
On the counting problem in inverse Littlewood–Offord theory

Asaf Ferber ∗ Vishesh Jain † Kyle Luh ‡ Wojciech Samotij§

Abstract

Let ε1, . . . , εn be i.i.d. Rademacher random variables taking values ±1 with probability
1/2 each. Given an integer vector a = (a1, . . . , an), its concentration probability is the
quantity ρ(a) := supx∈Z Pr(ε1a1 + · · · + εnan = x). The Littlewood–Offord problem asks
for bounds on ρ(a) under various hypotheses on a, whereas the inverse Littlewood–Offord
problem, posed by Tao and Vu, asks for a characterization of all vectors a for which ρ(a) is
large. In this paper, we study the associated counting problem: How many integer vectors
a belonging to a specified set have large ρ(a)? The motivation for our study is that in
typical applications, the inverse Littlewood–Offord theorems are only used to obtain such
counting estimates. Using a more direct approach, we obtain significantly better bounds for
this problem than those obtained using the inverse Littlewood–Offord theorems of Tao and
Vu and of Nguyen and Vu. Moreover, we develop a framework for deriving upper bounds on
the probability of singularity of random discrete matrices that utilizes our counting result.
To illustrate the methods, we present the first ‘exponential-type’ (i.e., exp(−cnc) for some
positive constant c) upper bounds on the singularity probability for the following two models:
(i) adjacency matrices of dense signed random regular digraphs, for which the previous best
known bound is O(n−1/4), due to Cook; and (ii) dense row-regular {0, 1}-matrices, for which
the previous best known bound is OC(n−C) for any constant C > 0, due to Nguyen.

1 Introduction

1.1 Littlewood–Offord theory

In connection with their study of random polynomials, Littlewood and Offord [17] introduced
the following problem. Let a := (a1, . . . , an) ∈ (Z \ {0})n and let ε1, . . . , εn be independent and
identically distributed (i.i.d.) Rademacher random variables, i.e., each εi independently takes
values ±1 with probability 1/2 each. Estimate the largest atom probability ρ(a), which is defined
by

ρ(a) := supx∈Z Pr (ε1a1 + · · ·+ εnan = x) .

They showed that ρ(a) = O(n−1/2 log n) for any such a. Soon after, Erdős [8] used Sperner’s
theorem to give a simple combinatorial proof of the refinement ρ(a) ≤

(
n
bn/2c

)
/2n = O(n−1/2),

which is tight, as is readily seen by taking a to be the all ones vector.
The results of Littlewood–Offord and Erdős generated considerable interest and inspired

further research on this problem. One such direction of research was concerned with improving
the bound of Erdős under additional assumptions on a. The first such improvement was due
to Erdős and Moser [9], who showed that if all coordinates of a are distinct, then ρ(a) =
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O(n−3/2 log n). Subsequently, Sárkőzy and Szemerédi [22] improved this estimate to O(n−3/2),
which is asymptotically optimal. Soon afterwards, Halász [11] proved the following very general
theorem relating the ‘additive structure’ of the coordinates of a to ρ(a).

Theorem 1.1 (Halász [11]). Let a := (a1, . . . , an) ∈ (Z \ {0})n. For an integer k ≥ 1, let Rk(a)
denote the number of solutions to ±ai1 ± ai2 · · · ± ai2k = 0, where repetitions are allowed in the
choice of i1, . . . , i2k ∈ [n]. There exists an absolute constant C > 0 such that

ρ(a) ≤ C
√
kRk(a)

22kn2k+1/2
+ e−n/max{k,C}.

It is easy to see that Halász’s inequality, applied with k = 1, yields the estimate ρ(a) =
O(n−1/2) for every a ∈ (Z \ {0})n; if one further assumes that the coordinates of a are distinct,
then R1(a) ≤ 2n and one obtains the stronger bound ρ(a) = O(n−3/2), recovering the result of
Sárkőzy and Szemerédi. We emphasize that Theorem 1.1 is valid even when k grows with n (the
constant C does not depend on either k, n, or a). This fact will prove to be crucial for our work.

1.2 Inverse Littlewood–Offord theory

Guided by inverse theorems from additive combinatorics, Tao and Vu [26] brought a new per-
spective to the Littlewood–Offord problem. Instead of imposing further assumptions on a in
order to obtain better bounds on ρ(a), they tried to find the underlying reason why ρ(a) could
be large. In this subsection, we provide only a very brief overview of their findings and of sub-
sequent work that followed. We refer the interested reader to the survey [20] and the textbook
[23] for further information on both forward and inverse Littlewood–Offord theory. We begin by
recalling a central notion in additive combinatorics.

Definition 1.2. For an integer r ≥ 0, we say that a set Q ⊆ Z is a generalized arithmetic
progression (GAP) of rank r if

Q := {q0 + x1q1 + · · ·+ xrqr : xi ∈ Z,Mi ≤ xi ≤M ′i for all i ∈ [r]},

for some q0, . . . , qr,M1, . . . ,Mr,M
′
1, . . . ,M

′
r ∈ Z. The numbers qi are called the generators of Q.

If Mi = −M ′i for all i ∈ [r] and q0 = 0, then Q = −Q and thus Q is said to be symmetric.

It is often useful to think of Q as the image of the integer box B := {(x1, . . . , xr) ∈ Zr : Mi ≤
xi ≤M ′i} under the affine map

Φ: (x1, . . . , xr) 7→ q0 + x1q1 + · · ·+ xrqr.

If Φ is an injective map, we say that Q is proper. In this case, we also define the volume of Q to
be the cardinality of B (which is equal to the cardinality of Q).

Returning to the Littlewood–Offord problem, it is easy to see that if the coordinates of a
belong to a proper symmetric GAP of ‘small’ rank and ‘small’ volume, then ρ(a) is necessarily
‘large’. More precisely, fix an r and suppose that there are integers q1, . . . , qr and M1, . . . ,Mr

such that ai = xi,1q1 + · · ·+ xi,rqr, where |xi,j | ≤Mj , for all i ∈ [n] and j ∈ [r]. In this case, the
random sum S := ε1a1 + · · ·+ εnan may be written as

S = q1 · {ε1x1,1 + · · ·+ εnxn,1}+ · · ·+ qr · {ε1x1,r + · · ·+ εnxn,r} .

It follows from Chebyshev’s inequality that with probability at least 1/2, each of the r sums
ε1x1,j + · · · + εnxn,j falls into an interval of length Or(

√
nMj). Letting B = {−M1, . . . ,M1} ×

· · · × {−Mr, . . . ,Mr}, we may conclude that with probability at least 1/2, the variable S takes
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values in a fixed subset of size at most Or(nr/2|B|). By the pigeonhole principle, there is some
value which S assumes with probability at least Ωr(n

−r/2|B|−1). In other words, we see that

ρ(a) = Ωr

(
1

nr/2|B|

)
.

In particular, if the coordinates of an n-dimensional vector a are contained in a GAP of
rank r and volume at most nC−r/2, for some constant C, then ρ(a) = Ωr(n

−C). The inverse
Littlewood–Offord theorems of Tao and Vu [26, 25] use deep Freiman-type results from additive
combinatorics to show that a weak converse of this statement holds. Roughly speaking, the only
reason for a vector a to have ρ(a) only polynomially small is that most coordinates of a belong
to a GAP of small rank and small volume. These results were subsequently sharpened by Nguyen
and Vu [18], who proved the following optimal inverse Littlewood–Offord theorem.

Theorem 1.3 (Nguyen–Vu [18]). Let C and ε < 1 be positive constants. If a ∈ (Z \ {0})n
satisfies

ρ(a) ≥ n−C ,

then there exists a proper symmetric GAP Q of rank r = OC,ε(1) and volume

|Q| = OC,ε

(
1

ρ(a)nr/2

)
that contains all but at most εn coordinates of a (counting multiplicities).

We remark that Nguyen and Vu also proved a version of the above theorem (this is [18,
Theorem 2.5]) whose statement allows for an explicit trade-off between the size of the ‘exceptional
set’ of coordinates of a which are not in the GAP Q, and the bound on the volume of Q.

1.3 The counting problem in inverse Littlewood–Offord theory

For typical applications, especially those in random matrix theory, one needs to resolve only the
following counting variant of the inverse Littlewood–Offord problem: for how many vectors a in
a given collection A ⊆ Zn is their largest atom probability ρ(a) greater than some prescribed
value? The utility of such results is that they enable various union bound arguments, as one
can control the number of terms in the relevant union/sum. Such counting results may be easily
deduced from the inverse Littlewood–Offord theorems, as we shall now show.

As a motivating example (see [18]), suppose that we would like to count the number of integer
vectors a ∈ Zn such that ‖a‖∞ ≤ N = nO(1) and ρ(a) ≥ ρ := n−C . Theorem 1.3 states that
for any ε ∈ (0, 1), all but εn of the coordinates (counting multiplicities) of any such vector a are
contained in a proper symmetric GAP Q of rank r = OC,ε(1) and volume |Q| = OC,ε(n

C− r
2 ).

Fix any such Q. The number of n-dimensional vectors all of whose coordinates belong to Q is
at most

|Q|n ≤ (OC,ε(1))nnCnn−
nr
2 .

Moreover, there are at most
(
n
εn

)
·N εn = nO(ε)n ways to introduce the ‘exceptional’ εn coordinates

from outside of Q. Finally, a more detailed version of Theorem 1.3 states that the number of
ways in which we can choose the proper symmetric GAP Q is negligible compared to our bound
on |Q|n. To summarize, we see that the number of vectors a satisfying the properties at the
start of this paragraph is at most

nn(C−
r
2
+O(ε)+oC,ε(1)).

It is not difficult to see that this is tight up to the O(ε) + oC,ε(1) term in the exponent.
The primary drawback of the structural approach to the counting problem, which we de-

scribed above, is that it is only effective for counting vectors a with ρ(a) ≥ n−C , where C > 0
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is allowed to grow only very mildly (in particular, much slower than logarithmically) with n.
This is due to the dependencies between C and ε and the constants implicit in the O-notation.
To make matters worse, improving these dependencies would most likely require (among other
things) improving the bounds in Freiman’s theorem, which is one of the central unsolved prob-
lems in additive combinatorics. In contrast, for many applications, one would ideally like to count
vectors a with even exponentially small values of ρ(a). Our first main theorem is a counting
result for the inverse Littlewood–Offord problem, which is effective for values of ρ(a) as small
as exp

(
−c
√
n log n

)
, where c > 0 is some sufficiently small constant. In order to motivate and

state it, we need some preparation.
The starting point for our approach is the anti-concentration inequality of Halász mentioned

earlier (Theorem 1.1). For reasons which will become clear later, we shall work with a variant of
this inequality for finite fields of prime order. For a vector a ∈ Fnp , we define ρFp(a) and Rk(a)
as in Theorem 1.1, except that all arithmetic is done over the p-element field Fp, and we let
supp(a) = {i ∈ [n] : ai 6= 0 mod p}.

Theorem 1.4 (Halász’s inequality over Fp). There exists an absolute constant C such that the
following holds for every odd prime p, integer n, and vector a := (a1, . . . , an) ∈ Fnp \{0}. Suppose
that an integer k ≥ 0 and positive real M satisfy 30M ≤ | supp(a)| and 80kM ≤ n. Then,

ρFp(a) ≤ 1

p
+

CRk(a)

22kn2k ·M1/2
+ e−M .

