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Abstract. The hypergraph container lemma is a powerful tool in probabilistic combinatorics

that has found many applications since it was first proved a decade ago. Roughly speaking, it

asserts that the family of independent sets of every uniform hypergraph can be covered by a small

number of almost-independent sets, called containers. In this article, we formulate and prove

two new versions of the lemma that display the following three attractive features. First, they

both admit short and simple proofs that have surprising connections to other well-studied topics

in probabilistic combinatorics. Second, they use alternative notions of almost-independence in

order to describe the containers. Third, they yield improved dependence of the number of

containers on the uniformity of the hypergraph, hitting a natural barrier for second-moment-

type approaches.

1. Introduction

The method of hypergraph containers is a powerful and widely-applicable technique in prob-

abilistic combinatorics. The method enables one to control the independent sets of many ‘in-

teresting’ uniform hypergraphs by exploiting the fact that these sets exhibit a certain subtle

clustering phenomenon. The survey [2] provides a gentle introduction to the method, illustrated

with several example applications.

The heart of the method is a hypergraph container lemma (HCL for short) – a statement that

formalises and quantifies the notion of clustering we alluded to above. A generic HCL asserts

that every uniform hypergraph H admits a collection C = C(H) of containers for the family

I(H) of independent sets of H with the following three properties:

(i) each I ∈ I(H) is contained in some C ∈ C;
(ii) the family C has ‘small’ cardinality; and

(iii) each C ∈ C is ‘almost independent’.

Note that such a statement is vacuously true when H is 1-uniform, as then each I ∈ I(H) is

contained in the largest independent set {v ∈ V (H) : {v} /∈ H}. Although a HCL for 2-uniform

hypergraphs is already implicit in the works of Kleitman and Winston [13] from the early

1980s, an explicit statement was formulated and proved only a decade later by Sapozhenko [22].

General HCLs that are applicable to hypergraphs of an arbitrary uniformity were proved much

later, independently and simultaneously, by Balogh, Morris, and Samotij [1] and by Saxton and

Thomason [23].

The precise meaning of small in (ii) above depends not only on the notion of almost-independence

in (iii), but also on the uniformity of the hypergraph. The dependence on the uniformity in the

original HCLs of [1, 23] was rather unfavourable. Roughly speaking, the guaranteed upper
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bound on log |C(H)| for an r-uniform hypergraph H in [1] and [23] was proportional to eΘ(r2)

and r!, respectively. To remedy this, Balogh and Samotij [3] proved a more ‘efficient’ HCL that

yielded an upper bound on log |C(H)| that was proportional to merely a polynomial in r. Let

us also mention that Morris, Samotij, and Saxton [18] proved an ‘asymmetric’ HCL that was

fine-tuned to enumeration of sparse graphs not containing an induced copy of a given subgraph,

but has since found additional applications [6, 7, 8, 15].

While the proofs of the four HCLs mentioned in the previous paragraph are elementary, they

all are rather lengthy and technical (there are much easier arguments that prove the existence

of containers in the 2-uniform case, see the survey [21]). This motivated several groups of au-

thors to seek HCLs that admit shorter and simpler proofs. Saxton and Thomason [25] found

an easy method for building containers for independent sets in simple hypergraphs. In an-

other work [24], the same authors presented a streamlined proof of their original HCL [23] that

yields an additional ‘online’ property. A few years later, Bernshteyn, Delcourt, Towsner, and

Tserunyan [4] formulated a HCL whose statement adapts notions from nonstandard analysis and

supplied a compact (spanning approximately four pages), non-algorithmic proof; unfortunately,

their HCL still suffers from unfavourable dependence on the uniformity. Finally, Nenadov [19]

recently proved a statement that may be interpreted as a probabilistic HCL; while it does not

supply a collection of containers for independent sets, it is sufficiently powerful to replace HCL

in most of its typical applications.

1.1. Motivation. We embarked on this project with two independent goals in mind. Our first

aim was to further improve the dependence of (the logarithm of) the number of containers on the

uniformity of the hypergraph. The second aim was to find a simple(r) construction of containers

for general uniform hypergraphs that admits a compact proof. Whereas the first goal has been

achieved only partially – each HCL formulated and proved in this paper encounters the same

‘second-moment barrier’ that results in O(r2)-type dependence of log |C| on the uniformity r,

we do suggest a pathway to improving it further. In fact, we present a conjecture that would

imply a logarithmic dependence of log |C| on r and that is closely connected to the Park–Pham

theorem [20]. As for the second goal, we let the reader be the judge.

1.2. Our results. We formulate two new HCLs that are stronger than the efficient HCL of

Balogh and the second author and, at the same time, admit short proofs. The two lemmas use

different notions of almost-independence that, unlike all previous works, are not expressed in

terms of a ‘balanced supersaturation’ condition; however, both of them are at least as strong as

the usual notion (to certify this, we will present short derivations of the efficient HCL from each

of our two lemmas). Furthermore, one of our HCLs does not even require the input hypergraph

to be uniform.

The statement of our first HCL, Theorem A below, is inspired by the recent developments

in the study of threshold phenomena in random sets [9, 20]. In order to state it, we need to

introduce some notation. First, given a hypergraph G, we write

⟨G⟩ :=
⋃
E∈G

{F ⊆ V (G) : F ⊇ E}

for the up-set generated by G. We say that G covers a hypergraph H if H ⊆ ⟨G⟩; in other words,

G covers H is every edge of H contains some edge of G. Second, for each p ∈ [0, 1], define the
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p-weight of a hypergraph G to be

wp(G) :=
∑
E∈G

p|E|,

which is just the expected number of edges of G induced by the p-random subset1 of V (G).

Theorem A. Let H be an r-uniform hypergraph with a finite vertex set V . For every p ∈
(0, 1/(8r2)], there exists a family S ⊆ 2V and functions

g : I(H) → S and f : S → 2V

such that:

(a) For each I ∈ I(H), we have g(I) ⊆ I ⊆ f(g(I)).

(b) Each S ∈ S has at most 8r2p|V | elements.

(c) For every S ∈ S, letting C := f(S), there exists a hypergraph G on C with

wp(G) ⩽ p|C|

that covers H[C] and satisfies |E| ⩾ 2 for all E ∈ G.

Let us point out that the above theorem does not assume anything about the input hyper-

graph, except that it is uniform. The condition that all edges of the cover have size at least two

is necessary to prevent the conclusion from being trivial; indeed, every hypergraph with vertex

set C admits a cover (by singletons) of p-weight p|C|. An analogous comment applies to the

assumption that p ⩽ 1/(8r2); if p ⩾ 1/(8r2), then one may simply set f(I) = g(I) = I for all

I ∈ I(H) and let G be the empty hypergraph.

Our second HCL, Theorem B, has a probabilistic flavour; this stems form the fact that its

proof views independent sets as samples from a hard-core model. Perhaps surprisingly, it does

not assume anything about the hypergraph, not even uniformity. Given an arbitrary set X and

a real p ∈ [0, 1], we write Xp to denote the p-random subset of X.

Theorem B. Let H be a hypergraph with a finite vertex set V . For all reals δ and p satisfying

0 < p ⩽ δ < 1, there exists a family S ⊆ 2V and functions

g : I(H) → S and f : S → 2V

such that:

(a) For each I ∈ I(H), we have g(I) ⊆ I ⊆ f(g(I)).

(b) Each S ∈ S has at most p|V |/δ elements.

(c) For every S ∈ S, letting C := f(S),

P
(
S ∪ Cp ∈ I(H)

)
⩾ (1− p)δ|C\S|.

The proofs of both Theorems A and B follow the same general strategy that was also used

to prove most HCLs to date; it can be traced back to the work of Kleitman and Winston [13].

Namely, we define an algorithm that, given an independent set I as input, builds sets S and C

satisfying S ⊆ I ⊆ C and, in the proof of Theorem A, also a hypergraph G that covers H[C].

Crucially, the set C depends on I only through S in the following sense: If for some two inputs

1The p-random subset of a finite set X is the random set formed by independently retaining each element of X
with probability p.
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I, I ′, the algorithm outputs the same set S, it also returns the same set C. This property allows

one to define the functions g and f via the algorithm. The main novelty in the algorithm that

underlies the proof of Theorem A is that it considers queries of the form ‘Is L ⊆ I?’ for sets L

that are not necessarily singletons. The algorithm used in the proof of Theorem B considers only

queries of the form ‘Does v ∈ I?’, but it chooses the vertex v based on its occupancy probability

in a certain hard-core model.

1.3. Comparing Theorems A and B. Even though the descriptions of the container sets

f(S) in Theorems A and B look rather different, they are in fact essentially equivalent. This is

a consequence of the following proposition, which quantifies the relation between the smallest

p-weight of a cover for a uniform hypergraph H and the probability that the p-random subset

of vertices of H is independent.

Proposition 1.1. Suppose that H is a hypergraph on a finite vertex set V .

(i) For every hypergraph G ⊆ 2V \ {∅} that covers H and all p ∈ (0, 1/2),

P(Vp ∈ I(H)) ⩾ exp
(
−2wp(G)

)
.

(ii) If H is r-uniform, then, for every p ∈ (0, 1/(4r)), there exists a hypergraph G ⊆ 2V \ {∅}
that covers H and satisfies

P(Vp ∈ I(H)) ⩽ exp
(
−wp/(4r2)(G)/8

)
.

