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Abstract

Motivated by the investigation of sharpness of thresholds for Ramsey properties in random graphs,

Friedgut, Kohayakawa, Rödl, Ruciński and Tetali introduced two variants of a single-player game whose

goal is to colour the edges of a random graph, in an online fashion, so as not to create a monochromatic

triangle. In the two-round variant of the game, the player is first asked to find a triangle-free colouring of

the edges of a random graph G1 and then extend this colouring to a triangle-free colouring of the union

of G1 and another (independent) random graph G2, which is disclosed to the player only after they have

coloured G1. Friedgut et al. analysed this variant of the online Ramsey game in two instances: when G1

has Θ(n4/3) edges and when the number of edges of G1 is just below the threshold above which a random

graph typically no longer admits a triangle-free colouring, which is located at Θ(n3/2).

The two-round Ramsey game has been recently revisited by Conlon, Das, Lee and Mészáros, who gen-

eralised the result of Friedgut at al. from triangles to all strictly 2-balanced graphs. We extend the work of

Friedgut et al. in an orthogonal direction and analyse the triangle case of the two-round Ramsey game at all

intermediate densities. More precisely, for every n−4/3 ≪ p ≪ n−1/2, with the exception of p = Θ(n−3/5),

we determine the threshold density q at which it becomes impossible to extend any triangle-free colouring of

a typical G1 ∼ Gn,p to a triangle-free colouring of the union of G1 and G2 ∼ Gn,q. An interesting aspect of

our result is that this threshold density q ‘jumps’ by a polynomial quantity as p crosses a ‘critical’ window

around n−3/5.

1 Introduction

Given graphs G and H, we say that G is H-Ramsey if any red/blue-colouring of the edges of G results in

a monochromatic copy of H. The classical theorem of Ramsey [19], from which the term Ramsey theory stems,

implies that Kn is H-Ramsey for all n large enough in terms H. It is natural to ask what other graphs G are

also H-Ramsey and a prominent theme has been to explore the existence of Ramsey graphs G that are sparse;

see, for example, [17] and the references therein. One famous example is the work of Frankl and Rödl [7], who

constructed K3-Ramsey graphs that are K4-free by considering sparse random graphs. This prompted  Luczak,

Ruciński and Voigt [13] to initiate the systematic study of thresholds for Ramsey properties in random graphs,

which has since become a prominent theme in probabilistic combinatorics. In particular, this pair of papers

established the following. (Here and throughout, we denote by Gn,p the binomial random graph with n vertices
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and edge probability p and, for a graph property P , we say that P holds asymptotically almost surely (a.a.s. for

short) in Gn,p if the probability that P holds tends to 1 as n tends to infinity.)

Theorem 1.1 ([7, 13]). There exist constants 0 < c < C such that:

(a) If p0 ≤ cn−1/2, then a.a.s. Gn,p0
is not K3-Ramsey.

(b) If p1 ≥ Cn−1/2, then a.a.s. Gn,p1 is K3-Ramsey.

The 1-statement (b) was implicit in the work of Frankl and Rödl [7];  Luczak, Ruciński, and Voigt [13] proved

the 0-statement (a) and provided an alternative proof of (b). The study of Ramsey properties of random graphs

culminated in a seminal series of papers by Rödl and Ruciński [20, 21, 22], who greatly generalised Theorem 1.1,

establishing thresholds for any graph H and also any number of colours 2 ≤ r ∈ N. Recently, Nenadov and

Steger [16] provided a short proof of (b) (and the analogous 1-statements for all H and number of colours) by

using the theory of hypergraph containers [3, 23]; see Section 2.3 for more on this.

1.1 Ramsey games on random graphs

The pioneering work [7, 13, 20, 21, 22] on Ramsey properties of random graphs has been highly influential, with

many extensions and variations being studied. In this paper, we will focus on Ramsey games played on random

graphs, a viewpoint introduced in by Friedgut, Kohayakawa, Rödl, Ruciński and Tetali [8]. The starting point

of their work was to view Theorem 1.1 as a single-player game played against a random source. In this game, a

player is presented with a set of M random edges of Kn, for some 1 ≤M ≤
(
n
2

)
, and asked to colour the edges,

trying to avoid a monochromatic H. Standard results on the asymptotic equivalence of random graph models

(see, for example [12, Section 1.4]), along with Theorem 1.1, show that, in the case that H = K3, the player

will asymptotically almost surely fail when M ≥ Cn3/2 and succeed when M ≤ cn3/2, for appropriately chosen

c, C > 0. In [8], the authors introduced the following two variants on this game:

The online game. The player is presented with edges of Kn one at a time, according to a uniformly random

permutation. Upon seeing each edge, the player must colour the edge with only the knowledge of the previous

(already coloured) edges. The game ends when a monochromatic H occurs and the aim of the player is to last

as long as possible.

The two-round game. Here, the player is given two random graphs: a uniformly random n-vertex graph G1

with M1 edges and a second, independent random graph G2 with M2 edges. The player must colour the first

random graph, avoiding monochromatic copies of H and with no knowledge of the second random graph. The

player is then presented with the second random graph and asked to extend their colouring of G1 to an H-free

colouring of G1 ∪G2.

The work of Friedgut et al. [8] formalised these games, studied the case where H = K3, and drew interesting

connections between the games, the original random Ramsey problem and other related research directions. In

particular, the two-round game arose naturally in another work of a subset of the authors [10] that established

that the property of being K3-Ramsey has a sharp threshold in Gn,p.

With regards to the online game, the authors of [8] gave a simple argument showing that, when played

with two colours, the game typically ends with a graph having Θ(n4/3) edges. More precisely, for any1 M =

M(n) ≪ n4/3, a.a.s. the player has a strategy to colour the edges avoiding a monochromatic K3. Moreover for

any M ≫ n4/3, a.a.s. the player will be forced to create a monochromatic K3 while colouring the first M edges.

1Here, and throughout, for real-valued functions f = f(n) and g = (n), we write f ≪ g (or g ≫ f) to denote that f/g tends to

0 as n tends to infinity.
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Interestingly, as discussed in more detail below, the two-round game is used to prove this upper bound on the

running time of the online game. There has been a considerable amount of work [2, 14, 15, 18] generalising

this result and establishing the expected running time of the online game under optimal play. However, a full

understanding for all graphs H and number of colours remains elusive; see [18] and the references therein for

the currently best known bounds.

In the context of the two-round game with respect to K3 and with two colours, Theorem 1.1 implies that,

when M1 ≥ Cn3/2 for a large enough C, a.a.s. the player will not be able to survive even the first round, as

any colouring of G1 will induce a monochromatic K3. Friedgut, Kohayakawa, Rödl, Ruciński and Tetali [8]

explored what happens near this extreme, when M1 = cn3/2 for some small constant c > 0, as well as when

M1 = Θ(n4/3). They established the following results.

Theorem 1.2 ([8]). Let G1 be a uniformly random graph on n vertices with M1 edges and G2 an independent

random graph on n vertices with M2 edges. Suppose either

(a) M1 = cn3/2 for some c > 0 and M2 ≫ 1; or

(b) M1 = cn4/3 for some c > 0 and M2 ≫ n4/3.

Then a.a.s. no G1-measurable K3-free red/blue-colouring of G1 can be extended to a K3-free red/blue-colouring

of G1 ∪G2.

Theorem 1.2 (a) shows that just below the threshold for the K3-Ramsey property, the random graph G is

a.a.s. very close to being K3-Ramsey in the sense that, although G does admit a K3-free colouring, no such

colouring can be extended after one adds to G some ω(1) random edges.

Theorem 1.2 (b) highlights the connection between the online game and the two-round game, as it implies

that a.a.s. the online game cannot last M ≫ n4/3 steps. Indeed, even if we allow the player of the online game

a ‘grace period’ and do not ask for any colouring until n4/3 edges are revealed, a.a.s. no matter how the player

chooses to colour these, they will not be able to extend to the next M − n4/3 ≫ n4/3 random edges.

In contrast to the online game, the two-round game has not been further explored until the recent work

of Conlon, Das, Lee and Mészáros [6]. They investigated to what extent Theorem 1.2 (a) can be extended to

two-round games with respect to other graphs H. Answering a question from [8], they showed that a large

family of graphs H (namely strictly 2-balanced graphs, see [6] for a definition) exhibit the same behaviour as

K3 in that just below the threshold for the H-Ramsey property a.a.s. all H-free colourings can be killed by

adding a super-constant more random edges. They also showed that this is not the case for all graphs H and

posed the interesting question as to what properties of H determine this behaviour. Finally, we mention that

both [8] and [6] explore the two-round game with three colours near the Ramsey threshold.

1.2 Our results

The aim of our work here is to expand on the work of [8] on the two-round game in a different direction. We

keep our focus on H = K3 and two colours and investigate the outcome of the two-round game as the number of

edges in each round is varied. We will state and prove our results in the setting of binomial random graphs, as

opposed to uniform graphs with a fixed number of edges. It is well-known that these models are asymptotically

equivalent [12, Section 1.4], but the independence of the binomial model makes it more convenient to work with.

In order to systematically study two-round games on random graphs at different densities, we introduce the

following notion of a Ramsey completion threshold, which captures the critical density of the second graph at

which the probability that the player succeeds in extending their H-free colouring from the first to the second

graph jumps from 1 − o(1) to o(1).
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Definition 1.3. Given some probability p = p(n) ∈ [0, 1] and a graph H, we say that q = q(n) is a Ramsey

completion threshold for H with respect to p if the following holds a.a.s. for G ∼ Gn,p:

(a) There exists a G-measurable H-free red/blue-colouring φ of G such that, if q0 ≪ q, then a.a.s., φ can be

extended to an H-free colouring of G ∪Gn,q0 .

(b) For every G-measurable H-free red/blue-colouring φ of G, if q1 ≫ q, then a.a.s., φ cannot be extended to

an H-free colouring of G ∪Gn,q1 .

If such a completion threshold exists, we denote it by2 q(n;H, p). If all red/blue-colourings of Gn,p contain a

monochromatic H with probability Ω(1), we set q(n;H, p) = 0.

We refer to (a) as the 0-statement of the definition and (b) as the 1-statement. Observe that Theorem 1.1

gives that there exists C > 0 such that q(n;K3, p) = 0 for all p ≥ Cn−1/2. Moreover, Theorem 1.2 (a) gives for

any constant c > 0, if p = cn−1/2 and q(n;K3, p) ̸= 0, then q(n;K3, p) = n−2 whereas Theorem 1.2 (b) gives

that3 q(n;K3, p) = n−2/3 when p = Θ(n−2/3). Here, we complete the picture for almost all intermediate values

of p.

Theorem 1.4. We have that

q(n;K3, p) =

n
−6p−8 if n−3/5 ≪ p≪ n−1/2; (upper range)

n−3p−7/2 if n−2/3 ≪ p≪ n−3/5. (lower range)

An interesting aspect of this result is that there is a ‘jump’ in the completion threshold at around n−3/5.

Indeed, when p = n−3/5, then n−3p−7/2 = n−9/10 whereas n−6p−8 = n−6/5. We refer to the values of p larger

than n−3/5 as the upper range and those smaller than n−3/5 as the lower range. Determining the behaviour

of q(n;K3, p) when p = Θ(n−3/5) remains an intriguing open question, as does exploring the behaviour of the

two-round game for different H as the densities of the two random graphs vary. In particular, it is far from clear

what properties of H could determine this behaviour; Theorem 1.4 does not suggest any obvious conjecture.

Our proof of Theorem 1.4 incorporates several different approaches to capture the different behaviour oc-

curring at different densities. One particular feature that we would like to highlight is a novel use of the

‘discharging method’ to prove the existence of a desired colouring of the first graph in the lower range (see the

proof of Lemma 3.13). This method is inspired by an argument in recent work of Friedgut, Kuperwasser, Schacht

and the third author [9] that establishes sufficient conditions for sharpness of thresholds for various Ramsey

properties. Here, we build on this general idea of using discharging to find ‘easily colourable configurations’ in

graphs of small density, but we adopt a more involved discharging scheme catered to our purposes. We believe

that this method may find further applications in the study of Ramsey properties of graphs and other discrete

structures and our work here demonstrates its flexibility.

Organisation. The proof of Theorem 1.4 naturally splits into four parts. In Section 3, we establish the

0-statement, that is, the lower bound on q(n;K3, p). The (shorter) argument for the upper range is presented

in Section 3.1 and the (longer) argument for the lower range – in Section 3.2. In Section 4, we establish the

1-statement. The 1-statement—the upper bound on q(n;K3, p)—for the (easier) lower range will be proved in

Section 4.2 and for the (harder) upper range – in Section 4.3. Before embarking on this, we collect the relevant

notation and tools in Section 2.

2As usual, we abuse notation here as such a threshold will not be determined uniquely, but rather up to constants.
3In fact they only prove the 1-statement (b) of Definition 1.3 but the corresponding 0-statement also holds and essentially follows

from the analysis of the online game in [8], see Remark 3.7.
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2 Preliminaries

In this section, we present the notation and tools that we will use in our proofs.

2.1 Notation

We use standard probabilistic and graph theory notation throughout. For a graph G and a subgraph F , we let

NF (G) denote the number of copies of F in G. For vertex subsets A,B ⊆ V (G) of a graph G, G[A] denotes the

graph induced by G on A and e(A,B) denotes the number of edges of G with one endpoint in A and the other

in B (edges in G[A ∩B] are counted once here). For a vertex v ∈ V (G), we let dG(v) denote the degree of v in

G and ∆(G) := maxv∈V (G) dG(v) denote the maximum degree.

Given a hypergraph H, we denote the numbers of its edges and vertices by e(H) and v(H), respectively.

Further, for a vertex subset T ⊂ V (G), dH(T ) denotes the number of edges of H containing T . For an integer

ℓ ≥ 0, we write ∆ℓ(H) := max{dH(T ) : T ⊂ V (H), |T | = ℓ} for the maximum degree of a vertex set of size ℓ in

H. A set of edges M ⊆ E(H) in a hypergraph H is a matching if e ∩ f = ∅ for all e ̸= f ∈ M . The matching

number ν(H) := max{|M | : M is a matching in H} is the size of the largest matching in a hypergraph H.

For a set W , we let P(W ) := {U : U ⊆ W} denote the power set of W , the set of all subsets of W . For a

Boolean statement A, we denote by 1[A], the indicator function which evaluates to 1 if A holds and 0 if A does

not hold.

2.2 Concentration inequalities

We will frequently use concentration inequalities for two families of random variables. The first inequality, often

attributed to Chernoff [5] (see also [12, Theorem 2.1]), deals with the case of binomial random variables.

Lemma 2.1 (Chernoff’s inequality). Let X ∼ Bin(n, p) be binomially distributed and let µ = E[X] = np.

Then for any k ≥ 0, we have that

Pr[X ≥ µ+ k] ≤ exp

(
− k2

2(µ+ k/3)

)
.

The following inequality, known as Janson’s inequality [11] (see also [12, Theorem 2.14]) provides an expo-

nential bound for the lower tail of the number of edges induced by a hypergraph on a random subset of its

vertices.

Lemma 2.2 (Janson’s inequality). Let Γ be a finite set, let p : Γ → [0, 1], and let Γp be a random subset

such that every element a ∈ Γ is in Γp with probability p(a), independently of all other elements.

Suppose that A1, . . . , Am is a sequence of nonempty subsets of Γ. For each i ∈ {1, . . . ,m}, denote by

Ii := 1[Ai ⊆ Γp] the indicator random variable for the event Ai ⊆ Γp. Finally, denote

X :=

m∑
i=1

Ii, µ := E[X], and ∆ :=

m∑
i,j=1

1[Ai ∩Aj ̸= ∅] · E[IiIj ].

Then, for every 0 ≤ k ≤ µ,

Pr[X ≤ µ− k] ≤ exp

(
− k2

2∆

)
.
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In the setting of Janson’s inequality (Lemma 2.2), we will also be interested in showing that a.a.s., there is

a large collection of disjoint subsets Ai which all appear in Γp. Our next result provides an upper bound on

the probability that this does not happen, and can be derived from Lemma 2.2. We provide the details of this

derivation in Appendix A. We recall that for a hypergraph H, ν(H) denotes the matching number of H, that

is, the size of that largest matching in H.

Corollary 2.3 (Maximal disjoint families). Let Γ, p, A1, . . . , Am, µ, and ∆ be as in the statement of

Lemma 2.2 and set D := µ2

800∆ . Writing A for the hypergraph with vertex set Γ and edge set {A1, . . . , Am}, we
have

Pr
[
ν
(
A[Γp]

)
≤ D

]
≤ exp(−D).

2.3 Containers

We will appeal to the method of hypergraph containers, developed by Balogh, Morris and the third author of

the present paper [3], and independently, by Saxton and Thomason [23]. The key idea underlying this method

is that, given a uniform hypergraph whose edge set is evenly distributed, one can distribute its independent sets

into a well-behaved collection of containers. In more detail, these containers are vertex subsets that are almost

independent (in that they induce few edges of the hypergraph), every independent set of the hypergraph lies in

some container and, crucially, we have a bound on the number of containers. As there are many fewer containers

than independent sets in the hypergraph, reasoning about containers rather than independent sets leads to more

efficient arguments and this technique has proven to be extremely powerful. Indeed, the setting of independent

sets in hypergraphs can be used to encode a wide range of problems in combinatorics and the method of

hypergraph containers has been successfully exploited in a multitude of different settings, see [4]. Particularly

relevant to our work here are the applications of the method in sparse Ramsey theory, a program which was

initiated by Nenadov and Steger [16], who reproved the 1-statement of Theorem 1.1 utilising containers.

We state the container lemma in the following form, which follows from a general container lemma of Saxton

and Thomason [23]. We show how to derive this form of the container theorem in Appendix B. We remark

that the following version of the container theorem (and indeed the version of Saxton and Thomason [23]) gives

slightly more than we promised in the discussion of the general method given above: The following theorem

allows us to conclude not only that all independent sets lie in containers, but also sets that are very close to

being independent (see condition (i) of the theorem). Also, the theorem posits that every container is of the

form f(S1, . . . , St) for some family of small sets Si, that is, each container is determined by a (constant-sized)

collection of small subsets of the container. This in turn will allow us to run various union bounds over such

collections of small subsets.