The proof of this theorem is a straightforward adaptation of Halász’s original argument
from [11]. For the reader’s convenience, we provide complete details in Appendix A.

Note that Halász’s inequality may be viewed as a partial inverse Littlewood–Offord theorem.
Indeed, if ρFp(a) is ‘large’, then it must be the case that Rk(a) is also ‘large’. Hence, an upper
bound on the number of vectors a for which Rk(a) is ‘large’ is also an upper bound on the
number of vectors with ‘large’ ρFp(a). Moreover, since ρFp(a) ≤ ρFp(b) for every subvector
b ⊆ a, when ρFp(a) is ‘large’, so is Rk(b) for every b ⊆ a; here, the expression ‘b is a subvector
of a’ means that b is a vector (of possibly smaller dimension than a) for which there exists
an injective mapping of the entries of b into the entries of a. As we shall show, the number of
vectors a with such ‘hereditary’ property can be bounded from above quite efficiently using direct
combinatorial arguments. Consequently, our approach yields strong bounds on the number of
vectors a with ρFp(a) ≥ ρ for a significantly wider range of ρ than the range amenable to the
‘structural’ approach described above.

Instead of working directly with Rk(a), however, we will find it more convenient to work with
the following closely related quantity.

Definition 1.5. Suppose that a ∈ Fnp for an integer n and a prime p and let k ∈ N. For every
α ∈ [0, 1], we define Rαk (a) to be the number of solutions to

±ai1 ± ai2 · · · ± ai2k = 0 mod p

that satisfy |{i1, . . . , i2k}| ≥ (1 + α)k.

It is easily seen that Rk(a) cannot be much larger than Rαk (a). This is formalized in the
following simple lemma.

Lemma 1.6. For all integers k and n with k ≤ n/2, any prime p, vector a ∈ Fnp , and α ∈ [0, 1],

Rk(a) ≤ Rαk (a) +
(
40k1−αn1+α

)k
.

Proof. By definition, Rk(a) is equal toRαk (a) plus the number of solutions to±ai1±ai2 · · ·±ai2k =
0 that satisfy |{i1, . . . , i2k}| < (1+α)k. The latter quantity is bounded from above by the number
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of sequences (i1, . . . , i2k) ∈ [n]2k with at most (1 + α)k distinct entries times 22k, the number of
choices for the ± signs. Thus

Rk(a) ≤ Rαk (a) +

(
n

(1 + α)k

)(
(1 + α)k

)2k
22k ≤ Rαk (a) +

(
4e1+α(1 + α)1−αk1−αn1+α

)k
,

where the final inequality follows from the well-known bound
(
a
b

)
≤ (ea/b)b. Finally, noting that

4e1+α(1 + α)1−α ≤ 4e2 ≤ 40 completes the proof.

Our counting theorem provides an upper bound on the number of sequences a for which every
‘relatively large’ subsequence b has ‘large’ Rαk (b). In particular, the sequences a that are not
counted have a ‘relatively large’ subsequence b with ‘small’ Rαk (b) and thus also ‘small’ Rk(b)
(by Lemma 1.6), and hence small ρFp(b) (by Theorem 1.4). Since ρFp(a) ≤ ρFp(b) whenever
b ⊆ a, each sequence a that is not counted has ‘small’ ρFp(a).

Theorem 1.7. Let p be a prime, let k, n ∈ N, s ∈ [n], t ∈ [p], and let α ∈ (0, 1). Denoting

Bα
k,s,≥t(n) :=

{
a ∈ Fnp : Rαk (b) ≥ t · 22k · |b|2k

p
for every b ⊆ a with |b| ≥ s

}
,

we have
|Bα

k,s,≥t(n)| ≤
( s
n

)2k−1
(αt)s−npn.

Remark 1.8. We emphasize that both the statement as well as the proof of our counting
theorem are facilitated by working over the finite field Fp. The counting corollaries of the inverse
Littlewood–Offord theorems (over the integers) require additional hypotheses (as in the sample
application mentioned above) in order to limit the number of GAPs that one needs to consider.

Remark 1.9. It is well known (see, e.g., [18]) that the inverse Littlewood–Offord theorems
are powerful enough to recover Halász’s inequality (Theorem 1.1) only for fixed (or very mildly
growing) values of k. In contrast, our approach utilizes Halász’s inequality to provide non-trivial
counting results even for k growing as fast as

√
n log n.

Remark 1.10. Finally, Theorem 1.7 is nearly optimal in the sense that we can recover the
counting consequences of the optimal inverse Littlewood-Offord Theorem over finite fields, proved
recently by Nguyen and Wood [21, Theorem 7.3].

1.4 Applications to random matrix theory

The singularity problem for random Rademacher matrices asks the following deceptively simple
question. Let An denote a random n × n matrix whose entries are independent and identically
distributed (i.i.d.) Rademacher random variables, which take values ±1 with probability 1/2
each. What is the probability cn that An is singular?1 Considering the event that two rows or
two columns of An are equal (up to a sign) gives

cn ≥ (1 + o(1))n221−n.

1The singularity question for random Rademacher matrices is essentially equivalent to the singularity question
for random Bernoulli (uniform on {0,1}) matrices. More precisely, let Mn denote the n× n random Rademacher
matrix and let M ′n denote the n × n random Bernoulli matrix. The following coupling shows that | det(Mn)|
has the same distribution as 2n−1|det(M ′n−1)|. Starting with Mn, we can multiply a subset of columns and a
subset of rows by −1 so as to turn the first row and the first column of the matrix into the all ones vector; this
does not affect the absolute value of the determinant. Next, by subtracting the first row from each of the other
rows, we can further ensure that the first column equals (1, 0, . . . , 0)T ; this does not change the absolute value
of the determinant either. The determinant of the resulting matrix is precisely equal to the determinant of the
bottom-right n− 1× n− 1 submatrix. Since the choice of signs with which to multiply the rows and columns of
Mn depends only on the entries in the first row and the first column, it is readily checked that each entry of the
bottom n− 1× n− 1 submatrix is 0 or −2 with equal probability, independent of all other entries.
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It is widely conjectured that this bound is tight. On the other hand, perhaps surprisingly, it is
non-trivial even to show that cn tends to 0 as n goes to infinity. This was accomplished in the
classical work of Komlós [16] in 1967; he showed that cn = O

(
n−1/2

)
using the Erdős–Littlewood–

Offord anti-concentration inequality. Subsequently, a breakthrough result due to Kahn, Komlós,
and Szemerédi in 1995 [15] showed that

cn = O(0.999n).

In a very recent and impressive work, Tikhomirov [27], improving on intermediate results by Tao
and Vu [24] and Bourgain, Vu, and Wood [1], showed that

cn ≤ (2 + o(1))−n,

thereby settling the above conjecture up to lower order terms.
The singularity problem becomes significantly more difficult when one considers models of

random matrices with dependencies between entries. In this work, we develop a framework
utilizing Theorem 1.7 to study the singularity probability of two models of discrete random n×n
matrices which come from the theory of random graphs: the adjacency matrix of a random
regular digraph (r.r.d.) with independent ± signs and the adjacency matrix of random left-
regular bipartite graph, that is, a uniformly random balanced bipartite graph whose all ‘left’
vertices have the same degree. The best known upper bound on the singularity probability in
the first model is not even n−1; it is achieved by combining Komlós’s argument with additional
combinatorial ideas. The best known upper bound on the singularity probability in the second
model is n−C , for any constant C > 0; it is obtained using a nonstandard application of the
optimal inverse Littlewood–Offord theorem. In each of these two cases, it is conjectured ([5, 19])
that the singularity probability is, in fact, exponentially small. While not entirely settling these
conjectures, we will provide the first ‘exponential-type’ (i.e. exp(−cnc) for some positive constant
c) upper bounds on the singularity probability for these models. Moreover, the arguments we
use for studying both these models are very similar, whereas previously, they were handled using
quite different techniques. We discuss this in more detail below.

1.4.1 Singularity of signed r.r.d. matrices

Let M±n,d denote the set of all n × n matrices M±n with entries in {−1, 0, 1} which satisfy the
constraints

d =
n∑
i=1

|M±n,d(i, k)| =
n∑
j=1

|M±n,d(k, j)|

for all k ∈ [n]. The probability of singularity of a uniformly random element ofM±n,d was studied
by Cook [5] as a first step towards the investigation of the singularity probability of the adjacency
matrix of a random regular digraph. In particular, he showed the following.

Theorem 1.11 (Cook [5]). Assume that C log2 n ≤ d ≤ n for a sufficiently large constant C > 0
and let M±n,d be a uniformly random element ofM±n,d. Then,

Pr
(
M±n,d is singular

)
= O

(
d−1/4

)
.

To the best of our knowledge, Cook’s result is the first to show that such matrices are
invertible asymptotically almost surely, that is, with probability tending to one as n, the size
of the matrix, tends to infinity. However, the upper bound on the probability of singularity is
very weak. Indeed, Cook conjectured that when d = drne for some fixed 0 < r ≤ 1, then the
probability that M±n,d is singular should be exponentially small. We make progress towards this
conjecture by providing the first ‘exponential-type’ upper bound on the singularity probability.
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Theorem 1.12. Fix an r ∈ (0, 1]. For every integer n, let d = drne and let M±n,d be a uniformly
random element ofM±n,d. There exists a constant c > 0 such that for all sufficiently large n,

Pr
(
M±n,d is singular

)
≤ exp (−nc) .

Remark 1.13. Our proof method could provide a similar conclusion for much smaller values of
d (in particular, for d = Ω(n1−`) for some absolute constant 0 < ` < 1). However, in order to
minimize technicalities and emphasize the main ideas, we will only present details for the case
d = Θ(n).

Remark 1.14. If we were to replace the application of Theorem 1.7 in our proof of Theorem 1.12
with the counting corollary of the recent optimal inverse Littlewood–Offord theorem over finite
fields due to Nguyen and Wood [21, Theorem 7.3], we would be able to deduce only the much
weaker bound

Pr
(
M±n,d is singular

)
= OC(n−C)

for every positive constant C. It is interesting to note that, proving an upper bound of the form
OC(n−C) on the singularity probability for this model as well as the next one essentially requires
the optimal inverse Littlewood–Offord theorem.

1.4.2 Singularity of random row-regular matrices

For an even integer n, let Qn denote the set of n × n matrices Qn with entries in {0, 1} that
satisfy the constraint

n∑
j=1

Qn(i, j) =
n

2

for each i ∈ [n]. Notice that Qn has i.i.d. rows and may be viewed as the bipartite adjacency
matrix of a bipartite graph with parts of size n such that each vertex on the left has exactly n/2
neighbors on the right. The probability of singularity of a uniformly random element of Qn was
studied by Nguyen [19] as a relaxation of the singularity problem for the adjacency matrix of a
random regular (di)graph; we refer the reader to the discussion there for further details about
the motivation for studying this model and the associated technical challenges. Nguyen showed
that the probability that Qn is singular decays faster than any polynomial.

Theorem 1.15 (Nguyen [19]). For every even integer n, let Qn be a uniformly random element
of Qn. For every constant C,

Pr(Qn is singular) = OC
(
n−C

)
.

Nguyen further conjectured [19, Conjecture 1.4] that the probability that Qn is singular is
(2+o(1))−n; note that this is the probability that two rows of Qn are the same. We make progress
towards this conjecture by providing an ‘exponential-type’ upper bound on the probability of
singularity.

