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Abstract. We prove a new, efficient version of the hypergraph container theorems

that is suited for hypergraphs with large uniformities. The main novelty is a refined

approach to constructing containers that employs simple ideas from high-dimensional

convex geometry. The existence of smaller families of containers for independent sets in

such hypergraphs, which is guaranteed by the new theorem, allows us to improve upon

the best currently known bounds for several problems in extremal graph theory, discrete

geometry, and Ramsey theory. One of the applications of our efficient container lemma,

a structural characterisation of n-vertex graphs with clique number o(logn/ log logn),

suggests that the new lemma is nearly best-possible for general hypergraphs of large

uniformities.

1. Introduction

The hypergraph container theorems, proved several years ago by Balogh, Morris, and

Samotij [6] and, independently, by Saxton and Thomason [42], state that the family

of independent sets of any uniform hypergraph whose edges are distributed somewhat

evenly may be covered by (the families of subsets of) a small collection of sets, called

containers, each of which is nearly independent. The original motivation for these re-

sults were several specific questions concerning enumeration of graphs avoiding a given

subgraph and of sets of integers contining no arithmetic progressions of a given length.

(The idea of considering these problems in the general context of independent sets in

hypergraphs had been successfully pursued earlier in the breakthrough works of Conlon–

Gowers [14] and Schacht [44] on extremal properties of random graphs and random sets

of integers.) However, over the years, the scope of applicability of the container theorems

has grown quite substantially (see, for example, the survey [7] and references therein).

The two major reasons for this are the general form of the theorems (many problems can

be cast in the language of independent sets in auxiliary hypergraphs) and the explicit,

optimal dependence between the various parameters disguised under the vague phrases

‘small collection’, ‘evenly distributed’, and ‘nearly independent’ above.

The vast majority of applications of the container theorems concern sequences of

hypergraphs of fixed uniformity and growing order and size. As a result, the explicit

dependence of the various parameters involved in the statements of the container the-

orems on the uniformity of the hypergraph is merely a minor detail in all these works.

Recently, however, the container theorems have been used to analyse sequences of hy-

pergraphs whose uniformities grow with the numbers of vertices and edges. In these

applications of the container method to questions in Ramsey theory [12, 40], discrete
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geometry [9], and extremal graph theory [5, 33], the explicit dependence between uni-

formity and other parameters turned out to lie at the heart of the matter, obstructing

the way to obtaining optimal bounds for several well studied functions. It is only fair to

note here that this dependence is more favourable in the version of the theorem proved

by Saxton and Thomason [42]. Having said that, the two constructions of containers

presented in [6] and [42] are essentially equivalent and the differences between the final

results reflect merely the differences in their analyses. This analysis was performed more

carefully, and with a wiser choice of parameters, by the authors of [42].

The basic container lemma, which is the building block of both proofs that really

lies at the heart of the matter, is a statement that asserts the existence of a small

family C of containers for independent sets of an s-uniform hypergraph H that satisfies

|C| 6 (1− δ)v(H) for every C ∈ C and some positive constant δ; see [6, Proposition 3.1]

and [42, Theorem 3.4]. The stronger form of the theorem described in the first paragraph

is then derived by recursively applying this basic lemma to the subhypergraphs of H
induced by the sets C ∈ C as long as C still contains many edges of H. The caveat

here is that the proof methods used in both [6] and [42] necessarily yield δ 6 1/s!. (The

short, non-algorithmic proof of the basic container lemma given recently by Bernshteyn,

Delcourt, Towsner, and Tserunyan [10] seems to yield δ that is doubly-exponentially

small in s.) Since one typically requires the ratio |C|/v(H) to be bounded away from

one for each final container C, at least exp
(
Ω(s log s)

)
iterations are required; this

substantially blows up the final number of containers when s is no longer a fixed constant.

Finally, we remark that a different method of building containers for independent sets

in hypergraphs was proposed and analysed by Saxton and Thomason [43]. Even though

the parameter δ in the basic container lemma proved in [43] is only polynomially small

in the uniformity, the upper bound on the number of containers is far from optimal.

Moreover, the lemma applies only to simple hypergraphs (i.e., hypergraphs whose every

pair of vertices is contained in at most one edge) whereas the hypergraphs considered in

most applications of the container method are far from being simple.

The main result of this work is a new, more efficient version of the basic container

lemma in which the parameter δ is only polynomially small in the uniformity. We

postpone stating the strongest form of our new lemma until Section 2 and state here

only its corollary that can be easily compared with [6, Proposition 3.1]. Following the

notational convention of [6], given a nonempty s-uniform hypergraph H, we shall denote

the numbers of its vertices and edges by v(H) and e(H), respectively. Moreover, for

every T ⊆ V (H), we define

degH T = |{A ∈ E(H) : T ⊆ A}|

and, for every t ∈ {1, . . . , s}, we let

∆t(H) = max
{

degH T : T ⊆ V (H) and |T | = t
}
.

The following theorem, an efficient basic container lemma, is a simplified version of our

main technical result, Theorem 2.1 below.

Theorem 1.1. Let s be a positive integer and let H be a nonempty s-uniform hypergraph.

Suppose that q ∈ (0, 1) and K > 0 are such that q · v(H) > 108s6K and, for every
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t ∈ {1, . . . , s},

∆t(H) 6 K ·
( q

106s5

)t−1
· e(H)

v(H)
. (1)

Then, there exist a family S ⊆
( V (H)
6q·v(H)

)
and functions f : S → P(V (H)) and g : I(H)→

S such that, for every I ∈ I(H),

g(I) ⊆ I ⊆ g(I) ∪ f(g(I)) and |f(g(I))| 6 (1− δ) · v(H),

where δ = (103s4K)−1. Moreover, if g(I) ⊆ I ′ and g(I ′) ⊆ I for some I, I ′ ∈ I(H), then

g(I) = g(I ′).

Qualitatively, Theorem 1.1 is identical to the original basic container lemmas [6,

Proposition 3.1] and [42, Theorem 3.4]. Quantitively, however, it is a significant im-

provement of these results. In order to demonstrate this, we shall present four applica-

tions of our new theorem to problems in extremal graph theory, discrete geometry, and

Ramsey theory that had previously been attacked using the original container theorems,

obtaining an essential improvement of the state-of-the-art result in each case. We discuss

these applications and the relevant background in detail in the next three sections. We

just point out here that one of these applications, an efficient version of the classical

theorem of Kolaitis, Prömel, and Rothschild [28], Theorem 1.2 below, strongly suggests

that Theorem 1.1 is, up to lower-order terms, optimal for general hypergraphs of large

uniformities (see the discussion below the statement of Theorem 1.2).

1.1. The typical structure of graphs with no large cliques. Given graphs G

and H, we say that G is H-free if G does not contain H as a (not necessarily induced)

subgraph. The study of typical properties of H-free graphs goes back to the seminal

work of Erdős, Kleitman, and Rothschild [20], who proved that almost all triangle-free

graphs are bipartite.1 We shall consider here almost exclusively the case where H is a

clique; for a wealth of information regarding other graphs, we refer the reader to [4].

The result of [20] was generalised by Kolaitis, Prömel, and Rothschild [28], who showed

that, for every fixed r > 2, almost all Kr+1-free graphs are r-partite.

Let us point out that this ‘structural’ characterisation of a typical Kr+1-free graph is

in fact an enumeration result in disguise. Since every r-partite graph is Kr+1-free, the

main result of [28] is that the number of Kr+1-free subgraphs of Kn is asymptotically

equal to the number of r-partite subgraphs of Kn. Taking this point of view, one can say

that the result of [28] was anticipated by the aforementioned work of Erdős, Kleitman,

and Rothschild [20], who also showed that, for every fixed r, there are 2ex(n,Kr+1)+o(n2)

many Kr+1-free subgraphs of Kn.2 This estimate was generalised by Erdős, Frankl, and

Rödl [17], who proved that, for every fixed graph H, there are 2ex(n,H)+o(n2) many H-free

subgraphs of Kn.

In the above discussion, we have tried to stress that the forbidden graph H is fixed

whereas n, the number of vertices in the host graphs, tends to infinity. Much less is

known if one allows the order/size of H to grow with n. This more general question

was considered only fairly recently by Bollobás and Nikiforov [11]; however, the results

1That is, the probability that a uniformly random K3-free subgraph of Kn is bipartite tends to one

as n tends to infinity.
2We write ex(n,H) to denote the Turán number of a graph H, that is, the largest number of edges

in an H-free graph with n vertices.



AN EFFICIENT CONTAINER LEMMA 4

of [11] are only meaningful when the chromatic number of H stays bounded. A few years

later, Mousset, Nenadov, and Steger [33], extending the Erdős–Kleitman–Rothschild

bound, proved that there are 2ex(n,Kr+1)+o(n2/r) many Kr+1-free subgraphs of Kn as

long as r 6 (log n)1/4/2.3 Somewhat later, Balogh, Bushaw, Collares, Liu, Morris, and

Sharifzadeh [5] strengthened this result considerably by showing that, under the slightly

weaker assumption 2 6 r 6 (log n)1/4, almost all Kr+1-free subgraphs of Kn are r-

partite. (Both [33] and [5] relied on the original hypergraph container theorems.) Our

first application of the new, efficient container lemma is the following strengthening of

this result.

Theorem 1.2. If a function r : N → N satisfies 2 6 r(n) 6 log n/(121 log log n), then

almost all Kr+1-free subgraphs of Kn are r-partite.

We point out that the assumption on the growth rate of r in Theorem 1.2 is nearly

optimal. Indeed, a standard first-moment calculation shows that, for every positive

constant ε, a uniformly random subgraph G ⊆ Kn contains no clique with b(2+ε) log2 nc
vertices whereas χ(G) > Ω(n/ log n). On the other hand, it may well be that the

assertion of the theorem remains true as long as r(n) 6 (2− ε) log2 n for some positive

constant ε. However, even removing the doubly-logarithmic term from the denominator

in the assumed upper bound on r(n) will likely require significantly new ideas.

1.2. Lower bounds on ε-nets. Suppose that X is a finite set and let R be an arbitrary

collection of subsets of X. For a positive number ε, an ε-net in R is any set N ⊆ X

that intersects every element of R with cardinality at least ε|X|. In other words, N is

an ε-net if N ∩A 6= ∅ for every A ∈ R with |A| > ε|X|.
One is usually interested in finding a small ε-net. However, this is not always possible.

For example, if R comprises all subsets of X, then every ε-net in R must have more than

(1−ε)|X| elements. One can rule out such ‘pathological’ examples by imposing a natural

assumption on a measure of complexity of the family R called the VC dimension. We

say that a set S is shattered by a family R if {A ∩ S : A ∈ R} contains all 2|S| subsets

of S. The VC dimension (a shorthand for Vapnik–Chervonenkis dimension) of R is the

largest cardinality of a set that R shatters. A seminal result of Haussler and Welzl [26]

states that every family of subsets whose VC dimension is at most d admits an ε-net with

at most d(8d/ε) log(8d/ε)e elements, for every ε > 0. Komlós, Pach, and Woeginger [29]

improved this upper bound on the smallest size of an ε-net to
(
d+ o(1)

)
· (1/ε) log(1/ε),

where o(1) denotes some function tending to zero with ε. Moreover, they constructed,

for every d > 2, (random) families with VC dimension d that have no ε-net smaller than(
d− 2 + 2/(d+ 1)− o(1)

)
· (1/ε) log(1/ε).

On the other hand, it was proved that various set families arising in geometry admit ε-

nets of cardinality merely O(1/ε), see [29, 31]. In view of this, many researchers believed

that in ‘geometric scenarios’ (with bounded VC dimension), there always exists an ε-net

of size O(1/ε). This belief was shown to be wrong by Alon [1], who proved that, for

arbitrary small ε, there are finite sets X of points in the plane such that every ε-net for

the family comprising the intersections of X with straight lines (the range space of lines

on X) must have at least (1/ε) ·ω(1/ε) points, for some (very slowly growing) function ω

3The o(n2/r) error term is natural here as ex(n,Kr+1) =
(
n
2

)
−Θ(n2/r).
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with limx→∞ ω(x) =∞. Alon speculated that there are planar sets of points X for which

the factor ω(1/ε) in the above statement could be replaced by Ω
(

log(1/ε)
)
.

In a paper that served as the main motivation for this work, Balogh and Solymosi [9]

showed that, for arbitrarily small ε > 0, there are sets X ⊆ R2 such that the range

space of lines on X does not have ε-nets with fewer than (1/ε)
(

log(1/ε)
)1/3−o(1)

points;

their proof relied on the hypergraph container theorems. We review the construction

of Balogh and Solymosi [9] and, using our new, efficient container lemma, we further

improve their lower bound, replacing the constant 1/3 in the exponent with 1/2.

Theorem 1.3. The following holds for every ε0 > 0. There exists an ε ∈ (0, ε0) and

a finite set X ⊆ R2 such that the smallest size of an ε-net for the family of intersections

of straight lines with X is at least

1

80ε
·

√
log(1/ε)

log log(1/ε)
.

We should mention here that, several years prior to [9], Pach and Tardos [36] showed

that the families defined by intersections of finite point sets with axis parallel rectangles

(in R2) and axis-parallel boxes in R4 may require ε-nets of sizes Ω
(
(1/ε) log log(1/ε)

)
and

Ω
(
(1/ε) log(1/ε)

)
, respectively; both these lower bounds are tight up to multiplicative

constants, see [3].

1.3. Upper bounds on Ramsey numbers. Given graphs G and H and a positive

integer k, we write G → (H)k, and say that G is Ramsey for H in k colours, if every

k-colouring of the edges of G contains a monochromatic copy of H. In other words,

G→ (H)k if, for every c : E(G)→ JkK, there is some i ∈ JkK such that the graph c−1(i)

contains H as a subgraph.4 The famous theorem of Ramsey [38] states that, for all

positive integers n and k, there is an integer N such that KN → (Kn)k; we shall denote

the smallest such N , the k-colour Ramsey number of Kn, by R(n; k). It is well-known

that R(n; k) 6 (kn)!/(n!)k 6 kkn, see [19, 25].

Fifty years ago, Folkman [21] proved that, for every n, there exists a graph G such

that G + Kn+1 but, nevertheless, G → (Kn)2 and Nešetřil and Rödl [35] generalised

this result to an arbitrary number of colours. Define the k-colour Folkman number for

Kn by

F (n; k) = min
{
N ∈ N : G→ (Kn)k for some Kn+1-free G ⊆ KN

}
.

The constructions given in [21, 35] yielded upper bounds on F (n; k) that are tower

functions of height polynomial in n and k. On the other hand, the strongest lower

bound on F (n; k), due to Lefmann [30], is only exponential in kn. In the recent years, the

transference theorems of Conlon–Gowers [14] and Schacht [44] (see also [23]) were used

by Rödl, Ruciński, and Schacht [41] and by Conlon and Gowers (unpublished) to give

improved upper bounds on F (n; k) that were merely doubly-exponential in n and k. Soon

afterwards, the first of these two groups of authors [40] used the hypergraph container

theorems to give the first exponential bound F (n; k) 6 exp
(
O(n4 log n + n3k log k)

)
.

Our next application of the efficient container lemma is the following improvement of

this result.

4Throughout the paper, we write JkK as a shorthand for {1, . . . k}.
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Theorem 1.4. There exists a constant C such that, for all positive integers n and k,

F (n; k) 6
(
CknR(n; k)

)21n2

6 exp
(
Ckn3 log k

)
.