We postpone the proof of Proposition 1.1 to Section 2 and now only elaborate on the qualita-

tive equivalence between the notions of almost-independence used in Theorems A and B. First,

let G be the hypergraph from assertion (c) of Theorem A. The assumption that |E| ⩾ 2 for all

E ∈ G and the fact wp(G) ⩽ p|C| guarantee that, for all δ ∈ (0, 1) and all p′ ⩽ δp,

wp′(G) ⩽ (p′/p)2 · wp(G) ⩽ (p′/p) · p′|C| ⩽ δp′|C|.

Since G covers H[C], it follows from part (i) of Proposition 1.1 that P
(
Vp′ ∈ I(H[C])

)
⩾

exp
(
−2δp′|C|

)
.

Conversely, assume that p ⩽ 1/(4r) and let S and C be the sets from assertion (c) of Theo-

rem B. Since P
(
Cp ∈ I(H[C])

)
⩾ P

(
S ∪ Cp ∈ I(H)

)
, it follows from part (ii) of Proposition 1.1

that H[C] admits a cover G that satisfies

wp/(4r2)(G) ⩽ −8 logP
(
S ∪ Cp ∈ I(H)

)
⩽ −8 log(1− p)δ|C| ⩽ 10δp|C| .

1.4. Relation to earlier HCLs. An attractive feature of Theorems A and B is that each of

them implies (a slight strengthening of) the ‘efficient’ HCL of Balogh and Samotij [3, Theo-

rem 1.1], stated here as Theorem C below, which in turn significantly improves the original

HCLs proved in [1, 23]. Given a hypergraph H with vertex set V and a set L ⊆ V , we define

degH L := |{E ∈ H : L ⊆ E}|.

Further, for an integer ℓ ⩾ 1, we let

∆ℓ(H) := max{degH L : L ⊆ V, |L| = ℓ}.

The following statement can be easily derived from both Theorem A as well as Theorem B and

Janson’s inequality. We present the two derivations in Section 5.
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Theorem C ([3]). Let H be an r-uniform hypergraph with a finite vertex set V . Suppose that

τ ∈ (0, 1) and K ⩾ r are such that, for every ℓ ∈ JrK,

∆ℓ(H) ⩽ K ·
( τ

32Kr2

)ℓ−1
· e(H)

|V |
. (1)

There exists a family S ⊆ 2V and functions

g : I(H) → S and f : S → 2V

such that:

(a) For each I ∈ I(H), we have g(I) ⊆ I ⊆ f(g(I)).

(b) Each S ∈ S has at most τ |V | elements.

(c) For every S ∈ S, we have |f(S)| ⩽
(
1− 1/(2K)

)
|V |.

In most applications of the hypergraph container method, one recursively applies a basic

HCL, such as Theorem C, to construct a family of containers that are almost independent in the

sense that one can no longer prove a balanced supersaturation result in any of the containers.

In order to avoid explicitly performing such a recursive procedure, one may instead invoke

one of the several ‘packaged’ HCLs that exist in the literature (see, e.g., [1, Theorem 2.2], [3,

Theorem 1.6], or [23, Corollary 3.6]). Both Theorems A and B allow one to deduce such a

packaged HCL directly, without the need for recursion. For example, the following statement is

a straightforward consequence of Theorem A.

Theorem D. Let H be an r-uniform hypergraph with a finite vertex set V . For every p ∈
(0, 1/(8r2)], there exists a family S ⊆ 2V and functions

g : I(H) → S and f : S → 2V

such that:

(a) For each I ∈ I(H), we have g(I) ⊆ I ⊆ f(g(I)).

(b) Each S ∈ S has at most 8r2p|V | elements.

(c) For every S ∈ S, there does not exist a hypergraph HS ⊆ H[f(S)] that satisfies

∆ℓ(HS) <
pℓ−1e(HS)

|f(S)|
for all ℓ ∈ {2, . . . , r}. (2)

We note that condition (c) in the above theorem is the negation of a balanced supersaturation

statement that would enable one to construct a small family of containers for independent sets

in H[f(S)] using a basic HCL such as Theorem C.

We present the derivation of Theorem D from Theorem A in Section 5 and only mention

here that the existence of a hypergraph G with small p-weight that covers H[f(S)] precludes

the existence of a hypergraph HS ⊆ H[f(S)] that satisfies the balancedness condition (2). We

further note that the derivation of Theorem D from Theorem A in fact allows one to prove

a strengthening of the former, where the assertion (c) is replaced by the stronger assertion

that there does not exist a probability distribution on H[f(S)] under which the random edge

R ∈ H[f(S)] satisfies

P(L ⊆ R) <
pℓ−1

|f(S)|
for all L ⊆ V with 2 ⩽ |L| ⩽ r.
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Note the striking similarity between this condition and the notion of a p-spread measure, intro-

duced by Talagrand [26], which played a key role in the proof [9] of the fractional version of the

‘expectation-threshold’ conjecture of Kahn and Kalai [12], conjectured by Talagrand [26].

Finally, we remark that one may use Theorem B to derive an alternative version of The-

orem D, where assumption (2) is replaced by an analogous sequence of upper bounds on the

degrees ∆1(HS), . . . ,∆r(HS). The existence of an HS ⊆ H[f(S)] that satisfies such a modified

assumption would imply, via Janson’s inequality, an upper bound on the probability that the

p-random set f(S)p is independent in HS , and thus also in ⊆ H[f(S)], that is smaller than the

upper bound on this probability asserted by Theorem B.

1.5. Interpolating between Theorems A and B. Before concluding our discussion, we state

one more HCL, where the characterisation of almost independence interpolates between those

given by Theorems A and B.

Theorem E. Let H be a hypergraph with a finite vertex set V . For all reals δ and p satisfying

0 < p ⩽ δ < 1, there exists a family S ⊆ 2V and functions

g : I(H) → S and f : S → 2V

such that:

(a) For each I ∈ I(H), we have g(I) ⊆ I ⊆ f(g(I)).

(b) Each S ∈ S has at most p|V |/δ elements.

(c) For every S ∈ S, letting C := f(S), there exists a hypergraph G with vertex set C \ S

and |E| ⩾ 2 for all E ∈ G that covers H[C] and satisfies

P
(
L ⊆ Cp | Cp ∈ I(G)

)
⩾ (1− δ)|L|p|L|

for all L ∈ I(G).

The proof of Theorem E, which we sketch in Section 6, is very similar to the proof of Theo-

rem B, the only difference being that the algorithm that is used here to build the sets S and C

considers the more general queries of the form ‘Is L ⊆ I?’, as in the proof of Theorem A.

While it may not be immediately clear, Theorem E simultaneously strengthens both The-

orems A and B. We postpone the proofs of these two facts (Theorem E =⇒ Theorem A and

Theorem E =⇒ Theorem B) to Section 6.

1.6. Organisation. In Section 2, we set a few notational conventions, state several auxiliary

results, and prove Proposition 1.1. In Sections 3 and 4, we prove Theorems A and B, respectively.

Section 5 is devoted to derivations of standard HCLs (Theorems C and D) from Theorems A

and B. In Section 6, we sketch the proof of Theorem E and show that it implies both Theorems A

and B. In Section 7, we present an attractive conjecture that strengthens Proposition 1.1 and

discuss some of its implications. Finally, Appendix A contains three proofs of one of our key

auxiliary results, Proposition 2.2.

2. Preliminaries

2.1. Notation. Given a hypergraph H and a positive integer s, we define

Hs := {E ∈ H : |E| = s}.
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It will be also convenient to introduce the shorthand notations

H>1 :=
⋃
s>1

Hs and H<r :=
⋃
s<r

Hs.

Finally, for every L ⊆ V (H), we denote by ∂LH the link of L in H, i.e.,

∂LH := {E \ L : L ⊆ E ∈ H};

for the sake of brevity, we will write ∂vH in place of ∂{v}H.

2.2. Auxiliary results. While comparing Theorem B to other HCLs, we will crucially use the

following well-known inequality due to Janson [10].

Theorem 2.1 (Janson’s Inequality). Suppose that G is a hypergraph on a finite set C. For

every p ∈ [0, 1],

P(Cp ∈ I(G)) ⩽ exp

(
− µ2

2∆∗

)
,

where

µ :=
∑
A∈G

p|A| and ∆∗ :=
∑

A,B∈G
A∩B ̸=∅

p|A∪B|

and the second sum ranges over all ordered pairs (A and B are not necessarily distinct).

Our proof of Theorem B, as well as the derivation of this theorem from Theorem E, requires

the following probabilistic estimate. Since this estimate follows from standard techniques, we

postpone its proof to the appendix (where we in fact present three different proofs).

Proposition 2.2. Suppose that C is a finite set and let I ⊆ 2C be a decreasing family of subsets.

For every p ∈ (0, 1), we have

logP(Cp ∈ I) ⩾

(
|C| −

E
[
|Cp| | Cp ∈ I

]
p

)
· log(1− p).

Finally, we will also employ the following well-known inequality, discovered independently by

Bollobás [5], Lubell [16], Meshalkin [17], and Yamamoto [27].

Proposition 2.3 (LYMB inequality). Suppose that X is a finite set and that A ⊆ 2X is an

antichain. Then, ∑
A∈A

(
|X|
|A|

)−1

⩽ 1.