Theorem 1.16. For every even integer n, let Qn be a uniformly random element of Qn. There
exists a contant c > 0 such that for all sufficiently large n,

Pr(Qn is singular) ≤ exp(−nc).

Remark 1.17. Nguyen’s theorem, as well as ours, continues to hold in the more general case
when the sum of each row is d (instead of n/2) for a much wider range of d. Here, as in [18], we
have chosen to restrict ourselves to the case when n is even and d = n/2 for ease of exposition.
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1.4.3 Further directions and related work

The methods we use in this paper can be further developed in various directions. In a recent
work [10], the first two named authors utilized and extended some of the ideas introduced here
in order to provide the best known upper bound for the well studied problem of estimating the
singularity probability of random symmetric {±1}-valued matrices. (After this work had been
completed, Campos, Mattos, Morris, and Morrison [2] extended and refined these ideas further
and obtained an even stronger bound on this singularity problem.)

Following the completion of this work, the second named author [12] used some of the results
in this paper to study the non-asymptotic behavior of the least singular value of different models
of discrete random matrices. In later works [13, 14], the second named author also showed
how to extend the techniques introduced here and in [12] to study the least singular value of
large deterministic shifts of rather general i.i.d. complex random matrices. We also anticipate
that the techniques presented here (along with some additional combinatorial ideas) should
suffice to provide an ‘exponential-type’ upper bound on the probability of singularity of the
adjacency matrix of a dense random regular digraph, thereby making substantial progress towards
a conjecture of Cook [5, Conjecture 1.7].

Organization: The rest of this paper is organized as follows. Section 2 is devoted to the
proof of Theorem 1.7. In Section 3, we formulate and prove abbreviated, easy-to-use versions of
Theorems 1.4 and 1.7. Sections 4 and 5 are devoted to the proofs of Theorems 1.12 and 1.16,
respectively. We provide detailed proof outlines at the start of both Sections 4 and 5. Finally,
Appendix A contains the proof of Halász’s inequality over Fp (Theorem 1.4).

Notation: Throughout this paper, we will routinely omit floor and ceiling signs when they make
no essential difference. As is standard, we will use [n] to denote the discrete interval {1, . . . , n}.
We will also use the asymptotic notation .,&,�,� to denote O(·),Ω(·), o(·), ω(·) respectively.
All logarithms are natural unless noted otherwise.

Acknowledgements: A.F. is partially supported by NSF 6935855, V.J. is partially supported
by NSF CCF 1665252, NSF DMS-1737944, and ONR N00014-17-1-2598, K.L. is partially sup-
ported by NSF DMS-1702533, and W.S. is partially supported by grants 1147/14 and 1145/18
from the Israel Science Foundation. W.S. would like to thank Elchanan Mossel and the MIT
Mathematics Department for their hospitality during a period when part of this work was com-
pleted.

2 Proof of the counting theorem

In this section, we prove Theorem 1.7 using an elementary double counting argument.

Proof of Theorem 1.7. Let Z be the set of all triples(
I, (is+1, . . . , in) ,

(
Fj , ε

j
)n
j=s+1

)
,

where

(i) I ⊆ [n] and |I| = s,

(ii) (is+1, . . . , in) ∈ [n]n−s is a permutation of [n] \ I,

(iii) each Fj := (`j,1, . . . , `j,2k) is a sequence of 2k elements of [n], and

(iv) εj ∈ {±1}2k for each j,

that satisfy the following conditions for each j:
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(a) `j,2k = ij and

(b) (`j,1, . . . , `j,2k−1) ∈
(
I ∪ {is+1, . . . , ij−1}

)2k−1,
where I ∪ {is+1, . . . , ij−1} = I when j = s+ 1.

Claim 2.1. The number of triples in Z is at most (s/n)2k−1 ·
(
2n−sn!/s!

)2k.
Proof. One can construct any such triple as follows. First, choose an s-element subset of [n] to
serve as I. Second, considering all j ∈ {s+ 1, . . . , n} one by one in increasing order, choose: one
of the n− j + 1 remaining elements of [n] \ I to serve as ij ; one of the 22k possible sign patterns
to serve as εj ; and one of the (j − 1)2k−1 sequences of 2k − 1 elements of I ∪ {is+1, . . . , ij−1} to
serve as (`j,1, . . . , `j,2k−1). Therefore,

|Z| ≤
(
n

s

)
·

n∏
j=s+1

(
(n− j + 1) · 22k · (j − 1)2k−1

)
=

n!

s!(n− s)!
· (n− s)! · 22k(n−s) ·

(
(n− 1)!

(s− 1)!

)2k−1
=
( s
n

)2k−1
·
(

2n−s · n!

s!

)2k

.

We call a = (a1, . . . , an) ∈ Fnp compatible with a triple from Z if for every j ∈ {s+ 1, . . . , n},

2k∑
i=1

εjia`j,i = 0. (1)

Claim 2.2. Each triple from Z is compatible with at most ps sequences a ∈ Fnp .

Proof. Using (a), we may rewrite Eq. (1) as

εj2kaij = −
2k−1∑
i=1

εjia`j,i .

It follows from (b) that once a triple from Z is fixed, the right-hand side above depends only
on those coordinates of the vector a that are indexed by i ∈ I ∪ {is+1, . . . , ij−1}. In particular,
for each of the ps possible values of (ai)i∈I , there is exactly one way to extend it to a sequence
a ∈ Fnp that satisfies Eq. (1) for every j.

Claim 2.3. Each sequence a ∈ Bα
k,s,≥t(n) is compatible with at least(

2n−sn!

s!

)2k

·
(
αt

p

)n−s
triples from Z.

Proof. Given any such a, we may construct a compatible triple from Z as follows. Considering
all j ∈ {n, . . . , s+1} one by one in decreasing order, we do the following. First, as a ∈ Bα

k,s,≥t(n),
we can find a solution to

± a`1 ± a`2 ± · · · ± a`2k = 0 (2)

such that `1, . . . , `2k ∈ [n]\{in, . . . , ij+1} and such that `2k is a non-repeated index (i.e., such that
`2k 6= `i for all i ∈ [2k − 1]). Given any such solution, we let `2k serve as ij , we let the sequence
(`1, . . . , `2k) serve as Fj , and we let εj be the corresponding sequence of signs (so that Eq. (1)
holds). The assumption that a ∈ Bα

k,s,≥t(n) guarantees that there are at least t · 2
2k·j2k
p many

solutions to Eq. (2), each of which has at least 2αk nonrepeated indices. Since the set of all
such solutions is closed under every permutation of the `is (and the respective signs), `2k is a

9



non-repeated index in at least an α-proportion of them. Finally, we let I = [n] \ {in, . . . , is+1}.
Since different sequences of solutions lead to different triples, it follows that the number Z of
compatible triples satisfies

Z ≥
n∏

j=s+1

(
αt · 22k · j2k

p

)
=

(
2n−sn!

s!

)2k

·
(
αt

p

)n−s
.

Counting the number P of pairs of a ∈ Bα
k,s,≥t(n) and a compatible triple from Z, we have

|Bα
k,s,≥t(n)| ·

(
2n−sn!

s!

)2k

·
(
αt

p

)n−s
≤ P ≤ |Z| · ps ≤

( s
n

)2k−1
·
(

2n−sn!

s!

)2k

· ps,

which yields the desired upper bound on |Bα
k,s,≥t(n)|.

3 ‘Good’ and ‘bad’ vectors

The purpose of this section is to formulate easy-to-use versions of Halász’s inequality (The-
orem 1.4) and our counting theorem (Theorem 1.7). We shall partition F∗p – the set of all
finite-dimensional vectors with Fp-coefficients – into ‘good’ and ‘bad’ vectors. We shall then
show that, on the one hand, every ‘good’ vector has small largest atom probability and that, on
the other hand, there are relatively few ‘bad’ vectors.2 The formal statements now follow. In
order to simplify the notation, we suppress the implicit dependence of the defined notions on k,
p, and α.

Definition 3.1. Suppose that an integer k, a prime number p, and an α ∈ (0, 1) are given. For
any t > 0, define the set of t-good vectors by

Ht :=

{
a ∈ F∗p : ∃b ⊆ a with | supp(b)| ≥ |a|1/4 and Rαk (b) ≤ t · 22k · |b|2k

p

}
.

The goodness of a vector a ∈ F∗p, denoted by h(a), will be the smallest t such that a ∈ Ht. In
other words

h(a) = min

{
p ·Rαk (b)

22k · |b|2k
: b ⊆ a and | supp(b)| ≥ |a|1/4

}
.

Note that if a vector a ∈ F∗p has fewer than |a|1/4 nonzero coordinates, then it cannot be
t-good for any t and thus h(a) = ∞. On the other hand, since trivially Rαk (b) ≤ 22k · |b|2k for
every vector b, every a ∈ F∗p with at least |a|1/4 nonzero coordinates must be p-good, that is,
h(a) ≤ p for each such a.

Remark 3.2. The exponent of 1/4 in |a|1/4 in the definition of Ht is chosen for arithmetic
convenience and any sufficiently small constant would suffice.

Having formalized the notion of a good vector, we are now ready to state and prove two
corollaries of Theorems 1.4 and 1.7 that lie at the heart of our approach to the singularity
problem.

Lemma 3.3. Suppose that a ∈Ht. If t ≥ |a|1/4, k ≤ |a|1/8, and p ≤ 2k/100, then

ρFp(a) ≤ Ct

p|a|1/16
,

where C = C(α) is a constant that depends only on α.
2In fact, we shall only show that there are relatively few ‘bad’ vectors that have some number of nonzero

coordinates. The number of remaining vectors (ones with very small support) is so small that even a crude, trivial
estimate will suffice for our needs.
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Proof. Let a be a finite-dimensional vector with Fp-coefficients and suppose that a ∈ Ht for
some t ≥ |a|1/4. Denote |a|, the dimension of a, by n. Without loss of generality, we may
assume that n is larger than any function of α, since otherwise our assumptions imply that the
claimed upper bound on ρFp(a) is greater than one whenever C = C(α) is sufficiently large. Let
b be an arbitrary subvector of a such that | supp(b)| ≥ n1/4 and Rαk (b) ≤ t · 22k · |b|2k/p. Set
M = bn1/4/(80k)c so that

max{30M, 80Mk} = 80Mk ≤ n1/4 ≤ | supp(b)| ≤ |b|

and note that our assumptions imply that M ≥ n1/4/(100k) ≥ n1/8/100. Theorem 1.4 and
Lemma 1.6 give

ρFp(b) ≤
1

p
+

CRk(b)

22k · |b|2k ·M1/2
+ e−M

≤ 1

p
+
CRαk (b) + C

(
40k1−α|b|1+α

)k
22k · |b|2k ·M1/2

+ e−M

≤ 1

p
+
Ct · 22k · |b|2k/p+ C

(
40k1−α|b|1+α

)k
22k · |b|2k ·M1/2

+ e−M

=
1

p

(
1 +

Ct

M1/2
+ C

(
10(k/|b|)1−α

)k · p

M1/2

)
+ e−M .