Another well studied variation of the classical Ramsey numbers are induced Ramsey

numbers. Given graphs G and H and a positive integer k, we write G →ind (H)k, and

say that G is induced-Ramsey for H in k colours, if every k-colouring of the edges of

G contains a monochromatic induced copy of H. In other words, G →ind (H)k if, for

every c : E(G)→ JkK, there are an i ∈ JkK and an injection ϕ : V (H)→ V (G) such that

ϕ
(
E(H)

)
⊆ c−1(i) and ϕ

(
E(H)c

)
∩E(G) = ∅. The existence of induced-Ramsey graphs

for every H and any number of colours k was established, independently, by Deuber [15],

by Erdős, Hajnal, and Pósa [18], and by Rödl [39]. We may thus define the k-colour

Ramsey number of H by

Rind(H; k) = min
{
N ∈ N : G→ind (H)k for some G ⊆ KN

}
.

The upper bounds on Rind(H; k) implied by the constructions of [15, 18, 39] were

enormous. In spite of that, Erdős [16] conjectured that, for every n-vertex graph H,

the 2-colour induced Ramsey number Rind(H; 2) is only exponential in n. The best-

known result to date was obtained by Conlon, Fox, and Sudakov [13], who proved that

Rind(H; 2) 6 exp
(
O(n log n)

)
for every n-vertex graph H. However, the method of [13]

does not work when the number of colours is larger than two. The strongest general up-

per bound for k-colour induced Ramsey numbers in the case k > 2 that can be found in

the literature is due to Fox and Sudakov [22], who showed that Rind(H; k) 6 exp(Ckn
3)

for every n-vertex H, where Ck depends only on k. However, Fox (private communica-

tion) informed us that the methods of [22], which were optimised for sparse graphs H,

may be used to prove that Rind(H; k) 6 exp(Ckn2 log k). Our final application of the

efficient container lemma is a short derivation of this bound.

Theorem 1.5. There exists a constant C such that, for every positive integer k and

every n-vertex graph H,

Rind(H; k) 6
(
Cn2kR(n; k)

)7n
6 exp

(
Ckn2 log k

)
.

Finally, let us mention that Conlon, Dellamonica Jr., La Fleur, Rödl, and Schacht [12]

used the original container theorems to prove strong bounds on the induced Ramsey

numbers of uniform hypergraphs.

1.4. Packaged statement. Each of the four illustrations of Theorem 1.1 presented in

this paper requires iterative/recursive applications of the theorem. In order to save

ourselves (and the reader) from repeating similar, routine arguments and calculations

several times, it will be convenient for us to work with the following ‘packaged’ version

of the theorem that is analogous to [6, Theorem 2.2] and [42, Corollary 3.6].

Theorem 1.6. Let s be a positive integer and let H be a nonempty s-uniform hypergraph.

Suppose that α, β, q ∈ (0, 1) and E > v(H) are such that αβq · v(H) > 109s7 and

104s5q 6 β and, for every t ∈ {2, . . . , s},

∆t(H) 6
( q

106s5

)t−1
· E

v(H)
.

Then there is a family C ⊆ P(V (H)) of at most exp
(
104s5β−1 log(e/α) · q log(e/q) · v(H)

)
sets such that:
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(i) For every I ∈ I(H), there is a C ∈ C such that I ⊆ C.

(ii) For every C ∈ C, either |C| 6 αv(H) or there is a subset W ⊆ C with |W | >
(1− β)|C| such that e(H[W ]) < E.

The derivation of Theorem 1.6 from Theorem 1.1 is presented in Section 2.4

1.5. Organisation of the paper. The remainder of this paper is organised as follows.

In Section 2, we introduce the crucial concept of degree measures, state our main tech-

nical result, Theorem 2.1, and derive from it Theorems 1.1 and 1.6. Section 3 is devoted

to establishing key properties of degree measures; these properties are used in the subse-

quent Section 4, which contains the proof of Theorem 2.1. Two probabilistic inequalities

needed for the four applications of our new container lemma are stated in Section 5.

Finally, Section 6 is devoted to the proof of Theorem 1.2, Section 7 gives the proof of

Theorem 1.3, and Section 8 contains proofs of Theorems 1.4 and 1.5.

1.6. Acknowledgement. First of all, we are indebted to Rob Morris, David Saxton,

and Andrew Thomason for sharing their numerous insights about the container theo-

rems that had a strong bearing on this work. The notion of degree measures, which is

central to our approach here, as well as the important idea of allowing hypergraphs to

have multiple edges were first introduced by Andrew Thomason and David Saxton [42].

Additionally, we would like to thank Noga Alon for his comments and suggestions re-

garding lower bounds on ε-nets. We are also indebted to the anonymous referee for their

extremely careful reading of the earlier version of this paper and their helpful comments

and suggestions, which saved us from having several embarrassing mistakes in the final

version of this work.

The second named author thanks Jacob Fox, Frank Mousset, and Bhargav Narayanan

for inspiring discussions about upper-bounding induced Ramsey numbers. Last but

not least, the second named author owes his deepest gratitude to Lev Buhovski for an

inspiring discussion about high-dimensional convex geometry that laid foundations for

Lemma 4.12, which lies at the very heart of the proof of Theorem 2.1.

2. The main technical result

2.1. A word of motivation. The key idea behind the proof of the container lemma

due to Morris and the authors [6] is to, given an (r + 1)-uniform hypergraph H and an

independent set I ∈ I(H), consider a sequence of vertices of H for inclusion in a small

‘signature’ set S and construct an r-uniform hypergraph G from the neighbourhoods

(link hypergraphs) of those among the considered vertices that belong to I. Crucially,

each element of this sequence is allowed to depend only on the intersection of I with the

set of its predecessors; this guarantees that G depends solely on S. Since G comprises

only neighbourhoods of vertices in I, we have I ∈ I(G). This facilitates induction on

the uniformity of the hypergraph.

Whereas there is essentially one way to define containers for independent sets in a

1-uniform hypergraph, the general description of the inductive step given above leaves

plenty of room for manoeuvre. The approach taken in [6] was, roughly speaking, to cap

the degrees of all vertices of G at some predefined value ∆ and, at the same time, make

sure that e(G) > β∆v(G) for some constant β; this way, the ratio of the maximum and

the average degrees of the constructed hypergraph G remained bounded by a constant.
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The advantage of this approach was its relative simplicity. However, this simplicity came

at a price; the gap between the maximum and the average degrees was forced to grow

by a factor of at least r + 1, at each step of the induction (reducing uniformity from

r+ 1 to r).5 As a result, the crucial parameter δ in the basic container lemma could not

exceed 1/s!, where s is the uniformity of the original hypergraph.

Here, we use a similar high-level inductive strategy. However, we take a refined

approach to choosing a sequence of vertices of the (r+ 1)-uniform H while constructing

the r-uniform G; this yields a much more favourable dependence of the parameter δ on

the uniformity s. The key new idea is to abandon the wish to control the maximum

degree of G and instead focus on the `2-norm of its degree sequence. In other words, we

measure hypergraphs with `2-norms, rather than `∞-norms, of their degree sequences.

Viewing hypergraphs as vectors in high-dimensional Euclidean spaces allows us to reduce

the problem of constructing a sequence of vertices to be considered for inclusion in the

‘signature’ to an elementary problem in convex geometry.

2.2. Degree measures. We begin by extending the notion of the degree measure of a

hypergraph, which was introduced by Saxton and Thomason [42]. For a non-empty r-

uniform hypergraph H with vertex set V and a t ∈ JrK, we define the t-degree measure of

H, denoted by σ
(t)
H , to be the probability distribution on

(
V
t

)
, the family of all t-element

subsets of V , given by

σ
(t)
H (T ) = degH T ·

 ∑
U∈(Vt )

degH U


−1

=
degH T(
r
t

)
· e(H)

.

In other words, σ
(t)
H is the probability distribution induced by the following random

experiment. Select an edge A of H uniformly at random and output a t-element subset

T ⊆ A chosen uniformly at random from
(
A
t

)
.

Throughout this paper, we shall identify (as we already did in the above definition)

the measure σ
(t)
H with its density (with respect to the counting measure), which we shall

view as an element of the
(|V |
t

)
-dimensional vector space of R-valued functions on

(
V
t

)
.

Since the 1-degree measure will be of particularly high importance, we shall refer to it

simply as the degree measure and often suppress the superscript (1) from the notation,

denoting it by σH. Given a positive integer d and a vector ξ = (ξ1, . . . , ξd) ∈ Rd, we

denote by ‖ξ‖ its `2-norm, so that

‖ξ‖2 =
d∑
i=1

ξ2
i .

2.3. The main technical result. We are now ready to state the main technical result

of this paper, Theorem 2.1 below. We postpone the proof of the theorem to Section 4;

the proof will use several simple properties of degree measures that will be derived in

Section 3.

5For those readers who are somewhat familiar with the proof in [6], the essence of the above short-

coming was the following. Only one vertex of degree ∆ in G forced us to remove an edge from H, but

while counting the edges of G that contain some vertex with degree ∆, we accounted for the possibility

that every edge of G contains r vertices of degree ∆.
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Theorem 2.1. Let s ∈ N and suppose that a nonempty s-uniform hypergraph H and

reals p, δ ∈ (0, 1) satisfy

300s4 ·
s∑
t=1

(
s− 1

t− 1

)(
5000s3

p

)t−1

‖σ(t)
H ‖

2 6
1

δ · v(H)
6

p

500
. (2)

Then, there exist a family S ⊆
( V (H)
630s2p·v(H)

)
and functions f : S → P(V (H)) and

g : I(H)→ S such that, for every I ∈ I(H),

g(I) ⊆ I ⊆ g(I) ∪ f(g(I)) and |f(g(I))| 6 (1− δ) · v(H).

Moreover, if g(I) ⊆ I ′ and g(I ′) ⊆ I for some I, I ′ ∈ I(H), then g(I) = g(I ′).

2.4. The simple and packaged versions. In this section, we derive Theorems 1.1

and 1.6 from our main technical result, Theorem 2.1 above. We start with a short proof

of Theorem 1.1.

Derivation of Theorem 1.1 from Theorem 2.1. Let p = q/(30s2) and let δ = (103s4K)−1.

It suffices to verify that H, p, and δ satisfy the assumptions of Theorem 2.1, which will

give us the claimed family S and functions g and f . To this end, note that

‖σ(t)
H ‖

2 =
∑

T∈(V (H)
t )

(
degH T(
s
t

)
· e(H)

)2

6
∆t(H)(
s
t

)
· e(H)

·
∑

T∈(V (H)
t )

degH T(
s
t

)
· e(H)

=
∆t(H)(
s
t

)
· e(H)

for every t ∈ JsK and thus the assumptions of the theorem imply that

s∑
t=1

(
s− 1

t− 1

)(
5000s3

p

)t−1

‖σ(t)
H ‖

2 6
s∑
t=1

(
s− 1

t− 1

)(
150000s5

q

)t−1

· ∆t(H)(
s
t

)
· e(H)

6
K

v(H)
·

s∑
t=1

t

s
·
(

150000s5

106 · s5

)t−1

6
2K

v(H)
.

Moreover, 300s4 · 2K 6 1/δ and p · δ · v(H) = q · (30s2 · 103s4K)−1 · v(H) > 500. �

We now turn to the proof of Theorem 1.6. The key ingredient here is the following

lemma, which, roughly speaking, states that a hypergraph that is ‘robustly dense’ con-

tains a large subhypergraph whose maximum degree is not much larger than its average

degree. The statement and the proof of the lemma are inspired by the work of Morris

and Saxton [32].

Lemma 2.2. Let H be an s-uniform hypergraph and suppose that, for some positive β

and M , every set W ⊆ V (H) with |W | > (1 − β)v(H) satisfies e(H[W ]) > M . Then,

there is a subhypergraph H′ ⊆ H with at least M edges that satisfies

∆1(H′) 6
⌈
s

β
· e(H

′)

v(H)

⌉
.

Proof. Let H′ be a largest (in terms of the number of edges) subhypergraph of H sat-

isfying ∆1(H′) 6 d sM
βv(H)e and let X ⊆ V (H) be the set of vertices of H′ whose degree

achieves the bound d sM
βv(H)e. Observe that every edge of H that is disjoint from X must
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belong to H′ and, consequently, e(H′) > e(H−X). If |X| 6 βv(H), then e(H′) >M by

our assumption on H. Otherwise, if |X| > βv(H),

e(H′) =
1

s

∑
v∈V (H)

degH′ v >
|X|
s
·
⌈

sM

βv(H)

⌉
> M.

This completes the proof of the lemma. �

Proof of Theorem 1.6. We shall say that a set C ⊆ V (H) is a good container if either

|C| 6 αv(H) or if there is a subset W ⊆ C with |W | > (1−β)|C| such that e(H[W ]) < E.

We will construct a rooted tree T whose vertices are subsets of V (H) that has the

following properties:

(i) The root of T is V (H).

(ii) If an independent set I ∈ I(H) is contained in a non-leaf vertex of T , then I is

contained in some child of this vertex in T .

(iii) Every leaf of T is a good container.

(iv) Every non-leaf vertex of T has at most (e/q)q·v(H) children.

(v) The height of T is at most 104s5β−1 · log(e/α).

The set of leaves of T will then form a collection of containers for the independent sets

of H that has the desired properties.

We build such a tree starting from the root V (H) by iteratively applying Theorem 1.1

to (a carefully chosen subhypergraph of) the subhypergraph of H induced by a leaf C of

T that is not yet a good container and attaching the resulting family of containers (for

the independent sets of H[C], that is, the independent sets of H that are contained in

C) as children of C (which, as a result, ceases to be a leaf of T ) until no such leaves are

left. This way, properties (i)–(iii) are clearly satisfied. However, we still need to show

that the final tree has properties (iv) and (v).

To this end, suppose that C ⊆ V (H) is not a good container, that is, |C| > αv(H)

and every W ⊆ C with |W | > (1 − β)|C| satisfies e(H[W ]) > E. Lemma 2.2 invoked

with H ← H[C] supplies a subhypergraph H′ ⊆ H[C] with at least E edges that satisfies

∆1(H′) 6
⌈
s

β
· e(H

′)

|C|

⌉
6

2s

β
· e(H

′)

|C|
=

2s

β
· e(H

′)

v(H′)
,

where the second inequality follows from our assumption that e(H′) > E > v(H) > |C|.
Since, for every t ∈ {2, . . . , s},

∆t(H′) 6 ∆t(H) 6
( q

106s5

)t−1
· E

v(H)
6
( q

106s5

)t−1
· e(H

′)

v(H′)
,

Theorem 1.1 invoked with H ← H′ and K ← 2s/β supplies sets S ⊆
(

C
6q·|C|

)
and

functions f : S → P(C) and g : I(H′)→ S such that, for every I ∈ I(H′),

I ⊆ g(I) ∪ f(g(I)) and
|f(g(I))|
|C|

6 1− β

2 · 103s5
.

Since H′ ⊆ H[C], we have I(H[C]) ⊆ I(H′) and we may define

CC =
{
g(I) ∪ f(g(I)) : I ∈ I(H[C])

}
.



AN EFFICIENT CONTAINER LEMMA 11

By construction, the family CC is a family of containers for the independent sets of H[C]

and

|CC | 6 |S| 6
q·|C|∑
i=0

(
|C|
i

)
6

(
e

q

)q·|C|
6

(
e

q

)q·v(H)

,

establishing (iv). Finally, for every D ∈ CC ,

|D|
|C|
6 q + 1− β

2s
· 1

103s4
6 1− β

104s5
,

since we assumed that 104s5q 6 β. In particular, if a set C is a non-leaf vertex of the

final tree T that lies at distance d from the root, then

α 6
|C|
v(H)

6

(
1− β

104s5

)d
6 exp

(
− βd

104s5

)
.