2.3. Proof of Proposition 1.1. The first assertion is a straightforward application of Harris’s

inequality. Indeed, for every hypergraph G ⊆ 2V \ {∅} that covers H, we have

P(Vp ∈ I(H)) ⩾ P(Vp ∈ I(G)) ⩾
∏
A∈G

(1− p|A|) ⩾ exp

(
−2
∑
A∈G

p|A|

)
,

where the final inequality holds as 1− x ⩾ e−2x for all x < 1/2.

We now prove the second assertion. Suppose that H is r-uniform and define, for each ℓ ∈ JrK,
λℓ := 4−min{ℓ,r−ℓ}. Let H′ be a maximal subgraph of H subject to ∆ℓ(H′) ⩽ λℓ

(
r
ℓ

)−1
pℓ−r for all
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ℓ ∈ JrK. Define µ :=
∑

A∈H′ p|A| = e(H′)pr and

∆∗ :=
∑
A∈H′

p|A| ·
∑
B∈H′

A∩B ̸=∅

p|B\A| ⩽ µ ·
r∑

ℓ=1

(
r

ℓ

)
∆ℓ(H′)pr−ℓ ⩽ µ ·

r∑
ℓ=1

λℓ ⩽ 2µ.

Let G be the set of minimal elements in the family

G′ :=

{
T ⊆ V : 1 ⩽ |T | ⩽ r ∧ degH′ T =

⌊
λ|T |

(
r

|T |

)−1

p|T |−r

⌋}
and note that H′ ⊆ ⟨G′⟩ = ⟨G⟩ by maximality of H′. Since G is an antichain, the LYMB

inequality (Proposition 2.3) yields

e(H′) ⩾
∑
A∈H′

∑
T∈G
T⊆A

(
r

|T |

)−1

=
∑
T∈G

(
r

|T |

)−1

degH′ T.

Since our upper-bound assumption on p yields

λℓ

(
r

ℓ

)−1

pℓ−r ⩾ (4rp)ℓ−r ⩾ 1

for every ℓ ∈ JrK, we may conclude that

µ = e(H′)pr ⩾
1

2

∑
T∈G

λ|T |

(
r

|T |

)−2

p|T | ⩾
1

2

∑
T∈G

( p

4r2

)|T |
=

wp/(4r2)(G)
2

.

We may now apply Janson’s inequality (Theorem 2.1) to conclude that

P(Vp ∈ I(H)) ⩽ P(Vp ∈ I(H′)) ⩽ exp

(
− µ2

2∆∗

)
⩽ exp

(
−µ

4

)
⩽ exp

(
−
wp/(4r2)(G)

8

)
,

as desired.

3. Proof of Theorem A

3.1. The algorithm. Assume that H is an r-uniform hypergraph on a finite set V and fix

some p ∈ (0, 1/(8r2)]. The following algorithm takes as input an independent set I ∈ I(H) and

returns sets S,C ⊆ V and a hypergraph G on V .

(1) Let H0 := H and S0 := ∅.
(2) Do the following for i = 0, 1, . . . :

(a) Let Ci := {v ∈ V : {v} /∈ Hi}.
(b) If wp(H>1

i ) ⩽ p|Ci|, then set J := i and STOP.

(c) Otherwise, let si be the smallest s ∈ {2, . . . , r} such that wp(∂LHs
i ) ⩾ 1/(4r) for

some nonempty L ∈ 2V \ Hi and let Li be an inclusion-maximal set L with this

property.2

(d) If Li ⊆ I, then set Si+1 := Si ∪ Li and Fi := ∂LiH
si
i .

(e) Otherwise, if Li ⊈ I, set Si+1 := Si and Fi := {Li}.
(f) Finally, set Hi+1 := (Hi \ ⟨Fi⟩) ∪ Fi.

(3) Return S := SJ , C := CJ , and G := H>1
J .

2It may not be clear at this point that such s and L exist, but we will prove this shortly.
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3.2. Well-definedness. We now show that the algorithm described in the previous section is

well defined and that it terminates on every input. Our first lemma takes care of the former

and shows that the definition of si and Li in step (2c) is always valid.

Lemma 3.1. If wp(H>1
i ) ⩾ p|Ci|, then there are s ∈ {2, . . . , r} and nonempty L ∈ 2V \Hi with

wp(∂LHs
i ) ⩾ 1/r.

Proof. Note first that our assumption implies that

p|Ci| ⩽ wp(H>1
i ) =

r∑
s=2

wp(Hs
i ) ⩽

r∑
s=2

s · wp(Hs
i ) =

r∑
s=2

∑
v∈Ci

p · wp(∂vHs
i ).

Consequently, there must be some v ∈ Ci such that

r∑
s=2

wp(∂vHs
i ) ⩾ 1.

Since the fact that v ∈ Ci guarantees that {v} /∈ Hi, we may take L := {v} and an index s that

achieves maxswp(∂vHs
i ) ⩾ 1/r. □

Next, we show that each hypergraph Hi defined in the algorithm is an antichain and that the

sequence (⟨Hi⟩)i is strictly increasing. Note that this implies that the algorithm terminates on

every input. Indeed, the fact that Hi is an antichain means that it comprises precisely all the

minimal elements of ⟨Hi⟩ and therefore H0,H1, . . . are pairwise distinct.

Lemma 3.2. The hypergraph Hi is an antichain for every i.

Proof. We prove the assertion of the lemma by induction on i. The induction basis holds due

to our assumption that H0 = H is r-uniform. For the induction step, assume that Hi is an

antichain for some i ⩾ 0. Observe first that Fi is an antichain as well. Indeed, this is clear when

Fi = {Li}; otherwise Fi ⊆ ∂LiHi and this is a straightforward consequence of the assumption

that Hi is an antichain. Suppose that Hi+1 = (Hi \ ⟨Fi⟩)∪Fi contained a pair of sets E,F with

E ⊊ F . Since both Hi and Fi are antichains, then either E ∈ Fi and F ∈ Hi \ ⟨Fi⟩, which is

clearly impossible, or vice-versa. However, if F ∈ Fi, then F ⊆ G for some G ∈ Hi. (Indeed,

when Fi = ∂LiH
si
i , we may take G = F ∪ Li; otherwise, F = Li and the existence of such a G

follows from the fact that wp(∂LiHi) > 0.) As a result, if there was E ∈ Hi with E ⊊ F , then

E ⊊ G for some G ∈ Hi, contradicting the inductive assumption that Hi is an antichain. □

Lemma 3.3. We have ⟨Hi⟩ ⊊ ⟨Hi+1⟩ and Fi ∩ ⟨Hi⟩ = ∅ for every i.

Proof. The definition of Hi+1 implies that ⟨Hi+1⟩ = ⟨Hi⟩ ∪ ⟨Fi⟩ ⊇ ⟨Hi⟩. To complete the proof

of the lemma, it is therefore enough to show that Fi ̸= ∅ and Fi ∩ ⟨Hi⟩ = ∅. The former

statement is clear when Fi = {Li}; otherwise, it follows from the assumption that ∂LiH
si
i ̸= ∅.

For the latter statement, since Hi is an antichain (by Lemma 3.2), it is enough to argue that

some element of Fi is a proper subset of some element of Hi. When Fi = {Li}, this is the case

since Li /∈ Hi and ∂LiHi ̸= ∅; otherwise, if Fi = ∂LiH
si
i , this follows as Li ̸= ∅ and Fi ̸= ∅. □

3.3. Properties. We now turn to establishing some key properties of the algorithm. We will

show that, for every input I ∈ I(H), we have S ⊆ I ⊆ C, the set S has at most 8r2p|V | elements,

and the hypergraph G (which clearly satisfies wp(G) ⩽ p|C|, see the stopping condition (2b), and
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|E| ⩾ 2 for all E ∈ G) covers H[C]. Further, we will prove that the set C (and the hypergraph

G) depends on I only through S, which will allow us to define the functions f and g by g(I) := S

and f(g(I)) := C.

Lemma 3.4. The hypergraph G covers H[C].

Proof. Note first that Lemma 3.3 implies that H = H0 ⊆ ⟨H0⟩ ⊆ ⟨HJ⟩. Let F be an arbitrary

edge of H[C]. Since HJ covers H, there must be some E ∈ HJ with E ⊆ F . However, as

F ⊆ C = CJ , the set E cannot be a singleton and thus E ∈ H>1
J = G, as required. □

Lemma 3.5. For each i, we have I ∈ I(Hi) and Si ⊆ I ⊆ Ci.

Proof. It suffices to show that Si ⊆ I ∈ I(Hi) for all i; indeed, I ∈ I(Hi) implies that I ⊆ Ci,

as {v} ∈ Hi for every v ∈ V \ Ci. We prove this by induction on i. The induction basis follows

as S0 = ∅ and I ∈ I(H) = I(H0). For the induction step, assume that Si ⊆ I ∈ I(Hi) for some

i ⩾ 0. Note first that either Si+1 = Si or Si+1 \ Si ⊆ Li ⊆ I and thus Si+1 ⊆ I. Further, since

Hi+1 ⊆ Hi ∪ Fi, it suffices to show that I ∈ I(Fi). If Li ⊈ I, then Fi = {Li} and thus I(Fi)

comprises all subsets of V not containing Li (which includes I). Otherwise, if Li ⊆ I, we have

Fi ⊆ ∂LiHi and thus I(Fi) ⊇ I(∂LiHi); further, I(∂LiHi) contains all sets I ′ ⊆ V such that

Li ∪ I ′ ∈ I(Hi) (which again includes I = Li ∪ I). □

Lemma 3.6. For every i, the hypergraph Fi is u-uniform for some u < si.