Theorem 2.4. For every positive integer 2 ≤ k ∈ N and all ε ∈ (0, 1) and 1 ≤ K ∈ N, there exist t ∈ N and

δ > 0 such that the following holds. Suppose that a nonempty k-uniform hypergraph H with vertex set V and

τ ∈ (0, 1/t) satisfy

∆ℓ(H) ≤ Kτ ℓ−1 · e(H)

v(H)

for every ℓ ∈ {2, . . . , k}. Then, there exists a function f : P(V )t → P(V ) with the following properties:

(i) For every set I ⊆ V satisfying e(H[I]) ≤ δτke(H), there are S1, . . . , St ⊆ I, each of size at most τv(H)

and such that I ⊆ f(S1, . . . , St).

(ii) For every S1, . . . , St ⊆ V , the set f(S1, . . . , St) induces fewer than εe(H) edges in H.
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2.4 Typical properties of Gn,p

In this section, we derive some properties of Gn,p that a.a.s. hold. These will be useful throughout the paper.

We recall from Section 2.1, that NF (G) denotes the number of copies of F in G. We also recall the standard

notion of density of a graph F , which is m(F ) := max{eJ/vJ : J ⊆ F}.

Lemma 2.5. Suppose that G ∼ Gn,p with n−2/3 ≪ p≪ n−1/2. Then a.a.s., G has the following properties:

(P1) ∆(G) ≤ 2np;

(P2) NF (G) ≤ 2nvF peF for all F that satisfy both vF ≤ 8 and m(F ) ≤ 3/2; moreover, NF (G) ≤ nvF peF log n

for all F that only satisfy vF ≤ 8.

(P3) NK2,10
(G) ≤ n11p18;

(P4) There is a constant θ > 0 such that, for all U ⊆ V (G) with |U | ≥ n
2 , the graph G[U ] contains a set of

θ|U |3p3 edge-disjoint triangles;

(P5) For all integer-valued a = a(n), b = b(n) such that (log n)7/p ≪ a, b ≤ n, the following holds for any

A,B ⊆ V with |A| ≤ a, |B| ≤ b:

e(A,B) ≤ |A| · |B| · p+
a · b · p
log3 n

.

Proof. Properties (P1) and (P2) are standard properties of the distribution of the edges and small subgraphs

in Gn,p that can be proved using the second moment method and union bounds, see for example [1, Chapter

4]. Property (P3) follows from Markov’s inequality. Indeed, we have that

E[NK2,10
] ≤ n12p20 =

n11p18

np2
,

and np2 ≪ 1 due to the fact that p≪ n−1/2.

We will establish property (P4) using Corollary 2.3. To this end, fix any U ⊆ V (G) with |U | ≥ n
2 , let

X := NK3
(G[U ]) and note that µ := E[NK3

(G[U ])] =
(|U |

3

)
p3 for n large. Denoting by IT , for every triangle T

in U , the indicator random variable of the event that T appears in G, we have

∆ :=
∑

{IT IT ′ : T, T ′ triangles in Kn[U ], E(T ) ∩ E(T ′) ̸= ∅} ≤ µ · (1 + np2) ≤ 2µ,

where µ accounts for a choice of T , the first summand in the bracket accounts for a choice of T ′ such that

|E(T ′) ∩ E(T )| ≥ 2 (and hence T = T ′) and the second summand accounts for a choice of T ′ such that

|E(T ) ∩ E(T ′)| = 1; we also used that p≪ n−1/2 in the last inequality. By Corollary 2.3, with Γ = Kn[U ] and

A the collection of all triangles in Γ, the probability that every collection of pairwise edge-disjoint triangles in

G[U ] is smaller than

D :=
µ2

800∆
≥ µ

1600
≥ |U |3p3

10000

is at most e−D. Property (P4) then follows from a union bound over the (less than 2n) choices of vertex subset

U , using that D ≫ n for all such U because p≫ n−2/3.

Finally, in order to prove that G has (P5), note that, for any choice of a, b ≫ (log n)7/p and A,B ⊆ V

such that |A| ≤ a, |B| ≤ b, we have that µ := E[e(A,B)] =
(
|A||B| −

(|A∩B|
2

))
p ≤ |A||B|p. Moreover e(A,B) is

binomially distributed and, setting k := abp/ log3 n, we have that µ + k/3 ≤ 2abp. Hence, by Lemma 2.1, we

have that

Pr
[
e(A,B) ≥ |A||B|p+ k

]
≤ Pr

[
e(A,B) ≥ µ+ k

]
≤ exp

(
− k2

2(µ+ k/3)

)
≤ exp

(
− (abp)2

log6 n · 4abp

)
≤ exp

(
− abp

4 log6 n

)
.
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Therefore, applying a union bound over the choice of a, b, A,B, we get:

Pr [G /∈ (P5)] ≤
∑
a,b

∑
1≤α≤a
1≤β≤b

(
n

α

)
·
(
n

β

)
· exp

(
− abp

4 log6 n

)

≤
∑
a,b

∑
1≤α≤a
1≤β≤b

nα · nβ · exp

(
− abp

4 log6 n

)

≤ n2 ·
∑
a,b

na · nb · exp

(
− abp

4 log6 n

)

≤ n2 ·
∑
a,b

exp

(
a log n+ b log n− abp

4 log6 n

)
,

where the (outer) sum goes over all choices of a = a(n) ∈ N and b = b(n) ∈ N such that (log n)7/p ≪ a, b ≤ n.

For all such a, b, we have that abp
4 log6 n

≫ a log n, b log n, and so

Pr [G /∈ (P5)] ≤ n2 ·
∑
a,b

n−ga,b(n) ≪ 1,

where ga,b(n) = abp
4 log7 n

− a− b≫ 1 for all a, b.

3 Proof of the 0-statements

In this section, we prove our 0-statements, establishing the lower bounds on q(n;K3, p) in Theorem 1.4. Our

proofs in the lower and upper ranges follow the same scheme. First, we will show the existence of a good colouring

of G1 ∼ Gn,p, i.e., a colouring with certain desirable properties specified in Definition 3.1 below. Second, we

will show that any such good colouring of G1 can be a.a.s. extended to the second independent random graph

G2 ∼ Gn,q when q is chosen appropriately. While the arguments showing existence of a good colouring will be

different in the lower and the upper ranges, extendability of good colourings, stated as Proposition 3.2 below,

is proved in the full range of interest.

Definition 3.1. For a colouring φ : E(G) → {red,blue} of the edges of a graph G, we define the coloured graph

Crrbb to be a 4-cycle with two adjacent red edges and two adjacent blue edges. Then for t ≥ 0, we say a colouring

φ : E(G) → {red,blue} is t-good if it has the following properties:

1. φ has no monochromatic triangles;

2. every edge of G that is not in a triangle is coloured blue;

3. the number of Crrbb in G coloured by φ is less than t.

Moreover, if the colouring is 0-good, we we will refer to it as being very good.

We remark that conditions 1 and 2 will be easy to impose on a colouring of G1 ∼ Gn,p. Indeed, since p is

always below the K3-Ramsey threshold of Theorem 1.1, a K3-free colouring exists and one can recolour edges

not in triangles so that condition 2 is also satisfied. Thus, the critical condition in the definition is condition 3.

The motivation for considering copies of Crrbb is that they pose a direct threat to being able to extend a

colouring to G2. Indeed, consider an edge that forms a triangle with both the red edges and the blue edges of

a copy of of Crrbb in G1. If this edge appears in G2, then clearly there is no way to colour the edge without

creating a monochromatic triangle.
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Proposition 3.2. Suppose that n−2/3 ≪ p≪ n−1/2, t > 0 and 0 < q ≪ min{t−1, n−3p−7/2} and let G1 ∼ Gn,p

and G2 ∼ Gn,q be independent. Then a.a.s. any G1-measurable colouring φ : E(G1) → {red,blue} which is

t-good can be extended to a monochromatic triangle-free colouring of G1 ∪G2.

In the proof of Proposition 3.2 and the further proofs of the 0-statements, we will consider copies of certain

uncoloured subgraphs, which are defined in Figure 1. Our next lemma explains why the graphs F0, F1,K4, and

their edge-deleted companions F−
0 , F

−
1 ,K

−
4 , appear naturally when one looks for colourings with few copies of

Crrbb.

F0 F−
0 F1 F−

1

Figure 1: The graphs F0, F
−
0 , F1 and F−

1 .

Lemma 3.3. Suppose that a 4-cycle C in a graph G has two adjacent edges e1, e2 such that, for i = 1, 2, ei is

contained in a triangle of G that does not contain e3−i. Then C is contained in a copy of F− in G, for some

F ∈ {F0, F1,K4}. Moreover, in each case, adding the edge that forms a triangle with e1 and e2 completes this

copy of F− to a copy of F .

Proof. Label the vertices of C as x, y, w, z so that e1 = xy and e2 = xw. Further, for i = 1, 2, let ui be the

vertex which forms the triangle with ei given by the statement of the lemma; we therefore have that u1 ̸= w

and u2 ̸= y. We consider the following cases. Firstly, if one of the ui is equal to z, then the vertices of C host

a K−
4 in G and we are done. So we can assume that neither ui is equal to z. If u1 = u2, then we get a copy of

F−
1 that contains C, whilst if u1 ̸= u2, we get a copy of F−

0 containing C. The moreover statement can also be

easily checked in each case.

The following simple consequence of Lemma 3.3 is more easily applicable in some of our proofs.

Corollary 3.4. Let G be a graph coloured by some φ : E(G) → {red,blue} which satisfies conditions 1 and 2 of

Definition 3.1. Then any copy of Crrbb in G is contained in some copy of F− in G for some F ∈ {F0, F1,K4}.

Proof. Let e1 and e2 be the red edges in the copy of Crrbb. Condition 2 in Definition 3.1 implies that each of

these edges is in a triangle of G. Moreover, G does not contain the edge e3 that forms a triangle with e1 and

e2, as otherwise there would be no way to colour e3 without creating a monochromatic triangle, contradicting

the fact that φ is triangle-free, which is condition 1 in Definition 3.1.

We are now in a position to prove Proposition 3.2.

Proof of Proposition 3.2. We first show the following claim.

Claim 3.5. A.a.s. every copy of F0, F1 and K4 in G1 ∪G2 has at most one edge in G2.

Proof. Let XF0
count the number of copies of F0 in G1 ∪G2 with at least two edges in G2. There are at most

n6 copies of F0 in Kn and the probability that each such copy appears in G1 ∪ G2 with at least two edges in

G2 is at most
(
9
2

)
(p+ q)7q2. Since q ≪ p, by our assumptions on q and p, we can bound the expectation of XF0

as follows:

E[XF0
] ≤

(
9

2

)
n6(p+ q)7q2 ≤ 2

(
9

2

)
n6p7q2 ≪ 1,
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using that q ≪ n−3p−7/2 in the last inequality here. Similarly, defining XF to be the number of copies F in

G1 ∪G2 with at least two edges in G2 for F ∈ {F1,K4}, we have

E[XF1 ] ≤ 28n5p6q2 ≪ n−1p−1 ≪ 1, E[XK4 ] ≤ 26n4p4q2 ≪ n−2p−3 ≪ 1.

The assertion of the claim now follows by Markov’s inequality. ◀

Given G1 and a red/blue-colouring of its edges, we call an edge uv ∈ Kn \ G1 dangerous if there is a copy

of Crrbb in G1 with edges uw,wv, vx, xu for some vertices w, x /∈ {u, v} such that uw,wv are coloured red and

vx, xu are coloured blue.

Claim 3.6. A.a.s. G1 has the following properties:

(i) A.a.s. (with respect to G2), every copy of F ∈ {F0, F1,K4} in G1 ∪G2 has at most one edge in G2,

(ii) For every t-good colouring φ of G1, a.a.s. G2 contains no dangerous edges.

Proof. Property (i) follows from Claim 3.5 and Fubini’s theorem. Further, each t-good colouring φ of G1

contains at most t copies of Crrbb and hence at most t dangerous edges. Since each such edge appears in G2

with probability q ≪ t−1, the expected number of dangerous edges that appear in G2 is o(1) and (ii) follows

from Markov’s inequality. ◀

In view of Claim 3.6, it suffices to show that, for every G1 that has the two properties described in the

claim, every t-good colouring φ of G1 can be extended to a K3-free colouring of G1 ∪ G2 for every graph G2

that satisfies the events described in both (i) and (ii), which a.a.s. hold in G2 (for fixed G1 and φ). To this end,

consider an arbitrary ordering of the edges of G2 \ G1 and colour them one-by-one according to the following

rule. We colour e ∈ G2 \G1 blue unless e forms a blue triangle with previously coloured edges (of G1 ∪G2), in

which case we colour e red. We claim that the resulting colouring of G1 ∪G2 is K3-free.

Note that the only possible monochromatic triangles that can occur in our colouring of G1∪G2 must be red

and contain an edge of G2 \G1, as φ is good and thus triangle-free. Suppose that e is the last edge of G2 \G1

that completes a red triangle; denote this triangle by T and its two remaining edges by fr and gr. Note that

e is also contained in a triangle with two blue edges, say fb and gb, already coloured in G1 ∪G2, as otherwise

our rule would colour e blue. We claim that fr and gr are both contained in triangles other than T in G1 ∪G2.

Indeed, let h ∈ {fr, gr} be arbitrary. If h ∈ G1, then h must be contained in a (non-monochromatic) triangle of

G1 due to the fact that our colouring of G1 was good and the fact that h is coloured red. If h ∈ G2 \G1, then

it must be contained in a triangle whose remaining two edges are blue, as otherwise we would have coloured it

blue. Consequently, by Lemma 3.3, we have that the 4-cycle C := {fr, gr, fb, gb} is contained in a copy of F− in

G1 ∪G2, for some F ∈ {F0, F1,K4}, and the edge e completes this copy of F− to a copy of F . However, as we

have assumed that G2 contains no dangerous edges, one of the edges of the Crrbb-copy C := {fr, gr, fb, gb} must

belong to G2. This contradicts the assumed conclusion of (i), as the copy of F containing C has at least two

edges in G2, namely e and one of the edges in C. This shows that no red triangle can occur, which concludes

the proof of the proposition.

Remark 3.7. Our proof of the 0-statements adopts a greedy strategy to colour the second random graph. In

fact, our colouring is identical to the colouring used in [8] to prove that the online game a.a.s. lasts Ω(n4/3)

rounds under optimal play. Indeed, they also colour each edge blue as it appears unless it creates a blue triangle,

in which case they colour it red. The authors of [8] show that this colouring will only fail to avoid monochromatic

triangles if a copy of F0 (Figure 1) or K4 appears, which a.a.s. does not happen with ≪ n4/3 rounds/edges.

Similarly, one can adjust our proof presented above to show that Theorem 1.2 (b) is tight in the following sense:
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When M1 = cn4/3 for some c > 0 and M2 ≪ n4/3, then a.a.s. there is a red/blue-colouring of G1 that can be

extended to the edges of G2 avoiding monochromatic copies of K3. Indeed, as in our proof of Proposition 3.2,

one can colour G1 avoiding monochromatic triangles such that every edge not in a triangle is blue. Colouring

the second random graph according to the online greedy approach, as in [8], the player will only fail if a copy

of F0 or K4 appears in G1 ∪G2, with at least one edge of G2. Such copies a.a.s. do not exist when M2 ≪ n4/3

and so the player a.a.s. succeeds.

3.1 The 0-statement in the upper range

In this section, we prove the lower bound on q(n;K3, p) in the upper range n−3/5 ≪ p≪ n−1/2 of Theorem 1.4.

In this case, the proof follows easily from Proposition 3.2.

Theorem 3.8. Suppose that n−2/3 ≪ p ≪ n−1/2 and q ≪ n−6p−8 and let G1 ∼ Gn,p and G2 ∼ Gn,q

be independent. Then a.a.s. there is a G1-measurable colouring φ : E(G1) → {red,blue} that can be a.a.s.

extended to a triangle-free colouring of G1 ∪G2.

Proof. By Proposition 3.2, it suffices to show that a.a.s., G1 ∼ Gn,p admits a t-good colouring φ with t =

150n6p8. Firstly, we claim that a.a.s. G1 contains at most n6p8 copies of F−, for each F ∈ {F0, F1,K4}.

Indeed, this follows from Lemma 2.5 (P2), which applies since m(F−
0 ) = 4/3, m(F−

1 ) = 7/5, and m(K−
4 ) = 5/4,

and the fact that n4p5, n5p7 ≪ n6p8 for p ≫ n−2/3. We also have that a.a.s. G1 is not K3-Ramsey due to

Theorem 1.1 (a). It is therefore enough to show that G1 admits a t-good colouring φ under the assumption

that these two asymptotically-almost-sure events occur.

We define φ as follows. Take any triangle-free colouring of G1 and recolour any edge not in a triangle blue.

As we only changed the colour of edges not in triangles, it is clear that φ remains triangle-free; it only remains

to show that φ induces at most t copies of Crrbb. This follows from Corollary 3.4, as each copy of Crrbb is

contained in some copy of F− for some F ∈ {F0, F1,K4}. Each such copy of some F− with F ∈ {F0, F1,K4},

hosts at most4 50 copies of Crrbb and so the number of Crrbb is at most 50 times the number of copies of some

F− with F ∈ {F0, F1,K4}. This completes the proof due to our upper bounds on the number of these copies

above.

3.2 The 0-statement in the lower range

In this section, we prove the lower bound on q(n;K3, p) in the lower range n−2/3 ≪ p≪ n−3/5 of Theorem 1.4.

We will again appeal to Proposition 3.2, but now we will be able to show the existence of a t-good colouring of

G1 for the much larger value t = n3p7/2.

Theorem 3.9. Suppose that n−2/3 ≪ p ≪ n−3/5 and q ≪ n−3p−7/2 and let G1 ∼ Gn,p and G2 ∼ Gn,q be

independent. Then a.a.s., there is a G1-measurable colouring φ : E(G1) → {red,blue} that can be a.a.s. extended

to a triangle-free colouring of G1 ∪G2.