This implies that

height(T ) 6
104s5

β
· log

(
1

α

)
+ 1 6

104s5

β
· log

( e
α

)
,

establishing (v). �

3. Properties of degree measures

3.1. Norms of degree measures. As we shall be estimating the `2-norms of t-degree

measures of various uniform hypergraphs, we collect here several useful properties of

this quantity. We first give general lower and upper bounds on the `2-norm of the t-

degree measure of a hypergraph in terms of the numbers of its vertices and edges and

its maximum t-degree. Throughout this section, r is a positive integer. We stress here

that all of our hypergraphs are allowed to have multiple edges, that is, every edge can

have an arbitrary positive multiplicity. (This idea was first introduced by Saxton and

Thomason [42].) Moreover, when computing degH and e(H), we always count edges

with multiplicities.

Fact 3.1. Suppose that H is a nonempty r-uniform hypergraph. For every t ∈ JrK,

max

{
1(

v(H)
t

) , 1(
r
t

)
· e(H)

}
6 ‖σ(t)

H ‖
2 6

∆t(H)(
r
t

)
· e(H)

.

Proof. The upper bound is straightforward:

‖σ(t)
H ‖

2 =
∑

T∈(V (H)
t )

(
degH T(
r
t

)
· e(H)

)2

6
∆t(H)(
r
t

)
· e(H)

·
∑

T∈(V (H)
t )

degH T(
r
t

)
· e(H)

=
∆t(H)(
r
t

)
· e(H)

.

For the lower bound, let

T =

{
T ∈

(
V (H)

t

)
: degH T > 0

}
and observe that

|T | 6 min

{(
v(H)

t

)
,

(
r

t

)
· e(H)

}
.
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It follows form the Cauchy–Schwarz inequality that

‖σ(t)
H ‖

2 =
∑
T∈T

(
degH T(
r
t

)
· e(H)

)2

>
1

|T |
·

(∑
T∈T

degH T(
r
t

)
· e(H)

)2

=
1

|T |
,

implying the lower bound. �

Our second observation states that the `2-norm of a t-degree measure of a hypergraph

cannot increase much when one deletes from it a small proportion of its edges.

Fact 3.2. If H′ is a nonempty subhypergraph of an r-uniform hypergraph H, then, for

every t ∈ JrK,

‖σ(t)
H′‖ 6

e(H)

e(H′)
· ‖σ(t)

H ‖.

Proof. The assertion follows simply because degH′ T 6 degH T for every T ⊆ V (H′) and

hence

σ
(t)
H′(T ) 6

e(H)

e(H′)
· σ(t)
H (T ). �

Our final lemma relates the `2-norm of the degree measure of a uniform hypergraph

to a simple property of its edge distribution.

Lemma 3.3. Suppose that H is a nonempty r-uniform hypergraph. If a set D ⊆ V (H)

satisfies e(H−D) 6 (1− ε) · e(H) for some ε > 0, then

|D| >
(ε
r

)2
· ‖σH‖−2.

Proof. Let 1D ∈ RV (H) be the characteristic vector of D. It follows from the Cauchy–

Schwarz inequality that

〈1D, σH〉2 6 ‖1D‖2 · ‖σH‖2 = |D| · ‖σH‖2.

Since at least an ε-proportion of edges of H contain at least one vertex of D,

〈1D, σH〉 =
1

r · e(H)
·
∑
v∈D

degH v >
ε

r
,

giving the desired lower bound on |D|. �

3.2. Degree measures and link hypergraphs. Suppose that H is an (r+1)-uniform

hypergraph with vertex set V . Given a v ∈ V , we shall denote by Hv the link hypergraph

of v (the neighbourhood of v in H), that is, the r-uniform hypergraph with vertex set V

whose edges are all the r-element sets A such that {v}∪A is an edge of H. A property of

crucial importance for us is that, for each t ∈ JrK, the t-degree measure of H is a convex

combination of the t-degree measures of the link hypergraphs of its vertices. Moreover,

each of these convex combinations has the same coefficients – the coordinates of the

1-degree measure vector σH.

Remark. Even though σ
(t)
H was defined only for nonempty hypergraphs H, for the sake

of brevity, we shall often write 0 ·σ(t)
H even if H has no edges. In this case, 0 ·σ(t)

H should

be interpreted as the zero vector of appropriate dimension.
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Fact 3.4. Suppose that H is a nonempty (r+ 1)-uniform hypergraph with vertex set V .

For every t ∈ JrK,

∑
v∈V

σH(v) · σ(t)
Hv

= σ
(t)
H .

Proof. It follows from our definition of a link hypergraph that e(Hv) = degH v for each

v ∈ V and, more generally, for every T ∈
(
V
t

)
,

degHv
T =

{
degH(T ∪ {v}) if v /∈ T ,
0 if v ∈ T .

Consequently,

∑
v∈V

σH(v) · σ(t)
Hv

(T ) =
∑
v∈V

degH v

(r + 1) · e(H)
·

degHv
T(

r
t

)
· e(Hv)

=
1

(r + 1)
(
r
t

)
· e(H)

·
∑

v∈V \T

degH(T ∪ {v})

=
(r + 1− t) · degH T

(r + 1)
(
r
t

)
· e(H)

=
degH T(

r+1
t

)
· e(H)

= σ
(t)
H (T ),

where we used the identity (r + 1)
(
r
t

)
=
(
r+1
t

)
(r + 1− t). �

In our arguments, we shall employ the following relation between the `2-norm of the

(t+ 1)-degree measure of a hypergraph and the `2-norms of the t-degree measures of the

link hypergraphs of its vertices.

Fact 3.5. Suppose that H is a nonempty (r+ 1)-uniform hypergraph with vertex set V .

For every t ∈ JrK,

∑
v∈V

σH(v)2 · ‖σ(t)
Hv
‖2 =

‖σ(t+1)
H ‖2

t+ 1
.

Proof. A quick way to verify the claimed identity is to observe that both the left- and

the right-hand sides of the claimed equality express the probability of obtaining the same

outcome in two independent executions of the following random process: Pick an edge A

of H uniformly at random, choose a (t+ 1)-element subset S of A uniformly at random,

mark a vertex v ∈ S chosen uniformly at random, and return the pair (v, S).

More explicitly, using the identities degH v = e(Hv), valid for every v ∈ V , and

degHv
T = degH(T ∪ {v}), valid for each T ∈

(
V
t

)
and v ∈ V \ T , and (r + 1)

(
r
t

)
=
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(t+ 1)
(
r+1
t+1

)
, we get

∑
v∈V

σH(v)2 · ‖σ(t)
Hv
‖2 =

∑
v∈V

(
degH v

(r + 1) · e(H)

)2

·
∑
T∈(Vt )

(
degHv

T(
r
t

)
· e(Hv)

)2

=

(
1

(r + 1)
(
r
t

)
· e(H)

)2

·
∑
T∈(Vt )

∑
v∈V \T

(
degH(T ∪ {v})

)2

=

(
1

(t+ 1)
(
r+1
t+1

)
· e(H)

)2

·
∑

S∈( V
t+1)

∑
v∈S

(degH S)2

=
1

t+ 1
·
∑

S∈( V
t+1)

(
degH S(

r+1
t+1

)
· e(H)

)2

=
‖σ(t+1)
H ‖2

t+ 1
. �

3.3. Linear combinations of degree measures. It will be convenient to introduce

another piece of notation. Given a vector α ∈ Rr with nonnegative coordinates and a

nonempty hypergraph K with uniformity at least r, we define

σα(K) =
(
α

1/2
1 · σ(1)

K , . . . , α1/2
r · σ(r)

K

)
∈ R

∑r
t=1 (v(K)

t ),

so that

‖σα(K)‖2 =
r∑
t=1

αt · ‖σ(t)
K ‖

2.

The following generalisation of Fact 3.4 holds.

Fact 3.6. Suppose that K is a nonempty hypergraph with uniformity at least r+ 1. For

every α ∈ Rr with nonnegative coordinates,

σα(K) =
∑

v∈V (K)

σK(v) · σα(Kv).

4. Proof

4.1. Outline. Our proof of Theorem 2.1 follows the general strategy of [6]. We construct

functions g, f∗ : I(H) → P(V (H)) that satisfy the following three conditions for every

I ∈ I(H):

(a) g(I) ⊆ I ⊆ g(I) ∪ f∗(I);

(b) |g(I)| 6 30s2 · p · v(H) and |f∗(I)| 6 (1− δ) · v(H);

(c) if g(I) ⊆ I ′ and g(I ′) ⊆ I for some I ′ ∈ I(H), then g(I) = g(I ′) and f∗(I) =

f∗(I ′).

The existence of such functions easily implies the assertion of the theorem. Indeed,

condition (c) guarantees that there is an implicit decomposition f∗ = f ◦ g.

Given an independent set I, the sets g(I) and f∗(I) are constructed by an algorithm

that operates in a sequence of at most s − 1 rounds, which are indexed by r = s −
1, . . . , 1. At the start of round r, the algorithm receives as input an (r + 1)-uniform

hypergraph H(r+1) satisfying I ∈ I(H(r+1)); we initialise the first round, indexed by

r = s − 1, with H(s) = H. During the round, the algorithm tries to construct an r-

uniform hypergraphH(r) with I ∈ I(H(r)) and some additional desirable properties. The
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definition of ‘desirable’ is where we significantly depart from the previous approaches.

In [6], as well as in [42], this desirability property was defined in terms of a lower bound

on the number of edges of H(r) and upper bounds on the maximum degrees ∆t(H(r)),

for all t ∈ JrK. Here, we aim to control the `2-norms of the t-degree measures of H(r).

More precisely, ‘desirable’ means that a carefully chosen linear combination of ‖σ(t)

H(r)‖2,

where t ranges over JrK, is small. As in [6], in the event that such a hypergraph H(r)

cannot be constructed for our input set I, the algorithm is able to define the required

set f∗(I) already at the end of round r. Crucially, the amount of information about the

set I that is needed to describe H(r), or the set f∗(I), is rather small. More precisely,

it naturally corresponds to a set of O(p · s · v(H)) elements of I, which we shall denote

here by S(r). In particular, if we let g(I) be the union of the sets S(r) from all of the (at

most s−1) rounds of the algorithm, the knowledge of g(I) alone (without any additional

knowledge of the set I other than the fact that it is independent) is sufficient to recreate

the entire execution of the algorithm, and thus also the final set f∗(I).

In order to construct the r-uniform H(r) given the (r+ 1)-uniform H(r+1) and the set

I, our algorithm considers a sequence of queries ‘Does v belong to I?’ for some carefully

chosen sequence of vertices v ∈ V (H). We record all the positive answers by placing the

respective vertices v in the (initially empty) set S(r). Each queried vertex v is clearly

not in the set I \ S(r) and hence it may be omitted from the set f∗(I). In particular,

the algorithm will produce the desired set f∗(I) if at least δ · v(H) queries are made. In

case a queried vertex v does belong to I, we add its r-uniform link hypergraph H(r+1)
v

to the (initially empty) hypergraph H(r). Note that this guarantees that I ∈ I(H(r)).

Recall that our aim is to produce a hypergraph H(r) whose t-degree measures have

small `2-norms. The crux of the matter is the choice of the next vertex v to be queried

for membership in I. Indeed, if v happens to belong to I, then H(r+1)
v will be added

to H(r) and, as a result of this operation, the t-degree measures of H(r) will change

– the new σ
(t)

H(r) will be a convex combination of the old σ
(t)

H(r) and of σ
(t)

H(r+1)
v

, with

appropriate coefficients (our hypergraphs are allowed to have multiple edges). It turns

out that choosing the ‘right’ candidate vertex v is an optimisation problem that admits a

rather simple geometric description. The solution to this geometric problem, presented

as Lemma 4.12 and expressed in the language of degree measures of hypergraphs in

Proposition 4.11, lies at the heart of our argument.

The bottom line is that there is a way to choose a sequence of vertices to be queried

for membership in I such that, if at least Ω(p · s · v(H)) out of the first δ · v(H) queried

vertices belong to the set I, some linear combination of ‖σ(t)

H(r)‖2, where t ranges over

JrK, will be at most 1 + O(1/s) times larger than a respective linear combination of

‖σ(t)

H(r+1)‖2, where t ranges over Jr + 1K. Consequently, either one of the s − 1 rounds

of the algorithm will output a desired set f∗(I) of size δ · c(H) or the algorithm will

eventually produce a 1-uniform hypergraph H(1) such that I ∈ I(H(1)) and

‖σH(1)‖ 6
(
1 +O(1/s)

)s−1 · ‖σH‖ 6 O(1) · ‖σH‖.

In case the latter happens, we may simply let f∗(I) comprise all vertices v such that

{v} 6∈ H(1). The upper bound on ‖σH(1)‖ implies that there are at most (1 − δ) · v(H)

such vertices, as shown in Lemma 3.3.
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4.2. The key lemma. The following lemma summarises a single round of our new,

refined algorithm for constructing containers. We denote by Hypr(V ) the family of r-

uniform hypergraphs with vertex set V ; recall again that we allow our hypergraphs to

have multiple edges.

Lemma 4.1. Let G be an (r + 1)-uniform hypergraph with vertex set V . Suppose that

ε ∈
(
0, (9(r + 1))−1

)
and p ∈ (0, 1) satisfy

‖σG‖2 6
ε3p

50(r + 1)
.

Let α ∈ Rr be a vector with nonnegative coordinates and define

α∗ = (1 + ε)10 · (α, 0) +
50(r + 1)

ε2p
· (0, α) ∈ Rr+1 and b =

⌈
2p

ε
· |V |

⌉
. (3)

Then, there exist (disjoint) families S ′,S ′′ ⊆
(
V
6b

)
and functions S : I(G) → S ′ ∪ S ′′,

C : S ′ → P(V ), and F : S ′′ → Hypr(V ) such that, for every I ∈ I(G), we have SI ⊆ I.

Moreover:

(1) If SI ∈ S ′, then I \ SI ⊆ C(SI) and |V | − |C(SI)| > ε2

(r+1)2 · ‖σG‖−2.

(2) If SI ∈ S ′′, then I ∈ I(F(SI)) and ‖σα(F(SI))‖ 6 ‖σα∗(G)‖.
Finally, if SI ⊆ I ′ and SI′ ⊆ I for some I, I ′ ∈ I(G), then SI = SI′.

Before we embark on the proof of Lemma 4.1, we shall first show, in the next sub-

section, how it implies Theorem 2.1. The remainder of this section, Subsections 4.4–4.9

will be devoted to the proof of the lemma.

4.3. Derivation of Theorem 2.1. Let H be a nonempty s-uniform hypergraph with

vertex set V and suppose that δ, p ∈ (0, 1) satisfy (2), that is,

300s4 ·
s∑
t=1

(
s− 1

t− 1

)(
5000s3

p

)t−1

‖σ(t)
H ‖

2 6
1

δ · v(H)
6

p

500
. (2)

Define

ε =
1

10s
and Γ =

50s

ε2

and let α(1) ∈ R1, . . . , α(s) ∈ Rs be vectors defined by

α
(r)
t =

(
r − 1

t− 1

)
· (1 + ε)10(r−t) ·

(
Γ

p

)t−1

,

for every r ∈ JsK and each t ∈ JrK. Given an independent set I of H, we construct the

sets g(I) and f∗(I) using the following procedure.

Construction of the container. Let H(s) = H. Do the following for r = s− 1, . . . , 1:

(C1) Invoke Lemma 4.1 with G ← H(r+1) and α ← α(r) to obtain families S ′ and S ′′
and functions S, C, and F , as in the statement of the lemma.6

(C2) Let S(r) ← SI .