Proof. Suppose first that Fi = {Li}. In this case, Fi is clearly |Li|-uniform and |Li| < si as

wp(∂LiH
si
i ) > 0 and Li /∈ Hi. Suppose now that Fi = ∂LiH

si
i . In this case, Fi is clearly

(si − |Li|)-uniform and si − |Li| < si as Li is nonempty. □

Lemma 3.7. For every i and all s and L ⊆ V with 1 ⩽ |L| < s < r,

wp(∂LHs
i ) ⩽

1

2r
.

Proof. We prove the lemma by induction on i. The base case i = 0 is trivial, as H is r-uniform

and thus the hypergraphs H2
0, . . . ,H

r−1
0 are all empty. For the induction step, assume that the

assertion holds for some i ⩾ 0 (and all s and L). Since Hi+1 ⊆ Hi ∪ Fi, we have

wp(∂LHs
i+1) ⩽ wp(∂LHs

i ) + wp(∂LFs
i ) (3)

for all s and all L ⊆ V . Further, since the hypergraph Fi is u-uniform for some u < si (by

Lemma 3.6), we have wp(∂LFs
i ) = 0 unless s = u. We may therefore assume from now on

that s = u, as otherwise the desired inequality (for all L ⊆ V with 1 ⩽ |L| < s) follows

from (3) and the inductive assumption. The minimality of si and the fact that u < si imply

that wp(∂LHu
i ) < 1/(4r). It thus suffices to show that wp(∂LFi) < 1/(4r) for every L ⊆ V

with |L| < u. Fix some such set L. If Fi = ∂LiH
si
i , then the maximality of Li implies that

wp(∂LFi) = 1L∩Li=∅ · wp(∂L∪LiH
si
i ) < 1/(4r). Otherwise, if F = {Li}, we have

wp(∂LFi) = 1L⊆Li · p|Li|−|L| = 1L⊆Li · pu−|L| ⩽ p ⩽ 1/(4r),

as desired. □

Corollary 3.8. For every i and all L ∈ 2V \ ⟨Hi⟩,

wp(∂LH<r
i ) ⩽

1

2
.
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Lemma 3.9. For every i ∈ {0, . . . , J − 1},

wp(H<r
i+1) ⩾ wp(H<r

i ) +
1

8r
· 1Li⊆I .

Proof. Since the hypergraph Fi is u-uniform for some u < si ⩽ r (by Lemma 3.6), it follows

from the definition of Hi+1 that

wp(H<r
i+1)− wp(H<r

i ) ⩾
∑
L∈Fi

p|L| ·
(
1− wp(∂LH<r

i )
)
.

Further, since Fi ∩ ⟨Hi⟩ = ∅ (by Lemma 3.3), Corollary 3.8 implies that wp(∂LH<r
i ) ⩽ 1/2 for

each L ∈ Fi and thus wp(H<r
i+1)− wp(H<r

i ) ⩾ wp(Fi)/2. The assertion of the lemma follows as

wp(Fi) ⩾ 0 and wp(Fi) = wp(∂LiH
si
i ) ⩾ 1/(4r) when Li ⊆ I. □

Lemma 3.10. We have |S| ⩽ 8r2p|V |.

Proof. Let m denote the number of rounds of the algorithm in which Li ⊆ I. Since H0 is

r-uniform, it follows from Lemma 3.9 that

wp(H<r
J ) = wp(H<r

J )− wp(H<r
0 ) =

J−1∑
i=0

(
wp(H<r

i+1)− wp(H<r
i )
)
⩾

m

8r
.

On the other hand, since HJ = H1
J ∪ G and wp(G) ⩽ p|CJ |, we have

wp(HJ) = wp(H1
J) + wp(G) = |V \ CJ | · p+ wp(G) ⩽ p|V |.

We conclude that m ⩽ 8r|V |. Since |Si+1| − |Si| ⩽ r when Li ⊆ I and |Si+1| = |Si| otherwise,
the assertion of the lemma follows. □

Lemma 3.11. Suppose that the algorithm with inputs I, I ′ ∈ I(H) outputs (S,C,G) and

(S′, C ′,G′), respectively. If S = S′, then (C,G) = (C ′,G′).

Proof. Observe first that the execution of the algorithm on a given input (an independent set

of H) depends solely on how the set Si+1 and the hypergraph Fi+1 are defined in each round

i (via step (2d) or step (2e)). Thus, if the outputs of the algorithm applied to I and I ′ are

different, then there must be some i for which L′
i ⊆ I ′ but Li ⊈ I, or vice-versa. Let i be the

earliest such round and note that H′
i = Hi and thus also L′

i = Li. We may clearly assume that

Li = L′
i ⊆ I ′ and Li ⊈ I. However, Lemma 3.5 implies that Li = L′

i ⊆ S′
i+1 ⊆ S′ = S ⊆ I,

a contradiction. □

We finish our discussion with a formal proof of Theorem A.

Proof of Theorem A. For each independent set I ∈ I(H), set g(I) := S and f(S) := C, where

(S,C,G) is the output of the algorithm with input I. (Recall that Lemmas 3.2 and 3.3 imply that

the algorithm terminates on every input.) Further, set S := {g(I) : I ∈ I(H)}. Lemma 3.11

guarantees that the function f is well-defined. By Lemma 3.5, we have g(I) ⊆ I ⊆ f(g(I))

for every I ∈ I(H) whereas Lemma 3.10 shows that |S| ⩽ 8r2pn for every S ∈ S. Finally,

writing C = f(g(I)), Lemma 3.4 guarantees that the hypergraph G is a cover for H[C] with

wp(G) ⩽ p|C|; the property that |E| ⩾ 2 for all E ∈ G is straightforward from the definition of

G. This concludes the proof of the theorem. □
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4. Proof of Theorem B

4.1. The algorithm. Assume that H is a hypergraph on a finite set V and fix some p ∈ (0, 1].

The following algorithm takes as input an independent set I ∈ I(H) and returns sets S,C ⊆ V .

(1) Let H0 := H and S0 := ∅.
(2) Do the following for i = 0, 1, . . . :

(a) If there exists a vertex v ∈ V \ Si such that {v} /∈ Hi and

P
(
v ∈ Vp | Vp ∈ I(Hi)

)
< (1− δ)p,

let vi be some such vertex; otherwise, set J := i and STOP.

(b) If vi ∈ I, set Si+1 := Si ∪ {vi} and Hi+1 := Hi ∪ ∂viHi.

(c) Otherwise, if vi /∈ I, set Si+1 := Si and Hi+1 := Hi ∪ {{vi}}.
(3) Return S := SJ and C := {v ∈ V : {v} /∈ HJ}.

4.2. Properties. We now establish some key properties of the algorithm. We first claim that

the algorithm always terminates with J ⩽ |V |. Indeed, for each i, the vertex vi is either added

to Si or {vi} becomes an edge of Hi; in both cases, vi is never considered again in step (2a).

Further, we claim that the set C can be reconstructed with the knowledge of S only; indeed,

running the algorithm with input S instead of I results in the same sets S and C. This allows

us to define the functions f and g by g(I) := S and f(g(I)) := C. It remains to show that, for

every input I ∈ I(H), we have S ⊆ I ⊆ C, the set S has at most p|V |/δ elements, and that

S ∪ Cp ∈ I(H) with probability at least (1− p)δ|C|.

Lemma 4.1. For each i, we have Si ⊆ I ∈ I(Hi) and I ′ ∈ I(Hi) ⇐⇒ Si ∪ I ′ ∈ I(Hi).

Proof. We prove the assertion of the lemma by induction on i. The induction basis follows as

S0 = ∅ and H = H0. For the induction step, assume that the assertion holds for some i ⩾ 0.

Suppose first that vi ∈ I. In this case, Si+1 = Si ∪ {vi} ⊆ I and Hi+1 = Hi ∪ ∂viHi, which

means that I(Hi+1) = {I ′ ⊆ V : {vi} ∪ I ′ ∈ I(Hi)} ∋ I. Further

I ′ ∈ I(Hi+1) ⇐⇒ {vi} ∪ I ′ ∈ I(Hi) ⇐⇒ Si ∪ {vi} ∪ I ′ ∈ I(Hi) ⇐⇒ Si+1 ∪ I ′ ∈ I(Hi+1).

Suppose now that vi /∈ I. In this case, Si+1 = Si ⊆ I and Hi+1 = Hi ∪ {{vi}}, which means

that I(Hi+1) = {I ′ ∈ I(Hi) : vi /∈ I ′} ∋ I. Further, I ′ ∈ I(Hi+1) ⇐⇒ Si+1 ∪ I ′ ∈ I(Hi+1), as

Si+1 = Si ̸∋ vi. □

The above lemma clearly implies that S = SJ ⊆ I. Further, I ∈ I(HJ) ⊆ 2C , as no vertex v

satisfying {v} ∈ HJ can belong to an independent set of HJ . This establishes S ⊆ I ⊆ C.