Recall that in the proof of Theorem 3.8, we showed that every copy of Crrbb is contained in a copy of F−,

for some F ∈ {F0, F1,K4}, and we used simple upper bounds on the number of copies of F−. Here, such simple

bounds will no longer suffice and we will have to explore how the copies of these fixed graphs interact. Clearly,

any singular copy of such an F− can be coloured so that it avoids both monochromatic triangles and copies

of Crrbb. Therefore, we are only forced to create copies of Crrbb if these copies of some F− and the copies of

4We state this loose upper bound for simplicity. It is easy to check that there are at most 45 copies of C4 in any graph with at

most 6 vertices, but of course our specific F− contain many fewer 4-cycles.
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triangles interact in certain ways. The following definition captures the subgraphs of Kn that correspond to

a collection of interacting copies of K3, F−
0 and F−

1 (we exclude K−
4 from this list, as it is composed of two

interacting triangles).

Definition 3.10. Let H be the hypergraph with vertex set E(Kn) whose hyperedges are all (3-, 7- or 8-element)

sets of edges that form a copy of K3, F
−
0 or F−

1 in Kn. We will call a graph C ⊆ Kn a collage if C induces a

connected subhypergraph of H. We will denote the collection of collages in Kn by C.

We also define collages that are well-behaved as follows.

Definition 3.11. We say a collage C ∈ C is well-behaved if

(i) v(C) ≤ log n;

(ii) For any subgraph C ′ ⊆ C such that C ′ ∈ C, we have that e(C ′)/v(C ′) < 5/3.

Moreover, we say that C ∈ C is very well-behaved if, in addition to (i) and (ii), C satisfies the following further

condition:

(iii) C contains no copies of a graph F with (vF , eF ) ∈ {(4, 6), (5, 7), (8, 12)}.

We will reduce Theorem 3.9 to two key lemmas. The first shows that our random graph G1 ∼ Gn,p will

a.a.s. only contain well-behaved collages.

Lemma 3.12. Suppose that n−2/3 ≪ p≪ n−3/5 and let G1 ∼ Gn,p. Then a.a.s. every collage C ∈ C such that

C ⊆ Gn,p is well-behaved.

Our second lemma asserts that very well-behaved collages can be coloured avoiding any copies of Crrbb.

Lemma 3.13. Every very well-behaved collage C ∈ C admits a very good colouring.

We remark that condition (i) of Definition 3.11 is in fact irrelevant here and we will prove that the conclusion

of Lemma 3.13 holds for all collages that satisfy conditions (ii) and (iii). Before proving these lemmas, let us

see how they imply Theorem 3.9.

Proof of Theorem 3.9. By Proposition 3.2, it suffices to show that a.a.s. G1 admits a t-good colouring with

t := n3p7/2. Let us assume the asymptotically-almost-sure conclusions of Lemma 3.12 and Lemma 2.5 (P2)

and also that G1 is not K3-Ramsey, which happens a.a.s. due to Theorem 1.1 (a).

We colour the edges of G1 according to the following scheme, where we define C(G1) to be the collection of

collages C ∈ C such that C ⊆ G1:

1. Colour all maximal subgraphs C ∈ C(G1) which are very well-behaved with a very good colouring (this is

possible, due to Lemma 3.13).

2. Colour all the other maximal subgraphs in C(G1) in a triangle-free way, such that all edges not in a triangle

are blue (this is possible as G1 is not K3-Ramsey).

We claim that the resulting colouring is good. Firstly, note that all edges of G1 are indeed coloured as

every edge of G1 lies in some maximal collage contained in G1 (the collage may just consist of the single edge).

Clearly, all edges not in a triangle are coloured blue. Moreover, as every triangle of G1 lies in some maximal

collage, the resulting colouring contains no monochromatic triangles. It remains to show that there are at most

t copies of Crrbb.
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Corollary 3.4 implies that any copy of Crrbb must lie in some copy of F−
1 , F−

0 , or K−
4 . However, each of

these graphs is contained in some maximal collage (they all induce connected subhypergraphs in H) and thus

all copies of Crrbb are contained in maximal collages that are not very well-behaved. It thus suffices to show that

the total number of 4-cycles that lie in such collages is at most t. By the assumed conclusion of Lemma 3.12,

every C ∈ C(G1) is well-behaved, and so if C is not very well-behaved, then it contains some copy of a subgraph

F with vF vertices and eF edges such that (vF , eF ) ∈ {(4, 6), (5, 7), (8, 12)}. However, the assumed conclusion

of Lemma 2.5 (P2) implies that there are at most

n4p6 log n+

((5
2

)
7

)
n5p7 log n+

((8
2

)
12

)
n8p12 log n ≤ 210n5p7 log n

copies of such an F in G1 (using that n4p6 ≪ n8p12 ≪ n5p7 here). Therefore, there are at most 210n5p7 log n

maximal collages C ∈ C(G) that are not very well-behaved. A collage C ∈ C(G) contains at most v(C)4 copies

of 4-cycles, and each collage C ∈ C(G) has at most log n vertices on account of it being well-behaved. So in

total, there are at most 3n5p7 + 210n5p7 · log5 n ≪ n3p7/2 copies of Crrbb in our colouring of G, finishing our

proof.

It remains to prove Lemmas 3.12 and 3.13. We begin by proving Lemma 3.12.

Proof of Lemma 3.12. Let Cbad be the collection of all C ∈ C such that either e(C)/v(C) ≥ 5/3 or v(C) ≥ log n.

It suffices to show that a.a.s. G1 ∼ Gn,p does not contain any subgraphs in Cbad. In fact, we will focus on

another family C∗ of (nonempty) subgraphs of Kn with the following properties:

(a) Every set in Cbad contains some element of C∗.

(b) Every C∗ ∈ C∗ satisfies e(C∗) ≥ 5v(C∗)/3 or both v(C∗) ≥ log n and e(C∗) ≥ 5v(C∗)/3 − 3.

(c) For every 5 ≤ k ≤ n, there are at most (2k)150(8n)k graphs C∗ ∈ C∗ with v(C∗) = k.

Assuming we can find such a family C∗ of subgraphs, we claim that we are done. Indeed, by (a),

Pr[∃C ∈ Cbad : C ⊆ G1] ≤ Pr[∃C∗ ∈ C∗ : C∗ ⊆ G1] ≤
∑

C∗∈C∗

pe(C
∗).

Moreover, by (b) and (c),

∑
C∗∈C∗

pe(C
∗) =

n∑
k=5

∑
C∗∈C∗

v(C∗)=k

pe(C
∗) ≤

logn∑
k=5

(2k)150(8n)kp5k/3 +

n∑
k=logn

(2k)150(8n)kp5k/3−3 ≪ 1,

where the last inequality follows from the assumption that p≪ n−3/5. We also used that (b) easily implies that

there are no C∗ ∈ C∗ with less than 5 vertices.

It remains to define a family C∗ of subgraphs of Kn satisfying conditions (a)–(c) above. Given a collage

C ∈ Cbad, we construct the ‘core’ of C algorithmically as follows. We fix some order σ on E(Kn) and initiate

our algorithm with logs LV , LE , LO and LD all being empty. Throughout the algorithm, we will have that LV

is a sequence of distinct vertices in V (C) ⊆ V (Kn), LE is a sequence of distinct edges in E(C) ⊆ E(Kn), LO is

a sequence of positive natural numbers and LD is a sequence whose each entry indicates a time step i ≥ 0 and

some set of edges F ⊆ E(C) ⊆ E(Kn). We will maintain, at the end of every time step i ≥ 0 of the algorithm,

that the set of vertices in LV and the set of edges in LE define a subgraph of C, which we denote as Ci (and

so C0 is the empty graph).

Now, in the first step of the algorithm, we choose some edge e1 ∈ C, add its endpoints (in an arbitrary

order) to LV and add e1 to LE (so that C1 is the one-edge graph e1). In every subsequent step i ≥ 2, we do

the following:
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• We terminate and output C∗ = Ci−1 if one of the following is true:

|LD| = 7, |LV | > log n or Ci−1 = C.

• Otherwise, since Ci−1 ̸= C and C is a collage, there must be a copy of K3, F−
0 or F−

1 in C that intersects

Ci−1 in at least one edge but is not fully contained in Ci−1. Call such a copy regular if it is a copy of F−
0

and it intersects C in a triangle; otherwise, call it degenerate. We say that a regular copy of F−
0 is rooted

at e if e belongs to its intersection with Ci−1 and it is the edge of the triangle that also participates in

the (unique) 4-cycle of F−
0 .

– If there exist regular copies of F−
0 , then to each copy associate a number x ∈ N which is the position

in LE of the edge that the copy is rooted at. Take a copy of F−
0 that minimises this position and

add this minimum x to LO. Update LV and LE by appending to it the vertices and the edges of our

copy of F−
0 that do not lie in Ci−1: the five such edges are added according to their relative order in

σ and the three vertices in some canonical order. Note that this defines Ci with e(Ci) = e(Ci−1) + 5

and v(Ci) = v(Ci−1) + 3.

– If there are no regular copies of F−
0 , add some degenerate copy of K3, F−

0 or F−
1 , append to LV

and to LE the vertices and the edges of this copy that do not lie in Ci−1: the edges are added

according their relative order in σ and the vertices (if there are any) in an arbitrary order; this again

defines Ci. Finally, detail this degenerate step i by logging it in LD along with the set of edges in

E(Ci) \ E(Ci−1).

Since each step increases LE by at least one, this algorithm terminates for any C ∈ Cbad. We may thus define

C∗ as the set of all its outputs, that is, C∗ := {C∗ : C ∈ Cbad}. This definition guarantees that C∗ satisfies (a)

above; we will show that it also satisfies (b) and (c). First though we establish the following key estimate that

bounds the distance of e(Ci) from 5v(Ci)/3 in terms of the number of degenerate steps (equivalently, the size

of |LD|) at the end of step i, which we denote by d(i).

Claim 3.14. For all i ≥ 1, we have that d(i) ≤ 3e(Ci) − 5v(Ci) + 7 ≤ 21d(i).

Proof. Both inequalities hold with equality when i = 1 since e(C1) = 1, v(C1) = 2, and d(1) = 0. Suppose that

i ≥ 2 and the claim holds for i−1. If the ith step is regular, the claim continues to hold since e(Ci) = e(Ci−1)+5,

v(Ci) = v(Ci−1) + 3, and d(i) = d(i − 1). If the ith step is degenerate, then there is some H ′ = H ∩ Ci−1

such that H is a copy of K3, F−
0 or F−

1 and H ′ is a proper subgraph of H that contains at least one edge and

(H,H ′) ̸= (F−
0 ,K3). In this case we have that e(Ci) = e(Ci−1)+e, v(Ci) = v(Ci−1)+v, where e := e(H)−e(H ′)

and v := v(H) − v(H ′). For every such H,H ′, we have 1 ≤ 3e − 5v ≤ 21, and so the claim will hold also for

i. Indeed the upper bound of 3e − 5v ≤ 21 follows from the fact that e ≤ 7 as H has at most 8 edges and H ′

is non-empty. The lower bound 3e − 5v ≥ 1 follows from a simple case analysis considering v = 1, 2, 3, 4 and

noting that one can assume that H ′ is an induced subgraph of H. We leave the details to the reader. ◀

Property (b) now follows from Claim 3.14. Indeed, if C∗ = C then certainly e(C∗) ≥ 5v(C∗)/3 as C ∈ Cbad.

If C∗ ̸= C and v(C∗) < log n, then at the time τ at which the algorithm terminates we have that C∗ = Cτ−1

and d(τ − 1) = 7 and so 0 ≤ 3e(C∗) − 5v(C∗) as required. Finally if v(C∗) > log n, the lower bound on e(C∗)

also follows from Claim 3.14, using that, trivially, 0 is a lower bound on the number of degenerate steps taken

when the algorithm terminates.

It remains to prove property (c) of the collection C∗, so let us fix some 5 ≤ k ≤ n. We bound the number of

C∗ ∈ C∗ with v(C∗) = k as follows. Firstly, we note that C∗ can be completely determined by the logs LV , LO
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and LD when the algorithm terminates. That is, we can recover LE from these logs. Indeed, the first two

vertices in LV determine the first edge in LE . Now, suppose we have recovered LE up to time i−1 and consider

time step i. If the step is not degenerate (which we know from LD), the new edges of the regular copy of F−
0

are completely determined by the edge that the copy is rooted at, which we know from LO and our recovery

of LE so far, and the next three vertices, which appear (in a canonical order) in LV . Hence, we can add the

new edges (in order according to the order σ on E(Kn)) to LE and recover LE up to time i. If, on the other

hand, the step i is degenerate, then LD will signify this and indicate the new edges that need to be added to

LE . Again the order they are added is determined by σ.

This shows that in order to bound the number of C∗ with v(C∗) = k, it suffices to bound the number of

possibilities for the logs LV , LO and LD output by the algorithm with |LV | = k. For the logs LV , we use the

simple upper bound that there are at most nk choices. For the logs LO, note first that Claim 3.14 implies that

any C∗ with v(C∗) = k has

e(C∗) ≤ 5k + 21 · 7

3
≤ 2k + 49,

using here that there are at most 7 degenerate steps before the algorithm terminates. Now in each instance of the

algorithm, note that LO is a nondecreasing sequence of numbers bounded by 2k+49. Moreover, the length of the

sequence is the number of regular steps which is certainly less than k and we can append repeated entries with

value 2k+50 to make all the sequences length k. Hence we can bound the number of possible LO by the number of

nondecreasing sequences of length k with elements in {1, . . . , 2k+50}, which is
(
k+(2k+50)−1

k

)
≤ 23k+50. Finally,

each of the at most 7 entries of LD indicates a step (at most k choices) and a selection of at most 7 edges which

lie on vertices in LV (at most k2 choices for each edge). Hence there at most
∑7

j=0(k(
∑7

h=1(k2)h))j ≤ k140

choices for LD. Combining our estimates of the number of choices of LV , L0 and LD gives (c) and completes

the proof of Lemma 3.12.

Finally, it remains to prove Lemma 3.13, which is the subject of the rest of this section. In order to prove

this, we use a novel ‘discharging’ method, similar in spirit to the method used in the recent work of Friedgut,

Kuperwasser, Schacht and the third author [9] in proving sharp thresholds for Ramsey properties.

Proof of Lemma 3.13. Assume the contrary and let C ∈ C be a smallest counterexample. We claim that every

proper subgraph D ⊊ C admits a very good colouring. Indeed, let D = D1 ∪ · · · ∪Dt be the partition of D into

maximal collages and note each Di is also very well-behaved. Since C is a smallest counterexample, each Di

admits a very good colouring. We claim that the union of these colourings is a very good colouring of D. Indeed,

every triangle in D is contained in some Di (as it is a maximal collage) and thus it is not monochromatic. It is

clear that every edge not in a triangle is coloured blue. If there was a copy of Crrbb in D, it would lie in some

copy of F−
0 , F−

1 or K−
4 , by Corollary 3.4, and thus it would lie in some Di (as each of F−

0 , F−
1 and K−

4 induces

a connected subhypergraph of H), a contradiction.

Our aim is now to remove from C a carefully chosen selection of edges and show that any very good colouring

of the remaining subgraph (which exists, from above) can be extended to the removed edges while remaining

very good, thus contradicting our assumption that C is a counterexample. In order to find such a removable set

of edges, we define a discharging procedure which assigns weights to small subgraphs of C that we call a blocks.

To define our blocks, notice that condition (iii) of Definition 3.11 implies that C does not contain copies of

K4 and the graphs F2 and F3 depicted in Figure 2. This in turn implies that every triangle in C shares edges

with at most one other triangle in C. We define our blocks B = B(C) to be all copies of K−
4 in C and all

triangles in C that are not contained in a K−
4 ; this definition guarantees that blocks are pairwise edge-disjoint.

Fix an ordering σ of B such that every triangle in B precedes every copy of K−
4 and assign weights to the blocks

in B as follows:
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F2 F3 F4

Figure 2: The three graphs constructed from K−
4 by connecting a pair of its

vertices by a path of length two.

1. Assign weight 5 to each vertex of C and weight −3 to each edge.

2. For every v ∈ V (C) contained in exactly one block, send its weight to this block.

3. For every vertex v ∈ V (C) contained in more than one block, redistribute its weight equally to the two

smallest blocks that contain v according to the ordering σ on B. Note that in this step, if v is a vertex

in i ≥ 0 triangles in B, then i′ := min{i, 2} triangles containing v and 2 − i′ copies of K−
4 containing v

increase their weight by 5/2.

4. For every e ∈ E(C) contained in a block, redistribute its weight to the block containing it (recall that

blocks are pairwise edge-disjoint).

5. For every v ∈ V (C) not contained in a block, redistribute its weight equally to the edges incident to v

(note that these edges were not yet handled, since they are also not in a block).

6. For every e ∈ E(C) not contained in a block, redistribute its weight in the following way: Since e belongs

to a copy of F−
0 or F−

1 , at least one of its endpoints must also be a vertex in a block.

(a) If only one of the endpoints belongs to some block, distribute e’s weight equally among all the blocks

it belongs to.

(b) Otherwise, split e’s weight equally among its two endpoints and, for each of the endpoints, distribute

the weight equally among all its blocks.

Note that by the end of this process, the total weight of all the edges and vertices in C has been redistributed

to B, and the total weight remains unchanged. By our assumption that e(C)/v(C) < 5/3, the total weight of

the vertices and edges before redistribution to blocks was positive, and therefore so is the total weight of all

the blocks. Therefore, C must contain (at least) one positive-weight block X ∈ B. We will split the argument

into two cases, depending on whether X is a copy of K3 or K−
4 . In each case, we will find a removable set of

edges. Before embarking on this, we prove a technical claim that allows us to reason about the weight of X by

inspecting the graph C locally, without knowledge of the whole of C.

Claim 3.15. Suppose that C ′ ⊆ C satisfy B(C ′) = B(C) =: B and let wC , wC′ : B → R be the weight assignments

defined by the above process on C and C ′, respectively (with the same order σ on B). Then wC(X) ≤ wC′(X)

for each X ∈ B.