(C3) If SI ∈ S ′, then let g(I) = S(s−1) ∪ · · · ∪ S(r) and f∗(I) = C(SI) and STOP.

(C4) Otherwise, if SI ∈ S ′′, we let H(r) ← F(SI) and CONTINUE.

6In order to do so, we have to make sure that ‖σH(r+1)‖ 6 ε3p
50(r+1)

. In the analysis of the procedure,

below, we will verify that this is always the case.
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If STOP has not been called, then r = 1 and H(1) has been defined. Let g(I) = S(s−1) ∪
· · · ∪ S(1) and f∗(I) =

{
v ∈ V : {v} 6∈ H(1)

}
.

In the remainder of this section, we shall show that, for every I ∈ I(H), the above

procedure indeed constructs sets g(I) and f∗(I) that have the desired properties; in

particular, we shall show that f∗ decomposes as f∗ = f ◦ g.

Claim 4.2. For each r ∈ JsK, the hypergraph H(r), if it was defined, satisfies:

(i) I ∈ I(H(r)) and

(ii) ‖σα(r)(H(r))‖2 6 ε2

s2δ|V | .

The proof of Claim 4.2 requires the following simple fact, which justifies our definition

of the vectors α(1), . . . , α(s).

Fact 4.3. Suppose that r ∈ Js− 1K. Let α ∈ Rr and let α∗ ∈ Rr+1 be defined as in (3).

If αt 6 α
(r)
t for all t ∈ JrK, then α∗t 6 α

(r+1)
t for all t ∈ Jr + 1K.

Proof. Note first that

α∗1 = (1 + ε)10 · α1 6 (1 + ε)10 · α(r)
1 = (1 + ε)10r = α

(r+1)
1

and, since 50(r + 1) 6 50s = Γε2,

α∗r+1 =
50(r + 1)

ε2p
· αr 6

Γ

p
· α(r)

r =

(
Γ

p

)r
= α

(r+1)
r+1 .

Finally, if 1 < t 6 r, then

α∗t = (1 + ε)10 · αt +
50(r + 1)

ε2p
· αt−1 6 (1 + ε)10 · α(r)

t +
Γ

p
· α(r)

t−1

=

(
r − 1

t− 1

)
(1 + ε)10(r−t+1)

(
Γ

p

)t−1

+

(
r − 1

t− 2

)
(1 + ε)10(r−(t−1))

(
Γ

p

)t−2+1

=

(
r

t− 1

)
(1 + ε)10(r+1−t)

(
Γ

p

)t−1

= α
(r+1)
t ,

where the second to last equality is Pascal’s formula. �

Proof of Claim 4.2. We prove the claim by induction on s−r. The basis of the induction

is the case r = s. Property (i) is satisfied, asH(s) = H and I ∈ I(H). In order to see that

property (ii) holds as well, note first that the first inequality in the main assumption (2)

of Theorem 2.1 gives

‖σα(s)(H(s))‖2 = ‖σα(s)(H)‖2 =
s∑
t=1

(
s− 1

t− 1

)
(1 + ε)10(s−t)

(
Γ

p

)t−1

‖σ(t)
H ‖

2

6 (1 + ε)10s ·
s∑
t=1

(
s− 1

t− 1

)(
Γ

p

)t−1

‖σ(t)
H ‖

2

6 (1 + ε)10s · 1

300s4 · δ · |V |
6

ε2

s2 · δ · |V |
,

where the second inequality holds as Γ = 5000s3 and the last inequality holds since

ε = 1/(10s) and, consequently, (1 + ε)10s 6 e10εs = e 6 3.



AN EFFICIENT CONTAINER LEMMA 18

Suppose now that r ∈ Js− 1K and that the hypergraph H(r+1) was defined. We first

argue that we are allowed to invoke Lemma 4.1 in step (C1) above. Indeed, since the

second inequality in (2) implies that

1

s · δ · |V |
=

10ε

δ · |V |
6
εp

50

and α
(r+1)
1 = (1 + ε)10r > 1, our inductive assumption implies that

‖σH(r+1)‖2 6 α(r+1)
1 · ‖σH(r+1)‖2 6 ‖σα(r+1)(H(r+1))‖2 6 ε2

s2δ|V |
6

ε3p

50(r + 1)
,

as needed (in order to apply Lemma 4.1 with G ← H(r+1)). If the hypergraph H(r) was

defined, in step (C4), then Lemma 4.1 guarantees that

‖σα(r)(H(r))‖2 6 ‖σα∗(H(r+1))‖2,

where α∗ is defined as in (3), with α← α(r). However, Fact 4.3 states that α∗ 6 α(r+1)

coordinate-wise and, therefore, we may conclude that

‖σα(r)(H(r))‖2 6 ‖σα∗(H(r+1))‖2 6 ‖σα(r+1)(H(r+1))‖2,

as needed. �

We now verify that g(I) and f∗(I) have the desired properties and that f∗ decomposes

as f∗ = f ◦g. Since g(I) = S(s−1)∪· · ·∪S(r), for some r ∈ Js− 1K, the fact that g(I) ⊆ I
is an immediate consequence of the definitions of S(s−1), . . . , S(r), made in step (C2), and

the fact that the respective sets SI are all contained in I, as guaranteed by Lemma 4.1.

Moreover, since each of these sets SI has at most d2p|V |/εe elements, see Lemma 4.1,

we have

|g(I)| 6 |S(s−1)|+ · · ·+ |S(r)| 6 (s− 1) ·
⌈

2p · |V |
ε

⌉
6

2sp

ε
· |V | = 20s2p · |V |,

where the last inequality holds because the main assumption (2) and Fact 3.1 imply that

p > s4 · ‖σ(1)
H ‖2 > s4/|V |.

The set f∗(I) is defined either in step (C3), for some r ∈ Js− 1K, or at the end of

the procedure, if the 1-uniform hypergraph H(1) is constructed. In the former case,

f∗(I) = C(SI) for functions S and C obtained from Lemma 4.1. Note that I \ g(I) ⊆
I \ SI ⊆ C(Si) = f∗(I), as g(I) ⊇ S(r) = SI . Moreover, |f∗(I)| 6 (1 − δ)|V |, since, on

the one hand, Lemma 4.1 guarantees that

|V | − |f∗(I)| > ε2

(r + 1)2
· ‖σH(r+1)‖−2

and, on the other hand, by Claim 4.2, as α
(r+1)
1 = (1 + ε)10r > 1,

‖σH(r+1)‖2 6 α(r+1)
1 · ‖σH(r+1)‖2 6 ‖σα(r+1)(H(r+1))‖2 6 ε2

s2δ|V |
6

ε2

(r + 1)2δ|V |
.

In the latter case, f∗(I) =
{
v ∈ V : {v} 6∈ H(1)

}
. In particular, we must have I ⊆ f∗(I),

since otherwise I would not be an independent set in H(1), which would contradict

property (i) in Claim 4.2. Moreover, Lemma 3.3, invoked withH ← H(1), D ← V \f∗(I),
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and ε ← 1, gives |V \ f∗(I)| > ‖σH(1)‖−2. Since α
(1)
1 = 1, we have σH(1) = σα(1)(H(1))

and property (ii) in Claim 4.2 allows us to conclude that

|V | − |f∗(I)| > ‖σα(1)(H(1))‖−2 >
s2δ|V |
ε2

> δ|V |.

Finally, we show that f∗ decomposes as f∗ = f ◦ g. To this end, it suffices to show

that if g(I) = g(I ′), for some I, I ′ ∈ I(H), then f∗(I) = f∗(I ′). In fact, we shall prove

the following stronger statement.

Claim 4.4. If g(I) ⊆ I ′ and g(I ′) ⊆ I for some I, I ′ ∈ I(H), then g(I) = g(I ′) and

f∗(I) = f∗(I ′).

Note that Claim 4.4 implies the desired property of f∗. Indeed, assume that g(I) =

g(I ′). Since g(I) ⊆ I and g(I ′) ⊆ I ′, as shown above, we have g(I) = g(I ′) ⊆ I ∩ I ′ and

the claim yields f∗(I) = f∗(I ′).

Proof of Claim 4.4. The claim is an easy consequence of the respective property of the

function S from the statement of Lemma 4.1. Indeed, it suffices to show that the

container-constructing procedure described above defines the same sets S(r) and the

same hypergraphs H(r) when applied to both I and I ′; this is because g(I) and g(I ′)

are unions of the respective sets S(r) and the sets f∗(I) and f∗(I ′) depend only on the

sets S(r) and the hypergraphs H(r). One may prove this assertion by induction on s− r.
For the induction step, note that while the procedure performs step (C1), the respective

hypergraphs H(r+1) are identical (by the inductive assumption) and therefore so are the

functions S, C, and F . Moreover, since SI ⊆ g(I) and SI′ ⊆ g(I ′), by our definition of

g(I) and g(I ′), we may conclude that SI ⊆ I ′ and SI′ ⊆ I and thus, the final assertion

of Lemma 4.1 gives us the equality SI = SI′ . �

4.4. Pruning hypergraphs. In order to streamline the analysis of our algorithm that

constructs the r-uniform hypergraph H(r) from the (r + 1)-uniform H(r+1), we will first

prune the latter hypergraph by removing from it vertices with unusually high degree.

More precisely, define, for a nonempty r-uniform hypergraph H and t ∈ JrK,

∆̂t(H) =
r

t
· e(H) · ‖σ(t)

H ‖
2; (4)

one should think of ∆̂t(H) as a robust analogue of the maximum degree ∆t(H). In

particular, Fact 3.1 implies that ∆̂1(H) 6 ∆1(H); even though equality sometimes holds

(when H is regular), in general the ratio ∆1(H)/∆̂1(H) can be arbitrarily large. Our

next lemma shows that this inequality becomes nearly tight, up to a multiplicative factor

of O(r), after we delete a small proportion of the edges of H.

Lemma 4.5. Suppose that H is a nonempty r-uniform hypergraph. Then, for every

R > r, there is an H′ ⊆ H with e(H′) > (1− r
R) · e(H) such that ∆1(H′) 6 R · ∆̂1(H).

Proof. Given a nonempty r-uniform hypergraph H and R > r, define

X =
{
v ∈ V (H) : degH v > R · ∆̂1(H)

}
.

By the definition of X and ∆̂1(H), we have

‖σH‖2 >
∑
v∈X

(
degH v

r · e(H)

)2

>
R · ∆̂1(H)

r · e(H)
·
∑
v∈X

degH v

r · e(H)
= R · ‖σH‖2 ·

∑
v∈X

degH v

r · e(H)
,



AN EFFICIENT CONTAINER LEMMA 20

which implies that ∑
v∈X

degH v <
r

R
· e(H).

In particular, deleting from H all edges containing at least one vertex of X yields a

hypergraph H′ satisfying the assertion of this lemma. �

Since the degree measures σ(t)(H) are not defined when H is an empty hypergraph, in

order to streamline our analysis, we will start building the hypergraph H(r) by seeding

it with a fixed well-behaved r-uniform hypergraph. In order to guarantee that, at the

end of the algorithm, this initial seed constitutes only a negligible proportion of H(r), we

need to make sure that the link hypergraphs H(r+1)
v that the algorithm adds to H(r) are

somewhat large. We will achieve this by (temporarily) removing vertices of very small

degree from various subhypergraphs of H(r+1).

Fact 4.6. Suppose that H is a nonempty hypergraph with vertex set V . Then, for every

β > 0, there is a spanning H′ ⊆ H such that e(H′) > (1− β) · e(H) and, for each v ∈ V ,

degH′ v is either zero or at least β · e(H)/|V |.

Proof. Form a spanning subgraph H′ of H by iteratively deleting all edges containing

some vertex with degree smaller than β · e(H)/|V |. Clearly, each edge of H′ contains

only vertices with degrees at least β · e(H)/|V |. Moreover, the number of edges deleted

from H while forming H′ cannot exceed β · e(H). �

4.5. The algorithm. We are ready to present the algorithm that underlies the proof

of Lemma 4.1.

Input. Let G be an (r+1)-uniform hypergraph with vertex set V . Let ε ∈
(
0, (9(r+1))−1

)
and p ∈ (0, 1), define

a =
25

ε2
,

and suppose that

‖σG‖2 6
ε3p

50(r + 1)
=

εp

2a(r + 1)
. (5)

Observe that uniformly scaling the multiplicities of all edges of G by a positive integer

factor k does not affect the t-degree measure σ
(t)
G , for any t ∈ JrK, nor does it change

the family I(G) of independent sets of G. It does, however, increase the value of e(G),

and thus also the value of ∆̂t(G), for each t ∈ JrK, by the same multiplicative factor k.

Consequently, we may assume, without loss of generality, that there is a (large) positive

integer m such that

m

2a
·
(
|V |
r

)
6 ∆̂1(G) 6

m

a
·
(
|V |
r

)
. (6)

Finally, let α ∈ Rr be a vector with nonnegative coordinates and let I be an independent

set of G.
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Setup. Let L be the empty set and let G(0)
∗ be the hypergraph obtained from the complete

r-uniform hypergraph with vertex set V by changing the multiplicities of all of its edges

to m, so that e(G(0)
∗ ) = m

(|V |
r

)
. Further, apply Lemma 4.5, with R ← r+1

ε , to find an

A(0) ⊆ G satisfying

e(A(0)) > (1− ε) · e(G) and ∆1(A(0)) 6
r + 1

ε
· ∆̂1(G). (7)

Finally, let

b =

⌈
2p

ε
· |V |

⌉
and σ = (1− 3ε)−1 · ‖σα(G)‖.

Main loop. Do the following for j = 0, 1, . . .:

(S1) If |L| = b or e(A(j)) < (1− 2ε) · e(G), then let J = j and STOP.

(S2) Let Â(j) be a canonically chosen spanning subgraph of A(j) satisfying the asser-

tion of Fact 4.6 with β ← ε. For each v ∈ V , let G(j,v)
∗ = G(j)

∗ ∪ Â(j)
v and let vj

be a canonically chosen vertex that minimises the quantity

e(G(j,v)
∗ ) ·

(
‖σα(G(j,v)

∗ )‖2 − (1 + ε) · σ2
)

over all v ∈ V whose degree in Â(j) is nonzero.

(S3) If vj ∈ I, then add j to the set L and let

G(j+1)
∗ = G(j,vj)

∗ = G(j)
∗ ∪ Â(j)

vj .

Otherwise, let G(j+1)
∗ = G(j)

∗ .

(S4) Let A(j+1) be the hypergraph obtained from A(j) by removing all edges contain-

ing vj .

Output. After STOP is called in the main loop, let A = A(J) and G∗ = G(J)
∗ \ G(0)

∗ , that

is, G∗ is the hypergraph satisfying G(J)
∗ = G∗ ∪ G(0)

∗ . (Recall once more that all our

hypergraphs contain edges with multiplicities.)

4.6. Basic properties of the algorithm and the key dichotomy. In this section, we

establish several basic properties of the algorithm and state its key ‘dichotomy’ property,

which we shall derive in later sections. Moreover, we explain how to use the algorithm

to prove Lemma 4.1. We start by showing that the algorithm terminates on every input

and that the output hypergraph G∗ and the final set L retain important information

about the input set I.

Observation 4.7. For every I ∈ I(G), the map {0, . . . , J−1} 3 j 7→ vj ∈ V is injective

and hence the algorithm terminates. Moreover, I ∈ I(G∗) and L =
{
j ∈ {0, . . . , J − 1} :

vj ∈ I
}

.