Lemma 4.2. We have δ|S| ⩽ p|V |.

Proof. We claim that the sequence of probabilities Pi := P
(
Vp ∈ I(Hi)

)
satisfies

Pi+1 ⩽ (1− δ)1vi∈I · Pi,

for all i ∈ {0, . . . , J − 1}, which gives

(1− p)|V | = P(Vp = ∅) ⩽ PJ ⩽ (1− δ)|{i:vi∈I}| · P0 = (1− δ)|S| · P0 ⩽ (1− δ)|S|. (4)

Indeed, if vi /∈ I, then the inequality Pi+1 ⩽ Pi follows as Hi ⊆ Hi+1, and thus I(Hi+1) ⊆ I(Hi).

On the other hand, if vi ∈ I, then Hi+1 = Hi ∪ ∂viHi, and thus I(Hi+1) = {I ′ ⊆ V : I ′ ∪ {vi} ∈
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I(Hi)}. Consequently, by the choice of vi,

p · Pi+1 = P
(
vi ∈ Vp ∈ I(Hi)

)
= P(vi ∈ Vp | Vp ∈ I(Hi)) · Pi < (1− δ)p · Pi,

which gives the desired inequality. We claim that (4) implies the desired inequality δ|S| ⩽ p|V |.
Indeed, if δ|S| > p|V |, then (1 − δ)|S| < (1 − δ)p|V |/δ ⩽ (1 − p)|V |, where the second inequality

follows as p ⩽ δ and the map x 7→ (1− x)1/x is decreasing on (0, 1). □

Lemma 4.3. We have P
(
S ∪ Cp ∈ I(H)

)
⩾ (1− p)δ|C\S|.

Proof. Define C ′ := C \ S. Since clearly H = H0 ⊆ H1 ⊆ · · · ⊆ HJ , we have

P(S ∪ Cp ∈ I(H)) ⩾ P(S ∪ Cp ∈ I(HJ)) = P(S ∪ C ′
p ∈ I(HJ)).

In view of Proposition 2.2, the assertion of the lemma will follow if we prove that

E
[
|C ′

p| | S ∪ C ′
p ∈ I(HJ)

]
⩾ (1− δ)p|C ′|. (5)

To this end, fix an arbitrary v ∈ C ′. Since I(HJ) ⊆ 2C , as we have already observed above, and

since S ∪ Vp ∈ I(HJ) ⇐⇒ Vp ∈ I(HJ), by Lemma 4.1, we have

P
(
v ∈ C ′

p | S ∪ C ′
p ∈ I(HJ)

)
= P

(
v ∈ Vp | S ∪ Vp ∈ I(HJ)

)
= P

(
v ∈ Vp | Vp ∈ I(HJ)

)
.

Finally, since v ∈ C ′ = C \ S, the stopping condition (2a) implies that the above probability is

at least (1− δ)p. Summing this inequality over all v ∈ C ′ yields (5). □

We conclude our discussion with a short derivation of Theorem B.

Proof of Theorem B. For each independent set I ∈ I(H), set g(I) := S and f(S) := C, where

(S,C) is the output of the algorithm with input I. Further, set S := {g(I) : I ∈ I(H)}.
Since the algorithm will perform the exact same operations when we replace the input set I

with S, the function f is well-defined. Now, Lemma 4.1 implies assertion (a), Lemma 4.2 proves

assertion (b), and Lemma 4.3 establishes assertion (c). □

5. Derivations of the standard HCLs

Derivation of Theorem C from Theorem A. We apply Theorem A with p := τ/(8r2) to obtain a

family S, functions f and g, and a hypergraph GS for every S ∈ S. Assertions (a) and (b) follow

immediately from the respective assertions in Theorem A, so we only need to argue that (c)

holds as well.

To this end, fix some S ∈ S, let C := f(S), and let G := GS be the hypergraph covering H[C]

that satisfies wp(G) ⩽ p|C| ⩽ p|V | and whose all edges have size at least two. By the assumption

of the theorem, for every E ∈ G,

degHE ⩽ K ·
( p

4K

)|E|−1
· e(H)

|V |
<

p|E|−1

2
· e(H)

|V |
,

where the second inequality follows as |E| ⩾ 2 and K ⩾ r ⩾ 1. The fact that G covers H[C]

implies that

e(H[C]) ⩽
∑
E∈G

degHE <
e(H)

2p|V |
·
∑
E∈G

p|E| =
e(H)

2p|V |
· wp(H[C]) ⩽

e(H)

2
.



TOWARDS AN OPTIMAL HYPERGRAPH CONTAINER LEMMA 14

On the other hand,

e(H[C]) ⩾ e(H)− |V \ C| ·∆1(H) ⩾ e(H)− |V \ C| · Ke(H)

|V |
,

which yields |V \ C|/|V | > 1/(2K) or, equivalently, |C| <
(
1− 1/(2K)

)
|V |. □

Remark. A careful examination of the proof allows one to improve the bounds in assumption (1)

in Theorem C somewhat further. First, note that we only needed the bounds

∆1(H) ⩽ K · e(H)

|V |
and ∆ℓ(H) ⩽

( τ

32r2

)ℓ−1 e(H)

|V |
for ℓ ∈ {2, . . . , r}.

Further, we claim that changing step (2b) in the algorithm from the proof of Theorem A to

(2b’) If wp(H>1
i ) ⩽ (log r/r) · p|Ci| or |Ci| ⩽

(
1− 1/(2K)

)
|V |, then set J := i and STOP

allows us to derive a stronger version of Theorem C, with the upper bound on ∆ℓ(H) in (1)

increased by a factor of roughly (r/ log r)ℓ−1. To see this, notice that the only modifications

needed in the proof of Theorem A occur in Lemmas 3.1 and 3.10. The conclusion of Lemma 3.1

still holds since
log r

r
· p|Ci| ⩽ wp(H>1

i ) =

r∑
s=2

∑
v∈Ci

p · wp(∂vHs
i )

s

and, consequently, there must be some v ∈ Ci such that

r∑
s=2

wp(∂vHs
i )

s
⩾

log r

r
⩾

r∑
s=2

1

rs

which implies that wp(∂vHs
i ) ⩾ 1/r for some s. On the other hand, the assertion of Lemma 3.10

may now be strengthened. Indeed, since now

wp(HJ) = |V \ CJ | · p+ wp(G) ⩽
|V |p
2K

+
log r

r
· |V |p ⩽

2 log r

r
· |V |p,

we may deduce the stronger bound |S| ⩽ 16(r log r) · p|V |, which allows the conclusion of

Theorem C to be reached under the weaker assumption

∆1(H) ⩽ K · e(H)

|V |
and ∆ℓ(H) ⩽

(
τ

26r log r

)ℓ−1 e(H)

|V |
for ℓ ∈ {2, . . . , r}.

Derivation of Theorem C from Theorem B. We apply Theorem B with p := τ/(16Kr) and δ :=

p/τ = (16Kr)−1 to obtain a family S and functions f and g. Assertions (a) and (b) follow

immediately from the respective assertions in Theorem B, so we only need to argue that (c)

holds as well.

Suppose that S ∈ S and let C := f(S). We may assume that e(H[C]) ⩾ e(H)/2, as otherwise

|C| ⩽
(
1−1/(2K)

)
|V | follows from the assumption that ∆1(H) ⩽ Ke(H)/|V |, as in the previous

derivation. Preparing to apply Janson’s inequality (Theorem 2.1), we define µ :=
∑

A∈H[C] p
|A| =

e(H[C])pr and

∆∗ :=
∑

A∈H[C]

p|A|
∑

B∈H[C]
A∩B ̸=∅

p|B\A| ⩽ µ ·
r∑

ℓ=1

(
r

ℓ

)
∆ℓ(H)pr−ℓ.

By the assumption of the theorem,

r∑
ℓ=1

(
r

ℓ

)
∆ℓ(H)p1−ℓ ⩽

r∑
ℓ=1

rℓK

(
τ

32Kr2p

)ℓ−1

· e(H)

|V |
=

Kre(H)

|V |
·

r∑
ℓ=1

21−ℓ,
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and consequently, by Janson’s inequality,

P(Cp ∈ I(H)) ⩽ exp

(
− µ2

2∆∗

)
⩽ exp

(
− µ|V |
4Kre(H)pr−1

)
⩽ exp

(
−p|V |
8Kr

)
,

where the last inequality holds thanks to our assumption that e(H[C]) ⩾ e(H)/2. On the other

hand, the assertion of Theorem B gives

P
(
Cp ∈ I(H)

)
⩾ P

(
S ∪ Cp ∈ I(H)

)
⩾ (1− p)δ|C| > exp (−2δp|V |) ⩾ exp

(
−p|V |
8Kr

)
,

a contradiction. □

Derivation of Theorem D from Theorem A. We apply Theorem A to obtain a family S, func-
tions f and g, and a hypergraph GS for every S ∈ S. Assertions (a) and (b) follow immediately

from the respective assertions in Theorem A, so we only need to argue that (c) holds as well.