Proof. Since stages 1–4 depend only on the set of blocks, by the end of stage 4, and B(C) = B(C ′), all the

vertices, edges and blocks in C and C ′ have the same weight. Now let J be the graph spanning all the edges

of C that do not lie in a triangle (and so have not been dealt with by the end of Stage 4 of the process). It

is enough to show that, after stage 5, the C ′-weight of each edge of J ∩ C ′ is at least as large as its C-weight

and that the C-weight of each edge of J is at most −1/2. This implies the assertion of the claim, as in stage 6,

the change in weight of every block depends only on the edges of J and their C-weights are negative and never

larger than their C ′-weights.
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Pick an arbitrary e ∈ J . If both endpoints of e lie in blocks, its weight is −3, in both processes. Otherwise,

exactly one endpoint of e does not lie in a block. If we denote this endpoint by v, then, for both H ∈ {C,C ′},

the H-weight of e at the end of stage 5 is −3 + 5/dH(v). Since dC′(v) ≤ dC(v) for all v ∈ V (C ′) and dC(v) ≥ 2

for all v ∈ V (C), the C-weight of e is at most −1/2 and not larger than its C ′-weight. ◀

Claim 3.16. If X is a positive-weight copy of K3, then one of its edges e ∈ E(X) is not in a 4-cycle in a copy

of F−
0 in C.

Claim 3.17. Suppose X is a positive-weight copy of K−
4 with edges e1, f1, e2, f2, g such that ei, fi and g form

a triangle for i = 1, 2. Then there exists an i ∈ {1, 2} such that neither ei nor fi belong to a 4-cycle in a copy

of F−
0 in C.

Before proving these claims, let us see how we can use them to contradict our assumption that C is a minimal

counterexample. Firstly, consider the case that our positive-weight block X is a triangle. Let e be an edge of X

from the assertion of Claim 3.16. As shown at the beginning of the proof, C \{e} has a very good colouring. We

may extend this colouring to a very good colouring of C as follows. We colour e blue unless the other two edges

of X are coloured blue, in which case we colour e red. As X is the only triangle containing e, the colouring

remains triangle-free and every edge of C that is not in a triangle is still coloured blue. Thus, we just need to

show that there are no copies of Crrbb in C, see property 3 of Definition 3.1. Suppose that there was such a

copy. As the colouring of C \ {e} is very good, this copy of Crrbb would contain e. Corollary 3.4 would then

imply that e lies in the 4-cycle in a copy of K−
4 , contradicting the assumption that X is a block, a copy of F−

0 ,

contrary to our choice of e, or a copy of F−
1 , contradicting the property (iii) of being very well-behaved.

The case when X is a copy of K−
4 is resolved similarly. Without loss of generality, we can assume that the

edges of X are labelled as in Claim 3.17 and neither e1 nor f1 belong to a 4-cycle in a copy of F−
0 . As above,

C \{e1, f1} has a very good colouring, which we may extend fo a very good colouring of C as follows. We colour

e1 red and f1 unless that creates a copy of Crrbb with the edges e2 and f2, in which case we colour e1 blue and f1

red. We claim that this gives a very good colouring of C. Since the only triangle in C containing e1 or f1 is the

triangle containing both of them, the colouring remains triangle-free; every edge not in a triangle is still blue.

We just need to verify that there are no copies of Crrbb. As in the previous case, we can apply Corollary 3.4

and rule out that e1 and f1 are in copies of F−
1 and F−

0 using condition (iii) of being very well-behaved and the

key property of e1 and f1 coming from Claim 3.17. The only case left to consider then, is that e1 or f1 lie in

some copy of Crrbb that lies in a copy of K−
4 in C. Since C is {K4, F2, F3}-free, the only copy of K−

4 containing

our copy of Crrbb is X itself, which is impossible, as we coloured X to avoid having a copy of Crrbb.

Now that we have proved that Claims 3.16 and 3.17 contradict the assumption that C is a minimal coun-

terexample, it remains only to prove these two claims.

Proof of Claim 3.16. Denote V (X) = {x, y, z} and suppose towards a contradiction that each of xy, xz and yz

belongs to a 4-cycle in some copy of F−
0 . To get a contradiction, due to Claim 3.15, it suffices to show that

there is some C ′ ⊆ C such that B(C) = B(C ′) and wC′(X) ≤ 0.

We begin by considering C ′ to be the union of all the triangles in C (so that B(C) = B(C ′)). By our

assumption, each edge of X must share a vertex with a triangle other than X; indeed, otherwise it cannot lie

on a 4-cycle in a copy of F−
0 . Consequently, at least two of X’s vertices, say y and z, are also in other triangles

and hence blocks. Therefore, their contribution to X’s weight (in stage 3 of the weight redistribution process)

is at most 5/2 each, and so wC′(X) ≤ 1. We may further assume that x does not lie in an additional triangle,

since otherwise wC′(X) ≤ −3/2, see Figure 3.
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(i) wC′(X) ≤ 1

X

(ii) wC′(X) ≤ −3/2

X

Figure 3: Triangle configurations on the vertices of X = K3.

Now, since both xy and xz are in some copies of F−
0 and X is the only triangle that x belongs to, C must

have an edge xv that does not lie in a block; we now add xv to C ′. If v supported a triangle (and hence a block)

in C, then xv would contribute −3/2 to wC′(X) in stage 6 of the weight redistribution process and therefore

wC′(X) ≤ −1/2 would be negative (see Figure 4 for illustration). We may thus further assume that v does not

belong to a triangle in C. Now, add to C ′ all edges in copies of F−
0 that that contain one of xy, xz. If xv

lied in a 4-cycle containing xy and in a 4-cycle containing xz, we would have that dC′(v) ≥ 3 and so xv would

have weight at most −3 + 5/3 = −4/3 after stage 5, all of which would go to X in stage 6, and once again

wC′(X) ≤ −1/3 would be negative. Thus, the 4-cycles containing xy and xz do not share edges there must be

a vertex u ̸= v such that xu ∈ C ′. The contribution of each of xu and xv to X’s weight is at most −1/2 and

therefore wC′(X) ≤ 0, a contradiction. This concludes the proof of Claim 3.16. ◀

x

v

(i) wC′(X) ≤ −1/2

X

x

v

(ii) wC′(X) ≤ −1/3

X

x
v u

(iii) wC′(X) ≤ 0

X

Figure 4: Edge configurations on the third vertex of X = K3.

Proof of Claim 3.17. Denote V (X) = {x1, x2, y, z} so that g = yz and ei = xiy, fi = xiz for i ∈ {1, 2}. Assume

towards contradiction that one of e1, f1 as well as one of e2, f2 belongs to a 4-cycle in a copy of F−
0 . We let C ′

be the union of all triangles in C, so that B(C ′) = B(C ′). By Claim 3.15, it is enough to show that wC′(X) ≤ 0.

Now, note that stage 4 of the redistribution process on C ′ moves weight from the edges of X to X. If two

or more vertices of X belonged to blocks other than X, then the contribution to X’s weight coming from its

vertices, in stages 2 and 3, would be at most 2 · 5 + 2 · (5/2) ≤ 15 and we would have wC′(X) ≤ 0. Hence, it

must be the case that at most one vertex in X belongs to a block that is not X. Moreover, if none of y, z, xi

belonged to a block other than X, then none of e3−i, f3−i would be contained in a 4-cycle of a copy of F−
0 .

Consequently, one of y, z must belong to a block other than X; without loss of generality, assume that y is the

only vertex of X contained in a block other than X. Since neither f1 nor f2 can lie in a 4-cycle of a copy of

F−
0 , it must be that both e1 and e2 do.

For each i ∈ {1, 2}, denote by Ci the 4-cycle in a copy of F−
0 that passes through ei. We claim that ei is the

only edge of X in Ci. Indeed, the union of a copy of K−
4 and a copy of F−

0 whose 4-cycle intersects this K−
4 in

more than one edge contains a copy of F2, F3 or F4 depicted in Figure 2. However, C cannot contain any of
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F5 F ′
5 F6 F ′

6

Figure 5: The four graphs appearing in X ∪X ′
1 ∪X ′

2 ∪ C1 ∪ C2, each of which has 8 vertices and 12 edges.

these graphs, see condition (iii) in Definition 3.11. Further, the second edge of Ci that is incident with y belongs

to some block X ′
i ̸= X. We claim that X ′

i is not a copy of K−
4 . Indeed, if it were, then X ∪X ′

i ∪ Ci would be

a copy of either F5 or F ′
5 from Figure 5 (recall that Ci is not allowed to intersect a copy of K−

4 in more than

one edge) and this graph is too dense to be contained in C, see condition (iii) in Definition 3.11. Therefore,

both X ′
1 and X ′

2 are triangle blocks. Finally, if X ′
1 ̸= X ′

2, then, since the ordering σ prioritises triangles over

copies of K−
4 , the vertex y would give none of its weight to X in stage 3 of the redistribution process, yielding

wC′(X) ≤ 0, as desired. Thus X ′ := X ′
1 = X ′

2 is a triangle block. Moreover, each Ci shares only one edge with

X ′, as otherwise X ′∪Ci would be a copy of K−
4 , which is impossible due to the assumption that X ′ is a triangle

block. Consequently, each Ci contains a unique vertex wi /∈ V (X) ∪ V (X ′). If w1 = w2, then X ∪ C1 ∪ C2

contains a copy of F4, which is too dense to be contained in C, so we may assume that w1 ̸= w2. But then,

X ∪X ′ ∪ C1 ∪ C2 would be a copy of one of F6 or F ′
6 from Figure 5, a contradiction. ◀

This concludes the proof of Lemma 3.13.

4 Proof of the 1-statements

In this section, we prove our 1-statements, establishing the upper bounds on q(n;K3, p) in Theorem 1.4. Our

aim is to prove that, if q ≫ q(n;K3, p), then a.a.s. no K3-free colouring of Gn,p can be extended to the edges

of an independent copy Gn,q without creating monochromatic triangles. We will achieve this by showing that

every K3-free colouring of the edges of a typical Gn,p results in many local obstructions – individual edges

or copies of K1,2 what one cannot colour without introducing a monochromatic triangle, see Figure 6. More

precisely, we will show that there are either ω(q−1) such dangerous edges or ω(q−2) such dangerous copies of

K1,2. Standard probabilistic arguments will then show that a.a.s. at least one such local obstruction will appear

in Gn,q, precluding the existence of a K3-free extension of our colouring of Gn,p. In fact, with just a little more

work, it will be enough for us to find either ω(q−1) copies of Crrbb or ω(q−2) copies of Crbbbb.

Proposition 4.1. Suppose that n−2/3 ≪ p ≪ n−1/2, t ≥ n7p10 and t−1 ≪ q < 1 and let G1 ∼ Gn,p and

G2 ∼ Gn,q be independent. Then a.a.s. any G1-measurable colouring φ : E(G1) → {red,blue} that contains at

least t copies of Crrbb cannot be extended to a K3-free colouring of G1 ∪G2.

Proposition 4.2. Suppose that n−2/3 ≪ p ≪ n−1/2, t ≥ n7p9 and t−1/2 ≪ q ≤ 1 and let G1 ∼ Gn,p and

G2 ∼ Gn,q be independent. Then a.a.s. any G1-measurable colouring φ : E(G1) → {red,blue} that contains at

least t copies of Crbbbb cannot be extended to a K3-free colouring of G1 ∪G2.

In order to find the required number of copies of Crrbb or Crbbbb, we will use three different arguments. We

first split our analysis depending on the structure of the colouring. If the colouring is balanced, in that a positive

proportion of the edges of Gn,p are coloured each colour, then a condition of q ≫ n−4p−4 already guarantees

the existence of the required number of Crrbbs. We prove this in Section 4.1 using the method of hypergraph
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containers (Theorem 2.4). Noting that n−4p−4 ≪ n−6p−8 ≪ n−3p−7/2 in our full range n−2/3 ≪ p ≪ n−1/2,

this settles the desired result for balanced colourings in both the lower and upper ranges.

It thus remains to consider colourings that are unbalanced, that is, when there is one colour, say red, that

appears only o(n2p) times. Here, we need more delicate arguments based on Janson’s inequality and careful

union bounds over all unbalanced colourings. In Section 4.2, we show that every unbalanced colouring contains

Ω(n6p7) copies of Crbbbb, which implies, by Proposition 4.2, that no such colouring can be extended to a typical

copy of Gn,q as soon as q ≫ n−3p−7/2. Combining this result with the case of balanced colourings covers all

possible colourings and shows that q(n;K3, p) ≤ n−3p−7/2 in the full range of interest n−2/3 ≪ p ≪ n−1/2.

Finally, in Section 4.3, we improve on this in the upper range, when p≫ n−3/5, showing that every unbalanced

colouring contains Ω(n6p8) copies of Crrbb, which renders any unbalanced colouring nonextendable to Gn,q as

soon as q ≫ n−6p−8, see Proposition 4.1. Here, in order to perform a union bound over all unbalanced, K3-free

colourings of Gn,p, we face some serious technicalities when p approaches n−3/5.

We complete this lengthy introduction with proofs of Propositions 4.1 and 4.2 that supply sufficient condi-

tions on nonextendability of colourings in terms of the number of copies of Crrbb and Crbbbb.

Proof of Proposition 4.1. Fix some G1 satisfying property (P3) of Lemma 2.5 (which occurs a.a.s.) and some

colouring φ : E(G1) → {red,blue} that contains at least t copies of Crrbb. Recall that a pair of vertices

{x, y} ∈ E(Kn) is dangerous if it is the ‘colour-splitting’ diagonal of at least one such Crrbb, that is, if there

exist u, v ∈ V (G1) \ {x, y} with xu, yu, xv, yv ∈ E(G1), φ(xu) = φ(yu) = blue and φ(xv) = φ(yv) = red, see

Figure 6. We will show that there are at least t/50 dangerous pairs. Note that this immediately implies the

assertion of the lemma. Indeed, the number of dangerous pairs that appear in Gn,q is bounded from below by

a Bin(t/50, q), which is positive with probability 1 − o(1), by our assumption that tq ≫ 1.

Let D be the collection of dangerous pairs. For each pair ρ ∈ D, let rρ ≥ 1 be the number of red copies of

K1,2 in G1 that form a triangle with ρ and likewise let bρ be the number of blue copies of K1,2 in G1 that form

a triangle with ρ, so that ρ is the colour-splitting diagonal for rρbρ copies of Crrbb in G1 and
∑

ρ∈D rρbρ ≥ t.

We further say that ρ ∈ D is heavy if rρbρ ≥ 25 and let DH ⊆ D be the collection of heavy dangerous pairs.

Now, for each heavy pair ρ, by the AM-GM inequality, we have that rρ + bρ ≥ 2
√
rρbρ ≥ 10 and ρ forms the

part of size 2 in
(
rρ+bρ
10

)
copies of K2,10. Therefore, by the assumed conclusion of Lemma 2.5 (P3),

∑
ρ∈DH

rρbρ
25

≤
∑

ρ∈DH

(
rρ + bρ

10

)2

≤
∑

ρ∈DH

(
rρ + bρ

10

)10

≤
∑

ρ∈DH

(
rρ + bρ

10

)
≤ NK2,10

(G1) ≤ n11p18 ≤ t

50
,

where in the last inequality we used that n11p18 ≪ n7p10 ≤ t due to the fact that p ≪ n−1/2. Hence∑
ρ∈D\DH

rρbρ ≥ t/2 and, as each ρ ∈ D \DH has rρbρ ≤ 25, we indeed obtain |D| ≥ |D \DH | ≥ t/50.

Proof of Proposition 4.2. Fix some G1 satisfying properties (P1) and (P3) of Lemma 2.5 (which occur a.a.s.)

and some colouring φ : E(G1) → {red,blue} that contains at least t copies of Crbbbb. A copy K of K1,2

in G1 with vertices w, u1, u2 (so that K is formed from edges wui for i = 1, 2) is dangerous if there are

distinct vertices w1, w2 ∈ V (G) \ {w, u1, u2} such that u1u2, u1w1, w1w,ww2, w2u2 ∈ E(G1), φ(u1u2) = red

and φ(u1w1) = φ(w1w) = φ(ww2) = φ(w2u2) = blue. We say that K hosts this copy of Crbbbb on vertices

u1, u2, w2, w, w1. See Figure 6 for a depiction.

Moreover, for such a dangerous copy K of K1,2, we define xK1 to be the number of choices of w1 such that

φ(u1w1) = φ(w1w) = blue and xK2 to be the number of choices of w2 such that φ(u2w2) = φ(w2w) = blue.

Therefore, each K hosts at most xK1 x
K
2 copies of Crbbbb (this is not equality as some choices could have w1 = w2).

Taking K to be the collection of dangerous copies of K1,2 on V (G), we then have that
∑

K∈K x
K
1 x

K
2 ≥ t.

As in the proof of Proposition 4.1, our aim is to prove that K is large. Define a copy K to be heavy if
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Figure 6: A dangerous edge and a dangerous copy of K1,2 in G.

mK := max{xK1 , xK2 } ≥ 10 and let KH be the collection of heavy dangerous copies of K1,2. We then have that

∑
K∈KH

xK1 x
K
2 ≤

∑
K∈KH

(mK)2 ≤
∑

K∈KH

100

(
mK

10

)10

≤ 100
∑

K∈KH

(
mK

10

)
.

We claim that the sum in the right-hand side of the above inequality is at most NK+
2,10

(G1), where K+
2,10 is the

graph obtained from K2,10 by adding a pendant edge to one of its vertices of degree 10. Indeed, fixing some K

in the summand, label the vertices u1, u2 and w as we did above and suppose that mK is achieved by xKi for

i ∈ [2] (if xK1 = xK2 then choose i arbitrarily). Then, for every set Wi of 10 vertices that can play the role of wi

in the sense that they are all connected to both ui and w by blue edges in G1, we get a copy of K+
2,10 on the

vertices w, u1, u2 and Wi. This gives
(
mK

10

)
copies of K+

2,10 in the summand corresponding to K; these copies

are distinct, as each copy of K+
2,10 determines K completely. So we have that∑

K∈KH

xK1 x
K
2 ≤ 100NK+

2,10
(G1) ≤ 100 · n11p18 · 2np ≤ 200n12p19 ≤ t/2,

where we used properties (P1) and (P3) of Lemma 2.5 to boundNK+
2,10

(G1) and we used that n12p19 ≪ n7p9 ≤ t

in the last inequality. This implies that
∑

K∈K\KH
xK1 x

K
2 ≥ t/2 and as every K ∈ K\KH has xK1 x

K
2 ≤ 92 ≤ 100,

we have that |K| ≥ |K \ KH | ≥ t/200.