Proof. The first assertion holds because in step (S4), all edges containing vj are removed,

and hence its degree remains zero in each A(j′) with j′ > j. Therefore, the algorithm

stops after at most |V | iterations of the main loop. The second assertion holds because

G∗ comprises only edges of the link hypergraphs Gv for which v ∈ I and because j ∈ L
if and only if vj ∈ I. �

We next observe that the set L contains all the information about the input set I that

is needed to reconstruct the execution of the algorithm.
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Observation 4.8. If the algorithm produces the same set L for two inputs I, I ′ ∈ I(G),

then also the hypergraphs G∗, the numbers J , and the sequences v0, . . . , vJ−1 are the same

for both inputs.

Proof. The only decisions that depend on the input set I are taken in step (S3) of the

algorithm. Each time this step is executed, the decision taken is encoded in the set L

by placing, or not placing, the index j in L. �

The function S : I(G) → P(V ) whose existence is asserted by Lemma 4.1 will be

defined as follows:

SI = {vj : j ∈ L} = {vj : 0 6 j < J and vj ∈ I}. (8)

In other words, SI comprises precisely those among the queried vertices v0, . . . , vJ−1

that belong to the input set I. Note that |SI | = |L| 6 b, since the algorithm terminates

in step (S1) as soon as L has b elements. We shall now show that the knowledge of the

set SI is enough to reconstruct the final set L and hence, as stated in Observation 4.8,

the entire execution of the algorithm. In fact, the following stronger statement is true.

Lemma 4.9. Suppose that, for two inputs I, I ′ ∈ I(G), we have SI ⊆ I ′ and SI′ ⊆ I.

Then, for both these inputs, the algorithm outputs the same set L.

Suppose that SI = SI′ for some I, I ′ ∈ I(G). As SI ⊆ I and SI′ ⊆ I ′, by construction,

Lemma 4.9 implies that the output set L must be the same for both I and I ′.

Proof of Lemma 4.9. Suppose that two inputs I and I ′ yield sets L and L′, respectively,

with L 6= L′. Let j be the smallest index such that j ∈ (L\L′)∪ (L′ \L); without loss of

generality, we may assume that j ∈ L \L′. Since L∩{0, . . . , j− 1} = L′ ∩{0, . . . , j− 1},
the algorithm produces the same sequences v0, . . . , vj while working with inputs I and

I ′. Since j ∈ L \ L′, we must have vj ∈ SI and vj /∈ I ′. In particular, SI * I ′. �

Finally, define the vector α∗ ∈ Rr+1 as in (3):

α∗ = (1 + ε)10 · (α, 0) +
50(r + 1)

ε2p
· (0, α).

The key dichotomy property, stated in our next lemma, is that either the algorithm

inspects many vertices of the hypergraph (before encountering the bth vertex of I) or

the final hypergraph G∗ is a good ‘model’ of G, in the sense that the `2-norm of σα(G∗)
does not exceed the `2-norm of σα∗(G).

Lemma 4.10. At least one of the following holds:

(1) J > ε2

(r+1)2 · ‖σG‖−2,

(2) ‖σα(G∗)‖ 6 ‖σα∗(G)‖.

We shall prove Lemma 4.10, which lies at the heart of the matter, in the next two

sections. We finish the current section with a short derivation of Lemma 4.1, which is

now straightforward. Given an (r + 1)-uniform hypergraph G and numbers ε and p as

in the statement of the lemma, we may define the function S : I(G) → P(V ) as in (8),

by running the algorithm on each input I ∈ I(G). If J > ε2

(r+1)2 · ‖σG‖−2, we place SI

in the family S ′ and let C(SI) = V \ {vj : 0 6 j < J}; note that I \ SI ⊆ C(SI) as

SI = I∩(V \C(SI)) by (8). Otherwise, we place SI in the family S ′′ and let F(SI) = G∗;
Lemma 4.10 implies the desired property of each such hypergraph F(SI). Lemma 4.9
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and Observation 4.8 guarantee that the set C(SI) or the hypergraph F(SI) depend only

on the set SI , and not on I itself, and that the function S has the claimed consistency

property.

4.7. The geometric lemma. The most important elementary operation performed by

the algorithm described in Section 4.5 is to choose some v ∈ V and add the r-uniform link

hypergraph Â(j)
v to the hypergraph G(j)

∗ , obtaining a new hypergraph G(j,v)
∗ = G(j)

∗ ∪Â(j)
v .

Since we want the final hypergraph G∗ to have small `2-norm of σα(G∗), in step (S2) of the

algorithm, we consider a vertex v that, essentially, minimises the `2-norm of σα(G(j,v)
∗ )

over all eligible v ∈ V . The following proposition, which is the core of the proof of

Theorem 2.1, bounds the minimum of ‖σα(G(j,v)
∗ )‖ from above. Given an (r+1)-uniform

hypergraph A and a vector α ∈ Rr, we define

∆̂α(A) =

r∑
t=1

αt · ∆̂t+1(A).

Proposition 4.11. Suppose that A is an (r + 1)-uniform hypergraph with vertex set V

and that G∗ is an r-uniform hypergraph with the same vertex set. Suppose that α ∈ Rr
has nonnegative coordinates. Then, there exists a vertex v ∈ V with nonzero degree in

A such that the hypergraph Gv∗ = G∗ ∪ Av satisfies

‖σα(Gv∗ )‖2 6 ‖σα(G∗)‖2

+
degA v

e(Gv∗ )
·

((
2 · ‖σα(A)‖
‖σα(G∗)‖

− 2 +
∆̂1(A)

e(G∗)

)
· ‖σα(G∗)‖2 +

∆̂α(A)

e(G∗)

)
. (9)

Since the right-hand side of (9) is rather complicated, let us explain the underlying

intuition. The two terms ∆̂1(A)/e(G∗) and ∆̂α(A)/e(G∗) should be viewed as ‘error

terms’. If we assumed that they are both zero, inequality (9) would simplify to

‖σα(Gv∗ )‖2 6 ‖σα(G∗)‖2 +
2 degA v

e(Gv∗ )
·
(
‖σα(A)‖ − ‖σα(G∗)‖

)
· ‖σα(G∗)‖. (10)

This simplified inequality (10) states that, as long as the `2-norm of σα(G∗) exceeds that

of σα(A), there is a vertex v ∈ V such that the `2-norm of σα(Gv∗ ) is strictly smaller

than that of σα(G∗). Moreover, the difference ‖σα(G∗)‖ − ‖σα(Gv∗ )‖ is proportional to

the difference ‖σα(A)‖ − ‖σα(G∗)‖. Proposition 4.11 will allow us to show that, as we

repeatedly update G∗ ← Gv∗ in step (S3) of the algorithm, the value ‖σα(G∗)‖ drifts,

rather quickly, towards ‖σα(A)‖.
The reason why Proposition 4.11 is true stems from Fact 3.6, which states that the

vector σα(A) is a convex combination of the vectors σα(Av), where v ranges over V ,

and the coefficient of each σα(Av) in this combination is proportional to degA v. This

basic property of the degree measures enables us to express the problem of minimising

‖σα(Gv∗ )‖, solved by the proposition, in a simple, abstract way, as we now do in the next

lemma.

Lemma 4.12. Suppose that ν1, . . . , νk ∈ Rd and λ ∈ Rk all have nonnegative coordinates

and ‖λ‖1 = λ1 + · · ·+ λk = 1. Define

ν =
k∑
i=1

λi · νi.
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For every positive x, every µ ∈ Rd with nonnegative coordinates, and all x1, . . . , xk ∈
(0, x], there exists an i ∈ JkK such that λi > 0 and the vector µi defined by

µi = (1− xiλi) · µ+ xiλi · νi

satisfies

‖µi‖2 6 ‖µ‖2 + λixi ·

(2 · ‖ν‖
‖µ‖
− 2 + x · ‖λ‖2

)
· ‖µ‖2 + x ·

k∑
j=1

λ2
j‖νj‖2

 . (11)

Proof. Note first that, for every i ∈ JkK,

‖µi‖2 = ‖µ+ xiλi · (νi − µ)‖2 = ‖µ‖2 + 2xiλi · 〈νi − µ, µ〉+ x2
iλ

2
i · ‖νi − µ‖2. (12)

Since 〈νi, µ〉 > 0, by our assumption on non-negativity of the coordinates, we have

‖νi − µ‖2 = ‖νi‖2 − 2 〈νi, µ〉+ ‖µ‖2 6 ‖µ‖2 + ‖νi‖2.

Substituting this inequality into (12), dividing both sides by xi, and summing over

i ∈ JkK yields

k∑
i=1

‖µi‖2 − ‖µ‖2

xi
6

k∑
i=1

2λi · 〈νi − µ, µ〉+ max
i
xi ·

(
‖λ‖2‖µ‖2 +

k∑
i=1

λ2
i ‖νi‖2

)
. (13)

The definition of ν, the assumption ‖λ‖1 = 1, and the Cauchy–Schwarz inequality give

k∑
i=1

λi · 〈νi − µ, µ〉 = 〈ν − µ, µ〉 = 〈ν, µ〉 − ‖µ‖2 6 ‖ν‖ · ‖µ‖ − ‖µ‖2.

Substituting this inequality into (13), recalling the assumption that maxi xi 6 x, yields

k∑
i=1

‖µi‖2 − ‖µ‖2

xi
6 2

(
‖ν‖ · ‖µ‖ − ‖µ‖2

)
+ x ·

(
‖λ‖2‖µ‖2 +

k∑
i=1

λ2
i ‖νi‖2

)
. (14)

Finally, as ‖λ‖1 = 1, there must exist an i ∈ JkK such that λi > 0 and the ith summand

in the left-hand side of (14) is at most λi times the right-hand side of (14). This gives

‖µi‖2 − ‖µ‖2 6 λixi ·

2
(
‖ν‖ · ‖µ‖ − ‖µ‖2

)
+ x

‖λ‖2‖µ‖2 +
k∑
j=1

λ2
j‖νj‖2

 ,

which is easily seen to be equivalent to the desired inequality (11). �

Proof of Proposition 4.11. For every v ∈ V , let Gv∗ = G∗ ∪ Av. We claim that, for each

t ∈ JrK, the t-degree measure of Gv∗ is a convex combination of the t-degree measures of

G∗ and Av and the coefficients in this convex combination are proportional to e(G∗) and

degA v, respectively. Indeed, since for every T ⊆ V , the degree of T in Gv∗ is simply the

sum of the degrees of T in G∗ and Av, we have

e(Gv∗ ) · σ
(t)
Gv∗ = e(G∗) · σ(t)

G∗ + e(Av) · σ(t)
Av

= e(G∗) · σ(t)
G∗ + degA v · σ

(t)
Av
.

Dividing the above equality through by e(Gv∗ ) = e(G∗) + degA v, we obtain

σ
(t)
Gv∗ =

(
1− degA v

e(Gv∗ )

)
· σ(t)
G∗ +

degA v

e(Gv∗ )
· σ(t)
Av
.
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Define, for each v ∈ V ,

xv =
(r + 1) · e(A)

e(Gv∗ )
6

(r + 1) · e(A)

e(G∗)
. (15)

Since A is (r + 1)-uniform, we have, for each v ∈ V ,

xvσA(v) =
degA v

e(Gv∗ )

and, consequently, for each t ∈ JrK,

σ
(t)
Gv∗ =

(
1− xvσA(v)

)
· σ(t)
G∗ + xvσA(v) · σ(t)

Av
. (16)

We now invoke Lemma 4.12 with k = |V |, the vectors ν1, . . . , νk replaced by {σα(Av) :

v ∈ V }, the vector λ replaced by σA, the vector µ replaced by σα(G∗), the numbers

x1, . . . , xk replaced by {xv : v ∈ V }, and x replaced by (r + 1) · e(A)/e(G∗); note that

x1, . . . , xk 6 x, see (15). Fact 3.6 implies that

ν =
k∑
i=1

λi · νi =
∑
v∈V

σA(v) · σα(Av) = σα(A),

and, if i ∈ JkK corresponds to v ∈ V , then λixi = xvσA(v) = degA v/e(Gv∗ ) and thus

µi = σα(Gv∗ ). Recalling the definition of ∆̂1(·) from (4), we further have

x · ‖λ‖2 =
(r + 1) · e(A)

e(G∗)
· ‖σA‖2 =

∆̂1(A)

e(G∗)
.

Finally, Fact 3.5 implies that

x ·
k∑
i=1

λ2
i ‖νi‖2 =

(r + 1) · e(A)

e(G∗)
·
∑
v∈V

σA(v)2 · ‖σα(Av)‖2

=
(r + 1) · e(A)

e(G∗)
·

r∑
t=1

αt ·
∑
v∈V

σA(v)2 · ‖σ(t)
Av
‖2

=
(r + 1) · e(A)

e(G∗)
·

r∑
t=1

αt ·
‖σ(t+1)
A ‖2

t+ 1

=
1

e(G∗)
·

r∑
t=1

αt · ∆̂t+1(A) =
∆̂α(A)

e(G∗)
.

It is now straightforward to verify that Lemma 4.12 implies the existence of a vertex

v ∈ V satisfying the assertion of the proposition. �

4.8. Proof of the key dichotomy property. In this section, we use Proposition 4.11

to bound the expression from step (S2) in the description of our algorithm. This is

the most technically demanding part of the proof. Throughout this section, we use the

notation introduced in Section 4.5. We start with an easy dichotomy.

Lemma 4.13. If e(A) < (1− 2ε) · e(G), then

J >
ε2

(r + 1)2
· ‖σG‖−2.
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Proof. Since A is obtained from A(0) by removing all edges that contain at least one of

the vertices v0, . . . , vJ−1, we have

e(A(0))− e(A) 6
J−1∑
j=0

degA(0) vJ 6 J ·∆1(A(0)).

Consequently, it follows from (7) and our upper bound on e(A) that

J >
e(A(0))− e(A)

∆1(A(0))
>

ε2 · e(G)

(r + 1) · ∆̂1(G)
=

ε2

(r + 1)2
· ‖σG‖−2. �

Lemma 4.14. If e(A) > (1− 2ε) · e(G), then e(G∗) > p · e(G).

Proof. By construction,

e(G∗) = e(G(J)
∗ )− e(G(0)

∗ ) =

J−1∑
j=0

(
e(G(j+1)
∗ )− e(G(j)

∗ )
)

=
∑
j∈L

degÂ(j) vj >
∑
j∈L

ε · e(A(j))

|V |
.

Our assumption e(A) > (1 − 2ε) · e(G) implies that the algorithm terminated with

|L| = b > 2p/ε · |V |, see step (S1). Consequently, recalling that ε < 1/4,

e(G∗) > |L| ·
ε · e(A)

|V |
>

2p · |V |
ε

· ε · (1− 2ε) · e(G)

|V |
> p · e(G). �

Our next lemma lies at the heart of the matter. For brevity, define

∆̂ := 3 · ∆̂α(G).

Lemma 4.15. For every j ∈ {0, . . . , J},

‖σα(G(j)
∗ )‖2 6 (1 + ε) · σ2 +

a · ∆̂
e(G(j)
∗ )

. (17)

Proof. We prove (17) by induction on j. Since G(0)
∗ is (an integer multiple of) the

complete r-uniform hypergraph, σ
(t)

G(0)
∗

is the uniform probability measure on
(
V
t

)
and,

consequently,

‖σ(t)

G(0)
∗
‖2 =

(
|V |
t

)−1

for every t ∈ JrK. On the other hand, Fact 3.5 implies that, for every t ∈ JrK,

∆̂t+1(G) =
r + 1

t+ 1
· e(G) · ‖σ(t+1)

G ‖2 = (r + 1) · e(G) ·
∑
v∈V

σG(v)2 · ‖σ(t)
Gv ‖

2.

