
2,W

′
3) is (ε, p)-regular with density at least δp. Fix an index i, recall that |X ′i| ≤

9ε1m ≤ ε3m, and let v be an arbitrary vertex in W ′i . Without loss of generality, we may assume that

i = 1. Since v 6∈ X1, (A) implies that deg(v,Xj) ≤ 4ε1pm for every j. Moreover, (M2) in Lemma 6.1

implies that deg(v,Qj) ≤ 3ηdijpm. Hence,

deg(v,X ′j) ≤ deg(v,Xj) + deg(v, Tj) ≤ deg(v,Xj) + deg(v,Qj) ≤ ε3pm,

and by Proposition 2.10, v becomes ε-typical in (W ′1,W
′
2,W

′
3). It remains to show that v is also ε-good.

Since v 6∈ Xi, it was ε1-good in (W1,W2,W3) and it satisfies (B). Hence, the endpoints of all but at

most (ε1 + ε2)d12d13d23p
3m2 edges in the neighbourhood of v have at least (1− ε1−5ε1/δ

2)d12d13p
2m

common neighbours inW1\X1. Moreover by (M4), they have at most 4ηd12d13p
2m common neighbours

in Q1. Since 1− ε1 − 5ε1/δ
2 − 4η ≥ (1 + ε2/δ)

2(1− ε), each such edge is ε-good in the new triple. It

follows that v is ε-good.

Finally, let B = B0 ∪
⋃3k
i=1 Yi and let S = S0

⋃3k
i=1(Ti ∪ (Xi \ Yi)). Clearly, the sets B, S, and

(W ′i )
3k
i=1 partition the vertex set of G,

|B| ≤ |B0|+
3k∑
i=1

|Yi| ≤ Dp−2/2 + 3k ·Dp−1/(6k) ≤ Dp−2/2,

and G[S] contains a perfect triangle packing. Finally, by Claim 6.9, for each t ∈ [k], the triple

(W ′3t−2,W
′
3t−1,W

′
3t) is (ε, δ, p)-strong-super-regular and satisfies |W ′3t−2| = |W ′3t−1| = |W ′3t| ≥ ξn.
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7 Perfect triangle packing in strong-super-regular triples

In the previous section, we managed to decompose the graph into balanced strong-super-regular triples,

a triangle packing, and a small set of exceptional vertices. In this section, we will show how to find

a triangle-factor in each of those triples. We start this section by showing how to construct sets of

“buffer” vertices and edges that will allow us to complete an almost-spanning triangle packing into a

triangle-factor.

Lemma 7.1. For all positive constants δ, ξ, and η with η ≤ 1/140, there exist constants C(δ, η, ξ)

and ε(δ, η) such that if p ≥ C(log n/n)1/2, then G(n, p) a.a.s. satisfies the following. Let (W1,W2,W3)

be a (δ, ε, p)-strong-super-regular triple in a subgraph of G(n, p) such that |W1| = |W2| = |W3| ≥ ξn.

Then there exist edge sets M12, M13, M23 and vertex sets X1, X2, X3 with the following properties:

(P1) M12 ∪M13 ∪M23 is a matching.

(P2) For all j and k, Mjk ⊂ (Wj ,Wk) and (η/2)|Wj | ≤ |Mjk| ≤ 2η|Wj |.

(P3) For all i, |Xi| ≤ (η/4)|Wi| and Xi ⊂ Wi \ Qi, where Qi is the set of vertices in Wi that are

covered by some edge in Mij ∪Mik.

(P4) For all i, j, and k, if Zi ⊂Wi has size |Mjk| and contains Xi, then the subgraph of (W1,W2,W3)

induced by Zi and Mjk contains a triangle-factor.

Proof. For the sake of brevity, let m = |W1| = |W2| = |W3|. Without loss of generality, we may

assume that δ ≤ 1. Let α = δ2/24 and let β be a positive constant satisfying β log(e/β) < αη/30.

Moreover, let ε = min{δ/2, η/4, ε6.1(δ), β · (ε0)4.8(αδ/16, δ/2), αβδ/16} and let ε′ = 4ε/δ. Finally, let

C be sufficiently large so that C(log n/n)1/2 ≥ C6.1(logm/m)1/2 and without loss of generality we may

assume that G(n, p) satisfies the assertion of Proposition 4.3 with ξ = ηδ2m/(2n) and ξ = ηδ2m/(12n),

and Proposition 4.8 with ε′4.8 = αδ/16 and δ4.8 = δ/2.