Now, taking G2 ∼ Gn,q, for each dangerous copy K ∈ K, let IK := 1[K ⊆ G2] be the indicator random

variable for the event that both edges of K appear in G2 and let X :=
∑

K∈K IK . As each dangerous copy of

K1,2 appears with probability q2, we have that µ := E[X] ≥ tq2/200 ≫ 1. Moreover, writing K ∼ K ′ when a

pair K,K ′ of dangerous copies of K1,2 share at least one edge, we have

∆ :=
∑

K∼K′

E[IKIK′ ] ≤ µ ·
(
1 + 4∆(G1)q

)
≤ 2 max{µ, 8npqµ},

using again the assumed conclusion of Lemma 2.5 (P1) in G1. Indeed, given some copy K of K1,2, we can

obtain an upper bound on the number of dangerous K ′ that intersect K (but are not equal to K) by the number

of choices of an edge e of K and a G1-neighbour of one of the endpoints of e. Using that

µ2

npqµ
≥ tq

200np
≥ t1/2

200np
≥ n5/2p7/2

200
≫ 1,

it follows from Janson’s inequality (Lemma 2.2) that

Pr[X = 0] ≤ exp

(
− µ2

2∆

)
≪ 1.

Therefore, a.a.s. there is a dangerous copy of K1,2, on vertices w, u1, u2 say, such that E(K) = {wu1, wu2} ⊆
E(G2). This precludes the possibility of extending φ to G2. Indeed, as K is dangerous, it hosts some copy of

Crbbbb in G (under φ). If either wu1 or wu2 are coloured blue, then they will form a blue triangle with edges

in the copy of Crbbbb whilst if they are both red then there is a red triangle formed with the edge u1u2. This

completes the proof.
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4.1 Balanced colourings

In this section, we prove the following proposition which deals with balanced colourings of Gn,p in our full range

of interest.

Proposition 4.3. For every β > 0, there exists a λ > 0 such that the following holds. Suppose that n−2/3 ≪
p ≪ n−1/2 and let G ∼ Gn,p. Then, a.a.s. every colouring φ : E(G) → {red,blue} such that

∣∣φ−1(c)
∣∣ ≥ βn2p

for both c ∈ {red,blue}, contains at least λn4p4 copies of Crrbb.

As n4p4 ≫ n6p8 for p ≪ n−1/2, Propositions 4.1 and 4.3 give that, for q ≫ n−4p−4, a.a.s. no balanced

K3-free colouring of Gn,p with n−2/3 ≪ p ≪ n−1/2 can be extended to the edges of Gn,q without creating

monochromatic triangles. Before embarking on the proof of Proposition 4.3, we need a deterministic lemma

that deals with the complete graph, that is, the case p = 1 in the proposition.

Lemma 4.4. For every β > 0, there exists a λ such that the following holds. For all sufficiently large n, every

ψ : E(Kn) → {red,blue} that satisfies |ψ−1(c)| ≥ βn2 for both c ∈ {red,blue} contains at least λn4 copies of

Crrbb.

Proof. For every ordered pair x, y of distinct vertices, let Vx,y denote the number of z such that ψ(xz) = red

and ψ(yz) = blue. Letting C be the number of copies of Crrbb, we have, by convexity,

C =
∑
x,y

(
Vx,y

2

)
≥ n(n− 1) ·

(
V̄

2

)
,

where

V̄ =
1

n(n− 1)
·
∑
x,y

Vx,y.

Observe that, if a, b, c, d are four distinct vertices such that ψ(ab) = red and ψ(cd) = blue, then either ab and

bc or bc and cd are counted by Va,c or Vb,d, respectively. This implies that, for all large n,

V̄ ≥ 1

n(n− 1)
· βn

2 · (βn2 − 2n)

2n
≥ β2n

4
,

which gives the claimed lower bound on C.

We now turn to proving Proposition 4.3

Proof of Proposition 4.3. We can assume that 0 < β < 1/4. Let H be the 4-uniform hypergraph with vertex

set E(Kn) × {red,blue} whose edges are all copies of Crrbb in Kn, that is, sets of the form{
(uv, red), (uw, red), (vx,blue), (wx,blue)

}
,

where u, v, w, and x are any four distinct vertices of Kn. Observe that

v(H) = 2

(
n

2

)
, e(H) = 12 ·

(
n

4

)
, ∆2(H) ≤ n, ∆3(H) = ∆4(H) = 1.

Let ε := λ4.4(β/2)/2 and let δ > 0 and t ∈ N be the constants provided by Theorem 2.4 invoked with k = 4

and K = 2. Set

γ := min

{
ε,
β

32

}
, σ := min

{
β

4t
,
γ2

2t

}
, and λ :=

δσ4

2
.

Let I(H) be the family of all sets I ⊆ V (H) that induce fewer than λn4p4 edges of H. Since p ≫ n−2/3, we

may apply Theorem 2.4 to H with τ := σp to obtain a function f : P(V (H))t → P(V (H)) such that:

(i) For every I ∈ I(H), there are S1, . . . , St ⊆ V (H) each of size at most τv(H) such that S1 ∪ · · · ∪St ⊆ I ⊆
f(S1, . . . , St).
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(ii) For each S1, . . . , St ⊆ V (H), the set f(S1, . . . , St) induces fewer than εn4 edges in H.

Suppose that φ is a bad colouring of G, that is, a colouring with |φ−1(c)| ≥ βn2p for both c ∈ {red,blue} but

fewer than λn4p4 copies of Crrbb. Then φ ∈ I(H) and thus φ ⊆ f(S1, . . . , St) for some S1, . . . , St ⊆ φ. We

will call such S := (S1, . . . , St) the signature of φ and denote it by sig(φ). Denote by π : V (H) → E(Kn) the

projection to the first coordinate and, with slight abuse of notation, let π(S) := π(S1 ∪ · · · ∪ St); note that

π(sig(φ)) ⊆ G.

Claim 4.5. For every S1, . . . , St ⊆ V (H), letting S := (S1, . . . , St), we have

Pr
[
G has a bad colouring φ with sig(φ) = S

]
≤ Pr

[
π(S) ⊆ G

]
· exp(−γn2p).

Proof. Suppose that G has a bad colouring φ with sig(φ) = S. This means, in particular, that π(S) ⊆ G, so it

is enough to show that

Pr
[
G has a bad colouring φ with sig(φ) = S : π(S) ⊆ G

]
≤ exp(−γn2p).

Define

R(S) :=
{
e ∈ E(Kn) : (e, red) ∈ f(S)

}
,

B(S) :=
{
e ∈ E(Kn) : (e, blue) ∈ f(S)

}
,

X(S) := E(Kn) \
(
R(S) ∪B(S)

)
and observe that φ ⊆ f(S) means that G is disjoint from X(S) and that

φ−1(red) ⊆ R(S) ∩G and φ−1(blue) ⊆ B(S) ∩G.

We claim that at least one of the following must be true:

(a) The set X(S) has at least εn2 edges.

(b) One of the sets R(S) or B(S) has at most βn2/2 edges.

Suppose that (b) does not hold and let ψ : E(Kn) → {red,blue} be an arbitrary colouring of Kn satisfying

ψ−1(red) ⊆ R(S) ∪ X(S), ψ−1(blue) ⊆ B(S) ∪ X(S) and |ψ−1(c)| ≥ βn2/2 for each c ∈ {red,blue}; such

a colouring exists as ⌈βn2/2⌉ ≤ ⌊
(
n
2

)
/2⌋ due to our upper bound on β. It follows from Lemma 4.4 and our

definition of ε that ψ has at least 2εn4 copies of Crrbb. Any such copy corresponds to an edge of H[f(S)] unless

it contains an edge of X(S). However, the number of 4-cycles with an edge of X(S) is at most X(S) · n2. This

implies that e(H[f(S)]) ≥ 2εn4 − |X(S)| · n2, which gives |X(S)| > εn2 due to condition (ii) on f(S) from the

outcome of Theorem 2.4.

If (a) holds, then

Pr
[
G ∩X(S) = ∅ : π(S) ⊆ G

]
≤ (1 − p)|X(S)| ≤ exp(−εn2p),

so we may assume that (b) holds; without loss of generality, |R(S)| ≤ βn2/2. Conditioned on the event

that π(S) ⊆ G, the distribution of e
(
R(S) ∩ G

)
is stochastically dominated by the random variable |π(S)| +

Bin
(
|R(S)|, p

)
. Since |π(S)| ≤ tτn2 ≤ tσn2p ≤ βn2p/4, we have

Pr
[
e
(
R(S) ∩G

)
≥ βn2p : π(S) ⊆ G

]
≤ Pr

[
Bin(βn2/2, p) ≥ (3/4)βn2p

]
≤ exp(−βn2p/32),

by Lemma 2.1. This proves the assertion of the claim. ◀
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Using Claim 4.5, we may conclude that

Pr
[
G has a bad colouring

]
≤
∑
S

Pr
[
G has a bad colouring φ with sig(φ) = S

]
≤ exp(−γn2p) ·

∑
S

Pr
[
π(S) ⊆ G

]
.

Finally, since there are at most 2t|U | sequences S := (S1, . . . , St) satisfying π(S) = U , we have

∑
S

Pr
[
π(S) ⊆ G

]
≤

∑
u≤tτv(H)

((n
2

)
u

)
· 2tu · pu ≤

∑
u≤σn2p

(
2ten2p

u

)u

≤ n2
(

2te

σ

)σn2p

≤ eγn
2p/2,

where the penultimate inequality follows from the fact that, for every a > 0, the function u 7→ (ea/u)u is

increasing when u ∈ (0, a]. Hence we have that a.a.s. there are no bad colourings of G, concluding the proof.

4.2 Unbalanced colourings in the lower range

In this section, we establish the following theorem, proving that q (n;K3, p) ≤ n−3p−7/2 when n−2/3 ≪ p ≪
n−1/2 and hence giving the 1-statement for the lower range in Theorem 1.4.

Theorem 4.6. Suppose that n−2/3 ≪ p ≪ n−1/2 and q ≫ n−3p−7/2 and let G1 ∼ Gn,p and G2 ∼ Gn,q be

independent. Then, a.a.s. no G1-measurable K3-free colouring φ : E(G1) → {red,blue} can be extended to a

K3-free colouring of G1 ∪G2.

This theorem will follow from the following proposition which deals with unbalanced colourings.

Proposition 4.7. There exist β, ζ > 0 such that the following holds. Suppose that n−2/3 ≪ p≪ n−1/2 and let

G ∼ Gn,p. Then, a.a.s. every K3-free φ : E(G) → {red,blue} such that
∣∣φ−1(red)

∣∣ < βn2p results in at least

ζn6p7 copies of Crbbbb.

Indeed, with Proposition 4.7 and our previous results, Theorem 4.6 follows readily.

Proof of Theorem 4.6. Let β, ζ > 0 be the constants from the statement of Proposition 4.7. Further, let λ > 0

be the constant output by Proposition 4.3 with input β and let t1 := λn4p4 ≥ n7p10 and t2 := ζn6p7 ≥
n7p9. Now fixing G1 ∼ Gn,p and G2 ∼ Gn,q, we have that a.a.s. the conclusions of Propositions 4.1 with

t4.1 = t1, 4.2 with t4.2 = t2, 4.3 and 4.7 all hold. We claim that this implies the theorem. Indeed, consider

some G1-measurable K3-free colouring φ : E(G1) → {red,blue}. Suppose first that
∣∣φ−1(c)

∣∣ ≥ βn2p for both

c ∈ {red,blue}. By the assumed conclusion of Proposition 4.3, there are at least t1 copies of Crrbb induced by

φ. Since q ≫ n−3p−7/2 ≫ t−1
1 , the assumed conclusion of Proposition 4.1 gives that φ cannot be extended to

G2 whilst avoiding monochromatic triangles. Likewise, if |φ−1(red)| < βn2p, then Proposition 4.7 gives that

there are at least t2 copies of Crbbbb induced by φ and Proposition 4.2 then gives that we cannot extend φ to

G2 without getting monochromatic triangles, using that q ≫ t
−1/2
2 . Since both colours play symmetric roles,

the same conclusion holds under the assumption |φ−1(blue)| < βn2p. This covers all colourings and completes

the proof.

It remains to prove Proposition 4.7. Our proof works by taking a union bound over all possibilities T for

the red subgraph. For each T , we use Janson’s inequality (Lemma 2.2) to prove that it is very unlikely that we

avoid creating many Crbbbb when we colour T red and G \T blue. This simple approach almost works – it turns

out that in order to get strong enough error probabilities in the Janson argument, we need to consider only red

subgraphs T that are well behaved, in that they satisfy a maximum degree condition. Before embarking on the

proof of Proposition 4.7, we prove that any red subgraph T that we are interested in contains a large induced

subgraph that is well behaved.
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Lemma 4.8. For any c > 0, there exists a β > 0 such that the following holds for all sufficiently large n ∈ N

and p = p(n) ∈ [0, 1]. Let T be a graph on n vertices such that e(T ) < βn2p and e(T [U ]) ≥ 1 for every

U ⊆ V (G) with |U | ≥ n
2 . Then, there exists a vertex subset W ⊆ V (T ) such that |W | ≥ n

2 and S := T [W ]

satisfies ∆(S) ≤ cnp
log(n2p)−log(e(S)) .

Proof. Suppose that T satisfies the assumptions of the lemma. We can assume that 0 < c < 1/10 and we fix

some ε ∈ (0, c2) and β ∈ (0, εc/8). Consider the following iterative process of peeling off vertices:

Let T0 := T and t0 := e(T0).

for i = 1, 2, . . . do

if ∆(Ti−1) ≤ cnp
log(n2p)−log(ti−1)

then
Terminate with S := Ti−1.

else

Let vi be an arbitrary vertex of Ti−1 with degree exceeding cnp
log(n2p)−log(ti−1)

, let Ti := Ti−1 − vi

and ti := e(Ti).

We claim that the process terminates after fewer than n/2 steps and thus outputs an appropriate S. Suppose

for a contradiction that this is not the case and that the process is still running after n/2 steps. We will show

that this contradicts our upper bound on e(T ). Firstly, note that

tn/4 ≥ n

4
· cnp

log(n2p) − log(tn/2)
≥ n

4
· cnp

log(n2p)
≥ cn2p

23 log n
,

using here that tn/2 ≥ 1 due to our assumption on T . Now, define τ0 := 0 and

τi := min

{
τ : tn/4−τ ≥ 2i−3 cn

2p

log n

}
for i = 1, 2, . . . , k := log2(ε log n).

Claim 4.9. τk ≤ n/4 (and hence all τi are well defined).

Note that the claim implies that

e(T ) = t0 ≥ tτk ≥ 2k−3 cn
2p

log n
=
εcn2p

23
> βn2p,

contradicting our upper bound on e(T ). It thus remains to prove the claim.

For this, note that, for each 0 ≤ i ≤ k − 1 and all τ ∈ N with τ ≤ n/4 − τi, we have that

tn/4−τi−τ − tn/4−τi ≥ τ · cnp

log(n2p) − log(tn/4−τi)
≥ τ · cnp

log(23−ic−1 log n)
.

Consequently, for i ∈ {0, . . . , k − 1},

τi+1 − τi ≤ 2i−2 · cn
2p

log n
·

log
(
23−ic−1 log n

)
cnp

=
2in

(
log
(
23c−1 log n

)
− i log 2

)
4 log n

and so

τk = τ0 +

k−1∑
i=0

(τi+1 − τi)

≤ n

4 log n

(
k−1∑
i=0

2i log
(
23c−1 log n

)
− log 2 ·

k−1∑
i=0

i2i

)
≤ n

4 log n

(
2k log

(
23c−1 log n

)
− log 2 · (k − 2)2k

)
=

2kn

4 log n
log(25−kc−1 log n)

≤ εn

4
log
(
25c−1ε−1

)
≤ n

4
,

as required, where we used our upper bounds on ε and c in the final inequality.
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We now use Lemma 4.8 to establish Proposition 4.7.

Proof of Proposition 4.7. Let θ be the constant from the statement of Lemma 2.5 (P4), let ζ = θ/210, let

c = 2−17 and let β := β4.8(c) be the constant from the statement of Lemma 4.8. Define S to be the set of graphs

S such that θn3p3/8 ≤ e(S) < βn2p and ∆(S) ≤ cnp
log(n2p)−log(e(S)) . Given an S ∈ S, let B(S) be the event that

G ∼ Gn,p contains fewer than ζn6p7 copies of C5 whose vertices all lie in V (S) and that have one edge in S and

four edges of G \ S. The following key claim which bounds the probability of B(S) for all S ∈ S.

Claim 4.10. For any S ∈ S, letting s = e(S), we have that

Pr[B(S)] ≤
(

s

n2p

)2s

.

Before proving this claim, let us see how it implies the proposition. Firstly, let F be the family of all graphs

T on V (G) that satisfy the following:

(i) e(T ) < βn2p;

(ii) for every U ⊆ V (G) with |U | ≥ n
2 , we have that e(T [U ]) ≥ θ|U |3p3.