Since p ≤ 2k/100 ≤ en1/4/(100k) ≤ eM and

C
(
10(k/|b|)1−α

)k · p

M1/2
≤ C

(
10 · n(α−1)/8

)k
· p ≤ C2−k · p ≤ C,

as α < 1 and n is large, we may conclude that

ρFp(a) ≤ ρFp(b) ≤
1

p

(
3C +

Ct

M1/2

)
≤ 4Ct

pM1/2
≤ 40Ct

pn1/16
,

where the last two inequalities hold as t ≥ n1/4 ≥M1/2 ≥ n1/16/10.

Lemma 3.4. For every α ∈ (0, 1), prime p, integer n, and real t ≥ n,∣∣∣{a ∈ Fnp : | supp(a)| ≥ n1/4 and a 6∈Ht

}∣∣∣ ≤ (2p

αt

)n
· tn1/4

.

Proof. We may assume that t ≤ p, as otherwise the left-hand side above is zero, see the comment
below Definition 3.1. Let us first fix an S ⊆ [n] with |S| ≥ n1/4 and count only vectors a with
supp(a) = S. Since a 6∈ Ht, the restriction a|S of a to the set S must be contained in the set
Bk,n1/4,≥t(|S|). Hence, Theorem 1.7 implies that the number of choices for a|S is at most(

n1/4

|S|

)2k−1 ( p
αt

)|S|
(αt)n

1/4 ≤
( p
αt

)n
tn

1/4
,

where the second inequality follows as αt ≤ t ≤ p. Since a|S completely determines a, we obtain
the desired conclusion by summing the above bound over all sets S.

4 Singularity of signed r.r.d. matrices

4.1 Overview of the proof and preliminary reductions

In order to facilitate the use of Theorem 1.7 (and its corollary, Lemma 3.4), we aim to bound
from above the probability that M±n,d is singular over Fp, for a suitably chosen prime p. This is

11



clearly sufficient as an integer matrix that is singular (over Q or any of its extensions) is also
singular over Fp, for every prime p.

As a first step, let Sc denote the event that some vector v ∈ Fnp \ {0} with small support
(i.e., with at most n0.8 nonzero coordinates) satisfies M±n,dv = 0. Using an elementary union
bound argument, we will show in Proposition 4.2 that Pr(Sc) is extremely small. Therefore, it
will suffice to bound from above the probability that M±n,d is singular and S occurs.

As in the proof of Theorem 1.12 given by Cook [5], we will find it more convenient to work
with the following representation of signed r.r.d. matrices. LetMn,d denote the set of all {0, 1}-
valued n × n matrices whose each row and each column sums to d and let Rn denote the set
of all {±1}-valued n × n matrices. Let Mn,d denote a uniformly random element of Mn,d and
let Ξn denote a uniformly random element of Rn, chosen independent of Mn,d. It is readily
observed that M±n,d and Ξn ◦Mn,d have the same distribution, where ◦ denotes the Hadamard
product of two matrices (so that M±n,d(i, j) = Ξn(i, j) ·Mn,d(i, j) for all i, j ∈ [n]). An equivalent
way of saying this is that the pushforward measure of the uniform measure onMn,d×Rn under
the map ◦ : Mn,d×Rn → M±n,d coincides with the uniform measure on M±n,d. We will refer
to Mn,d as the base of the signed r.r.d. matrix M±n,d. Observe that Mn,d can be viewed as the
(bi)adjacency matrix of a uniformly random d-regular bipartite graph with n+ n vertices.

Similarly as in [5], we will first condition on a ‘good’ realization of the base matrix Mn,d

and later use only the randomness of Ξn. Of course, we will need to show that such ‘good’
realizations of the base matrix occur with high probability. More precisely, we will identify a
subset En,d ⊆ Mn,d of base matrices with suitable ‘expansion’ properties and use the following
elementary chain of inequalities:

Pr
(
M±n,d is singular ∩ S

)
= Pr (Ξn ◦Mn,d is singular ∩ S)

≤ Pr
(
(Ξn ◦Mn,d is singular ∩ S) ∩ (Mn,d ∈ En,d)

)
+ Pr (Mn,d 6∈ En,d)

≤ sup
M∈En,d

Pr (Ξn ◦M is singular ∩ S) + Pr (Mn,d 6∈ En,d) .

Roughly speaking, the expansion property that makes the adjacency matrix of a bipartite d-
regular graph B belong to En,d is the following. Denoting the bipartition of B by V1 ∪ V2, we
require that for every moderately large (of size at least n0.6) subset S ⊆ V1, all but very few (at
most n0.6) vertices of V2 have at least d|S|/(2n) many neighbors in S. As it turns out, this is a
fairly weak property in the sense that (with relatively little work) we will be able to give a very
strong upper bound on the probability that Mn,d 6∈ En,d; this is done in Proposition 4.3.

Remark 4.1. The proof of Theorem 1.12 given in [5] also proceeds in a simliar fashion. However,
the expansion properties required there to handle the case of small d are much stronger than
what we require for the case where d = Θ(n). Therefore, bounding the respective probability (of
not having such expansion) requires considerably more work. In fact, for this reason the proof in
[5] is not self-contained; it relies on a previous work of the author on random regular graphs [4].

The main part of our argument is bounding the supremum above. Fix an arbitraryM ∈ En,d,
let M1, . . . ,Mn denote its rows, let M ′1, . . . ,M ′n denote the (random) rows of Ξn ◦M , and let

S′i := span{M ′1, . . . ,M ′i−1,M ′i+1, . . . ,M
′
n}.

Observe that Ξn ◦M is singular if and only if M ′i ∈ S′i for some i ∈ [n]. Furthermore, M ′i ∈ S′i if
and only if M ′i is orthogonal to every vector in the orthogonal complement of S′i in Fnp . Denote
by V the set of all vectors in Fnp whose support is not small (i.e., vectors with more than n0.8

nonzero coordinates). The above observations and the definition of S yield

Pr (Ξn ◦M is singular ∩ S) ≤
n∑
i=1

Pr
(
M ′i ⊥ v for all v ∈ (S′i)

⊥ ∩ V
)
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=
n∑
i=1

E
[
Pr
(
M ′i ⊥ v for all v ∈ (S′i)

⊥ ∩ V | S′i
)]

≤
n∑
i=1

E

[
inf

v∈(S′i)⊥∩V
ρFp (v ◦Mi)

]

≤ n ·max
i∈[n]

(
E

[
inf

v∈(S′i)⊥∩V
ρFp (v ◦Mi)

])
.

Let i0 ∈ [n] be an index that attains the maximum in the above expression. For every ρ > 0, let
BM,ρ denote the event that there exists a vector v ∈ (S′i0)⊥ ∩ V such that ρFp(v ◦Mi0) ≥ ρ.3

We may conclude that

Pr (Ξn ◦M is singular ∩ S) ≤ n · inf
ρ>0

(
Pr(BM,ρ) + ρ

)
.

It remains to bound from above the probability of BM,ρ. By the union bound,

Pr(BM,ρ) ≤
∑
v∈V

ρFp (v◦Mi0
)≥ρ

Pr
(
M ′i · v = 0 for all i ∈ [n] \ {i0}

)
≤

∑
v∈V

ρFp (v◦Mi0
)≥ρ

∏
i∈[n]\{i0}

ρFp(v ◦Mi).
(3)

We will bound the sum on the right-hand side of Eq. (3) in two stages. First, we will give an
upper bound on ∑

v∈V1

∏
i∈[n]\{i0}

ρFp(v ◦Mi),

where V1 ⊆ V denotes the set of vectors v ∈ V for which ‘many’ (at least n0.7) of the atom
probabilities ρFp(v ◦Mi) are ‘large’. For this, we stratify the set V1, essentially according to the
size of

∏
i∈[n]\{i0} ρFp(v ◦Mi), and use the corollary of our counting theorem (Lemma 3.4) along

with the expansion property of the base matrix to control the number of vectors in each stratum
(Lemma 4.6). Therefore, it only remains to bound from above∑

v∈V \V1

ρFp (v◦Mi0
)≥ρ

∏
i∈[n]\{i0}

ρFp(v ◦Mi).

We will do this by first using (the corollary of) our counting theorem to show that the size of
the set {v ∈ V : ρFp(v ◦ Mi0) ≥ ρ} is ‘small’ (Lemma 4.7) and then bounding the product∏
i∈[n]\{i0} ρFp(v ◦Mi) using the fact that v /∈ V1 (Proposition 4.8).
We present complete details below. As stated earlier, we make no attempt to optimize our

bound on the singularity probability. Consequently, we choose various parameters conveniently
(but otherwise somewhat arbitrarily) in order to simplify the exposition. Throughout, r ∈ (0, 1]
is fixed, n is a sufficiently large integer, d = drne, and various implicit constants are allowed to
depend on r. Moreover, we set α = 1/2, k = n1/8, and let p be an arbitrary prime satisfying
2n

0.1
/2 ≤ p ≤ 2n

0.1 . Note that this choice of parameters makes Lemma 3.3 applicable to vectors
a ∈ Fnp ∩Ht as long as t ≥ n1/4.

3Even though the event BM,ρ is that supremum, rather than the infimum, of ρFp(v ◦Mi0) is at least ρ, in the
case of interest, S′i0 has dimension n− 1 and thus there is only one (up to a scalar multiple) vector v in (S′i0)

⊥.
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4.2 Eliminating potential null vectors with small support

We first show that it is very unlikely that a nonzero vector in Fnp with small support is a null
vector of M±n,d. In fact, we show an even stronger statement – the matrix M±n,d is very unlikely
to have a null vector with small support even after we condition on the base matrix Mn,d.

Proposition 4.2. For every M ∈Mn,d,

Pr
(
∃v ∈ Fnp \ {0} such that (Ξn ◦M)v = 0 and | supp(v)| ≤ n0.8

)
. 2−d/2.

Proof. Fix any nonzero vector v = (v1, . . . , vn) ∈ Fnp and let j be an arbitrary index such that
vj 6= 0. Let i1, . . . , id ∈ [n] be distinct indices such that M(ik, j) = 1 for all k ∈ [d]; in other
words, i1, . . . , id are the indices of the d rows ofM which have nonzero entries in the jth column.
We claim that for every k ∈ [d],

Pr(M ′ik · v = 0) ≤ 1/2.

To see this, simply condition on all the coordinates of M ′ik except for the jth, which is equally
likely to be 1 or −1. Since vj 6= 0, then at most one of these two outcomes makes M ′ik · v
zero. The rows of Ξn are independent and thus the probability that v is orthogonal to all of
M ′i1 , . . . ,M

′
id

is at most 2−d. Finally, note that the number N of vectors with support of size at
most n0.8 satisfies

N ≤
(
n

n0.8

)
· pn0.8 ≤ nn0.8 · pn0.8 ≤

(
n · 2n0.1

)n0.8

. 2d/2

and hence the union bound over all such vectors yields the desired conclusion.

4.3 Expanding base matrices

We now formally define the expansion property mentioned in the overview. Let En,d be the set of
all matrices M ∈Mn,d satisfying the following property for every subset S ⊆ [n] with |S| ≥ n0.6
(recall that M1, . . . ,Mn are the rows of M):∣∣∣∣{i ∈ [n] : |supp(Mi) ∩ S| ≤

r|S|
2

}∣∣∣∣ ≤ n0.6.
We shall show that it is very unlikely that a uniformly random element ofMn,d is not in En,d.

Proposition 4.3. Let Mn,d denote a uniformly random element ofMn,d. Then,

Pr (Mn,d 6∈ En,d) . exp

(
−rn

1.2

10

)
.