To this end, fix some S ∈ S, let C := f(S), and let G := GS be the hypergraph covering

H[C] that satisfies wp(G) ⩽ p|C| and whose all edges have size at least two. Assume toward

contradiction that there is a hypergraph HS ⊆ H[C] that satisfies (2). Since G covers H[C], and

thus also HS , we have

e(HS) ⩽
∑
E∈G

degHS
E <

∑
E∈G

p|E|−1e(HS)

|C|
= wp(G) ·

e(HS)

p|C|
⩽ e(HS),

a contradiction. □

6. Interpolating between Theorems A and B

In this section, we sketch the proof of Theorem E, which is a fairly straightforward adaptation

of the proof of Theorem B (given in Section 4), and present derivations of Theorems A and B

from Theorem E.

6.1. The algorithm. Assume that H is a hypergraph on a finite set V and fix some p ∈ (0, 1].

The following algorithm takes as input an independent set I ∈ I(H) and returns sets S,C ⊆ V

and a hypergraph G.

(1) Let H0 := H and S0 := ∅.
(2) Do the following for i = 0, 1, . . . :

(a) If there exists a set L ⊆ V \ Si such that L ∈ I(Hi) and

P
(
L ⊆ Vp | Vp ∈ I(Hi)

)
< (1− δ)|L|p|L|,

let Li be a minimal such set; otherwise, set J := i and STOP.

(b) If Li ⊆ I, set Si+1 := Si ∪ Li and Hi+1 := {E \ Li : E ∈ Hi} =: ∂∗
Li
(Hi).

(c) Otherwise, if Li ⊈ I, set Si+1 := Si and Hi+1 := Hi ∪ {Li}.
(3) Return S := SJ , C := {v ∈ V : {v} /∈ HJ} and G := HJ [C].

6.2. Properties. The above algorithm always terminates because no set L is ever considered

more than once. Indeed, either Li ⊆ Si+1, and thus Li ⊈ V \ Sj for all j > i, or Li ∈ Hi+1, and

thus Li /∈ I(Hj) for all j > i. Moreover, the set C and the hypergraph G can be reconstructed

with the knowledge of S only, as running the algorithm with input S instead of I results in the

same sets S and C and hypergraph G. This allows us to define g(I) := S and f(g(I)) := C.
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It remains to show that, for every input I ∈ I(H), we have S ⊆ I ⊆ C, the set S has at most

p|V |/δ elements, and that G is a cover of H[C] with the desired property.

The assertion of Lemma 4.1, that is, Si ⊆ I ∈ I(Hi) and I ′ ∈ I(Hi) ⇐⇒ Si ∪ I ′ ∈ I(Hi) for

all i, remains true, with essentially the same proof. Consequently, I ∈ I(HJ) and thus I ⊆ C,

as no vertex in V \ C can belong to an independent set of HJ . Observe additionally that, for

all i, we have ⟨Hi⟩ ⊆ ⟨Hi+1⟩ and thus I(Hi+1) ⊆ I(Hi). The desired upper bound on |S| can
be established by adapting the proof of Lemma 4.2. Indeed, note first that it is enough to show

that the sequence Pi := P
(
Vp ∈ I(Hi)

)
satisfies the inequality Pi+1 ⩽ (1 − δ)1Li⊆I ·|Li| · Pi for

all i. The inequality Pi+1 ⩽ Pi follows as I(Hi+1) ⊆ I(Hi). Further, if Li ⊆ I, then

p|Li| · P
(
Vp ∈ I(Hi+1)

)
= P

(
Li ⊆ Vp ∈ I(Hi)

)
< (1− δ)|Li|p|Li| · P

(
Vp ∈ I(Hi)

)
,

where the equality holds as I(Hi+1) = I(∂∗
Li
Hi) = {I ′ ∈ I(Hi) : Li ∪ I ′ ∈ I(Hi)}.

Last but not least, we argue that G possesses all the claimed properties. First, G = HJ [C]

covers H[C] since ⟨H⟩ = ⟨H0⟩ ⊆ · · · ⊆ ⟨HJ⟩. Second, each E ∈ G satisfies |E| ⩾ 2 as otherwise

we would have E ∩ C = ∅, by the definition of C. We also remark that, for all L ⊆ C \ S with

L ∈ I(G), we have

P
(
L ⊆ Cp | Cp ∈ I(G)

)
= P

(
L ⊆ Vp | Vp ∈ I(HJ)

)
⩾ (1− δ)|L|p|L|,

by the terminating condition in the algorithm and the fact that I(HJ) ⊆ 2C .

Finally, we show that E ∩ S = ∅ for every E ∈ G. Since S = SJ and G ⊆ HJ , it is enough

to prove the stronger statement that E ∩ Si = ∅ for all E ∈ Hi and all i. We show this by

induction on i. The induction basis is vacuously true as S0 = ∅. Assume that i ⩾ 0. If Li ⊈ I,

then Si+1 = Si and the only edge in Hi+1 \ Hi is Li, which is disjoint from Si. Else, if Li ⊆ I,

then Si+1 \ Si = Li and we replace each E ∈ Hi, which is disjoint from Si, with the edge

E \ Li = E \ Si+1, which is disjoint from Si+1.

6.3. Derivations of Theorems A and B. We first show that Theorem B follows by a simple

application of Proposition 2.2.

Derivation of Theorem B from Theorem E. Since the assumptions of the two theorems are iden-

tical, and their assertions differ only in the characterisation of the sets f(S), we just need to

show that assertion (c) in Theorem E implies that, for every S ∈ S, we have

P
(
S ∪ Cp ∈ I(H)

)
⩾ (1− p)δ|C\S|,

where C := f(S). Let C ′ := C \ S and note that the fact that G is a cover of H[C] implies that

P
(
S ∪ Cp ∈ I(H)

)
= P

(
S ∪ C ′

p ∈ I(H)
)
⩾ P

(
S ∪ C ′

p ∈ I(G)
)
.

Further, the fact that E ∩ S = ∅ for all E ∈ G implies that, for every v ∈ C ′

P
(
v ∈ C ′

p | S ∪ C ′
p ∈ I(G)

)
= P

(
v ∈ C ′

p | Cp ∈ I(G)
)
⩾ (1− δ)p.

It follows that

E
[
|C ′

p| | S ∪ C ′
p ∈ I(G)

]
⩾ (1− δ)p|C ′|

and consequently, by Proposition 2.2, that P
(
S ∪ C ′

p ∈ I(G)
)
⩾ (1− p)δ|C

′|. □

The derivation of Theorem A from Theorem E is decidedly more complicated. We will show

that that the cover G of H[C] given by Theorem E has the property wp(G) ⩽ p|C|. We will
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argue by contradiction, showing that, if wp(G) > p|C|, some maximal set L among those whose

degree in G is large satisfies P
(
L ⊆ Cp | Cp ∈ I(G)

)
< (1− δ)|L|p|L|; the proof of this inequality

will employ a second-moment argument.

Derivation of Theorem A from Theorem E. Suppose that H is an r-uniform hypergraph with

vertex set V and let p ∈ (0, 1/(8r2)] be arbitrary. We apply Theorem E with δ := 1/(4r)

and density parameter q := 2rp ⩽ 1/(4r) = δ to obtain a family S ⊆ 2V of sets satisfying

|S| ⩽ q|V |/δ = 8r2p|V | for each S ∈ S and functions g : I(H) → S and f : S → 2V such

that g(I) ⊆ I ⊆ f(g(I)) for all I ∈ I(H). It suffices to show that, for every S ∈ S, there is a

hypergraph G on V with all edges of size at least two that coversH[C] and satisfies wp(G) ⩽ p|C|,
where C := f(S). To this end, fix some S ∈ S and let G be the set of all inclusion-minimal

elements in the cover given by (c) in Theorem E. As G covers H[C] and satisfies |E| ⩾ 2 for all

E ∈ G, we only need to show that wp(G) ⩽ p|C|.
Assume by contradiction that wp(G) > p|C|. We claim that there exists a set L ∈ I(G) and

an s ∈ {2, . . . , r} such that

wp(∂LGs) ⩾ 1/r. (6)

To this end, note that

p|C| < wp(G) =
r∑

s=2

wp(Gs) =
r∑

s=2

1

s

∑
v∈C

p · wp(∂vGs) ⩽ p ·
∑
v∈C

r∑
s=2

wp(∂vGs),

which means that (6) must hold with L = {v} for some v ∈ C and s ∈ {2, . . . , r}; note that

{v} ∈ I(G) for every v ∈ C since all edges of G have at least two vertices. Let L be an

inclusion-maximal set that is independent in G and satisfies (6) for some s ∈ {2, . . . , r} and let

ℓ := |L| ∈ Js− 1K. Such choice of L guarantees that, on the one hand,

|∂LGs| = pℓ−s · wp(∂LGs) ⩾ pℓ−s/r

and, on the other hand, for every t ∈ Js− ℓ− 1K,

∆t(∂LGs) = max{|∂L∪TGs| : T ⊆ V \ L ∧ |T | = t}

= max{pt+ℓ−s · wp(∂L∪TGs) : T ⊆ V \ L ∧ |T | = t} < pt+ℓ−s/r,

where the last inequality follows as every set L′ ⊇ L that has fewer than s elements and satisfies

∂L′Gs ̸= ∅ is independent in G (otherwise, L′ would be a proper subset of some edge of Gs,

contradicting the fact that G is an antichain).