Now, if G satisfies property (P4) of Lemma 2.5, then every K3-free colouring φ : E(G) → {red,blue} that

colours fewer than βn2p edges red satisfies φ−1(red) ∈ F . Indeed, (P4) gives a collection of at least θ|U |3p3

edge-disjoint triangles in each U ⊆ V (G) with |U | ≥ n
2 and at least one edge in each triangle must be coloured

red. Further, Lemma 4.8 implies that, for every T ∈ F , there is some S = S(T ) ∈ S such that S = T [W ] for

some W ⊆ V (G) with |W | ≥ n/2; indeed, the fact that T ∈ F gives that e(S) ≥ θn3p3/8. This implies that, if

there is a K3-free φ : E(G) → {red,blue} with |φ−1(red)| < βn2p and fewer than ζn6p7 copies of Crbbbb (and G

satisfies property (P4) of Lemma 2.5), then there is some S ∈ S such that B(S) occurs and S ⊆ G. Indeed,

T := φ−1(red) ∈ F and B(S(T )) occurs as otherwise we get at least ζn6p7 copies of C5 on V (S) each of which

has exactly one edge in S and the other 4 edges in G \ S and hence gives a copy of Crbbbb in G. Finally, note

that, for each S ∈ S, the events B(S) and S ⊆ G are independent. Therefore, the probability that G has a

colouring φ : E(G) → {red,blue} with |φ−1(red)| < βn2p and fewer than ζn6p7 copies of Crbbbb is less than∑
S∈S

Pr[B(S) ∧ S ⊆ G] + Pr[G /∈ (P4)] ≤
∑
S∈S

Pr[B(S)] · Pr[S ⊆ G] + Pr[G /∈ (P4)].

By Lemma 2.5, we have that Pr[G /∈ (P4)] ≪ 1. We split the sum over S ∈ S depending on e(S) = s. As

there are at most 2n
((n

2)
s

)
graphs S ∈ S with s edges (the factor of 2n bounds the number of choices for V (S)),

appealing to Claim 4.10, we therefore have that

∑
S∈S

Pr[B(S)] · Pr[S ⊆ G] ≤
∑
s

2n
((n

2

)
s

)
·
(

s

n2p

)2s

· ps

≤
∑
s

2n ·

(
en2

2s
·
(

s

n2p

)2

· p

)s

≤
∑
s

2n ·
(
es

n2p

)s

≪ 1,

where the sum goes over all s ∈ (θn3p3/8, βn2p) and, in the last inequality, we used

s log

(
n2p

s

)
≥ s ≥ θn3p3/8 ≫ n.

Therefore, it remains only to establish Claim 4.10.
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Proof of Claim 4.10. Fix some S ∈ S and let s := e(S) and W := V (S). We will appeal to Janson’s inequality

(Lemma 2.2) to obtain the required upper bound on Pr[B(S)]. Let Γ := E(Kn[W ]) \ S and let C be set of all

5-cycles in Kn[W ] comprising of one edge of S and four edges of Γ. For each such C ∈ S, let IC be the indicator

random variable for the event that C∩Γ ⊆ Γp and note that E[IC ] = p4. For two cycles C,C ′ ∈ C, write C ∼ C ′

if C ∩ C ′ ∩ Γ ̸= ∅. Then, following the notation of Lemma 2.2, we define

X :=
∑
C∈C

IC , µ := E[X], and ∆ :=
∑
C∼C′

E[ICIC′ ],

where the sum in the definition of ∆ ranges over all pairs (C,C ′) ∈ C × C such that C ∼ C ′. Now B(S) is

precisely the event that X ≤ ζn6p7 and we can use Lemma 2.2 to upper bound the probability of this event

occurring.

We begin by estimating µ = E[X]. We first observe that, for each u0u4 ∈ E(S), there are at least (n/4)3 =

n3/26 choices of u1, u2, u3 ∈ W such that uiui+1 ∈ Γ for i = 0, 1, 2, 3. Indeed, this follows from the fact that

|W | ≥ n/2 and ∆(S) ≤ cnp < n/8 and so u1, u2, u3 can be chosen greedily, avoiding edges of S, with at least

n/4 choices at each step. Consequently,

µ = E[X] ≥ sn3p4

26
≥ θn6p7

29
≥ 2ζn6p7, (1)

using that s ≥ θn3p3/8, due to the fact that S ∈ S.

In order to estimate ∆, we fix some arbitrary C ′ ∈ C and estimate the number of C ∈ C (whose vertices we

will label u0, . . . , u4 as above) that intersect C ′. We split the analysis into cases.

1. Firstly assume that |C ∩ C ′ ∩ Γ| = 1. There are at most

4 · (4 · ∆(S) · n2 + 4 · s · n) ≤ 32∆(S) · n2 (2)

choices of C that intersect C ′ in one edge (outside of S), using that s ≤ ∆(S) · n in the inequality. The

factor 4 comes from choosing an edge of C ′ ∩ Γ, say e. The first summand then comes from considering

the case where e = u0u1 (or analogously e = u3u4, resulting in a factor of 2). Given that e = u0u1 and

choice of labelling of the vertices (another factor of 2), there are at most ∆(S) choices for u4 and at most

n further choices for each of u2 and u3. The second summand stems from the case where e = u1u2 (or

analogously e = u2u3), where after labelling e there are at most s choices for u0u4 and at most n further

choices for u3.

2. Next assume |C ∩ C ′ ∩ Γ| = 2. There are at most

6 · (2 · ∆(S) · n+ 4 · n+ 2s+ 8 · ∆(S)) ≤ 96∆(S) · n (3)

choices of C that intersect C ′ in two edges (outside of S). Indeed, the factor 6 bounds the number of choices

of two edges of C ′∩Γ, say e1 and e2. The first summand then treats the case where {e1, e2} = {u0u1, u1u2}
(equivalently, the case where {e1, e2} = {u2u3, u3u4}). We then have two options for choosing how to

label the endpoints of the path e1e2 as u0 and u2, then at most ∆(S) choices for u4, and n choices for

u3. In the second summand, we consider the case where {e1, e2} = {u0u1, u3u4}, which means that there

are at most four choices for the edge of C ∩ S and at most n further choices for u2. The third summand

treats the case where {e1, e2} = {u1u2, u2u3} and a choice of the edge in S and a labelling of its vertices

determines C. Finally, in the fourth summand, we consider the case where {e1, e2} = {u0u1, u2u3} (or

{e1, e2} = {u1u2, u3u4}) and a choice of the edge u0u4 ∈ S adjacent to u0 determines C.
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3. Next, consider the case where |C ∩ C ′ ∩ Γ| = 3. There are at most

4 · (4 · ∆(S) + 8) ≤ 48∆(S) (4)

choices of C that intersect C ′ in three edges (outside of S). Indeed, there are at most 4 choices for the

edge f ∈ C ′ ∩ Γ which is not on C. If f = u0u1 (or f = u3u4), all vertices of C apart from u0 are fixed

and so a choice of neighbour of u4 in S defines C. If f = u1u2 (or f = u2u3), then after labelling, C is

already completely determined, leading to the upper bound in the second summand.

4. Finally, if |C ∩ C ′ ∩ Γ| = 4, then clearly there is just one choice for C.

We can now put together the bounds from above to conclude that

∆ ≤ µ ·
(
32∆(S)n2p3 + 96∆(S)np2 + 48∆(S)p+ 1

)
≤ µ · 40∆(S)n2p3.

Therefore, we have, using (1) and Lemma 2.2, that

Pr[B(S)] = Pr[X ≤ ζn6p7] ≤ Pr[X ≤ µ/2] ≤ exp

(
− µ2

8∆

)
≤ exp

(
− µ

210∆(S)n2p3

)
≤ exp

(
− snp

216∆(S)

)
.

Finally, since ∆(S) ≤ cnp
log(n2p)−log(s) , which follows from the fact that S ∈ S, and c = 2−17, we have

Pr[B(S)] ≤ exp
(
−2s ·

(
log(n2p) − log s

))
=

(
s

n2p

)2s

.

as claimed. ◀

The proof of Proposition 4.7 is now complete.

4.3 Unbalanced colourings in the upper range

In this section, we improve on Theorem 4.6 when n−3/5 ≪ p≪ n−1/2 and show that in this range we have that

q (n;K3, p) ≤ n−6p−8. This gives the 1-statement for the upper range in Theorem 1.4.

Theorem 4.11. Suppose that n−3/5 ≪ p ≪ n−1/2 and q ≫ n−6p−8 and let G1 ∼ Gn,p and G2 ∼ Gn,q be

independent. Then, a.a.s. no G1-measurable K3-free colouring φ : E(G1) → {red,blue} can be extended to a

K3-free colouring of G1 ∪G2.

As in the previous section, we first reduce Theorem 4.11 to the following proposition.

Proposition 4.12. There exist β, ζ > 0 such that the following holds. Suppose that n−3/5 ≪ p ≪ n−1/2 and

let G ∼ Gn,p. Then, a.a.s. every K3-free φ : E(G) → {red,blue} such that
∣∣φ−1(red)

∣∣ < βn2p results in at least

ζn6p8 copies of Crrbb.

With Proposition 4.12 and Proposition 4.3, the proof of Theorem 4.11 follows almost immediately.

Proof of Theorem 4.11. Let β, ζ > 0 be the constants from the statement of Proposition 4.12. Further, let

λ > 0 be the constant output by Proposition 4.3 with input β, let t := ζn6p8 and note that t ≤ λn4p4. Now,

with G1 ∼ Gn,p and G2 ∼ Gn,q, we have that a.a.s. the conclusions of Propositions 4.1, 4.3 and 4.7 all hold. In

particular, any G1-measurable K3-free colouring φ : E(G1) → {red,blue} gives rise to at least t copies of Crrbb.

Indeed, this follows from Proposition 4.3 if
∣∣φ−1(c)

∣∣ ≥ βn2p for both c ∈ {red,blue}, or from Proposition 4.12

if |φ−1(c)| < βn2p for some c ∈ {red,blue}. The conclusion of the theorem then follows from Proposition 4.1

as q ≫ t−1.
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It remains to prove Proposition 4.12. Before embarking on this, we make some definitions and prove several

auxiliary lemmas. As in the proof of Proposition 4.7, presented in the previous section, we will condition on the

red subgraph T of Gn,p. The following definition captures important properties of T that hold a.a.s. in Gn,p

and that we will thus be able to assume hold in our proof. Throughout this section, we write θ for the constant

from Lemma 2.5.

Definition 4.13. For β > 0 and n−3/5 ≪ p ≪ n−1/2, let F = F(β; p) be the set of subgraphs T ⊆ Kn such

that

(i) θn3p3 ≤ e(T ) < βn2p;

(ii) T satisfies conditions (P1) (upper bounding the maximum degree), (P2) (upper bounding the number of

small subgraphs F ), (P3) (upper bounding the number of K2,10) and (P5) (upper bounding the number

of edges between vertex sets) of Lemma 2.5.

In proving Proposition 4.12, we will show that a.a.s. any K3-free colouring φ : E(G) → {red,blue} such that∣∣φ−1(red)
∣∣ < βn2p will have φ−1(red) ∈ F(β; p). Again, similarly to Proposition 4.7, we will not be able to take

a union bound over all possible red subgraphs T ∈ F and will instead consider only carefully chosen subgraphs of

such T that we can enumerate more efficiently. Given that we aim to find many Crrbb, the following definitions

will be useful.

Definition 4.14. Let S ⊆ Kn be a graph on n vertices. We define the following parameters:

• X2(S) denotes the number of copies of K1,2 in S;

• Π(S) denotes the edges in Kn that complete a triangle with a copy of K1,2 that lies in S;

• XS denotes the family of all copies of K1,2 in Kn that form a 4-cycle with some copy of K1,2 in S.

Our next simple lemma gives a lower bound on X2(S) in terms of the number of edges of a subgraph S ⊆ Kn,

given that S is not too small.

Lemma 4.15. If S is a graph on n vertices with at least 2n edges, then X2(S) ≥ 3e(S)2

2n .

Proof. By convexity, we have that

X2(S) =
∑
v∈V

(
dS(v)

2

)
≥ n ·

(∑
v∈V dS(v)/n

2

)
= n ·

(
2e(S)/n

2

)
≥ 3e(S)2

2n
,

where the last inequality holds due to our assumption that e(S) ≥ 2n.

Next, for certain subgraphs S ⊆ Kn, we show that |Π(S)| can be lower bounded by X2(S).

Lemma 4.16. Suppose that n−3/5 ≪ p≪ n−1/2 and S ⊆ Kn is an n-vertex graph such that s := e(S) ≥ θn3p3/2

and S satisfies (P3) (upper bounding the number of K2,10) of Lemma 2.5. Then

|Π(S)| ≥ X2(S)

12
≥ s2

8n
.

Proof. For each pair of vertices ρ ∈
(
[n]
2

)
= E(Kn), let dρ be the number of copies of K1,2 in S that form a

triangle with ρ and call ρ is heavy if dρ ≥ 10. Then Π = Π(S) ⊆ E(Kn) are the pairs ρ ∈ E(Kn) such that

dρ ≥ 1 and let ΠH ⊆ Π be the heavy pairs. Then we have that

∑
ρ∈ΠH

dρ
10

≤
∑

ρ∈ΠH

(
dρ
10

)10

≤
∑

ρ∈ΠH

(
dρ
10

)
= NK2,10

(S) ≤ n11p18 ≪ n5p6, (5)
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using that property (P3) of Lemma 2.5 holds in S in the penultimate inequality and the fact that p ≪ n−1/2

in the final inequality. On the other hand,∑
ρ∈Π

dρ = X2(S) ≥ 3s2

2n
≥ θ2n5p6

4
, (6)

by appealing to Lemma 4.15 and our lower bound on s = e(S). Combining (5) and (6) then gives that∑
ρ∈Π\ΠH

dρ ≥ 5X2(S)/6 and so

|Π(S)| ≥ |Π \ ΠH | ≥ 1

10

∑
ρ∈Π\ΠH

dρ ≥ X2(S)

12
≥ s2

8n
,

using Lemma 4.15, which completes the proof.

Our next lemma identifies, for each T ∈ F , some subgraph S = S(T ) ⊆ T for which the collection XS is

large and well-spread in Kn. Following the notation of Lemma 2.2, for a subgraph S ⊆ Kn and p = p(n), we let

µ(XS) := |XS |p2 ∈ |Π(S)|p2 · {n− 2, n− 3} (7)

be the expected number of copies of K1,2 in XS that appear in Gn,p and let

∆(XS) :=
∑
K,K′

pe(K∪K′),

where the sum goes over all pairs of copies K,K ′ ∈ XS such that K ∩K ′ ̸= ∅.

Lemma 4.17. Suppose 0 < β < 2−100 and n−3/5 ≪ p≪ n−1/2 and let T ∈ F = F(β; p) with t := e(T ). Then

there exists a subgraph S = S(T ) ⊆ T with e(S) ≥ t/2 and such that either

(a) µ(XS)2

∆(XS) ≥ 10t log
(

2n2p
t

)
; or,

(b) 10t log
(

2n2p
t

)
> µ(XS)2

∆(XS) ≥ µ(XS)
3 .

Proof. Fix some T ∈ F and denote t := e(T ). Now for any subgraph S ⊆ T , we define

∆1(XS) := |{K,K ′ ∈ XS : K ∪K ′ is a path with 3 edges }| · p3 and

∆2(XS) := |{K,K ′ ∈ XS : K ∪K ′ is a copy of K1,3}| · p3,

and we note that, for every S, we have ∆(XS) = ∆1(XS) + ∆2(XS) + µ(XS). Indeed, the sum in the definition

of ∆(XS) ranges over all pairs K,K ′ ∈ XS that intersect in at least one edge. If they intersect in two edges,

then K = K ′ and the contribution to ∆(XS) is counted by µ(XS) and if they intersect in precisely one edge,

then their union is either a path, in which case they are counted by ∆1(XS), or a star in which case they are

counted by ∆2(XS). The following claim is the key step in proving the lemma.

Claim 4.18. There is an S ⊆ T with at least t/2 edges such that

µ(XS)2

∆2(XS)
≥ 30t log

(
2n2p

t

)
.

With Claim 4.18, the lemma follows quickly. Indeed, fix S ⊆ T as output by the claim and note that

µ(XS)2

∆(XS)
=

µ(XS)2

∆1(XS) + ∆2(XS) + µ(XS)
≥ 1

3
min

{
µ(XS)2

∆1(XS)
,
µ(XS)2

∆2(XS)
, µ(XS)

}
. (8)

Firstly, suppose that the minimum is achieved by the last term. In this case we have that µ(XS)2

∆(XS) ≥ µ(XS)
3

and the conclusion of the lemma is satisfied, with S satisfying (a) if µ(XS)
3 ≥ 10t log

(
2n2p
t

)
and (b) otherwise.
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Likewise, if the minimum is achieved by the middle term, then by Claim 4.18 we have that µ(XS)2

∆(XS) satisfies (a).

It remains to consider the case where the minimum is achieved by the first term. For this, note that we have

∆1(XS) ≤ 4|Π(S)|2p3. Indeed, it v1v2v3v4 is a path of length three in S labeled so that K is the path v1v2v3

and K ′ is the path v2v3v4, see Figure 7, then v1v3, v2v4 ∈ Π(S) and thus we can count the number of pairs

K,K ′ whose union is a path with three edges by the number of pairs in Π(S) with a labelling of the endpoints

of each pair. Using (7), we therefore have that

µ(XS)2

∆1(XS)
≥ |Π(S)|2n2p4

5|Π(S)|2p3
≥ n2p

5
= t log

(
2n2p

t

)
· n

2p

5t
· log−1

(
2n2p

t

)
≥ 30t log

(
2n2p

t

)
,

using here that t < βn2p (property (i) of Definition 4.13) and the fact that β < 2−100. Therefore, we also satisfy

part (a) of the lemma when the minimum in (8) is achieved by the first term.

∈ K ∪K ′

∈ Π(S)

v1

v2

v3

v4

Figure 7: Two copies of K1,2 in XS whose union is a path.

It remains to prove Claim 4.18, which we do now.

Proof of Claim 4.18. In order to derive the lower bound in the Claim 4.18, we need to upper bound ∆2(XS)

and hence we need an upper bound on the count of pairs K,K ′ ∈ XS such that K ∪K ′ forms a copy of K1,3.

Given such a pair K and K ′, denote the vertex of degree three in K ∪K ′ by u and the remaining vertices by

w1, w2, w3 so that K lies on vertices u,w1, w2, K ′ lies on vertices u,w2, w3 and thus w1w2, w2w3 ∈ Π(S), see

Figure 8. Hence, we have that

∆2(XS) ≤ X2(Π(S))np3, (9)

where X2(Π(S)) is the number of copies of K1,2 in Π(S) when considered as a graph on n vertices. Indeed,

the number of possible pairs K,K ′ with K ∪K ′ a copy of K1,3 can be bounded by choosing a copy of K1,2 in

Π(S) and a choice of vertex u (at most n choices). We proceed by splitting our analysis into cases, depending

on whether or not T contains a large subgraph with maximum degree at most d :=
√

tp
2000 log(2n2p/t) .