Proof. Let M̃n,d denote a random n×n matrix whose entries are i.i.d. Ber(d/n) random variables
and denote its rows by M̃1, . . . , M̃n. Since each matrix in Mn,d has the same number nd of
nonzero entries, then

Pr (Mn,d 6∈ En,d) = Pr
(
M̃n,d 6∈ En,d | M̃n,d ∈Mn,d

)
≤

Pr
(
M̃n,d 6∈ En,d

)
Pr
(
M̃n,d ∈Mn,d

)
It was proved4 by Canfield and McKay [3, Theorem 1] that

Pr
(
M̃n,d ∈Mn,d

)
= exp

(
−O
(
n log(min{d, n− d})

))
,

4For the range of parameters we are interested in, such a bound may also be obtained directly using the known
lower bound on the number of perfect matchings in a regular bipartite graph, following from the resolution of
Van der Waerden’s conjecture (see, e.g. [7]).
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provided that min{d, n−d} = ω (n/ log n), so it suffices to bound Pr(M̃n,d 6∈ En,d) from above. For
this, fix any S ⊆ [n] with |S| = s ≥ n0.6. Since for any i ∈ [n], the cardinality of supp(M̃i)∩S has
binomial distribution with mean ds/n ≥ rs, it follows from standard tail estimates for binomial
distributions that

Pr
(
| supp(M̃i) ∩ S| ≤

rs

2

)
≤ exp

(
−rs

8

)
.

Since the rows of M̃n,d are independent, the probability that there are at least n0.6 such indices
i ∈ [n] is at most(

n

n0.6

)
· exp

(
−rs

8

)n0.6

. exp

(
n0.6 log n− rn1.2

8

)
. exp

(
−rn

1.2

9

)
.

Taking the union bound over all sets S ⊆ [n] with |S| ≥ n0.6 gives the desired conclusion.

Remark 4.4. A recent work of Cook [6] provides several estimates that extend the range of d
in the result of Canfield and McKay cited in the proof of Proposition 4.3. It is likely that, using
these bounds, we can improve the range of d in our results. Implementing this, however, would
require finer expansion properties and would render the calculations more technically involved.
We do not pursue this direction here.

4.4 Bounding Pr(BM,ρ) for small ρ

Throughout this subsection, we will consider a fixedM ∈ En,d and denote its rows byM1, . . . ,Mn.
Recall from the proof outline that

V =
{
v ∈ Fnp : | supp(v)| > n0.8

}
and that i0 is an index that attains the maximum in

max
i∈[n]

(
E

[
inf

v∈(S′i)⊥∩V
ρFp (v ◦Mi)

])
.

Note that for any v ∈ V , the definition of expanding base matrices yields a subset Tv ⊆ [n]\{i0}
with |Tv| ≥ n− n0.6 − 1 such that for each i ∈ Tv,

| supp(v ◦Mi)| = | supp(v) ∩ supp(Mi)| ≥
r| supp(v)|

2
≥ rn0.8

2
.

Recall the definitions of the set Ht of t-good vectors and of the goodness function h given in
Section 3.

Definition 4.5. For any t > 0 and ` ∈ N, define the set Bt,` of (t, `)-bad vectors by

Bt,` :=
{
v ∈ V : |{i ∈ Tv : v ◦Mi /∈Ht}| ≥ `

}
.

We say that a sequence (i1, . . . , i`) of distinct elements of Tv witnesses v ∈ Bt,` if

h(v ◦Mi1) ≥ · · · ≥ h(v ◦Mi`) ≥ max
i∈Tv\{i0,i1,...,i`}

h(v ◦Mi).

Recall from the proof outline that our goal is to bound from above the probability of the
event BM,ρ for some very small ρ and that we are planning to do it by splitting the sum in the
right-hand side of Eq. (3) into two parts, depending on whether or not the vector v ∈ V admits
‘many’ indices i ∈ [n] for which the largest atom probability of v ◦Mi is ‘large’. More precisely,
we shall let

ρ = p−1/2, ` = n0.7, and V1 = Bn,`.

In other words, we first consider those vectors v ∈ V for which there are at least n0.7 indices
i ∈ [n] such that v ◦Mi has large support but nevertheless Lemma 3.3 does not give a strong
upper bound on ρFp(v ◦Mi).
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Lemma 4.6. If t ≥ n, then ∑
v∈Bt,`

∏
i∈[n]\{i0}

ρFp(v ◦Mi) . n−n/20.

Proof. It is enough to show that the contribution to the above sum of v ∈ Bt,` that are witnessed
by a given sequence i1, . . . , i` of distinct indices in [n] \ {i0} and that satisfy supp(v) = S for
a given set S with |S| > n0.8 is O(2−n · n−n/20−`). Indeed, we can then take the union bound
over all such sequences and all such sets S. Let us then fix such a sequence and a set S for the
remainder of the proof.

The idea for the remainder of the proof is to piece together the constraints on different parts
of the vector v. As a first step, if we can find witnessing indices that provide information on
disjoint subsets of v, then we can simply combine the counting estimates for these disjoint parts
of the vector with very little loss. For the remaining indices, we can apply the counting lemma
less judiciously as the unaccounted indices represent a negligible fraction of |S|.

We first claim that there are distinct indices j1, . . . , jb ∈ {i1, . . . , i`} and pairwise disjoint
subsets J1 ⊆ S ∩ supp(Mj1), . . . , Jb ⊆ S ∩ supp(Mjb) such that b ≤ (2/r) · log n and

• |Ja| ≥ n0.7 for every a ∈ [b], and

• |J1|+ · · ·+ |Jb| = |J1 ∪ · · · ∪ Jb| ≥ |S| − n0.75.

Indeed, one may construct these two sequences as follows. Let I0 = S and for a = 0, 1, 2, . . . , do
the following. If |Ia| > n0.75, then the assumption that M ∈ En,d implies that for all but at most
n0.6 indices i ∈ [n], we have | supp(Mi)∩ Ia| ≥ r|Ia|/2 ≥ n0.7. Since `− a ≥ n0.7− (2/r) · log n >
n0.6, we can find one such index among {i1, . . . , i`} \ {j1, . . . , ja}; denote this index by ja+1, let
Ja+1 = supp(Mja+1)∩ Ia, and let Ia+1 = Ia \ Ja+1. Otherwise, if |Ia| ≤ n0.75, then let b = a and
terminate the process. Since |Ia+1| < (1− r/2) · |Ia| for every a < b, then b ≤ (2/r) log n.

Now, given an integer m, let Cm be the set of all vectors v ∈ Bt,` with supp(v) = S that
are witnessed by our sequence and for which 2mt < h(v ◦Mi`) ≤ 2m+1t. Since h(a) ≤ p for
every vector a with | supp(a)| ≥ |a|1/4, then the set Cm is empty unless t ≤ 2mt ≤ p and hence
0 ≤ m ≤ log2 p ≤ n0.1.

Fix any such m and suppose that v ∈ Cm. Since {j1, . . . , jb} ⊆ {i1, . . . , i`}, it follows from
the definition of a witnessing sequence that, for every a ∈ [b],

h(v|Ja) ≥ h(v ◦Mja) ≥ h(v ◦Mi`) > 2mt,

where v|Ja ∈ Z|v| is the restriction of v to the subset Ja of its coordinates and the first inequality
is due to the fact that Ja ⊆ supp(Mja). In particular, v|Ja 6∈ H2mt for every a ∈ [b]. However,
since Ja ⊆ S = supp(v), then | supp(v|Ja)| = |Ja| ≥ n0.7 ≥ |Ja|1/4; it follows from Lemma 3.4
that for every a ∈ [b], there are at most (4p)|Jj |(2mt)−|Jj |+|Jj |

1/4 possible values of v|Ja . Since
J1, . . . , Jb are pairwise disjoint subsets of S that cover all but at most n0.75 of its elements and
Cm contains only vectors whose support is S, we may conclude that

|Cm| ≤ pn
0.75 ·

b∏
a=1

(
4p

2mt

)|Jj |
· (2mt)bn1/4

.

(
4p

2mt

)|S|
· (2mtp)n

0.75

.

(
4p

2mt

)n
· p2n0.75

.

On the other hand, it follows from the definition of a witnessing sequence that, for each
v ∈ Cm and every i ∈ Tv \ {i0, i1, . . . , i`}, we have h(v ◦Mi) ≤ h(v ◦Mi`) ≤ 2m+1t and thus, by
Lemma 3.3, ρFp(v ◦Mi) ≤ 2m+1Ct/(pn1/16) for some absolute constant C. Consequently, every
v ∈ Cm satisfies

∏
i∈[n]\{i0}

ρFp(v ◦Mi) ≤
∏

i∈Tv\{i0,i1,...,i`}

ρFp(v ◦Mi) ≤
(

2m+1Ct

pn1/16

)|Tv |−`
≤
(

2m+1Ct

pn1/16

)n−2n0.7

.
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Putting everything together, we see that

∑
v∈Cm

∏
i∈[n]\{i0}

ρFp(v ◦Mi) .

(
4p

2mt

)n
· p2n0.75 ·

(
2m+1Ct

pn1/16

)n−2n0.7

. (8C)n · p4n0.75 · n−n/17

. (8C)n · 24n0.85 · n−n/17 . n−n/18,

where the penultimate inequality holds because p ≤ 2n
0.1 . Since there are at most n0.1 + 1

relevant values of m, at most n` sequences i1, . . . , i`, and at most 2n sets S, the claimed upper
bound follows.

The next lemma bounds the number of vectors v for which ρ(v ◦Mi0) has large atom prob-
ability. Recall that ρ = p−1/2.

Lemma 4.7. The number of vectors v ∈ Fnp for which ρFp(v ◦Mi0) ≥ ρ is O(pn−rn/4).

Proof. We partition the set of relevant vectors v into two parts depending on the size of the
support of v ◦Mi0 . More precisely, we let

Vsmall := {v ∈ Fnp : | supp(v ◦Mi0)| ≤ n0.8},
Vlarge := {v ∈ Fnp : | supp(v ◦Mi0)| > n0.8 and ρFp(v ◦Mi0) ≥ ρ}.

Since Mi0 is a fixed vector with exactly d nonzero entries, then

|Vsmall| ≤
(
d

n0.8

)
· pn−d+n0.8

. 2d · pn−d+n0.8
. pn−rn/2,

as d ≥ rn � n0.8 and p � 1. Observe that if v ∈ Vlarge, then v ◦Mi0 6∈ Hρp, as otherwise
Lemma 3.3 would imply that ρFp(v ◦Mi0) ≤ Cρ/n1/16 for some absolute constant C, contra-
dicting the assumption that v ∈ Vlarge. In particular, Lemma 3.4 implies that there are at most
(4p)d(ρp)−d+n

1/4 different restrictions of v ∈ Vlarge to supp(Mi0). Recalling that ρ = p−1/2, we
obtain

|Vlarge| ≤ pn−d · (4p)d · (ρp)−d+n
1/4

= 4d · pn−d/2+n1/4/2 . pn−rn/3,

where the last inequality holds as rn ≤ d ≤ n and p � 1. We obtain the desired conclusion by
summing the obtained upper bounds on |Vsmall| and |Vlarge|.

We now combine Lemmas 3.3, 4.6 and 4.7 to derive the main result of this subsection.

Proposition 4.8. We have
Pr(BM,ρ) . n−n/20 + p−rn/5.