Fact 3.1 implies that, for every v ∈ V such that Gv is nonempty,

‖σ(t)
Gv ‖

2 >

(
|V |
t

)−1

= ‖σ(t)

G(0)
∗
‖2

and therefore

∆̂t+1(G) > (r + 1) · e(G) ·
∑
v∈V

σG(v)2 · ‖σ(t)

G(0)
∗
‖2 = ∆̂1(G) · ‖σ(t)

G(0)
∗
‖2.

Recall from (6) that we have chosen m so that

∆̂1(G) >
m

2a
·
(
|V |
r

)
=
e(G(0)
∗ )

2a
,
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which, substituted into the previous inequality, implies that

‖σ(t)

G(0)
∗
‖2 6 2a

e(G(0)
∗ )
· ∆̂t+1(G). (18)

After we multiply both sides of (18) by αt and sum the resulting inequalities over all

t ∈ JrK, we obtain

‖σα(G(0)
∗ )‖2 6 2a · ∆̂α(G)

e(G(0)
∗ )

,

which implies (17) when j = 0.

Suppose now that j > 0 and assume that (17) holds; we shall show that this inequality

remains true after we replace j with j + 1. We may assume that G(j+1)
∗ = G(j)

∗ ∪ Â(j)
vj , as

otherwise G(j+1)
∗ = G(j)

∗ and there is nothing to prove. Let v be a vertex satisfying the

assertion of Proposition 4.11 with A ← Â(j) and G∗ ← G(j)
∗ . The vertex vj was chosen

in step (S2) so that

e(G(j+1)
∗ ) ·

(
‖σα(G(j+1)

∗ )‖2 − (1 + ε) · σ2
)
6 e(G(j,v)

∗ ) ·
(
‖σα(G(j,v)

∗ )‖2 − (1 + ε) · σ2
)
,

(19)

so it suffices to bound the right-hand side of (19) from above by a · ∆̂.

The assertion of Proposition 4.11, inequality (9), is equivalent to the inequality

e(G(j,v)
∗ ) ·

(
‖σα(G(j,v)

∗ )‖2 − σ2
)
6 e(G(j,v)

∗ ) ·
(
‖σα(G(j)

∗ )‖2 − σ2
)

+ degÂ(j) v ·

((
∆̂1(Â(j))

e(G(j)
∗ )

+ 2 · ‖σα(Â(j))‖
‖σα(G(j)

∗ )‖
− 2

)
· ‖σα(G(j)

∗ )‖2 +
∆̂α(Â(j))

e(G(j)
∗ )

)
. (20)

Since e(G(j,v)
∗ ) = e(G(j)

∗ ) + degÂ(j) v, inequality (20) may be rewritten as

e(G(j,v)
∗ ) ·

(
‖σα(G(j,v)

∗ )‖2 − σ2
)
6 e(G(j)

∗ ) ·
(
‖σα(G(j)

∗ )‖2 − σ2
)

+ degÂ(j) v ·

((
∆̂1(Â(j))

e(G(j)
∗ )

+ 2 · ‖σα(Â(j))‖
‖σα(G(j)

∗ )‖
− 1

)
· ‖σα(G(j)

∗ )‖2 − σ2 +
∆̂α(Â(j))

e(G(j)
∗ )

)
.

(21)

We shall now simplify the right-hand side of (21) somewhat. To this end, observe first

that, as the algorithm did not terminate in step (S1), we must have

e(Â(j)) > (1− ε) · e(A(j)) > (1− ε) · (1− 2ε) · e(G) > (1− 3ε) · e(G).

Consequently, Fact 3.2 implies that, for every t ∈ Jr + 1K,

‖σ(t)

Â(j)
‖ 6 (1− 3ε)−1 · ‖σ(t)

G ‖ (22)

and, since clearly e(Â(j)) 6 e(G),

∆̂t(Â(j)) 6 (1− 3ε)−2 · ∆̂t(G) 6 3 · ∆̂t(G). (23)

Summing (22), with both sides squared, and (23) over all t, with appropriate weights,

yields

‖σα(Â(j))‖ 6 (1− 3ε)−1 · ‖σα(G)‖ = σ and ∆̂α(Â(j)) 6 ∆̂. (24)
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Furthermore, recall from (6) that we have chosen m so that

∆̂1(G) 6
m

a
·
(
|V |
r

)
=
e(G(0)
∗ )

a
6
e(G(j)
∗ )

a
.

Consequently

∆̂1(Â(j))

e(G(j)
∗ )

6
(1− 3ε)−2

a
6

3

a
(25)

and, by (7),

∆1(Â(j)) 6 ∆1(A(j)) 6 ∆1(A(0)) 6
r + 1

ε
· ∆̂1(G)

6
r + 1

ε
· e(G

(j)
∗ )

a
6
a

2
· e(G(j)

∗ ),

(26)

where the last inequality holds as a2 = 625/ε4 > 2(r+1)/ε. We may now substitute (24)

and (25) into (21) and rearrange the terms to obtain the following inequality:

e(G(j,v)
∗ ) ·

(
‖σα(G(j,v)

∗ )‖2 − σ2
)
6 e(G(j)

∗ ) ·
(
‖σα(G(j)

∗ )‖2 − σ2
)

+ degÂ(j) v ·

3

a
−

(
σ

‖σα(G(j)
∗ )‖

− 1

)2
 · ‖σα(G(j)

∗ )‖2 +
∆̂

e(G(j)
∗ )

 . (27)

We now consider two cases, depending on how large ‖σα(G(j)
∗ )‖2 is.

Case 1. ‖σα(G(j)
∗ )‖2 6 (1 + ε) · σ2 + a/2 · ∆̂/e(G(j)

∗ ).

We first claim that3

a
−

(
σ

‖σα(G(j)
∗ )‖

− 1

)2
 · ‖σα(G(j)

∗ )‖2 6 12σ2

a
6 ε · σ2. (28)

To see this, note that the left-hand side of (28) is negative when ‖σα(G(j)
∗ )‖ > 2σ, as

a > 12. Otherwise, the first factor in the left-hand side is at most 3/a and the second

factor is at most 4σ2. Substituting (28) into (27), using the assumed upper bound on

‖σα(G(j)
∗ )‖2, yields

e(G(j,v)
∗ ) ·

(
‖σα(G(j,v)

∗ )‖2 − σ2
)
6 e(G(j)

∗ ) · ε · σ2 +
a

2
· ∆̂ + degÂ(j) v ·

(
ε · σ2 +

∆̂

e(G(j)
∗ )

)
6
(
e(G(j)
∗ ) + degÂ(j) v

)
· ε · σ2 +

(a
2

+
a

2

)
· ∆̂,

where the second inequality holds because degÂ(j) v 6 ∆1(Â(j)) 6 (a/2)·e(G(j)
∗ ), see (26).

Finally, since e(G(j)
∗ ) + degÂ(j) v = e(G(j,v)

∗ ), we may conclude that

e(G(j,v)
∗ ) ·

(
‖σα(G(j,v)

∗ )‖2 − (1 + ε) · σ2
)
6 a · ∆̂. (29)

By (19), this proves the desired estimate (inequality (17) with j replaced by j + 1).

Case 2. (1 + ε) · σ2 + a/2 · ∆̂/e(G(j)
∗ ) < ‖σα(G(j)

∗ )‖2 6 (1 + ε) · σ2 + a · ∆̂/e(G(j)
∗ ).
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We will show that the second term in the right-hand side of (27) is nonpositive, which

will give

e(G(j,v)
∗ ) · ‖σα(G(j,v)

∗ )‖2 6 e(G(j)
∗ ) ·

(
‖σα(G(j)

∗ )‖2 − σ2
)

+ e(G(j,v)
∗ ) · σ2

6 e(G(j)
∗ ) · ε · σ2 + a · ∆̂ + e(G(j,v)

∗ ) · σ2,

which in turn implies the desired estimate (inequality (29)), as e(G(j)
∗ ) 6 e(G(j,v)

∗ ). The

lower bound on ‖σα(G(j)
∗ )‖2 assumed in Case 2 implies that

∆̂

e(G(j)
∗ )

<
2

a
· ‖σα(G(j)

∗ )‖2

and hence3

a
−

(
σ

‖σα(G(j)
∗ )‖

− 1

)2
 · ‖σα(G(j)

∗ )‖2 +
∆̂

e(G(j)
∗ )

6

5

a
−

(
σ

‖σα(G(j)
∗ )‖

− 1

)2
 · ‖σα(G(j)

∗ )‖2.

Moreover, since ‖σα(G(j)
∗ )‖2 > (1 + ε) · σ2, we have

5

a
−

(
σ

‖σα(G(j)
∗ )‖

− 1

)2

6
5

a
−
(

1√
1 + ε

− 1

)2

=
5

a
−
(√

1 + ε− 1
)2

1 + ε

=
ε2

5
− ε2(

1 +
√

1 + ε
)2 · (1 + ε)

6 0,

where the last inequality holds due to our assumption that ε < (9(r+ 1))−1 6 1/18. �

4.9. Proof of the key lemma. After having made all the preparations, we are finally

ready to prove Lemma 4.10.

Proof of Lemma 4.10. If e(A) < (1−2ε) · e(G), then Lemma 4.13 immediately gives (1).

We may therefore assume that e(A) > (1 − 2ε) · e(G). Recall from (6) that we have

chosen m so that

e(G(0)
∗ ) = m ·

(
|V |
r

)
6 2a · ∆̂1(G) = 2a · (r + 1) · e(G) · ‖σG‖2.

It thus follows from (5) and Lemma 4.14 that

e(G(0)
∗ ) 6 2a · (r + 1) · e(G∗)

p
· εp

2a(r + 1)
6 ε · e(G∗).

Consequently, Fact 3.2 implies that

‖σα(G∗)‖ 6
e(G(J)
∗ )

e(G∗)
· ‖σα(G(J)

∗ )‖ =
e(G∗) + e(G(0)

∗ )

e(G∗)
· ‖σα(G(J)

∗ )‖ 6 (1 + ε) · ‖σα(G(J)
∗ )‖.

It now follows from Lemma 4.15 that

‖σα(G∗)‖2 6 (1 + ε)3 · σ2 + (1 + ε)2 · a · ∆̂
e(G(J)
∗ )

.
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Since e(G(J)
∗ ) > e(G∗) > p · e(G), by Lemma 4.14 and (1 + ε)7(1 − 3ε)2 > 1, as ε <

(9(r + 1))−1 6 1/18, we further have

‖σα(G∗)‖2 6 (1 + ε)3 · σ2 + (1 + ε)2 · a · ∆̂
p · e(G)

6
(1 + ε)3

(1− 3ε)2
· ‖σα(G)‖2 + (1 + ε)2 · 3a · ∆̂α(G)

p · e(G)

6 (1 + ε)10 · ‖σα(G)‖2 +
4a · ∆̂α(G)

p · e(G)

=
r∑
t=1

αt ·
(

(1 + ε)10 · ‖σ(t)
G ‖

2 +
4a

p
· r + 1

t+ 1
· ‖σ(t+1)

G ‖2
)
.

Recall the definition of α∗ given in (3). Since 4a/(t + 1) 6 50/ε2 for every t ∈ JrK, we

may conclude that

‖σα(G∗)‖2 6 ‖σα∗(G)‖2,
as claimed. �

5. Probabilistic inequalities

The proofs of Theorems 1.2, 1.3, and 1.4 make use of well-known probabilistic in-

equalities. The first of them are standard tail bounds for binomial distributions.

Lemma 5.1. Let n be a positive integer, let p ∈ [0, 1], and suppose that X ∼ Bin(n, p).

Then, for every δ ∈ [0, 1],

Pr
(
X 6 (1− δ)np

)
6 exp(−δ2np/2) and Pr

(
X > (1 + δ)np

)
6 exp(−δ2np/3).

We shall also need the following version of Janson’s inequality [27], which can be easily

deduced from the statements found in [2, Chapter 8].

Theorem 5.2 (Janson’s inequality). Suppose that Ω is a finite set and let B1, . . . , Bk
be arbitrary subsets of Ω. Form a random subset R ⊆ Ω by independently keeping each

ω ∈ Ω with probability pω ∈ [0, 1]. For each i ∈ JkK, let Xi be the indicator of the event

that Bi ⊆ R and define

µ =

k∑
i=1

E[Xi] and ∆ =
∑

16i<j6k
Bi∩Bj 6=∅

E[XiXj ].

Then,

Pr
(
Bi * R for all i ∈ JkK

)
6 exp

(
−min

{
µ

2
,
µ2

4∆

})
.

6. The typical structure of Kr+1-free graphs

6.1. Outline. The first, key part of the proof of Theorem 1.2 is showing that, for suffi-

ciently small δ, the number of Kr+1-free subgraphs of Kn that are not δn2-close to being

r-partite is much smaller than 2ex(n,Kr+1), which is a trivial lower bound on the number

of Kr+1-free graphs. This statement is derived from a container lemma for Kr+1-free

graphs (Proposition 6.1 below), which is obtained by applying Theorem 1.6 to the
(
r+1

2

)
-

uniform hypergraph that encodes copies of Kr+1 in Kn, and the ‘supersaturated’ version
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of the stability theorem of Erdős and Simonovits proved in [5] and stated as Lemma 6.3

below. Proposition 6.1, which is the main result of this section, supplies a covering of

all Kr+1-free subgraphs of Kn with few containers, each of which is a subgraph of Kn

with either fewer than n2/8 edges or fewer than nr+1/2 copies of Kr+1 (after we delete

from it some n2−1/(8r) edges), whereas Lemma 6.3 is used to show that all containers

with nearly ex(n,Kr+1) edges must be close to being r-partite.

The remainder of the proof is showing that all but an 2−n/(10r)4
-proportion of Kr+1-

free subgraphs of Kn that are δn2-close to being r-partite are in fact r-partite. Our

three-step argument is loosely based on the methods of [8]. First, we show that all but a

tiny fraction of graphs in our collection admit an optimal, balanced r-partition with at

most δn2 monochromatic edges (i.e., edges whose both endpoints belong to the same part

of the partition); an r-partition is optimal if it minimises the number of monochromatic

edges and it is balanced if each partite set comprises at least n/(2r) vertices. Second, we

bound from above the number of remaining graphs whose associated r-partition induces

a monochromatic copy of K1,D in one of the parts, where D = bn/(214r5 log n)c. Third,

we bound from above the number of remaining graphs whose associated r-partition

induces a monochromatic matching with a given number of edges in one of the parts.

The second and third steps complement one another as every graph with t edges contains

either a copy of K1,D or a matching with at least t/D edges.

6.2. An efficient container lemma for Kr+1-free graphs. The following statement,

which is the main technical result of this section, is an efficient container lemma for

Kr+1-free subgraphs of Kn. It is obtained by applying Theorem 1.6 to the
(
r+1

2

)
-uniform

hypergraph that encodes copies of Kr+1 in Kn.

Proposition 6.1. For almost all n and every r satisfying 2 6 r 6 log n/(121 log log n),

there exists a collection G of at most exp
(
n2−1/(8r)

)
subgraphs of Kn such that:

(i) Each Kr+1-free subgraph of Kn is contained in some member of G.

(ii) Each G ∈ G either has fewer than n2/8 edges or it contains a subgraph G′ with

e(G′) > e(G)− n2−1/(8r) that has fewer than nr+1/2 copies of Kr+1.

Proof. Let n be a large integer and suppose that r satisfies 2 6 r 6 log n/(121 log log n).

Let γ = 1/(8r) and observe that

nγ = exp

(
log n

8r

)
> exp(12 log log n) = (log n)12. (30)

Let H be the
(
r+1

2

)
-uniform hypergraph with vertex set E(Kn) whose edges are the edge

sets of all copies of Kr+1 in Kn and set

s =

(
r + 1

2

)
, q = n−3γ , and E = nr+1/2.