∈ K ∪K ′

∈ Π(S)

w2

w1 w3

u

Figure 8: Two copies of K1,2 in XS whose union is a copy of K1,3.

Case 1. T contains a subgraph with at least t/2 edges and maximum degree at most d.

We let S be one such subgraph. Note that X2(Π(S)) ≤ |Π(S)|∆(Π(S)) where ∆(Π(S)) is the maximum

degree of a vertex in Π(S) when considered as a graph on n vertices. Since ∆(Π(S)) ≤ ∆(S)2 ≤ d2, appealing
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to (7) and (9), we have that

µ(XS)2

∆2(XS)
≥ |Π(S)|2n2p4

2|Π(S)|d2np3
≥ 1000|Π(S)|n log(2n2p/t)

t
≥ 30t log

(
2n2p

t

)
,

as claimed, where we used Lemma 4.16, noting that the conditions are satisfied as S ⊆ T ∈ F and e(S) ≥ t/2.

Case 2. Every subgraph of T with maximum degree at most d has fewer than t/2 edges. In this case, we define

S = T as the subgraph with the desired properties. First, we claim that

|Π(T )| ≥ td

24
. (10)

Indeed, let H ⊆ T be a maximal subgraph with respect to inclusion such that ∆(H) ≤ d. By our assumption,

e(H) < t/2. By the definition of H, for any e ∈ E(T ) \ E(H), one of its endpoints has degree at least d + 1

when added to T and hence e is contained in at least d copies of K1,2 with edges in H. Summing over all edges

in E(T ) \ E(H) gives that X2(T ) ≥ td/2 and (10) follows from Lemma 4.16. We will also show that

X2(Π(T )) ≤ 20|Π(T )|tp. (11)

We claim that this suffices to prove Claim 4.18. Indeed, appealing to (7), (9) and (10), we get that

µ(XT )2

∆2(XT )
≥ |Π(T )|2n2p4

40|Π(T )|tp · np3
≥|Π(T )|n

40t
≥ dn

1000
=

1

1000
·

√
tp

2000 log (2n2p/t)
· n

≥ 30t log

(
2n2p

t

)
·

√
n2p

250t
· log−3

(
2n2p

t

)
≥ 30t log

(
2n2p

t

)
,

as desired, using that t < βn2p and the fact that β ≤ 2−100 in the last inequality here.

∈ T

∈ Π(T )

w

z

w1 w2

Figure 9: A copy of K1,2 in Π(T ).

To show that (11) holds, note first that X2(Π(T )) is at most the number of paths w1wzw2 in Kn such that

w1w ∈ Π(T ) and wz, zw2 ∈ T , see Figure 9. Consequently, denoting by dΠ(v) the number of neighbours of v in

Π(T ), we have

X2(Π(T )) ≤
∑

e=wz∈T

dΠ(w)dT (z) =
∑
w∈[n]

∑
z∈[n]

dΠ(w)dT (z)1[wz ∈ T ]. (12)

We will split this sum further by grouping together vertices depending on their degrees. To this end, for

0 ≤ α ≤ log2(np) and 0 ≤ β ≤ 2 log2(np) + 1 let

Aα :=

{
z ∈ V (T ) :

dT (z)

2np
∈
[
2−α−1, 2−α

]}
, Bβ :=

{
w ∈ V (T ) :

dΠ(w)

4n2p2
∈
[
2−β−1, 2−β

]}
,

and note that the sets Aα partition the vertices and so do the sets Bβ , using here that dΠ(w) ≤ ∆(Π(S)) ≤
∆(T )2 ≤ 4n2p2 for all w ∈ V (T ) due to the fact that T ∈ F(β, p) and so ∆(T ) ≤ 2np (see Definition 4.13).

Hence, returning to the upper bound (12), we have that

X2(Π(T )) ≤
log2(np)∑

α=0

2 log2(np)+1∑
β=0

eT (Aα, Bβ) · 8n3p32−α−β . (13)
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We now turn to bounding eT (Aα, Bβ) for each 0 ≤ α ≤ log2(np) and 0 ≤ β ≤ 2 log2(np) + 1. For each such α

and β, set

aα :=
2α+1t

np
, bβ :=

2β |Π(T )|
n2p2

,

and note that |Aα| ≤ aα and |Bβ | ≤ bβ . Indeed, 2−αnp|Aα| ≤
∑

z∈V dT (z) ≤ 2t, and similarly for |Bβ |.
Moreover

aα =
2α+1t

np
≥ t

np
≥ θn2p2 ≫ (log n)7

p
,

using that t ≥ θn3p3 as T ∈ F (see Definition 4.13) and the fact that p ≥ n−3/5. Similarly, we have that

bβ =
2β |Π(T )|
n2p2

≥ td

24n2p2
≥ t3/2p1/2

1200n2p2 log(2n2p/t)
≥ θ3/2n5/2p3

1200 log(2n2p/t)
≫ (log n)7

p
,

where we used (10) to lower bound |Π(T )| as well as our lower bounds on t and p. Now as T ∈ F(β; p) has

property (P5) of Lemma 2.5, see Definition 4.13,

eT (Aα, Bβ) ≤ |Aα| · |Bβ | · p+
aα · bβ · p

log3 n
≤ |Aα| · |Bβ | · p+

2α+β+1t|Π(T )|
n3p2 log3 n

,

for all α, β in our ranges of interest. Therefore, plugging these upper bounds into (13), we get

X2(Π(T )) ≤
log2(np)∑

α=0

2 log2(np)+1∑
β=0

(
|Aα| · |Bβ | · p+

2α+β+1t|Π(T )|
n3p2 log3 n

)
· 8n3p32−α−β

≤ 16|Π(T )| · tp
log n

+ 8p ·

log2(np)∑
α=0

|Aα| · 2−αnp

 ·

2 log2(np)+1∑
β=0

|Bβ | · 2−βn2p2



≤ |Π(T )| · tp+ 8p ·

∑
z∈[n]

dT (z)

 ·

∑
w∈[n]

dΠ(w)/2


≤ |Π(T )| · tp+ 8p · 2t · |Π(T )| ≤ 20|Π(T )|tp,

establishing (11) and completing the proof of this case, the claim and the lemma. ◀

We will split our analysis in the proof of Proposition 4.12 depending on whether T ∈ F(β; p) outputs an

S(T ) that satisfies (a) or (b) when Lemma 4.17 is applied to T . If (a) holds, then we say that T is of type (a)

and, likewise, if (b) holds for S(T ), we say that T is of type (b). Our next lemma states that type (b) subgraphs

can only occur when both p and e(T ) are very close ot their minimal values.

Lemma 4.19. Suppose 0 < β ≤ 2−100, n−3/5 ≪ p≪ n−1/2 and T ∈ F = F(β; p) is of type (b) with t := e(T ).

Then

(i) p ≤ Cn−3/5 log1/5 n for some C = C(θ);

(ii) t≪ n3p3 log n;

(iii) log
(

2n2p
t

)
≥ logn

6 .

Proof. Suppose that T ∈ F(β; p) is of type (b), let S := S(T ) ⊆ T be the graph output by Lemma 4.17 when

applied to T and let s := e(S) ≥ t/2. If (i) did not hold, then (7), Lemma 4.16 and the fact that t ≥ θn3p3 (see

Definition 4.13) would imply that, if C = C(θ) is sufficiently large,

µ(XS)

3
≥ |Π(S)|np2

4
≥ s2p2

32
≥ t2p2

128
≥ θtn3p5

128
≥ C5θt log n

128
≥ 10t log

(
2n2p

t

)
,

33



contradicting the fact that S satisfies part (b) of Lemma 4.17. Similarly, if (ii) did not hold, then, for some

positive constant c, we would have, using that p≫ n−3/5,

µ(XS)

3
≥ t2p2

128
≥ ctn3p5 log n

240
≫ t log n,

again contradicting the fact that S satisfies part (b) of Lemma 4.17. This means that both (i) and (ii) must

hold. Finally, the third assertion (iii) follows from the other two. Indeed, we have that p ≪ n−7/12(log n)−1/2

from part (i) and so using (ii), we get that

2n2p

t
≥ 2

np2 log n
≫ n1/6.

Finally, we prove Proposition 4.12, completing this section.

Proof of Proposition 4.12. Let α = 1/6400, β := 2−100 and let ζ := min{αθ2/96, αθ/(6C5)}, where C = C(θ)

is the constant from the statement of Lemma 4.19. Let G ∼ Gn,p, let F := F(β; p) be the collection of

graphs from Definition 4.13 and let H be the collection of n-vertex graphs that satisfy properties (P1)–(P5)

of Lemma 2.5. Further, let F(a),F(b) ⊆ F be the graphs of types (a) and (b), respectively. Now, for a graph

R ⊆ Kn, let A(R) be the event that R = φ−1(red) for some K3-free colouring φ : E(G) → {red,blue} of G

with fewer than ζn6p8 copies of Crrbb. As Pr[G /∈ H] ≪ 1, due to Lemma 2.5, it suffices to show that a.a.s.

the event
⋃
{A(R) : e(R) < βn2p} ∩ {G ∈ H} does not occur. To this end, we first claim that the event

A(R)∩{G ∈ H} is empty unless R ∈ F . To see this, suppose that G ∈ H and the event A(R) happens for some

R with e(R) < βn2p. As properties (P1)–(P3) and (P5) of Lemma 2.5 are all monotone decreasing, the graph

R ⊆ G ∈ H must satisfy condition (ii) of Definition 4.13. Moreover, the upper bound on e(R) in condition (i)

of Definition 4.13 is satisfied by assumption. As for the lower bound, property (P4) of Lemma 2.5 supplies a

collection of at least θn3p3 edge-disjoint triangles in G and each colours class of every K3-free colouring of G

must contain at least one edge from each triangle in this collection. Therefore, it remains to show that a.a.s.

no event A(T ) ∩ {G ∈ H} occurs with T ∈ F = F(a) ∪ F(b). We first deal with the type (a) graphs T .

Claim 4.20. For every T ∈ F(a) with e(T ) = t, we have Pr[A(T )] ≤ pt
(

t
2n2p

)t
.

Proof. Applying Lemma 4.17, we get some subgraph S := S(T ) ⊆ T with s := e(S) ≥ t/2 and µ(XS)2

∆(XS) ≥
10t log

(
2n2p
t

)
. Now, let YT ⊆ XS be the family of all copies of K1,2 in Kn \ T that form a 4-cycle with some

copy of K1,2 in S and avoid the edges of T . Using the notation of Lemma 2.2, let µ := |YT |p2 be the expected

number of copies of K1,2 in YT that appear in Gn,p and let ∆ :=
∑

K,K′ pe(K∪K′), where the sum goes over all

pairs of copies K,K ′ ∈ YT such that K ∩K ′ ̸= ∅. Note that ∆ ≤ ∆(XS), as YT ⊆ XS , and we also have that

µ = |YT |p2 ≥ |Π(S)|(n− 2∆(T ))p2 ≥ 2√
5
|Π(S)|np2 ≥ 2µ(XS)√

5
,

appealing to (7) and the fact that ∆(T ) ≤ 2np≪ n, as T ∈ F , here.

Now, let B(T ) be the event that fewer than µ/2 copies of K1,2 from YT appear in G. By Lemma 2.2,

Pr[B(T )] ≤ exp

(
− µ2

8∆

)
≤ exp

(
− µ(XS)2

10∆(XS)

)
≤ exp

(
−t log

(
2n2p

t

))
=

(
t

2n2p

)t

.

We claim that A(T ) ⊆ B(T ). Indeed, suppose that A(T ) occurs and fix some colouring φ : E(G) → {red,blue}
with φ−1(red) = T and fewer than ζn6p8 copies of Crrbb. Since every copy K of K1,2 in YT that appears in G

is coloured blue (as its edges are not in T ), it gives rise to at least one copy of Crrbb, as K forms a copy of C4

with two edges of S (which φ colours red). This implies that B(T ) occurs as otherwise, by (7), Lemma 4.16

and the fact that s ≥ t/2 ≥ θn3p3/2, see Definition 4.13, we would get

µ

2
≥ µ(XS)

4
≥ |Π(S)|np2

8
≥ s2p2

64
≥ ζn6p8
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copies of Crrbb, a contradiction. Finally, as the event A(T ) occurring implies that T ⊆ G and the events T ⊆ G

and B(T ) are independent (the copies of K1,2 in YT avoid the edges of T ), we have

Pr[A(T )] ≤ Pr[{T ⊆ G} ∩B(T )] ≤ Pr[T ⊆ G] · Pr[B(T )] ≤ pt
(

t

2n2p

)t

,

as required. ◀

Using Claim 4.20 and appealing to a union bound, we thus have that

Pr
[
A(T ) ∩ {G ∈ H} for some T ∈ F(a)

]
≤

∑
T∈F(a)

Pr
[
A(T )

]
≤

∑
T∈F(a)

pe(T ) ·
(
e(T )

2n2p

)e(T )

≤
βn2p∑

t=θn3p3

((n
2

)
t

)
· pt ·

(
t

2n2p

)t

≤ βn2p
(e

4

)n
≪ 1.

It remains to consider the events A(T ) ∩ {G ∈ H} for type (b) graphs T ∈ F(b). More precisely, we need to

show that a.a.s. G does not belong to the family H′ defined by

H′ :=
{
H ∈ H : ∃φ : E(H) → {red,blue} with φ−1(red) ∈ F(b) and fewer than ζn6p8 copies of Crrbb

}
.

In order to do this, for each H ∈ H′, we will identify some ℓ = ℓ(H) ∈ N and a pair of increasing sequences

J(H) = (J0, J1, . . . , Jℓ) and R(H) = (R0, R1, . . . , Rℓ) of subgraphs of H; we will refer to this pair as the stamp

of H and denote it by S(H) = (J(H),R(H)). Our proof will then provide an upper bound on the probability

that S(G) = S, for any given stamp S, that is strong enough to survive a union bound over all possible stamps

S. Before proceeding, we remark that, by Lemma 4.19, we can assume that p ≤ Cn−3/5 log1/5 n, as otherwise

F(b) = ∅ and so H′ = ∅.

Now, for each H ∈ H′, we define ℓ(H) and construct the sequences J(H) and R = R(H) (and hence the

stamp S(H)) by considering the following process:

1. Fix some K3-free colouring φ : E(H) → {red,blue} with fewer than ζn6p8 copies of Crrbb and T :=

φ−1(red) ∈ F(b).

2. Choose a collection C of c0 := θn3p3 edge-disjoint triangles in H (this is possible as H ∈ H and so it

satisfies property (P4) of Lemma 2.5), fix J0 to be the collection of edges featuring in C and R0 := J0 ∩T
to be the collection of edges in J0 which are coloured red by φ.

At this point note that, for any n-vertex graph R with R0 ⊆ R ⊆ T , we have that R ∈ F . Indeed, |R| ≥ |R0| ≥
c0 = θn3p3, as there is at least one red edge in each triangle in C, and the other conditions of Definition 4.13

follow from the fact that R ⊆ T ∈ F(b) ⊆ F . We now continue to form our sequences. We will maintain that

Ji−1 ⊆ Ji for all i ≥ 1 and define Ri := Ji ∩ T to be the collection of edges in Ji that are coloured red by φ (as

is the case with R0 ⊆ J0).

3. Suppose that i ≥ 0 and that Ji and Ri have already been defined. As R0 ⊆ Ri ⊆ T , we have that Ri ∈ F .

In particular, Lemma 4.17 gives us Si := S(Ri) such that e(Si) ≥ e(Ri)/2. Now fix

Mi := αmin

{
|Π(Si)|np2, e(Ri) log

(
2n2p

e(Ri)

)}
, (14)

recalling the definition of Π(Si) from Definition 4.14. Let X (H,Ji, Si) ⊆ XSi be the set of copies of K1,2

in H \ Ji that avoid the edges of Ji and form a 4-cycle with some copy of K1,2 in Si. Moreover, let Z be

a largest collection of edge-disjoint copies of K1,2 in X (H,Ji, Si). If |Z| < Mi then terminate the process

and fix ℓ(H) := i. Otherwise, if |Z| ≥Mi, then choose some Z ′ ⊆ Z with |Z ′| = Mi, let Ji+1 be the graph

obtained by adding the edges in copies of K1,2 in Z ′ to Ji and let Ri+1 = Ji+1 ∩ T . Repeat step 3 with

i+ 1 replacing i.
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We begin by collecting some observations about the process with the following claims.

Claim 4.21. For every i ∈ {0, . . . , ℓ− 1}, we have

e(Ri+1) − e(Ri) ≥
e(Ji+1) − e(Ji)

3
=

2Mi

3
≥ 2ζn6p8.

Consequently, e(Ri) ≥ e(Ji)/3 ≥ 2ζin6p8/3 for every i ∈ {0, . . . , ℓ}.

Proof. Since we have already shown that e(R0) ≥ e(J0)/3 = c0 = θn3p3, as each triangle in C must contain

at least one red edge, the second assertion of the lemma easily follows from the first assertion. We begin by

showing that Mi ≥ 3ζn6p8, which follows from the stronger inequality

Mi

e(Ri)
≥ 3ζn3p5

θ
, (15)

as e(Ri) ≥ e(R0) ≥ θn3p3. To see that (15) holds, consider two cases. If Mi is equal to the first term in (14),

this follows from Lemma 4.16 as

|Π(Si)|np2

e(Ri)
≥ e(Si)

2p2

8e(Ri)
≥ e(Ri)p

2

32
≥ e(R0)p2

32
≥ θn3p5

32
≥ 3ζn3p5

αθ
.