Proof. Recall from Eq. (3) and our definition V1 = Bn,` that

Pr(BM,rho) ≤
∑

v∈Bn,`

∏
i∈[n]\{i0}

ρFp(v ◦Mi) +
∑

v∈V \Bn,`
ρFp (v◦Mi0

)≥ρ

∏
i∈[n]\{i0}

ρFp(v ◦Mi). (4)

Lemma 4.6 states that the first term in the right-hand side of Eq. (4) is O(n−n/20). In order
to bound the second term, note that for any v ∈ V \Bn,`, there are at least |Tv| − ` ≥ n− 2n0.7

indices i ∈ [n] \ {i0} for which v ◦Mi ∈Hn. Lemma 3.3 implies that ρFp(v ◦Mi) ≤ n/p for each
such index. In particular, if v ∈ V \Bn,`, then∏

i∈[n]\{i0}

ρFp(v ◦Mi) ≤ (n/p)n−2n
0.7
.
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Since Lemma 4.7 implies that

|{v ∈ V : ρFp(v ◦Mi0) ≥ ρ}| . pn−rn/4,

it follows that the second term in Eq. (4) is bounded from above by

pn−rn/4 · (n/p)n−2n0.7
. p−rn/4 · p2n0.7 · nn . p−rn/5,

where the last inequality follows as p� n.

4.5 Proof of Theorem 1.12

The main result of this section is now immediate.

Proof of Theorem 1.12. Recall from Section 4.1 that for every positive ρ,

Pr(M±n,d is singular) ≤ Pr(Sc) + Pr(Mn,d 6∈ En,d) + n · sup
M∈En,d

(
Pr(BM,ρ) + ρ

)
. (5)

We know from Proposition 4.2 that Pr(Sc) . 2−d/2, from Proposition 4.3 that Pr(Mn,d ∈ Ecn,d) .
2−rn

1.2/10, and from Proposition 4.8 that Pr(Bρ) . n−n/20 + p−rn/5. Thus the dominant term
in Eq. (5) is nρ. Recalling that ρ = p−1/2 and p ≥ 2n

0.1
/2, we conclude that the right-hand side

of Eq. (5) can be bounded from above by Cn · 2−n0.1/2 for some absolute constant C. This gives
the desired conclusion.

5 Singularity of random row-regular matrices: proof of Theo-
rem 1.16

5.1 Overview of the proof and preliminary reductions

The proof of Theorem 1.16 is very similar to the proof of Theorem 1.12, as will be clear from
the following overview. Throughout this section, we will assume that n is even. Recall that Qn
denotes the set of all n×n matrices with entries in {0, 1} each of whose rows sums to n/2. We will
prove the stronger statement that a uniformly chosen random matrix Qn ∈ Qn is non-singular
even over Fp, for a suitably chosen prime p, with extremely high probability.

As a first step, let Sc denote the event that some ‘almost constant’ vector v ∈ Fnp \ {0},
i.e., a vector almost all of whose coordinates (all but at most n0.8) have the same value, satisfies
Qnv = 0. More precisely, for a vector v ∈ Fnp , we define

L(v) = max
x∈Fp
|{i ∈ [n] : vi = x}|

and let Sc be the event that Qnv = 0 for some nonzero v with L(v) ≥ n−n0.8. We will show that
Pr(Sc) is extremely small (Proposition 5.3), so that it will suffice to bound Pr(Qn is singular∩S)
from above.

As in the previous proof, we will find it more convenient (as will be explained later in this
subsection) to work with the following representation of a uniformly random element of Qn. Let
Σn denote the set of all permutations of [n] and consider the map

f : (Σn)n ×
(
{0, 1}n/2

)n
→ Qn,

which takes
(
(σ1, . . . , σn), ξ1, . . . , ξn

)
to the matrix in Qn whose ith row is (qi1, . . . , qin), where

qij =

{
ξi(k) if σi(2k − 1) = j,

1− ξi(k) if σi(2k) = j.
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In other words, for each k ∈ [n/2], exactly one among the σi(2k − 1)st and the σi(2k)th entries
in the ith row is equal to 1 (the other is equal to 0) and the value of ξi(k) determines which
one of the two entries it is. It is straightforward to see that the pushforward measure of the
uniform measure on (Σn)n ×

(
{0, 1}n/2

)n under the map f is the uniform measure on Qn. In
other words, the following process generates a uniformly random element of Qn. First, choose
a sequence σ = (σ1, . . . , σn) of i.i.d. uniformly random elements of Σn. Second, for each i ∈ [n]
and each k ∈ [n/2], choose exactly one among the σi(2k − 1)st entry and the σi(2k)th entry in
the ith row of the matrix to be 1 (and the other to be 0) uniformly at random, independently
for each pair of indices i and k. We shall refer to σ as the base of the matrix Qn. Let us note
here that for each i ∈ [n], the set comprising the n/2 unordered pairs {σi(2k − 1), σi(2k)}, for
all k ∈ [n/2], is a uniformly random perfect matching in Kn – the complete graph on the vertex
set [n]; we shall refer to this matching as the matching induced by σi.

In analogy with the signed r.r.d. case, we will first condition on a ‘good’ realization of the
base σ and later use only the randomness of ξ := (ξ1, . . . , ξn). More precisely, we will identify
a subset En ⊆ (Σn)n of bases with suitable ‘expansion’ properties and use the following chain of
inequalities. Denote by Qσ the random matrix chosen uniformly among all the matrices in Qn
with base σ and by τ ∈ (Σn)n the vector of i.i.d. uniformly random permutations. Then,

Pr(Qn is singular ∩ S) = Pr(Qτ is singular ∩ S)

≤ Pr
(
Qτ is singular ∩ S ∩ (τ ∈ En)

)
+ Pr (τ 6∈ En)

≤ sup
σ∈En

Pr(Qσ is singular ∩ S) + Pr (τ 6∈ En) .

Roughly speaking, a base σ belongs to En if the following two conditions are met: for every
pair of distinct i, j ∈ [n], the union of the perfect matchings induced by σi and σj has relatively
few (at most n0.6) connected components; and for every pair A,B ⊆ [n] of disjoint sets, each
of which is somewhat large (of size at least n0.8), the matching induced by almost every σi (all
but at most

√
n/2) contains many edges with one endpoint in each of A and B. As before, it

will turn out that these ‘expansion’ properties we require from the base permutation are fairly
mild and can easily be proved to hold with very high probability (in Proposition 5.4) using two
somewhat ad hoc large deviation inequalities (Lemmas 5.1 and 5.2).

In analogy with the signed r.r.d. case, the main part of the argument is bounding the
supremum above. Fix a σ ∈ En, denote the (random) rows of Qσ by W1, . . . ,Wn, and let
Si = span{W1, . . . ,Wi−1,Wi+1, . . . ,Wn}. Moreover, denote by V the set of all vectors in v ∈ Fnp
with L(v) < n−n0.8. An elementary reasoning analogous to the one we used in the signed r.r.d.
case shows that

Pr (Qσ is singular ∩ S) ≤
n∑
i=1

Pr
(
Wi · v = 0 for all v ∈ S⊥i ∩ V

)
≤ n ·max

i∈[n]

(
E

[
inf

v∈S⊥i ∩V
Pr (Wi · v = 0 | Si)

])
.

Let i0 ∈ [n] be an index that attains the maximum in the above expression. In order to define an
analogue of the event BM,ρ from the previous section, we need to take a little detour and explain
how we will bound from above the probability that Wi · v = 0.

Since the entries of the random vector Wi are not independent, we cannot use standard
anti-concentration techniques directly. However, we may rewrite Wi · v as follows:

Wi · v =

n/2∑
k=0

vσi(2k−1) + vσi(2k)

2
+

n/2∑
k=0

(1− 2ξi(k))
vσi(2k−1) − vσi(2k)

2
.
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Since (1− 2ξi(1)), . . . , (1− 2ξi(n/2)) are i.i.d. Rademacher random variables, then, letting vσi ∈
Fn/2p be the vector whose kth coordinate is (vσi(2k−1) − vσi(2k))/2, we see that

sup
x∈Fp

Pr(Wi · v = x) ≤ ρFp(vσi). (6)

For every ρ > 0, let Bσ,ρ be the event that there exists a vector v ∈ S⊥i0 ∩ V such that
ρFp(vσi0 ) ≥ ρ. We may conclude that

Pr (Qσ is singular ∩ S) ≤ n · inf
ρ>0

(
Pr (Bσ,ρ) + ρ

)
.

It remains to bound Pr(Bσ,ρ) from above. By the union bound,

Pr(Bσ,ρ) ≤
∑
v∈V

ρFp (vσi0
)≥ρ

Pr
(
Wi · v = 0 for all i ∈ [n] \ {i0}

)

≤
∑
v∈V

ρFp (vσi0
)≥ρ

∏
i∈[n]\{i0}

ρFp(vσi).
(7)

As before, we will control the sum on the right-hand side above in two stages. First, we will
bound from above the sum over those vectors v for which two of the values ρFp(vσi), among a
set Tv of typical indices i, are large; we term such vectors v ‘bad’. For this, we stratify the set
of bad vectors, essentially according to the order of magnitude of

∏
i∈[n]\{i0} ρFp(vi), and use the

corollary of our counting theorem (Lemma 3.4) along with the expansion property of the base v
to control the number of vectors in each stratum (Lemma 5.6). Later, we will control the sum
over the remaining vectors (Lemma 5.7 and Proposition 5.8).

We present complete details below. As stated earlier, we make no attempt to optimize
the constant c in our bound on the singularity probability. Consequently, we choose various
parameters conveniently (but otherwise somewhat arbitrarily) in order to simplify the exposition.
Throughout, n is a sufficiently large even integer, α = 1/2, k = n1/8/2, and p is an arbitrary
prime satisfying 2n

0.1
/2 ≤ p ≤ 2n

0.1 . Note that this choice of parameters makes Lemma 3.3
applicable to vectors a ∈ Fn/2p ∩Ht as long as t ≥ n1/4.

5.2 Two large deviation inequalities

In this section, we derive large deviation inequalities for two simple functions of a uniformly
random perfect matching of Kn (recall that we have assumed that n is even).

Lemma 5.1. Suppose that A and B are two disjoint subsets of [n] and let M be a uniformly
random perfect matching in Kn. Then

Pr

(∣∣{{u, v} ∈M : u ∈ A and v ∈ B
}∣∣ ≤ |A||B|

8n

)
≤ exp

(
−|A||B|

32n

)
.

Proof. Without loss of generality, we may assume that |A| ≤ |B|. Consider the following pro-
cedure for generating M one edge at a time. Start with M0 being the empty matching and do
the following for i = 1, . . . , d|A|/2e. First, let ui be an arbitrarily chosen element of A that
is not covered by Mi−1; there is at least one such element as Mi−1 is a matching with i − 1
edges and 2(i − 1) < |A|. Second, let vi be a uniformly random element of [n] \ {ui} that is
not covered by Mi−1 and let Mi = Mi−1 ∪ {{ui, vi}}, so that Mi is a matching comprising the
i edges {u1, v1}, . . . , {ui, vi}. Finally, let M = Md|A|/2e ∪M ′, where M ′ is a uniformly random
perfect matching of the vertices of Kn that are left uncovered by Md|A|/2e. Observe that for each
i ∈ {1, . . . , d|A|/2e},

Pr
(
vi ∈ B | u1, v1, . . . , ui−1, vi−1, ui

)
=
|B \ {v1, . . . , vi−1}|

n− 2i+ 1
≥ |B|

2n
.
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Thus, the number of indices i for which vi ∈ B can be bounded from below by a binomial
random variable with parameters d|A|/2e and |B|/(2n). Consequently, standard tail estimates
for binomial distributions yield

Pr

(∣∣{i : vi ∈ B
}∣∣ ≤ |A||B|

8n

)
≤ exp

(
−|A||B|

32n

)
,

which implies the assertion of the proposition, as ui ∈ A, vi ∈ B, and {ui, vi} ∈ M for every
i.