We now verify that we may apply Theorem 1.6, with α ← 1/4 and β ← n−γ , to the

hypergraph H. First, as s 6 r2 6 (log n)2, we have

αβq · v(H) =
n−4γ

4
·
(
n

2

)
> n > 109s7

and, using (30),

104s5q = 104s5n−3γ 6 104(log n)10n−3γ 6 n−γ = β,
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provided that n is sufficiently large. Second, suppose that t ∈ {2, . . . , s} and let ` ∈
{3, . . . , r + 1} be the unique integer satisfying

(
`−1

2

)
< t 6

(
`
2

)
, so that

t− 1 6

(
`

2

)
− 1 =

(`+ 1)(`− 2)

2
6 r(`− 2).

Since a graph with t edges must have at least ` vertices, we have

∆t(H) =

(
n− `

r + 1− `

)
6 nr+1−`

and, consequently,( q

106s5

)t−1
· E

v(H)
· 1

∆t(H)
>
( q

106s5

)r(`−2)
· n

r+1/2

n2
· 1

nr+1−`

=

(
n−3γ

106s5

)r(`−2)

· n`−5/2 >

(
n1/(2r)−3γ

106s5

)r(`−2)

>

(
nγ

106(log n)10

)r(`−2)

> 1,

where the last inequality follows from (30). Theorem 1.6 supplies a collection G of

containers for the independent sets of H (that is, Kr+1-free subgraphs of Kn) satisfying

|G| 6 exp
(
104s5β−1 log(e/α) · q log(e/q) · v(H)

)
6 exp

(
105(log n)10nγ · n−3γ log n · n2

)
6 exp

(
n2−γ) ,

where the last inequality follows from (30), such that, for every G ∈ G, either e(G) 6
α · v(H) 6 n2/8 or there is a subgraph G′ ⊆ G with e(G′) > (1− β)e(G) > e(G)− n2−γ

and e(H[G′]) < E (that is, G′ contains fewer than E copies of Kr+1). �

6.3. Almost all Kr+1-free graphs are almost r-partite. The following theorem,

which is a rather straightforward consequence of our container lemma for Kr+1-free

graphs (Proposition 6.1) and the ‘supersaturated’ version of the stability theorem of

Erdős and Simonovits (Lemma 6.3 below) proved by Balogh, Bushaw, Collares, Liu,

Morris, and Sharifzadeh [5], may be viewed as an approximate version of Theorem 1.2.

It states that, under the assumptions of Theorem 1.2, almost all Kr+1-free subgraphs

of Kn are almost r-partite. To make this notion precise, given nonnegative integers r

and t with r > 2, we shall say that a graph G is t-close to being r-partite if G can be

made r-partite by removing from it at most t edges. In other words, G is t-close to being

r-partite if G contains an r-partite subgraph G′ with e(G′) > e(G) − t. Conversely, we

shall say that a graph G is t-far from being r-partite if G is not t-close to being r-partite

or, in other words, if χ(G′) > r for every G′ ⊆ G with e(G′) > e(G)− t.

Theorem 6.2. The following holds for sufficiently large n and all r satisfying 2 6 r 6
log n/(121 log log n). Let F denote the family of Kr+1-free subgraphs of Kn that are

(8 log n)−15n2-far from being r-partite. Then

|F| 6 2ex(n,Kr+1)−n.
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Lemma 6.3 ([5]). Suppose that n, r, and t are positive integers. Every n-vertex graph

G that is t-far from being r-partite contains at least

nr−1

e2r · r!

(
e(G) + t−

(
1− 1

r

)
n2

2

)
copies of Kr+1.

Proof of Theorem 6.2. Let δ = (8 log n)−15 so that F is the family of Kr+1-free sub-

graphs of Kn that are δn2-far from being r-partite. Let G be the family of containers for

Kr+1-free graphs supplied by Proposition 6.1. We partition G into two parts as follows:

G1 =

{
G ∈ G : e(G) >

(
1− 1

r

)
n2

2
− 2n2−1/(8r)

}
and G2 = G \ G1.

Fix an arbitrary G ∈ G1. Since e(G) > n2/8, it must be the case that G contains a

subgraph G′ with

e(G′) > e(G)− n2−1/(8r) >

(
1− 1

r

)
n2

2
− 3n2−1/(8r) (31)

that contains fewer than nr+1/2 copies of Kr+1. Let G′ be any such subgraph of G

and let t′ be the smallest number of edges one can delete from G′ to make it r-partite.

Lemma 6.3 implies that

nr−1

e2r · r!

(
e(G′) + t′ − 1−

(
1− 1

r

)
n2

2

)
< nr+1/2

and hence, by (31),

t′ − 3n2−1/(8r) 6 e2r · r! · n3/2 + 1 6 r4r · n3/2 6 n7/4.

Since G′ is t′-close to being r-partite, G is t-close from being r-partite for all t >
5n2−1/(8r), since

5n2−1/(8r) > n7/4 + 4n2−1/(8r) > t′ + e(G)− e(G′).

In particular, since

n−1/(8r) = exp

(
− log n

8r

)
= exp

(
−121

8
· log logn

)
� 1

(log n)15
,

neither G nor any of its subgraphs can be δn2-far from being r-partite.

Thus, every graph in F must be contained in some element of G2. Since

ex(n,Kr+1) >

(
1− 1

r

)(
n

2

)
>

(
1− 1

r

)
n2

2
− n,

we have

|F|
2ex(n,Kr+1)

6
∑
G∈G2

2e(G)−(1− 1
r )n2

2
+n 6 |G| · 2n−2n2−1/(8r)

6 exp
(
n2−1/(8r) + 2 log 2 ·

(
n− n2−1/(8r)

))
6 2−n,

as claimed. �
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6.4. Balanced and unbalanced r-partitions. Let Π be an arbitrary r-partition of JnK.
We shall say that Π is balanced if minP∈Π |P | > n

2r and that it is unbalanced otherwise.

In the sequel, we denote by KΠ the complete r-partite graph whose colour classes are

the parts of Π.

Fact 6.4. Suppose that r > 2 and let Π be an unbalanced r-partition of JnK. Then

e(KΠ) 6 ex(n,Kr+1)− n2

16r2
+ n.

Proof. Let P ∈ Π be an arbitrary part satisfying |P | < n
2r and let Q ∈ Π be an arbitrary

part satisfying |Q| > n
r . Set

m =

⌊
|Q| − |P |

2

⌋
,

let Π′ be the partition obtained from Π by moving some m vertices from Q to P , and

observe that

e(KΠ′)− e(KΠ) = (|P |+m)(|Q| −m)− |P ||Q| = (|Q| − |P |) ·m−m2 > m2.

Since |Q| − |P | > n
2r , then m >

⌊
n
4r

⌋
and, consequently, m2 > n2

16r2 − n. Finally, since

KΠ′ is an r-partite graph, we have e(KΠ′) 6 ex(n,Kr+1) and the claimed upper bound

on e(KΠ) follows. �

Our next lemma bounds from above the number of subgraphs of Kn that admit an

unbalanced r-partition with few monochromatic edges.

Lemma 6.5. The following holds for all sufficiently large n and all r satisfying 2 6 r 6
log n. Let F denote the family of all G ⊆ Kn that satisfy e(G \KΠ) 6 n2

(r logn)2 for some

unbalanced r-partition Π. Then

|F| 6 2ex(n,Kr+1)−n.

Proof. Denote by Pu the family of all unbalanced r-partitions of JnK. For every Π ∈ Pu,

let FΠ denote the family of all graphs G ⊆ Kn that satisfy e(G \KΠ) 6 n2

(r logn)2 . We

have

|FΠ| 6
n2/(r logn)2∑

t=0

((n
2

)
t

)
· 2e(KΠ) 6

(
n2
) n2

(r log n)2 · 2e(KΠ) 6 2
e(KΠ)+ 4n2

r2 log n .

Since |Pu| 6 rn 6 22n logn, Fact 6.4 gives

|F| 6
∑

Π∈Pu

|FΠ| 6 2
ex(n,Kr+1)− n2

16r2 + 4n2

r2 log n
+n+2n logn

6 2ex(n,Kr+1)−n,

provided that n is sufficiently large. �

Let Colr(n) denote the family of all r-partite subgraphs of Kn. Even though some

graphs in Colr(n) admit many different proper r-colourings, our next lemma, which is

implicit in the work of Prömel and Steger [37], shows that the average number of proper

r-colourings of a graph in Colr(n) is only slightly larger than one. Our proof of the

lemma is an adaptation of the argument underlying the proof of [8, Proposition 5.5].
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Lemma 6.6. The following holds for all sufficiently large n and all r satisfying 2 6 r 6
log n. Denoting by P the family of all r-partitions of JnK, we have∑

Π∈P
2e(KΠ) 6

(
1 + 2−

n
5r4

)
· |Colr(n)|.

Proof. Denote by Pb the family of all balanced r-partitions of JnK and let Pu = P \ Pb.
Since |Pu| 6 rn 6 22n logn, Fact 6.4 gives∑

Π∈Pu

2e(KΠ) 6 2ex(n,Kr+1)− n2

16r2 +n+2n logn 6 2ex(n,Kr+1)−n,

provided that n is sufficiently large. (This bound is also a consequence of Lemma 6.5.)

As ex(n,Kr+1) is the (largest) number of edges of an n-vertex r-colourable graph, we

have ∑
Π∈Pu

2e(KΠ) 6 2−n · |Colr(n)|.

Since, for every pair Π,Π′ ∈ P, there are exactly 2e(KΠ∩KΠ′ ) subgraphs of Kn that are

properly r-coloured by both Π and Π′, Bonferroni’s inequality (the inclusion-exclusion

principle) gives

|Colr(n)| >
∑

Π∈Pb

2e(KΠ) −
∑

{Π,Π′}∈(Pb2 )

2e(KΠ∩KΠ′ ).

The claimed inequality will thus follow once we establish the following claim.

Claim 6.7. For every Π ∈ Pb,∑
Π′∈Pb\{Π}

2e(KΠ∩KΠ′ ) 6 2e(KΠ)− n
4r4 .

Fix distinct Π,Π′ ∈ Pb. Suppose that Π = {P1, . . . , Pr} and Π′ = {P ′1, . . . , P ′r} and,

for all i, j ∈ JrK, let Pi,j = Pi ∩ P ′j . We will say that the vertices in Pi,j are moved

from Pi to P ′j . For every i ∈ JrK, define Li and Si as the largest and the second largest

subclasses of Pi, respectively (with ties broken arbitrarily). Note that |Pi| > n
2r implies

that |Li| > n
2r2 . Set s = maxj∈JrK |Sj | and let S = Sj for the smallest j for which the

maximum in the definition of s is achieved. Note that 1 6 s 6 n/2, as s = 0 would

imply that (P ′1, . . . , P
′
r) is a permutation of (P1, . . . , Pr), and therefore Π = Π′.

By the pigeonhole principle, either some pair {Li, Lj} of largest subclasses or some

largest subclass Li and S, where S * Pi, are moved to the same vertex class P ′k. Since

P ′k is an independent set in KΠ′ , it follows that KΠ ∩KΠ′ has no edges between the sets

Li and Lj or Li and S. Since,

min{|Li| · |Lj |, |Li| · |S|} > min

{( n

2r2

)2
,
n

2r2
· s
}
>

sn

2r4
,

we have e(KΠ ∩KΠ′) 6 e(KΠ)− sn
2r4 .

Observe that, given a Π ∈ P, we can describe any Π′ ∈ P \ {Π} by first picking the

(ordered) partitions (Pi,j)j∈JrK for every i and then setting P ′j =
⋃
i∈JrK Pi,j . We claim

that, for every s, the number of ways to choose all Pi,j in such a way that maxi∈JrK |Si| = s

is at most nr
2 · nsr2

. Indeed, one may first specify the sequence
(
|Pi,j |

)
i,j∈JrK and then

specify, for each i ∈ JrK, the elements of each Pi,j with j ∈ JrK, apart from Li (which

will comprise all the remaining, unspecified elements of Pi).
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We may thus conclude that∑
Π′∈Pb\{Π}

2e(KΠ∩KΠ′ ) 6
∑
s>1

n(s+1)r2 · 2e(KΠ)− sn
2r4

6 2e(KΠ) ·
∑
s>1

24sr2 logn− sn
2r4 6 2e(KΠ)− n

4r4 ,

as claimed. �

6.5. The number of Kr+1-free graphs with a monochromatic star. The following

lemma will be used to bound from above the number of Kr+1-free graphs whose optimal

r-partition induces a monochromatic copy of K1,D in one of the parts.

Lemma 6.8. Let D be an integer satisfying D > 2rr. Suppose that Π is an r-partition

of JnK and that S is a copy of K1,D with V (K1,D) ⊆ P for some P ∈ Π. If v ∈ P is the

centre vertex of S, then∣∣{G ⊆ KΠ : G ∪ S + Kr+1 and degG(v,Q) > D for all Q ∈ Π \ {P}
}∣∣ 6 2e(KΠ)−D2

8r2 .

Proof. Let G be a uniformly chosen random subgraph of KΠ. Expose G on all the edges

of KΠ that have an endpoint in P and condition on degG(v,Q) > D for all Q ∈ Π\{P}.

It suffices to show that, for every such conditioning, Pr(G ∪ S + Kr+1) 6 2−
D2

8r2 . For

each Q ∈ Π \ {P}, choose an arbitrary set of D neighbours of v in Q and let K be the

family of all Dr copies of Kr in KΠ whose vertices belong to the chosen D-element sets

or to V (K1,D) \ {v} ⊆ P . Since, under our conditioning, v is adjacent (in G ∪ S) to all

the vertices of each K ∈ K, we have Pr(G ∪ S + Kr+1) 6 Pr(K * G for all K ∈ K).

We may bound the latter probability from above using Janson’s inequality. Define, as

in the statement of Theorem 5.2,

µ =
∑
K∈K

(
1

2

)e(K)

and ∆ =
∑

{K,K′}∈(K2)
E(K)∩E(K′)6=∅

(
1

2

)e(K∪K′)
.

Observe that the function {2, . . . , r} 3 ` 7→ D` · 2−(`
2) is increasing. Indeed, our assump-

tion implies that, for each ` 6 r − 1, we have D · 2(`
2)−(`+1

2 ) > D · 2−r > 1. It follows

that

µ

2
=
Dr

2
·
(

1

2

)(r2)
>
D2

4
.

We now estimate ∆. To this end, fix some K ∈ K and observe that, for each k ∈
{2, . . . , r − 1}, there are at most

(
r
k

)
·Dr−k many K ′ ∈ K that share exactly k vertices

with K and that e(K ∪K ′) = 2
(
r
2

)
−
(
k
2

)
for each such K ′. We conclude that

2∆ 6 µ ·
r−1∑
k=2

(
r

k

)
·Dr−k ·

(
1

2

)(r2)−(k2)
6 µ2 ·

r−1∑
k=2

2(k2)rk

Dk
.

Our assumption implies that, for every k ∈ {2, . . . , r − 2},

2(k+1
2 )rk+1

Dk+1
=

2kr

D
· 2(k2)rk

Dk
6

1

2
· 2(k2)rk

Dk
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and hence,

2∆

µ2
6 2 · 2r2

D2
.

We conclude that

Pr(G ∪ S * Kr+1) 6 exp

(
−min

{
µ

2
,
µ2

4∆

})
6 exp

(
−D

2

8r2

)
,

as claimed. �

6.6. The number of Kr+1-free graphs with a monochromatic matching. The

following lemma will be used to bound from above the number of Kr+1-free graphs

whose optimal r-partition induces a monochromatic matching with a given number of

edges in one of the parts.