Similarly, if Mi is equal to the second term, then, recalling that we have assumed that n3p5 ≤ C5 log n,

log

(
2n2p

e(Ri)

)
≥ log

(
2n2p

e(T )

)
≥ log n

6
≥ n3p5

6C5
≥ 3ζn3p5

αθ
,

where we also used Lemma 4.19 (iii) and the fact that Ri ⊆ T ∈ F(b).

Observe now that at least two thirds among the collection Z ′ of Mi copies of K1,2, which are added to

Ji to get Ji+1, must contain an edge of T . Indeed, if this was not the case, then more than Mi/3 ≥ ζn6p8

such copies would be coloured completely blue. However, each of those forms a copy of Crrbb with two edges

of Si ⊆ Ri ⊆ T , which are all coloured red. This contradicts the assumption that there are fewer than ζn6p8

copies of Crrbb in H. Therefore, it must be that e(Ri+1) − e(Ri) ≥ 2Mi/3 = (e(Ji+1) − e(Ji))/3. ◀

Since n6p8 ≫ n3p3, by our assumption that p ≫ n−3/5, Claim 4.21 implies that e(Rℓ) ≥ ℓn3p3. Conse-

quently, since Rℓ ⊆ T ∈ F(b), we must have that ℓ = ℓ(H) ≤ log n.

Claim 4.22. For every i ∈ {0, . . . , ℓ− 1}, we have Mi = α|Π(Si)|np2.

Proof. If this was not the case, then, for some i ∈ {0, . . . , ℓ− 1}, we would have that

Mi = αe(Ri) log

(
2n2p

e(Ri)

)
≥ αe(Ji) log n

18
≥ αe(J0) log n

18
≥ αθn3p3 log n

18
,

using Lemma 4.19 (iii) and Claim 4.21 here. But then, appealing again to Claim 4.21, we have that

e(Rℓ) ≥
e(Jℓ)

3
≥ e(Ji+1)

3
≥ 2Mi

3
≥ αθn3p3 log n

27
,

which is a contradiction, as Rℓ ⊆ T ∈ F(b) and hence e(Rℓ) ≪ n3p3 log n by Lemma 4.19. ◀

We are finally in a position to bound the probability that S(G) = S for each possible stamp S = (J,R).

Recall the definition of H′ and let

S = {S(H) = (J(H),R(H)) : H ∈ H′}

be the set of stamps obtained by running the above process on all possible graphs H ∈ H′. Further, for

0 ≤ k ≤ log n, let Sk := {S(H) : H ∈ H′, ℓ(H) = k} ⊆ S be the stamps of length k.
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Claim 4.23. For any 0 ≤ k ≤ log n and all S = ((J0, . . . , Jk), (R0, . . . , Rk)) ∈ Sk, we have that

Pr[S(G) = S] ≤ pe(Jk) exp(−ζn3p5e(Jk)).

Since S(G) is only defined for G ∈ H′, the event that S(G) = S implicitly implies that G ∈ H′.

Proof of Claim 4.23. Fix some 0 ≤ k ≤ log n and S = ((J0, . . . , Jk), (R0, . . . , Rk)) ∈ Sk as in the statement of

the claim. Further, let M := Mk, as in (14), where S := Sk = S(Rk) is the graph obtained from Lemma 4.17

with input Rk. Now, let let Z be the largest size of a collection of edge-disjoint copies of K1,2 in G \ Jk that

form a 4-cycle with some copy of K1,2 in S. We claim that S(G) = S implies both Jk ⊆ G and Z < M . Indeed,

certainly any H ∈ H′ with S(H) = S must satisfy Jk ⊆ H. Further, if Z ≥ M and G ∈ H′, then the process

defining S(G) would not terminate at step k, and thus ℓ(G) > k, precluding S(G) = S. Since the events Jk ⊆ G

and Z < M are independent, as Z depends only on G \ Jk, we have

Pr[S(G) = S] ≤ Pr[{Jk ⊆ G} ∩ {Z < M}] ≤ Pr[Jk ⊆ G] Pr[Z < M ] = pe(Jk) Pr[Z < M ].

It thus remains to bound Pr[Z < M ].

To this end, we let Y ⊆ XS be the family of copies of K1,2 in Kn \ Jk that form a 4-cycle with two edges in

S. As in the setting of Lemma 2.2, let µ := |Y|p2 be the expected number of copies of K1,2 in Y that appear

in G and ∆ :=
∑

K,K′ pe(K∪K′), where the sum goes over all pairs of copies K,K ′ ∈ Y with K ∩K ′ ̸= ∅. Note

that ∆ ≤ ∆(XS), as Y ⊆ XS , and we also have that

µ = |Y|p2 ≥ |Π(S)|(n− 2∆(Jk))p2 ≥ 1√
2
|Π(S)|np2 ≥ µ(XS)√

2
,

using (7) and the inequality ∆(Jk) ≤ 2np ≪ n, which holds as Jk ⊆ H for some H ∈ H′ ⊆ H. Note also that

µ(XS)/3 ≥ |Π(S)|np2/4. Therefore, by Lemma 4.17 and our choice of α,

D :=
µ2

800∆
≥ µ(XS)2

1600∆(XS)
≥ min

{
1

6400
|Π(Si)|np2,

1

160
e(Rk) log

(
2n2p

e(Rk)

)}
≥M.

In the notation of Corollary 2.3, letting A be the graph with vertex set Γ = E(Kn) whose edges encode copies

of K1,2 in Y, we have that Z ∼ ν(A[Γp]), the size of the largest matching in A. In particular, we may apply

Corollary 2.3 to conclude that Pr[Z < M ] ≤ Pr[Z < D] ≤ exp(−D) ≤ exp(−M); thus, the claim will follow

after showing that M ≥ ζn3p5e(Jk). This follows from Claim 4.21 and inequality (15):

Mk

e(Jk)
≥ Mk

3e(Rk)
≥ ζn3p5

θ
≥ ζn3p5. ◀

It remains to perform a union bound over all possible stamps S ∈ S. We have that

Pr[G ∈ H′] =
∑
S∈S

Pr[S(G) = S] =

logn∑
k=0

∑
S∈Sk

Pr[S(G) = S]

︸ ︷︷ ︸
Σk

.

In order to get a grasp on Σk, consider the following random process that constructs increasing random sequences

J∗ = (J∗
0 , . . . , J

∗
k ) and R∗ = (R∗

0, . . . , R
∗
k) of subgraphs of Kn:
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Let C∗ be a uniformly chosen random family of c0 = θn3p3 triangles in Kn.

Let J∗
0 be the union of C∗ and let R∗

0 ⊆ J∗
0 be a uniformly chosen random subset.

for i = 0, . . . , k − 1 do

if R∗
i ∈ F then

Let S∗
i := S(R∗

i ), the graph output by Lemma 4.17.

Let X ∗ ⊆ XS∗
i

be a uniformly chosen random subset with α|Π(S∗
i )|np2 elements.

Let L∗ be the union of all copies of K1,2 in X ∗.

Let Q∗ be a uniformly chosen random subset of L∗.

Let J∗
i+1 := J∗

i ∪ L∗ and R∗
i+1 := R∗

i ∪Q∗.

else
Let J∗

i+1 := J∗
i and R∗

i+1 := R∗
i .

The key observation is that, for any S = ((J0, . . . , Jk), (R0, . . . , Rk)) ∈ Sk,

Pr
(
(J∗,R∗) = S

)
≥ q∗(S) :=

(((n
3

)
c0

)
23c0

k−1∏
i=0

((
|Π(Si)|n

α|Π(Si)|np2

)
22α|Π(Si)|np2

))−1

, (16)

where, for each i, we denote by Si = S(Ri) the graph output by Lemma 4.17 with input Ri. Since clearly∑
S∈Sk q∗(S) ≤ 1, we have

Σk ≤ max
{

Pr[S(G) = S] · q∗(S)−1 : S ∈ Sk
}
.

Now, fix some S = ((J0, . . . , Jk), (R0, . . . , Rk)) ∈ Sk and let Si := S(Ri) and Mi := α|Π(Si)|np2 for each

i ∈ {0, . . . , k − 1}. By Claims 4.22 and 4.23, we have that e(Jk) = 3c0 +
∑k−1

i=0 2Mi and thus

Pr[S(G) = S] · q∗(S)−1 ≤ pe(Jk) exp(−ζn3p5e(Jk)) ·
(

8en3/6

θn3p3

)c0 k−1∏
i=0

(
4e|Π(Si)|n
α|Π(Si)|np2

)Mi

≤ exp(−ζn3p5e(Jk)) ·
(

4

θ

)c0 k−1∏
i=0

(
4e

α

)Mi

≤ exp
(
−e(Jk) ·

(
ζn3p5 + log θ + logα

))
≤ exp(−e(Jk)),

as n3p5 ≫ 1. Since e(Jk) ≥ c0 ≫ n, we conclude that Σk ≤ e−n and, consequently, Pr(G ∈ H′) ≪ 1.
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A Proof of Corollary 2.3

Our proof follows the approach of [1, Lemma 8.4.2]. We denote

∆̃ := ∆ − µ =
∑
i̸=j

1[Ai ∩Aj ̸= ∅] · p|Ai∪Aj |

and consider two cases, depending on the ratio ∆̃/µ.

Case 1. ∆̃ ≤ µ/3. For an index i ∈ [m], let δi :=
∑

j ̸=i 1[Ai ∩Aj ̸= ∅] · p|Aj\Ai| and call i ∈ [m] good if δi ≤ 4∆̃
µ .

Furthermore, let Λ ⊆ [m] be the set of good indices and let µg :=
∑

i∈Λ p
|Ai|. We will look for a matching of

size D∗ := µ2

50∆ in A[Γp] only among the edges with good indices.

We will call a family I ⊆ Λ disjoint if Ai ∩ Aj = ∅ for all i ̸= j ∈ I. The crucial observation is that, if the

event ν(A[Γp]) ≤ D∗ occurs, then there must be some (possibly empty) disjoint family of indices I ⊆ Λ of size

at most D∗ whose all corresponding edges appear in Γp that is maximal in the sense that no edge corresponding

to the family ΛI := {j ∈ Λ : ∀i ∈ I : Ai ∩ Aj = ∅} appears in Γp. Denote the former event (that Ai ⊆ Γp for

all i ∈ I) by QI and the latter event (that Aj ⊈ Γp for all i ∈ ΛI) by MI . Note that Pr[QI ] =
∏

i∈I p
|Ai| and,

crucially, that QI and MI are independent.

In order to estimate the probability of MI , observe first that ignoring bad indices does not have a big effect

on the expected number of sets appearing in Γp and we have that µg ≥ 3µ/4. Indeed, if this were not the case,

then we would have that

∆̃ =
∑
i∈[m]

p|Ai|δi ≥
4∆̃

µ

∑
i∈[m]\Λ

p|Ai| =
4∆̃

µ
· (µ− µg) > ∆̃,

a contradiction. We further note that

µI :=
∑
j∈ΛI

p|Aj | ≥ µg −
∑
i∈I

∑
j∈Λ

1[Ai ∩Aj ̸= ∅] · p|Aj | ≥ µg −
∑
i∈I

(1 + δi) ≥ µg − |I|

(
1 +

4∆̃

µ

)
.

In particular, if |I| ≤ µ2

16∆ , then

µI ≥ µg −
µ2

16∆
·

(
1 +

4∆̃

µ

)
= µg −

µ2

16∆
·
(

4∆

µ
− 3

)
≥ µg −

µ

4
≥ µ

2
.

We also clearly have that

∆I :=
∑

i,j∈ΛI

1[Ai ∩Aj ̸= ∅] · E[IiIj ] ≤ ∆.

Hence, by Lemma 2.2

Pr [MI ] ≤ exp

(
− µ2

I

2∆I

)
≤ exp

(
− µ2

8∆

)
.

This gives the following estimate:

Pr[ν(A[Γp]) ≤ D∗] ≤
∑

|I|≤D∗

Pr[QI ∧MI ] =

D∗∑
k=0

∑
I⊆Λ
|I|=k

Pr[MI ] · Pr[QI ]

≤ exp

(
− µ2

8∆

)
·
D∗∑
k=0

∑
I⊆Λ
|I|=k

∏
i∈I

p|Ai| ≤ exp

(
− µ2

8∆

)
·
D∗∑
k=0

1

k!

(∑
i∈Λ

p|Ai|

)k

≤ exp

(
− µ2

8∆

)
·
D∗∑
k=0

µk

k!
≤ exp

(
− µ2

8∆

)
·
( eµ
D∗

)D∗

,
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where the last inequality is the well-known concentration inequality for the Poisson distribution that states that,

if x ≤ µ, then Pr[Poisson(µ) ≤ x] ≤
(
eµ
x

)x
e−µ. Finally, since we assume that ∆ = µ+ ∆̃ ≤ 3µ/4, we conclude

that

Pr[ν(A[Γp]) ≤ D∗] ≤ exp

(
D∗ ·

(
−25

4
+ log

50e∆

µ

))
≤ exp(−D∗).

Case 2. ∆̃ > µ/3. In this case, we simply find a subset of indices that satisfies the assumption of Case 1. For a

set S ⊆ [m] of indices, denote

µS :=
∑
i∈S

p|Ai| and ∆̃S :=
∑

i ̸=j∈S

1[Ai ∩Aj ̸= ∅] · p|Ai∪Aj |.

It is clearly enough to show that there exists a set S with ∆̃S ≤ µS/3 and D∗
S :=

µ2
S

50(µS+∆̃S)
≥ D. Let S be a

random subset of [m] obtained by independently retaining each element with probability q := µ

6∆̃
. Then

E[µS − 3∆̃S ] = qµ− 3q2∆̃ =
µ2

12∆̃
,

so there is an S that satisfies both µS ≥ µ2

12∆̃
and ∆̃S ≤ µS/3 and thus also

D∗
S =

µ2
S

50(µS + ∆̃S)
≥ 3µS

200
≥ µ2

800∆̃
≥ µ2

800∆
= D.

In particular, arguing as in Case 1, with A replaced by AS := {Ai ∈ A : i ∈ S}, we obtain,

Pr[ν(A[Γp]) ≤ D] ≤ Pr[ν(AS [Γp]) ≤ D] ≤ Pr[ν(AS [Γp]) ≤ D∗
S ] ≤ exp(−D∗

S) ≤ exp(−D).

B Derivation of Theorem 2.4

Here we derive our container lemma, Theorem 2.4, which we restate for convenience.

Theorem 2.4. For every positive integer 2 ≤ k ∈ N and all ε ∈ (0, 1) and 1 ≤ K ∈ N, there exist t ∈ N and

δ > 0 such that the following holds. Suppose that a nonempty k-uniform hypergraph H with vertex set V and

τ ∈ (0, 1/t) satisfy

∆ℓ(H) ≤ Kτ ℓ−1 · e(H)

v(H)

for every ℓ ∈ {2, . . . , k}. Then, there exists a function f : P(V )t → P(V ) with the following properties:

(i) For every set I ⊆ V satisfying e(H[I]) ≤ δτke(H), there are S1, . . . , St ⊆ I, each of size at most τv(H)

and such that I ⊆ f(S1, . . . , St).

(ii) For every S1, . . . , St ⊆ V , the set f(S1, . . . , St) induces fewer than εe(H) edges in H.

Theorem 2.4 is a slight reformulation of the following theorem of Saxton and Thomason.

Theorem B.1 ([23, Corollary 3.6]). For every 2 ≤ k ∈ N and ε > 0, there exists an integer s ∈ N such that

the following holds. Suppose that a nonempty k-uniform hypergraph H on vertex set V and τ ∈ (0, 1/2) satisfy

δ(H, τ) := 2(k
2)−1

k∑
j=2

2−(j−1
2 )δj(H, τ) ≤ ε

12k!
,

where

δj(H, τ) :=
τ1−j

ke(H)
·
∑
v∈V

max{dH(T ) : v ∈ T ⊆ V and |T | = j}.

Then there exists a function C : P(V )s → P(V ) such that, letting

T :=
{

(T1, . . . , Ts) ∈ P(V )s : |Ti| ≤ sτ |V | for all i ∈ [s]
}
,

we have:
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(a) For every set I ⊆ V satisfying e(H[I]) ≤ 24εk!kτke(H), there exists T = (T1, . . . , Ts) ∈ T ∩ P(I)s with

I ⊆ C(T ).

(b) For every T ∈ T , the set C(T ) induces at most εe(H) edges in H.

Derivation of Theorem 2.4 from Theorem B.1. Let H be a nonempty k-uniform hypergraph with vertex set V

and let ε > 0 and K ∈ N. We set s := sB.1(k, ε) to be the constant output by Theorem B.1 with input k and ε

and let

L :=

⌈
12k!2(k

2)K

ε

⌉
, t := 2Ls2, and δ := 24εk!kLk.

Suppose that the maximum degrees of H satisfy the assumptions of the theorem for some τ ≤ 1/t. Note that,

for every j ∈ {2, . . . , k},

δj(H, Lτ) =
(Lτ)1−j

ke(H)
· v(H)∆j(H) ≤ KL1−j

k

and thus, as L ≥ 2,

δ(H, Lτ) ≤ 2(k
2)−1 ·

k∑
j=2

KL1−j

k
≤ 2(k

2)K

L
≤ ε

12k!
.

Consequently, Theorem B.1, invoked with τB.1 = Lτ , implies that there exist a function C : P(V )s → P(V )

that satisfies conditions (a) and (b) of that theorem. Here, we used that τ ≤ 1/t implies that Lτ < 1/2. Now

define f : P(V )t → P(V ) by letting

f(S1, . . . , St) := C
(
S1 ∪ · · · ∪ St/s, . . . , S(s−1)t/s+1 ∪ · · · ∪ St

)
.

If I ⊆ V satisfies

e(H[I]) ≤ δτke(H) ≤ 24εk!k(Lτ)ke(H),

then there are T1, . . . , Ts ⊆ I, with |Ti| ≤ sLτ |V | for each i, such that I ⊆ C(T1, . . . , Ts). This gives the

assertion of part (i) of the theorem, as we may partition each Ti into t/s sets St(i−1)/s+1, . . . , St(i+1)/s, each of

size at most ⌈s/t ·sLτ |V |⌉ ≤ τ |V |. Part (ii) of the theorem follows directly from our definition of f and part (b)

of Theorem B.1.
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