Lemma 5.2. Let M be a uniformly random perfect matching in Kn. Then for every fixed perfect
matching M ′ in Kn,

Pr
(
M ∪M ′ has more than 2

√
n connected components

)
≤ 2−

√
n/2.

Proof. Observe first that M ∪ M ′ is a union of even cycles and isolated edges (the edges in
M ∩M ′). We will view the isolated edges as cycles of length two so that the number of connected
components of M ∪M ′ equals the number of its cycles. Note that M can be represented as
{u1, v1}, . . . , {un/2, vn/2}, where for each i ∈ [n/2], the ordered pair (ui, vi) is a uniformly random
pair of distinct vertices of Kn \ {u1, v1, . . . , ui−1, vi−1}. The crucial observation is that after we
condition on u1, v1, . . . , ui−1, vi−1 and ui, there is exactly one (out of n−2i+1) choice for vi such
that {ui, vi} closes a cycle in the graph M ′ ∪ {u1, v1} ∪ · · · ∪ {ui−1, vi−1}; this unique vi is the
endpoint of the longest path (in the above graph) that starts at ui. Consequently, the number X
of cycles in M ∪M ′ has the same distribution as the sum of n/2 independent Bernoulli random
variables X1, . . . , Xn/2, where E[Xj ] = 1/(2j − 1). In particular,

Pr
(
X ≥ 2

√
n
)
≤ Pr

 n/2∑
j=
√
n+1

Xj ≥
√
n

 ≤ (n/2−√n√
n

)
·
(

1

2
√
n+ 1

)√n

≤
(
en/2√
n
· 1

2
√
n

)√n
=
(e

4

)√n
≤ 2−

√
n/2.

5.3 Eliminating potential null vectors that are almost constant

Recall from Eq. (6) that we wish to use the bound

sup
x∈Fp

Pr(Wi · v = x) ≤ ρFp(vσi).

Note that if a vector v has large L(v), then the vector vσi has very small support. In this
subsection, analogously to the step in the signed r.r.d. case where we eliminated potential null
vectors with small support, we will eliminate potential null vectors with large L(v). The goal of
this subsection is to prove the following proposition.

Proposition 5.3. If Qn is a uniformly random element of Qn, then

Pr
(
∃v ∈ Fnp \ {0} such that Qnv = 0 and L(v) ≥ n− n0.8

)
. 2−n/100.

Proof. Let L denote the set of all v ∈ Fnp \ {0} with L(v) ≥ n− n0.8 and note that

|L| ≤
(
n

n0.8

)
· pn0.8+1 ≤ nn0.8

pn
0.8+1 . 22n

0.9
,

as n � p and p ≤ 2n
0.1 . Therefore, the assertion of the proposition will follow from a simple

union bound if we show that
sup
v∈L

Pr(Qnv = 0) ≤ 0.99n.
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Fix an arbitrary v ∈ L. If L(v) = n, then the supremum above is zero as the assumption
that p > n/2 implies that Qnv is a nonzero multiple of the all-ones vector, so we may assume
that n− n0.8 ≤ L(v) < n. Consider the representation of Qn as (σ, ξ) described in the previous
subsection and fix an i ∈ [n]. Recall from Eq. (6) that Pr(Wi · v = 0 | σi) ≤ ρFp(vσi). Since
ρFp(vσi) ≤ 1/2 as long as vσi 6= 0, we have

Pr(Wi · v = 0) ≤ 1− Pr(vσi 6= 0)/2.

Let x ∈ Fp be the unique element for which the set A = {i ∈ [n] : vi = x} has L(v) elements and
let B = [n] \ A. Since | supp(vσi)| is at least as large as the number of edges of the matching
induced by σi that have exactly one endpoint in A, it follows from Lemma 5.1 that

Pr(vσi = 0) ≤ exp

(
−L(v)(n− L(v))

32n

)
≤ e−1/33 < 0.98,

which implies that

Pr(Qnv = 0) =
n∏
i=1

Pr(Wi · v = 0) ≤ 0.99n,

as claimed.

5.4 Expanding base permutations

In this subsection, we define the subset En ⊆ (Σn)n mentioned in the previous subsection, and
show that a uniformly random σ belongs to this subset with very high probability. We say that
σ := (σ1, . . . , σn) ∈ (Σn)n belongs to En if it satisfies the following two properties:

(Q1) The union of any two perfect matchings of the form σi and σj (i 6= j) has at most n0.6

connected components.

(Q2) For any two disjoint subsets A,B ⊆ [n] such that n0.8 ≤ |A|, |B| ≤ n/2, there are at
most

√
n/2 indices i ∈ [n] such that the perfect matching induced by σi has fewer than

|A||B|/(8n) edges between A and B.

Proposition 5.4. Let σ be a uniformly random element of (Σn)n. Then,

Pr(σ 6∈ En) . 2−
√
n/3.

Proof. Since the coordinates of σ are independent, it follows from Lemma 5.2 and the union
bound that (Q1) fails with probability at most

(
n
2

)
e−
√
n/2. Lemma 5.1 implies that for every pair

A and B and every i ∈ [n], the probability that σi has fewer than |A||B|/(8n) edges between A
and B is at most exp(−n0.8/32). Since σ1, . . . , σn are independent, then

Pr
(
(Q2) fails to hold

)
≤ 22n ·

(
n√
n/2

)
· exp

(
−n

0.8

64

)√n/2
. exp

(
−n

1.3

100

)
.

This completes the proof.

5.5 Bounding Pr(Bσ,ρ) for small ρ

Throughout this subsection, we will consider a fixed σ = (σ1, . . . , σn) ∈ En. Recall from the
proof outline that

V =
{
v ∈ Fnp : L(v) < n− n0.8

}
and that i0 is an index that attains the maximum in

max
i∈[n]

(
E

[
inf

v∈S⊥i ∩V
Pr (Wi · v = 0 | Si)

])
.
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Fix a v ∈ V . Recall that for every i ∈ [n], we defined the n/2-dimensional vector vσi to be
the vector whose coordinates are (vσi(2k−1) − vσi(2k))/2. Let Tv denote the set of all coordinates
i ∈ [n] \ {i0} such that | supp(vσi)| ≥ n0.8/16. We claim that |Tv| ≥ n −

√
n. To see this, note

first that the assumption that L(v) < n − n0.8 implies that there are disjoint sets Av, Bv ⊆ [n]
such that |Av| = n0.8, |Bv| = n/2, and vi 6= vj for all i ∈ Av and j ∈ Bv. Property (Q2) from the
definition of En implies that for all but at most

√
n/2 indices i ∈ [n] \ {i0}, the perfect matching

induced by σi has at least n0.8/16 edges with one endpoint in each of Av and Bv. It is easy to
see that each such index i belongs to Tv.

Recall the definitions of the set Ht of t-good vectors and of the goodness function h given
in Section 3. The following is an adaptation of Definition 4.5 to the context of expanding base
permutations.

Definition 5.5. For any t > 0, define the set Bt of t-bad vectors by

Bt :=
{
v ∈ V : |{i ∈ Tv : vσi /∈Ht}| ≥ 2

}
.

We say that a pair (i1, i2) of distinct elements of of Tv witnesses v ∈ Bt if

h(vσi1 ) ≥ h(vσi2 ) ≥ max
i∈Tv\{i0,i1,i2}

h(vσi).

For the remainder of this subsection, let ρ = p−1/2. Recall that our goal is to bound∑
v∈V

ρFp (vσi0
)≥ρ

∏
i∈[n]\{i0}

ρFp(vσi).

We begin by bounding the contribution to the above sum of vectors v that are n-bad. This is
analogous to Lemma 4.6.

Lemma 5.6. If t ≥ n, then ∑
v∈Bt

∏
i∈[n]\{i0}

ρFp(vσi) . n−n/20.

Proof. It is enough to show that the contribution to the above sum of v ∈ Bt that are witnessed
by a given pair (i1, i2) of distinct indices in [n] \ {i0} is O(n−n/20−2) and then take the union
bound over all such pairs. Let us now fix such a pair for the remainder of the proof. Given an
integer m, let Cm be the set of all vectors v ∈ Bt that are witnessed by our pair and for which
2mt < h(vσi2 ) ≤ 2m+1t. Since h(a) ≤ p for every vector a with | supp(a)| ≥ |a|1/4, then the set
Cm is empty unless t ≤ 2mt ≤ p and hence 0 ≤ m ≤ log2 p ≤ n0.1.

Fix such an m and suppose that v ∈ Cm. It follows from the definition of a witnessing
sequence that h(vσi1 ) ≥ h(vσi2 ) and hence neither vσi1 nor vσi2 belong to H2mt. It thus
follows from Lemma 3.4 that both the vectors vσi1 and vσi2 belong to a set of size at most
(4p)n/2(2mt)−n/2+n

1/4 . We next bound the number of vectors v ∈ V with a given value of
(vσi1 ,vσi2 ). Note that all such vectors v have the same differences between all those pairs of
coordinates that are connected by an edge in the union of the matchings induced by σi1 and σi2 .
In particular, the vector v is uniquely determined once we fix the value of a single coordinate in
each conencted component of this graph. Since property (Q1) from the definition of En implies
that the number of connected components does not exceed n0.6, we may conclude that

|Cm| ≤ pn
0.6 ·

(
(4p)n/2(2mt)−n/2+n

1/4
)2
≤
(

4p

2mt

)n
· (2mtp)n0.6

.

(
4p

2mt

)n
· p2n0.6

.

On the other hand, it follows from the definition of a witnessing sequence that, for each
v ∈ Cm and every i ∈ Tv \ {i0, i1, i2}, we have h(vσi) ≤ h(vσi2 ) and hence vσi ∈ H2m+1t.
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Consequently, Lemma 3.3 implies that ρFp(vσi) ≤ 2m+1Ct/(pn1/16) for some absolute constant
C. In particular, every v ∈ Cm satisfies

∏
i∈[n]\{i0}

ρFp(vσi) ≤
∏

i∈Tv\{i0,i1,i2}

ρFp(vσi) ≤
(

2m+1Ct

pn1/16

)|Tv |−2
≤
(

2m+1Ct

pn1/16

)n−3√n
.

Putting everything together, we see that

∑
v∈Cm

∏
i∈[n]\{i0}

ρFp(vσi) .

(
4p

2mt

)n
· p2n0.6 ·

(
2m+1Ct

pn1/16

)n−3√n
. (8C)n · p2n0.6+3

√
n · n−n/17

. (8C)n · 23n0.7 · n−n/17 . n−n/18,

where the penultimate inequality holds because p ≤ 2n
0.1 . Since there are at most n0.1 + 1

relevant values of m and n2 pairs i1, i2, the claimed upper bound follows.

The next lemma bounds the number of vectors v for which ρ(vσi0 ) has large atom probability.
Recall that ρ = p−1/2.