For all i and j, let qij = η/(dijmp) and select each ε′-good edge of (Wi,Wj) independently with

probability qij . Let M ′ij be the set of all selected edges in (Wi,Wj) and let Mij ⊂M ′ij be the set of all

those edges that are not incident to any other selected edge. By Proposition 2.12, (Wi,Wj) contains

at most ηdijpm
2 edges that are not ε′-good. Since each v ∈Wi is ε-good, its neighbourhood contains

at most ηd12d13d23p
3m2 edges that are not ε′-good. Therefore, Lemma 6.1 applies with Eij being the

set of non-ε′-good edges in (Wi,Wj) and Vi = V ′i = Wi.

Claim 7.2. With probability 1− o(1), every set Yi ⊂Wi of size βm satisfies the following. All but at

most αηm edges of Mjk belong to the neighbourhood of some vertex of Yi.

Proof. Fix a Yi ⊂ Wi of size βm. By Proposition 2.1, the triple (Yi,Wj ,Wk) is (ε/β, p)-regular,

and the densities of all three of its parts are at least δ/2. Moreover, since we assumed that G(n, p)

satisfies the assertion of Proposition 4.8, (Yi,Wj ,Wk) is αδ/16-typical and by our assumption on ε, it

is (αδ/16, p)-regular. By Proposition 2.12, all but at most (α/2)d23pm
2 edges between Wj and Wk are

α/2-good, so in particular all but at most (α/2)d23pm
2 edges in (Wj ,Wk) belong to the neighbourhood

of some vertex in Yi. Hence the expected number of edges chosen among those “bad” edges is at most

(α/2)d23pm
2q23 = (αη/2)m. Chernoff’s inequality implies that the probability that more than αηm
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of those edges are chosen to M ′jk is at most e−αηm/30. Since there are
(
m
βm

)
βm-subsets of Wi,(

m

βm

)
≤
(
em

βm

)βm
= eβ log(e/β)m,

and αη/30 > β log(e/β), the probability that all sets Yi have the claimed property is 1− o(1).

Lemma 6.1 and Claim 7.2 imply that there exist M12, M13, and M23 such that M12∪M13∪M23 is

a matching and for all i, j, and k (properties 1, 2, and 3 follow from (M1), (M3), and (M4) of Lemma

6.1, respectively, whereas property 4 follows from Claim 7.2):

1. (η/2)m ≤ |Mjk| ≤ 2ηm,

2. the neighbourhood of every vertex in Vi contains at least (η/2)δ2p2m edges of Mjk,

3. the endpoints of each edge of Mjk have at least (1/2)δ2p2m common neighbours in Wi \Qi,

4. for every set Yi ⊂Wi of size βm, all but at most αηm edges of Mjk belong to the neighbourhood

of some vertex of Yi.

Fix any such M12, M13, and M23. Next, for each i, let Xi be a random binomial subset of Wi \Qi,
where each element is included with probability η/5. A simple application of Chernoff’s inequality

combined with Property 3 above shows that if C is sufficiently large, then with probability 1 − o(1),

for all i, j, and k:

5. |Xi| ≤ (η/4)m,

6. the endpoints of each edge of Mjk have at least (η/12)δ2p2m common neighbours in Xi.

Let X1, X2, and X3 be arbitrary sets satisfying 5 and 6 and note that properties (P1)–(P3) are

satisfied. It remains to show that (P4) is also satisfied.

Fix a Zi ⊂ Wi of size |Mjk| such that Xi ⊂ Zi. Let H be the bipartite graph on the vertex set

Zi∪Mjk, where a vertex w ∈ Zi is adjacent to an edge {u, v} ∈Mjk if and only if {u, v, w} is a triangle

in (W1,W2,W3). Clearly, it suffices to prove that H contains a perfect matching. We check that H

satisfies the assumptions of Proposition 2.15 with A = Zi, B = Mjk, and L = αηm.

Fix an S ⊂ Zi. If 0 < |S| ≤ (η/4)δ2m, then |NH(S)| > |S| or otherwise there would be an

x ∈ [1, (η/4)δ2m] such that G(n, p) contains some x independent edges and x vertices, each of which

is adjacent to both ends of at least (η/2)δ2p2m of those edges, see 2. This would contradict our

assumption that G(n, p) satisfies the assertion of Proposition 4.3 with ξ = ηδ2m/(2n). On the other

hand, if |S| ≥ (η/4)δ2m ≥ βm, then by 4, |Mjk \ NH(S)| ≤ αηm. Hence, |NH(S)| ≥ |S| as long as

|Zi \ S| ≥ αηm
Finally, fix a T ⊂ Mjk with 0 < |T | ≤ αηm = (η/24)δ2m. If |NH(T )| < |T |, then there would be

an x ∈ [1, (η/24)δ2m] such that G(n, p) contains x vertices and x independent edges whose endpoints

have at least (η/12)δ2p2m common neighbours among those x vertices (recall that Xi ⊂ Zi), see 6.