Since L ∈ I(G), assertion (c) of Theorem E yields

P
(
L ⊆ Cq | Cq ∈ I(G)

)
⩾ (1− δ)ℓqℓ ⩾ (1− δℓ)qℓ ⩾ 3qℓ/4

whereas, by Harris’s inequality, writing C̃ for Cq conditioned on the event Cq ∈ I(G),

P
(
L ⊆ Cq | Cq ∈ I(G)

)
= P

(
L ⊆ Cq ∧ Cq ∈ I(∂LG) | Cq ∈ I(G)

)
⩽ qℓ · P

(
Cq ∈ I(∂LG) | Cq ∈ I(G)

)
= qℓ · P

(
C̃ ∈ I(∂LG)

)
,

Let X := e(∂LGs[C̃]) denote the number of edges that C̃ induces in ∂LGs. Using the Paley–

Zygmund inequality, we may bound

3

4
⩽ P

(
C̃ ∈ I(∂LG)

)
⩽ P

(
C̃ ∈ I(∂LGs)

)
= P(X = 0) ⩽ 1− E[X]2

E[X2]
,
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which means that E[X2] ⩾ 4E[X]2.

Since each E ∈ ∂LGs is independent in G (as L ̸= ∅ and G is an antichain), assertion (c) of

Theorem E yields

E[X] =
∑

E∈∂LGs

P(E ⊆ C̃) ⩾
∑

E∈∂LGs

(1− δ)|E|q|E| = (1− δ)s−ℓ · |∂LGs| · qs−ℓ︸ ︷︷ ︸
µ

.

Further,

µ = |∂LGs| · qs−ℓ = wp(∂LGs) ·
(
q

p

)s−ℓ

⩾
1

r
·
(
q

p

)s−ℓ

⩾ 2.

On the other hand, by Harris’s inequality,

E[X2] =
∑

E,E′∈∂LGs

P(E ∪ E′ ⊆ C̃) ⩽
∑

E,E′∈∂LGs

q|E∪E′| =
∑

E∈∂LGs

q|E|
∑

E′∈∂LGs

q|E
′\E|

⩽ µ ·

(
µ+ 1 +

s−ℓ−1∑
t=1

(
s− ℓ

t

)
∆t(∂LGs)qs−ℓ−t

)
.

Further, for every t ∈ Js− ℓ− 1K,

∆t(∂LGs) · qs−ℓ−t ⩽
pt+ℓ−s · qs−ℓ−t

r
⩽

(
p

q

)t

· µ =
µ

(2r)t

and thus

E[X2] ⩽ µ+ µ2 ·
s−ℓ−1∑
t=0

(
s− ℓ

t

)
· 1

(8r)t
⩽ µ+ µ2 ·

(
1 +

1

2r

)s−ℓ

⩽ µ+
3

2
· µ2 ⩽ 2µ2.

We conclude that
E[X2]

E[X]2
⩽

2

(1− δ)s−ℓ
⩽

2

1− δr
⩽

8

3
,

which is a contradiction. □

7. Concluding remarks

Comparing the two notions of almost-independence that are used to describe the containers

in Theorems A and B led us to proving Proposition 1.1. While part (ii) of this proposition is

sufficient for our purposes, we believe that the following much stronger statement is true. We

will say that a hypergraph H is r-bounded, for some positive integer r, if |E| ⩽ r for all E ∈ H.

Conjecture 7.1. There exist an absolute constant C > 0 such that the following holds for all

p ∈ [0, 1] and all r ⩾ 1. Every r-bounded hypergraph H on a finite vertex set V admits a cover

G ⊆ 2V \ {∅} that satisfies

P(H[Vp] = ∅) ⩽ exp
(
−wp/C(G) + C log r

)
.

Observe that Conjecture 7.1 implies the Kahn–Kalai Conjecture / Park–Pham Theorem [20,

Theorem 1.1]. Indeed, let V be a finite set and let F ⊆ 2V be an arbitrary increasing property.

Recall that the expectation-threshold of F is the number q(F) defined as follows:

q(F) := max{q : ∃G ⊆ 2V ⟨G⟩ ⊇ F ∧ wq(G) ⩽ 1/2}.

Let H be the set of all minimal elements of F and let r := max{|E| : E ∈ H}∪{2}, so that H is

an r-bounded hypergraph on V and R ∈ F if and only if H[R] ̸= ∅. Let q := q(H), suppose that
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p ⩾ Kq log r, and let G be the cover of H from the assertion of Conjecture 7.1. Observe that

wp/C(G) ⩾ p/(Cq) · wq(G) ⩾ K/C · log r · wq(G) ⩾ K/(2C) · log r.

Consequently, setting K := 2(C2 + C), we may use Conjecture 7.1 to conclude that

P(Vp /∈ F) = P(H[Vp] = ∅) ⩽ exp
(
(−K/(2C) + C) · log r

)
⩽ 1/r ⩽ 1/2.

Furthermore, Conjecture 7.1 implies the celebrated results of Johansson–Kahn–Vu [11] that

provide upper bounds on the threshold for appearance of H-factors in the binomial random

graph. More precisely, the conjecture implies the following statement, which generalises both

[11, Theorem 2.1] and [11, Theorem 2.2] (with an improved lower-bound assumption on p).

Corollary 7.2 (assuming Conjecture 7.1). For every nonempty graph H, there exists a constant

K such that, for all n divisible by vH and all p satisfying

p ⩾ K max
∅≠J⊆H

(
n1−vJ log n

)1/eJ , (7)

the random graph Gn,p contains an H-factor with probability at least 1− 1/n.

Proof. Let H be a nonempty graph, let m be a large integer, let n := m · vH , and let H denote

the family of all copies of the graph m ·H in Kn. Suppose that G ⊆ 2Kn is a cover for H. Note

that the number of embeddings of m ·H into Kn is n!. For a given G ∈ G, which is a labelled

subgraph of Kn, let rG be the proportion of those n! embeddings that are covered by G, so

that rG · n! is the number of embeddings of m · H into Kn that contain G as a subgraph or,

equivalently, the number of embeddings of G, viewed as a spanning subgraph of Kn, into m ·H.

Given a G ∈ G, let vG be the number of nonisolated vertices of G, let CG denote the collection

of connected components of G, and let cG := |CG|; as usual, eG is the number of edges of G. We

claim that, for some constant D = D(H),

rG · n! ⩽ (n)cG ·DcG · (n− vG)!

Indeed, one can describe an embedding of G into m ·H by first specifying the image of one vertex

from every connected component, then the images of the other O(1) vertices in each component

(each has only O(1) possible images), and finally the images of the isolated vertices of G. Since

vG/vH ⩽ cG ⩽ vG/2, we have

rG ⩽
(n)cG ·DcG

(n)vG
⩽ (D′n)cG−vG =

∏
K∈C(G)

D′′n1−vK ,

where D,D′, D′′ are constants that depend only on H.

Let C be the constant from the statement of Conjecture 7.1. Since G is a cover, the sum of

all rG, as G ranges over G, is at least one. Consequently,

wp/C(G) =
∑
G∈G

rG · (p/C)eG

rG
⩾ min

G∈G

(p/C)eG

rG
⩾ min

G∈G

∏
K∈C(G)

nvK−1peK

CeKD′′ . (8)

It follows from (7) that each term in the product in the right-hand side of (8) is at least

K/(CD′′) · log n and thus wp(G) ⩾ K/(CD′′) · log n as well (provided that K is sufficiently

large). In particular, if K is sufficiently large, then Conjecture 7.1 implies that

P(Gn,p ⊉ m ·H) = P(H[Vp] = ∅) ⩽ exp
(
K/(CD′′) · log n− C log(neH/vH)

)
⩽ 1/n,
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provided that K is sufficiently large. □

Observe that both the Park–Pham theorem and Corollary 7.2 (with 1− 1/n replaced by the

nonexplicit term 1−o(1)) can also be derived from the following weaker version of Conjecture 7.1,

which might be significantly easier to prove.

Conjecture 7.3. There exists and absolute constant C > 0 and a function f : N → (0, 1/2)

satisfying limr→∞ f(r) = 0 such that the following holds for all p ∈ [0, 1] and all r ⩾ 1. Suppose

that H is an r-bounded hypergraph on a finite vertex set V whose every cover G ⊆ 2V \ {∅}
satisfies wp/C(H) ⩾ log r. Then,

P(H[Vp] = ∅) ⩽ f(r).

Finally, Conjecture 7.1 implies the following strengthening of Theorem A.

Theorem F (assuming Conjecture 7.1). There exists an absolute constant K such that the

following holds. Let H be an r-bounded hypergraph with a finite vertex set V . For all reals δ and

p satisfying K log r/(δ|V |) < p ⩽ δ/K, there exists a family S ⊆ 2V and functions

g : I(H) → S and f : S → 2V

such that:

(a) For each I ∈ I(H), we have g(I) ⊆ I ⊆ f(g(I)).

(b) Each S ∈ S has at most Kp|V |/δ elements.

(c) For every S ∈ S, letting C := f(S), there exists a hypergraph G ⊆ 2C\S \ {∅} with

wp(G) ⩽ Kδp|V |

that covers H[C].

Proof. Denote by D the constant C from the statement of Conjecture 7.1 and let K = 3D. Let

S, f , and g be the collection and the functions given by Theorem B with Dp in place of p. Fix

some S ∈ S, let C := f(S), and let G ⊆ 2V \S \ {∅} be a cover of H[C] with smallest Dp-weight.