Lemma 5.7. The number of vectors v ∈ Fnp for which ρFp(vσi0 ) ≥ ρ is O(p0.77n).

Proof. We partition the set of relevant vectors v into two parts depending on the size of the
support of vσi0 . More precisely,

Vsmall := {v ∈ Fnp : | supp(vσi0 )| ≤ n0.8},
Vlarge := {v ∈ Fnp : | supp(vσi0 )| > n0.8 and ρFp(vσi0 ) ≥ ρ}.

Note first that the number of vectors a ∈ Fn/2p with | supp(a)| ≤ n0.8 is at most(
n/2

n0.8

)
· pn0.8 ≤ nn0.8 · pn0.8

. p2n
0.8
.

Since σi0 is fixed, then for every a ∈ Fn/2p , there are exactly pn/2 vectors v ∈ Fnp for which
vσi0 = a. It follows that

|Vsmall| . pn/2 · p2n0.8
. p2n/3.

Observe that if v ∈ Vlarge, then vσi0 6∈ Hρp, as otherwise Lemma 3.3 would imply that
ρFp(vσi0 ) ≤ Cρ/n1/16 for some absolute constant C, contradicting the assumption that v ∈ Vlarge.
In particular, Lemma 3.4 implies that the vector vσi0 belongs to a set of size O((4p)n/2 ·
(ρp)−n/2+n

1/4
). Recalling that ρ = p−1/2, we obtain

|Vlarge| . pn/2 · (4p)n/2 · (ρp)−n/2+n1/4
= 2n · pn · p−n/4+n1/4/2 . p0.76n,

where the last inequality holds as p � 1. We obtain the desired conclusion by summing the
obtained upper bounds on |Vsmall| and |Vlarge|.

We now combine Lemmas 3.3, 5.6 and 5.7 to derive the main result of this subsection.

Proposition 5.8. We have
Pr(Bσ,ρ) . n−n/20 + p−n/5.
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Proof. Recall from Eq. (7) that

Pr(Bσ,ρ) ≤
∑
v∈Bn

∏
i∈[n]\{i0}

ρFp(vσi) +
∑

v∈V \Bn
ρFp (vσi0

)≥ρ

∏
i∈[n]\{i0}

ρFp(vσi). (8)

Lemma 5.6 states that the first term in the right-hand side of Eq. (8) is O(n−n/20). In order to
bound the second term, note that for any v ∈ V \Bn, there are at least |Tv|−2 ≥ n−2

√
n indices

i ∈ [n] \ {i0} for which vσi ∈Hn. Lemma 3.3 implies that for each such index, ρFp(vσi) ≤ n/p.
In particular, if v ∈ V \Bn, then∏

i∈[n]\{i0}

ρFp(vσi) ≤ (n/p)n−2
√
n.

Since Lemma 5.7 implies that

|{v ∈ V : ρFp(vσvi ) ≥ ρ}| ≤ p
0.77n,

it follows that the second term in Eq. (8) is bounded from above by

p0.77n(n/p)n−2
√
n . p−0.24n · p2

√
n · nn . p−n/5,

where the last inequality follows as p� n.

5.6 Proof of Theorem 1.16

The main result of this section is now immediate.

Proof of Theorem 1.16. Recall from Section 5.1 that for every positive ρ,

Pr(Qn is singular) ≤ Pr(Sc) + Pr(τ 6∈ En) + n · sup
σ∈En

(
Pr(Bσ,ρ) + ρ

)
. (9)

We know from Proposition 5.3 that Pr(Sc) . 2−n/100, from Proposition 5.4 that Pr(τ 6∈ En) .
2−
√
n/3, and from Proposition 5.8 that Pr(Bσ,ρ) . n−n/20 + p−n/5. Recalling that ρ = p−1/2 and

p ≥ 2n
0.1
/2, we see that the right-hand side of Eq. (9) can be bounded from above by Cn·2−n0.1/2

for some absolute constant C. This gives the desired conclusion.
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A Proof of Halász’s inequality over Fp
In this appendix, we prove Theorem 1.4. The proof follows Halász’s original proof in [11].

Proof of Theorem 1.4. Let ep be the canonical generator of the Pontryagin dual of Fp, that is,
the function ep : Fp → C defined by ep(x) = exp(2πix/p). Recall the following discrete Fourier
identity in Fp:

δ0(x) =
1

p

∑
r∈Fp

ep(rx),

where δ0(0) = 1 and δ0(x) = 0 if x 6= 0. Let ε1, . . . , εn be i.i.d. Rademacher random variables.
Note that for any q ∈ Fp,

Pr

 n∑
j=1

εjaj = q

 = E

δ0
 n∑
j=1

εjaj − q


= E

1

p

∑
r∈Fp

ep

r
 n∑
j=1

εjaj − q


= E

1

p

∑
r∈Fp

n∏
j=1

ep(εjraj)ep(−rq)


=

1

p

∑
r∈Fp

ep(−rq)
n∏
j=1

E
[
ep(εjraj)

]
.

Since each εj is a Rademacher random variable, we have

E
[
ep(εjraj)

]
= exp(2πiraj/p)/2 + exp(−2πiraj/p)/2 = cos(2πraj/p).

It thus follows from the triangle inequality that

Pr

 n∑
j=1

εjaj = q

 ≤ 1

p

∑
r∈Fp

n∏
j=1

|cos(2πraj/p)| =
1

p

∑
r∈Fp

n∏
j=1

|cos (πraj/p)| , (10)

where the equality holds because the map Fp 3 r 7→ 2r ∈ Fp is a bijection (as p is odd)
and (since x 7→ | cos(πx)| has period 1 and it is therefore well defined for x ∈ R/Z) because
| cos(2πx/p)| = | cos(π(2x)/p)| for every x ∈ Fp.

Given a real number y, denote by ‖y‖ ∈ [0, 1/2] the distance between y and a nearest integer.
Let us record the useful inequality

| cos(πy)| ≤ exp
(
− ‖y‖2/2

)
,

which is valid for every real number y. Using this inequality to bound from above each of the n
terms in the right-hand side of Eq. (10), we arrive at

max
q∈Fp

Pr

(
n∑
i=1

εiai = q

)
≤ 1

p

∑
r∈Fp

exp

(
−1

2

n∑
i=1

‖rai/p‖2
)
. (11)

Now, for each nonnegative real t, we define the following ‘level’ set:

Tt :=

r ∈ Fp :
n∑
j=1

‖raj/p‖2 ≤ t

 .

27



Since for every real y, we may write e−y =
∫∞
0 1[y ≤ t]e−t dt, then

∑
r∈Fp

exp

−1

2

n∑
j=1

‖raj/p‖2
 =

∑
r∈Fp

∫ ∞
0

1

 n∑
j=1

‖raj/p‖2 ≤ 2t

 e−t dt =

∫ ∞
0
|T2t|e−t dt. (12)

We claim that, when t ≤ | supp(a)|/15, the ‘level set’ Tt cannot be all of Fp. Indeed, since
for every nonzero a ∈ Fp, the map Fp 3 r 7→ ra ∈ Fp is bijective, we have

∑
r∈Fp

n∑
j=1

‖raj/p‖2 =
∑

j∈supp(a)

∑
r∈Fp

‖raj/p‖2 = | supp(a)|
∑
r∈Fp

‖r/p‖2

= | supp(a)| · 2
(p−1)/2∑
s=1

(s/p)2 = | supp(a)| · p
2 − 1

12p
>
| supp(a)| · p

15
,

where the inequality holds because p ≥ 3 (as p is an odd prime). On the other hand, it follows
from the definition of Tt that for every t ≥ 0,∑

r∈Fp

n∑
j=1

‖raj/p‖2 ≤ |Tt| · t+
(
p− |Tt|

)
· n.

This implies that |Tt| < p as long as t ≤ | supp(a)|/15.
Recall that the Cauchy–Davenport theorem states that every pair of nonempty A,B ⊆ Fp

satisfies |A+ B| ≥ min{p, |A|+ |B| − 1}. It follows that for every positive integer m and every
t ≥ 0, the iterated sumset mTt satifies |mTt| ≥ min{p,m|Tt| −m}. We claim that for every m,
the iterated sumset mTt is contained in the set Tm2t and thus

|Tm2t| ≥ min
{
p,m|Tt| −m

}
.

Indeed, for r1, . . . , rm ∈ Tt, it follows from the triangle inequality and the Cauchy–Schwarz
inequality that

n∑
j=1

∥∥∥∥∥
m∑
i=1

riaj/p

∥∥∥∥∥
2

≤
n∑
j=1

(
m∑
i=1

‖riaj/p‖

)2

≤
n∑
j=1

m

m∑
i=1

‖riaj/p‖2 ≤ m2t.

Since |Tm2t| < p as long as m2t ≤ | supp(a)|/15, we see that if t ≤ 2M ≤ | supp(a)|/15, then,
letting m = b

√
2M/tc ≥ 1, we obtain

|Tt| ≤
|Tm2t|
m

+ 1 ≤
√

2t · |T2M |√
M

+ 1. (13)

We now bound the size of T2M . First, it follows from the elementary inequality

cos(2πy) ≥ 1− 2π2‖y‖2 ≥ 1− 20‖y‖2,

which holds for all y ∈ R, that T2M ⊆ T ′, where

T ′ :=

r ∈ Fp :

n∑
j=1

cos(2πraj/p) ≥ n− 40M

 .

Second, by Markov’s inequality,

|T ′| ≤ 1(
n− 40M

)2k ·∑
r∈T ′

 n∑
j=1

cos(2πraj/p)

2k

.
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Third, by our assumption that 80Mk ≤ n and since the sequence
(
1− 1/(2k)

)2k is increasing,

(n− 40M)2k =

(
1− 40M

n

)2k

· n2k ≥
(

1− 1

2k

)2k

· n2k ≥ n2k√
2
.

Fourth, since T ′ ⊆ Fp and 2 cos(2πraj/p) = ep(raj) + ep(−raj), we also have

∑
r∈T ′

 n∑
j=1

cos(2πraj/p)

2k

≤
∑
r∈Fp

 n∑
j=1

(
ep(raj) + ep(−raj)

)
/2

2k

=
1

22k

∑
(σ1,...,σ2k)∈{±1}2k

∑
j1,...,j2k

∑
r∈Fp

ep

(
r

2k∑
`=1

σ`aj`

)

=
1

22k

∑
(σ1,...,σ2k)∈{±1}2k

∑
j1,...,j2k

p · δ0

(
2k∑
`=1

σ`aj`

)

=
pRk(a)

22k
.

Thus, we may conclude that

|T2M | ≤ |T ′| ≤
√

2pRk(a)

22kn2k
. (14)

Finally, combining this with Eqs. (11) to (14), we get,

max
q∈Fp

Pr

 n∑
j=1

εjaj = q

 ≤ 1

p

∫ M

0
|T2t|e−t dt+

1

p

∫ ∞
M

pe−t dt

≤ 1

p

∫ M

0

(√
2t · |T2M |√

M
+ 1

)
e−t dt+ e−M

≤ |T2M |
p
√
M
·
∫ M

0

√
te−t dt+

1

p

∫ M

0
e−t dt+ e−M

≤ |T2M |
p
√
M
· C ′ + 1

p
+ e−M

≤ CRk(a)

22kn2k
√
M

+
1

p
+ e−M ,

as desired.
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