This would contradict our assumption that G(n, p) satisfies the assertion of Proposition 4.3 with

ξ = ηδ2m/(12n).

With Lemma 7.1 at hand, without much effort we can prove Theorem 1.4 which says that a

balanced strong-super-regular triple has a triangle-factor.
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Proof of Theorem 1.4. Let η = 1/140, ε1 = ε2.7(3η/2, δ/2), and ε = (η/4) min{ε7.1(δ, η), ε1}. Let C =

C7.1(δ, η, ξ). Let (W1,W2,W3) be a (δ, ε, p)-strong-super-regular triple and m = |W1| = |W2| = |W3|.
By Lemma 7.1, there exists a matching M12,M13,M23 and sets Q1, Q2, Q3 and X1, X2, X3 satisfying

(P1), (P2), (P3), and (P4). Let W ′i = Wi \ (Qi ∪Xi) and note that

|W ′1| = |W1| − |Q1| − |X1| = |W1| − |M12| − |M13| − |X1|.

Let x = m − |M12| − |M13| − |M23| and note that (1 − 6η)m < x < (1 − 3η/2)m. By applying

Proposition 2.7, we can find x vertex-disjoint triangles inside the triple (W ′1,W
′
2,W

′
3).

Note that the remaining |W ′1| − x = |M23| − |X1| vertices in W ′1 together with the set X1, can be

matched with the set M23 to construct |M23| vertex-disjoint triangles, by property (P4). Similarly,

the remaining vertices in W ′2 ∪ X2 and W ′3 ∪ X3 can be matched with M13 and M12, respectively.

Therefore, we have found a perfect triangle packing of (W1,W2,W3).

Finally, we briefly summarize Sections 5, 6, and 7 in the proof of our main result, Theorem 1.3.

Proof of Theorem 1.3. Let δ = δ6.6(γ), ε = ε1.4(δ), ξ = ξ6.6(δ, ε) and C = max{C6.6(ε), C1.4(ε, ξ)}, D =

D6.6(ε). By Theorem 6.6, there exist setB, S, and (Wi)
3k
i=1 which satisfies (i) - (iv) of Theorem 6.6. Fur-

thermore for each t ∈ [k], by Theorem 1.4, each (δ, ε, p)-strong-super-regular triple (W3t−2,W3t−1,W3t)

contains a perfect triangle packing. Therefore all the vertices exceptB can be covered by vertex-disjoint

triangles. Since |B| ≤ Dp−2, this completes the proof.

8 Concluding Remarks

An immediate question we would like to ask is whether the assumption on p in Theorem 1.3 can be

relaxed. Even though our argument breaks down (for a few reasons) if p � (log n/n)1/2, we believe

that the conclusion of Theorem 1.3 still holds under the (weaker) assumption that p� n−1/2. If this

was true, it would completely resolve the problem of determining the local resilience of G(n, p) with

respect to the property of containing an almost spanning triangle packing.

We also believe that a similar argument can be used to obtain an extension of the theorem of

Hajnal and Szemerédi [15] for larger cliques to the setting of sparse random graphs. Clearly, the edge

probability p would have to be sufficiently large so that a corresponding form of Lemma 2.6 holds.

However, in our opinion, the importance of such a result does not justify the technical complications

one would have to face in order to prove it.

The more intriguing and interesting question comes from the attempt to embed general spanning

or almost spanning graphs (by general we mean graphs that are not disjoint unions of a fixed graph)

into sparse regular pairs. This gives rise to the following question.

Question. Can we develop an embedding lemma for general graphs into regular pairs in random graphs

for some p = n−o(1)? How should the definition of strong-super-regularity be extended?

It is quite likely that such an embedding lemma will provide another proof of the theorem of

Böttcher, Kohayakawa, and Taraz [7] on embedding almost spanning subgraphs. However, one can

hope for a better result where the graph we want to embed is smaller than the host graph by a

sublinear number of vertices. To achieve this, one will most likely need to develop a tool similar to

that of Theorem 6.6.

27



Another question can be asked regarding embedding of spanning subgraphs. Proposition 4.6 shows

that as many as Ω(p−2) vertices have to be left out from the largest triangle packing. More generally,

if every vertex of some graph H is contained in a triangle, then we cannot hope to embed H into a

sparse host graph of the same order. However, this is no longer the case when H is bipartite. Thus

we recall the following question posed by Böttcher, Kohayakawa, and Taraz [8].

Question. Is it possible to have a perfect embedding for bipartite graphs?

In fact, it might be true that what actually matters is not that the graph is bipartite, but the fact

that there are enough vertices which are not contained in a copy of a triangle. See [17], where such a

result is proved for dense graphs.
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