It follows from the assertion of Theorem B and Conjecture 7.1 that

(1−Dp)δ|C\S| ⩽ P
(
S ∪ CDp ∈ I(H)

)
⩽ exp

(
−wp(G) +D log r

)
.

Taking logarithms of both sides yields the inequality

wp(G) ⩽ D log r − δ|C \ S| log(1−Dp) ⩽ D log r + 2Dδp|C| ⩽ 3Dδp|V | = Kδp|V |,

as required. □
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Appendix A. Three proofs of Proposition 2.2

One can see the assertion of the proposition is best-possible by picking an arbitrary subset

U ⊆ C and considering the family I = 2U . Indeed, in this case E[|Cp| | Cp ∈ I] = E[|Up|] = p|U |
and

logP(Cp ∈ I) = logP(Cp ∩ (C \ U) = ∅) = (|C| − |U |) log(1− p).

We provide three proofs of the proposition. The first proof uses the chain rule for relative

entropy, the second proof employs a compression argument combined with the Kruskal–Katona

theorem, and the third proof uses a generalisation of the edge-isoperimetric inequality for the

hypercube due to Kahn and Kalai [12].

First proof. Without loss of generality, we may assume that C = JNK. Let Y = (Y1, . . . , YN ) be

the indicator function of Cp conditioned on Cp ∈ I and note that

logP(Cp ∈ I) = −DKL(Y ∥Cp),
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where DKL(· ∥ ·) denotes the Kullback–Leibler divergence between two probability distributions.

For any J ⊆ JNK, write Ip((Yj)j∈J) in place of DKL((Yj)j∈J ∥ Jp). With this notational con-

vention, DKL(Y ∥Cp) = Ip(Y1, . . . , YN ). The first key property of Ip that we will use is that it

obeys the familiar chain rule (see, e.g., [14, Section 4]):

Ip(Y1, . . . , YN ) =

N∑
i=1

Ip(Yi | Y1, . . . , Yi−1) =

N∑
i=1

E[ip(E[Yi | Y1, . . . , Yi−1])],

where we wrote Ip(Yi | Y1, . . . , Yi−1) for the conditional relative entropy and

ip(q) := DKL(Ber(q) ∥Ber(p)) = q log
q

p
+ (1− q) log

1− q

1− p
.

Since the function ip : [0, 1] → R is convex, we have, for every random variable Z ∈ [0, p],

E[ip(Z)] ⩽ (1− E[Z]/p) · ip(0) + (E[Z]/p) · ip(p) = (E[Z]/p− 1) log(1− p).

Finally, since conditioned on Y1, . . . , Yi−1, the vector (Yi, . . . , YN ) is the indicator function of

(JNK \ {1, . . . , i − 1})p conditioned on belonging to a decreasing family of sets, we have E[Yi |
Y1, . . . , Yi−1] ⩽ p almost surely. This implies that

Ip(Y1, . . . , YN ) ⩽
N∑
i=1

(E[Yi]/p− 1) log(1− p) = (E[|Y |]−N) log(1− p),

as claimed. □

Second proof. We are going to prove the following equivalent inequality:

E[|Cp| | Cp ∈ I] ⩽
(
|C| − log1−p P(Cp ∈ I)

)
· p. (9)

Let ℓ = ℓ(p) := log1−p P(Cp ∈ I). We first argue that it is enough to establish (9) in the case

where ℓ is an integer. To see this, suppose that ℓ /∈ Z. We claim that the (continuous) function

q 7→ ℓ(q) cannot be constant on any open interval I containing p and thus it takes rational values

for q arbitrarily close to p. Suppose that this were not true and P(Cq ∈ I) = (1 − q)ℓ for all

q ∈ I. We would then have, for all m,

dm

dqm
P(Cq ∈ I) =

m−1∏
i=0

(i− ℓ) · (1− q)ℓ−m ̸= 0,

contradicting the fact that P(Cq ∈ I) =
∑

I∈I q
|I|(1− q)|C|−|I| is a polynomial in q. Since both

sides of (9) are continuous in p, it is enough to prove this inequality when ℓ is rational.

Assume now that ℓ ∈ Q and let b be a positive integer such that bℓ ∈ Z. Consider the family

Ib ⊆ 2C×JbK defined by

Ib :=
{
I1 × {1} ∪ · · · ∪ Ib × {b} : I1, . . . , Ib ∈ I

}
.

and observe that Ib is decreasing and that P((C × JbK)p ∈ Ib) = P(Cp ∈ I)b = (1 − p)bℓ.

Invoking (9) with I replaced by Ib, we conclude that

b · E[|Cp| | Cp ∈ I] = E
[
|(C × JbK)p| ∈ Ib | (C × JbK)p ∈ Ib|

]
⩽
(
b|C| − bℓ

)
· p.

Assume ℓ ∈ Z, let λ := p/(1− p), and let Z :=
∑

I∈I λ
|I|. Our first key observation is that

Z = (1− p)−|C| · P(Cp ∈ I) = (1− p)ℓ−|C| = (1 + λ)|C|−ℓ.
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Write n := |C| − ℓ, so that Z = (1 + λ)n. For each i ∈ JnK, let xi be the unique number in

{0}∪ [i,∞) such that
(
xi
i

)
= |
(
C
i

)
∩I|. The assumption that I is decreasing implies that 2I ⊆ I

for all I ∈ I and, consequently, Z ⩾ (1 + λ)|I| for each I ∈ I. Therefore, maxI∈I |I| ⩽ n and

f(x1, . . . , xn) := 1 +

n∑
i=1

(
xi
i

)
· λi =

|C|∑
i=0

∣∣∣∣(Ci
)
∩ I
∣∣∣∣ · λi = Z.

Our second key observation is that

g(x1, . . . , xn) :=

n∑
i=1

(
xi
i

)
· iλi = Z · E[|Cp| | Cp ∈ I].

Since I is decreasing, the Kruskal–Katona theorem implies that x1 ⩾ · · · ⩾ xn. In particular,

letting

X := {(x1, . . . , xn) ∈ Rn : x1 ⩾ · · · ⩾ xn and xi ∈ {0} ∪ (i− 1,∞) for all i ∈ JnK},

we have

E[|Cp| | Cp ∈ I] ⩽ Z−1 ·max{g(x1, . . . , xn) : (x1, . . . , xn) ∈ X ∧ f(x1, . . . , xn) = Z}.

Let x = (x1, . . . , xn) be a vector that achieves the above maximum. We claim that x1 = · · · =
xn. Indeed, suppose that xi > xi+1 for some i and let x′ be the unique number satisfying

max{xi+1, i} < x′ < xi and

d :=

(
xi
i

)
−
(
x′

i

)
=

[(
x′

i+ 1

)
−
(
xi+1

i+ 1

)]
· λ.

Let x′ be the vector obtained from x by replacing the ith and the (i + 1)th coordinates by x′

and note that

f(x′)− f(x) =

[(
x′

i

)
−
(
xi
i

)]
· λi +

[(
x′

i+ 1

)
−
(
xi+1

i+ 1

)]
· λi+1 = −dλi + dλi = 0

and, similarly,

g(x′)− g(x) = (i+ 1)dλi − idλi = dλi > 0,

contradicting the maximality of x. Let x ∈ (n−1,∞) be the number such that x1 = · · · = xn = x.

Since

(1 + λ)n = Z = 1 +
n∑

i=1

(
x

i

)
· λi =

n∑
i=1

(
x

i

)
· λi,

we have x = n and thus

E[|Cp| | Cp ∈ I] ⩽ (1 + λ)−n ·
n∑

i=1

(
n

i

)
· iλi = n · λ

1 + λ
= np,

as claimed. □

Third proof. Let q := 1 − p and let f : 2C → {0, 1} be the function defined by f(A) = 1 if and

only if Ac ∈ I. Note that f is increasing and that E[f(Cq)] = P(Cp ∈ I). Recall that the total

influence of f with respect to Cq is the quantity

Infq(f) :=
∑
x∈C

P
(
f(Cq ∪ {x}) ̸= f(Cq \ {x})

)
=
∑
x∈C

(
P(Cp \ {x} ∈ I)− P(Cp ∪ {x} ∈ I)

)
.
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Observe now that, for every x ∈ C,

P(Cp \ {x} ∈ I) = P(Cp ∈ I | x /∈ Cp) =
P(Cp ∈ I)
P(x /∈ Cp)

· P(x /∈ Cp | Cp ∈ I)

and, similarly,

P(Cp ∪ {x} ∈ I) = P(Cp ∈ I | x ∈ Cp) =
P(Cp ∈ I)
P(x ∈ Cp)

· P(x ∈ Cp | Cp ∈ I).

Consequently, letting px := P(x ∈ Cp | Cp ∈ I), we have

Infq(f)

P(Cp ∈ I)
=
∑
x∈C

(
1− px
1− p

− px
p

)
=

1

1− p
·
∑
x∈C

(
1− px

p

)
=

|C| − E[|Cp| | Cp ∈ I]/p
1− p

.

The desired inequality follows from the edge-isoperimetric inequality for f , which states that

q · Infq(f) ⩾ E[f(Cq)] · logq E[f(Cq)],

see [12, Section 4]. □
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