Lemma 6.9. Suppose that Π is a balanced r-partition of JnK and that M is a matching

with m edges such that V (M) ⊆ P for some P ∈ Π. If r2 · 2r+3 6 n, then∣∣{G ⊆ KΠ : G ∪M + Kr+1

}∣∣ 6 2e(KΠ)− mn
210r4 .

Proof. Let G be a uniformly chosen random subgraph of KΠ, so that the assertion of

the lemma becomes equivalent to the inequality Pr(G ∪ M + Kr+1) 6 2−
mn

210r4 . Let

N =
∏
Q∈Π\{P} |Q| and note that the assumption that Π is balanced implies that N >(

n
2r

)r−1
. Denote by K−r+1 the graph obtained from Kr+1 by removing from it a single

edge and let K be the collection of all copies of K−r+1 in KΠ that form a Kr+1 with an edge

of M . Note that |K| = mN and that Pr(G ∪M + Kr+1) = Pr(K * G for all K ∈ K).

We may thus bound this probability from above using Janson’s inequality. Define, as in

the statement of Theorem 5.2,

µ =
∑
K∈K

(
1

2

)e(K)

and ∆ =
∑

{K,K′}∈(K2)
E(K)∩E(K′)6=∅

(
1

2

)e(K∪K′)
.

Observe that the function {2, . . . , r} 3 ` 7→
(
n
2r

)`−1 · 2−(`+1
2 ) is increasing. Indeed, our

assumption on r implies that, for each ` 6 r − 1, we have n
2r · 2

(`
2)−(`+1

2 ) > n
2r · 2

−r > 1.

It follows that

µ

2
=
mN

2
·
(

1

2

)(r+1
2 )−1

> m ·
( n

2r

)r−1
·
(

1

2

)(r+1
2 )
>
mn

16r
.

We now estimate ∆. To this end, fix some K ∈ K and observe that:

(a) For each k ∈ {1, . . . , r − 2}, there are at most
(
r−1
k

)
· N ·

(
n
2r

)−k
many K ′ ∈ K

that share with K the two vertices in P and exactly k other vertices; we have

e(K ∪K ′) = 2
(
r+1

2

)
−
(
k+2

2

)
− 1 for each such K ′.

(b) For each k ∈ {2, . . . , r− 1}, there are at most m ·
(
r−1
k

)
·N ·

(
n
2r

)−k
many K ′ ∈ K

that share with K only some k vertices outside of P ; we have e(K ∪ K ′) =

2
(
r+1

2

)
−
(
k
2

)
− 2 for each such K ′.
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We conclude that

2∆

µ2
6

1

m
·
r−2∑
k=1

(
r − 1

k

)
·
( n

2r

)−k
· 2(k+2

2 )−1 +

r−1∑
k=2

(
r − 1

k

)
·
( n

2r

)−k
· 2(k2)

6
1

m
·
r−2∑
k=1

(2r2)k · 2(k+2
2 )−1

nk
+

r−1∑
k=2

(2r2)k · 2(k2)

nk

6
8r2

mn
+

r∑
k=2

(2r2)k · 2(k+2
2 )

nk
.

Our assumption on r implies that, for every k ∈ {2, . . . , r − 1},

(2r2)k+12(k+3
2 )

nk+1
=
r22k+3

n
· (2r2)k2(k+2

2 )

nk
6

1

2
· (2r2)k2(k+2

2 )

nk

and hence, as m 6 n/2 and r > 2,

2∆

µ2
6

8r2

mn
+ 2 · 4r4 · 26

n2
6

258r4

mn
.

We conclude that

Pr(G ∪M * Kr+1) 6 exp

(
−min

{
µ

2
,
µ2

4∆

})
6 exp

(
− mn

210r4

)
,

as claimed. �

6.7. Proof of Theorem 1.2. Suppose that positive integers n and r satisfy 2 6 r 6
log n/(121 log log n) and let Colr(n) and F denote the families of all r-partite and all

Kr+1-free subgraphs of Kn, respectively. Since Colr(n) ⊆ F , it suffices to show that

|F \ Colr(n)| 6 2
− n

(10r)4 · |Colr(n)|. (32)

Let δ = (8 log n)−15 and let P be the family of all r-partitions of JnK. Define, for every

graph G ∈ F ,

t(G) = min{e(G \KΠ) : Π ∈ P}
and let

Fclose = {G ∈ F : 1 6 t(G) 6 δn2} and Ffar = {G ∈ F : t(G) > δn2},

so that Fclose ∪ Ffar = F \ Colr(n). Furthermore, for every G ∈ Fclose, let Π(G) be

an arbitrary r-partition that achieves the minimum in the definition of t(G). Let Fbclose

comprise these G in Fclose for which Π(G) is a balanced partition and let Fuclose =

Fclose \ F bclose. Finally, for every balanced partition Π ∈ P and every integer t satisfying

1 6 t 6 δn2, define

Ft,Π = {G ∈ Fbclose : t(G) = t and Π(G) = Π}.

Letting Pb denote the set of balanced r-partitions of JnK, we thus have

|F \ Colr(n)| 6 |Ffar|+ |Fuclose|+
∑

Π∈Pb

δn2∑
t=1

|Ft,Π|. (33)

It follows from Theorem 6.2 and Lemma 6.5 that the first and the second terms in the

right-hand side of (33) are at most 2ex(n,Kr+1)−n each. To bound the final term, we shall

derive the following estimate.
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Claim 6.10. For every integer t satisfying 1 6 t 6 δn2 and each Π ∈ Pb,

|Ft,Π| 6 2
e(KΠ)− n

(8r)4
−t
.

Let us first argue that inequality (33) and Claim 6.10 imply (32). Indeed, assuming

Claim 6.10, we have

|F \ Colr(n)| 6 2 · 2ex(n,Kr+1)−n +
∑

Π∈Pb

δn2∑
t=1

2
e(KΠ)− n

(8r)4
−t

6 2ex(n,Kr+1)−n+1 + 2
− n

(8r)r ·
∑
Π∈P

2e(KΠ).

Finally, since |Colr(n)| > 2ex(n,Kr+1) and
∑

Π∈P 2e(KΠ) 6 2|Colr(n)|, by Lemma 6.6, we

conclude that

|F \ Colr(n)| 6
(

2−n+1 + 2
− n

(8r)4
+1
)
· |Colr(n)|,

which yields (32). It thus suffices to prove Claim 6.10.

Proof of Claim 6.10. Let D =
⌊

n
214r5 logn

⌋
and define

FSt,Π =
{
G ∈ Ft,Π : G[P ] ⊇ K1,D for some P ∈ Π

}
,

FMt,Π =
{
G ∈ Ft,Π : G[P ] has a matching of size dt/(Dr)e for some P ∈ Π

}
.

Since every graph with t edges contains either a vertex with degree at least D or a

matching with at least t/D edges, we have Ft,Π = FSt,Π ∪FMt,Π and we may bound |Ft,Π|
from above in two steps.

First, we claim that if G ∈ FSt,Π and v ∈ P ∈ Π is the centre vertex of a copy of K1,D

in G[P ], then degG(v,Q) > D for all Q ∈ Π. Indeed, if this were not true, then moving

v from P to Q would yield a partition Π′ such that

e(G \KΠ′) = e(G \KΠ) + degG(v,Q)− degG(v, P ) < e(G \KΠ),

which would contradict our assumption that Π = Π(G). It thus follows from Lemma 6.8

(which we may apply as D > n1/2 > 2rr when n is sufficiently large) that

|FSt,Π| 6
(
n2
)t · 2e(KΠ)−D2

8r2 6 2e(KΠ)−D2

8r2 +4t logn 6 2e(KΠ)−n−t,

where the last inequality holds because, by our choice of δ and D,

D2

8r2
>

n2

232r12(log n)2
>

n2

(8 log n)14
> 8δn2 log n > 4t log n+ n+ t.

Second, it follows from Lemma 6.9 that

|FMt,Π| 6
(
n2
)t · 2e(KΠ)− dt/(Dr)en

210r4 6 2e(KΠ)− dt/(Dr)en
210r4 +4t logn 6 2e(KΠ)− n

211r4−t,

where the last inequality holds because

dt/(Dr)en
210r4

− 4t log n− t > min
τ∈{1,2,... }

{ τn

210r4
− τDr · (4 log n+ 1)

}
>

n

211r4
,

as the definition of D assures that n > 214Dr5 log n. Since |Ft,Π| 6 |FSt,Π| + |FMt,Π|,
combining the two bounds above gives the assertion of the claim. �
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7. Lower bounds for ε-nets

7.1. Outline. Our (randomised) construction of planar point sets X without a small

ε-net for the range space of lines on X is a slight simplification of the construction of

Balogh and Solymosi [9]. The high-level idea of both constructions, which can be traced

back to the work of Alon [1], may be summarised as follows. We find an integer s, a

finite set X ⊆ R2, and a sub-collection L of all lines in R2 with the following property:

Let H be the s-uniform hypergraph with vertex set X whose edges are all intersections

of the lines in L with X that have exactly s points. The independence number of H is

at most (1− c)|X|, for some constant c > 0.

Given such s, X, and L, we set ε = s/|X| and observe that the complement of every ε-

net N for the range space of lines on X is an independent set of H. Indeed, every such N

intersects every line that contains at least s points of X; in particular, N must intersect

every line in L that contains exactly s points of X. This means that |N | > c|X| = cs/ε,

which improves upon the trivial bound |N | > Ω(1/ε) if s can be made arbitrarily large.

The challenge is to make s as large as possible, as a function of |X|.
In the construction of Alon [1], the set X is a generic projection of the d-dimensional

grid JsKd to R2 and L is the image of all combinatorial lines in JsKd via this projection;

the key property is guaranteed, for large enough d, by the density version of the Hales–

Jewett theorem proved by Furstenberg and Katznelson [24]. In Balogh and Solymosi’s [9]

construction, X was a generic projection of a random subset of a larger, high-dimensional

integer grid, trimmed appropriately (so that each line in L contains no more than s points

of X), and the key property of H was established, for a careful choice of L, with the use

of the hypergraph container theorem of Saxton and Thomason [42]. Here, we take X

to be a random subset of JnK2, trimmed appropriately (as in [9]), and establish the key

property ofH, for a careful choice of L, using our efficient container lemma, Theorem 1.6.

7.2. Proof of Theorem 1.3. Let s be a positive integer, let m = 10s, and let M be a

prime number satisfying mm2−1 6M 6 2mm2−1. Set n = mM , so that

n > mm2
and m >

√
log n

log log n
. (34)

We shall find an ε ∈ (0, 1/n) and a set X ⊆ R2 without a small ε-net among the subsets

of the integer grid JnK2, which we shall from now on denote by P . We will be able to

prove the claimed lower bound on the smallest size of an ε-net of X for the range space

of all lines in R2 by considering only a fairly small family L of lines that we now specify.

Given an integer h ∈ JM − 1K and a point (x0, y0) ∈ JnK× JMK, we let `(x0, y0;h) be

the line passing through (x0, y0) whose slope is M/h, that is,

`(x0, y0;h) =
{

(x0, y0) + t · (h,M) : t ∈ R
}
.

Since M is prime, and thus co-prime with h, the vector t · (h,M) has integer coordinates

if and only if t ∈ Z. Moreover, if t is an integer, then y0 + tM ∈ JnK if and only

if t ∈ {0, . . . ,m − 1}. In particular, `(x0, y0;h) intersects P in at most m points; it

intersects P in exactly m points if and only if x0 + (m − 1)h 6 n. Now, for every

h ∈ JM − 1K, let

Lh =
{
`(x0, y0;h) : (x0, y0) ∈ JnK× JMK and x0 + (m− 1)h 6 n

}
,
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so that every line in Lh intersects P in exactly m points. Since the lines in Lh are

pairwise disjoint (as they are parallel), we have∣∣∣(⋃Lh) ∩ P ∣∣∣ = m · |Lh| = m ·
(
n− (m− 1)h

)
·M = n2 ·

(
1− (m− 1)h

n

)
.

Let hmax = bn/(10m)c so that
⋃
Lh has at least 9n2/10 points of P for every h ∈ JhmaxK.

Finally, define

L =

hmax⋃
h=1

Lh

and note that

n3

12m2
6

9n2

10m
· hmax 6 |L ∩ P | 6

n2

m
· hmax 6

n3

10m2
. (35)

We shall say that a set A ⊆ P is L-collinear if A is contained in some line in L.

As every line in L contains exactly m points of P , the number of a-element L-collinear

subsets of P is precisely |L| ·
(
m
a

)
for every a ∈ {2, . . . ,m}.

Suppose that p satisfies

K ·m10 · n−1/(s−1) · log n 6 p 6 m−1 · n−1/s (36)

for some large absolute constant K; such a number does indeed exist as

n1/(s−1)−1/s > n1/s2 > mm2/s2 = m100 > K ·m10 · log n,

provided that m is sufficiently large. Let R be a p-random subset of P and let X ⊆ R be

a largest subset of R that contains no L-collinear subset of s+ 1 points. By maximality

of X, every point of R \X forms an L-collinear (s+ 1)-element set with some s points

of X. In particular, |R \X| is at most the number of L-collinear (s+ 1)-element subsets

of R. It follows that

E
[
|R \X|

]
6 |L| ·

(
m

s+ 1

)
· ps+1 6

n3

10m2
·ms+1 · ps+1 6

n2p

10m
,

by the second inequality in (36), and consequently, by Markov’s inequality,

Pr
(
|R \X| > n2p/10

)
6

E
[
|R \X|

]
n2p/10

6
1

m
6

1

10
.

On the other hand, standard estimates for lower tails of binomial distributions (Lemma 5.1)

yield

Pr
(
|R| 6 9n2p/10

)
6 exp

(
−n2p/200

)
6 exp(−n/200).

It follows that

Pr
(
|X| > 4n2p/5

)
> 4/5,

provided that n is sufficiently large.

Claim 7.1. With probability at least 1/2, every set I ⊆ R with |I| > 3n2p/5 contains

an L-collinear subset of s points.

Together with the above calculations, Claim 7.1 implies that there exists a set X ⊆ P
of at least 4n2p/5 points that has the following two properties:

(a) X has no L-collinear subset with s+ 1 elements;

(b) every set of 3n2p/5 elements of X contains an L-collinear s-element subset.
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Suppose that X is such a set, let ε = s/|X|, and assume that N ⊆ X is an ε-net for the

range space of lines. In particular, N intersects every L-collinear subset of X that has

at least s = ε|X| elements. Since X contains no L-collinear set with more than s points,

X \N contains no L-collinear subset of s points, and thus

|N | = |X| − |X \N | > |X| − 3n2p/5 > |X|/4 = s/(4ε).

Finally, since 1/ε = |X|/s 6 |P | = n2, we have, using (34),

s

4
=
m

40
>

1

40
·

√
log n

log logn
>

1

80
·

√
log(1/ε)

log log(1/ε)
.

This gives the assertion of the theorem.

We now prove Claim 7.1. Let H be the s-uniform hypergraph with vertex set P whose

edges are all L-collinear s-element subsets of P . The assertion of the claim is that, with

probability at least 1/2, the random set R contains no independent set of H that has at

least 3n2p/5 elements. This is a simple consequence of the following lemma, which lies

at the heart of the matter.

Lemma 7.2. There is a family C of at most exp(pn2/300) containers for the independent

sets of H such that |C| 6 n2/2 for every C ∈ C.

We first show how Lemma 7.2 implies the assertion of Claim 7.1. Let C be a family of

containers for the independent sets of H supplied by the lemma and let B be the event

that R contains an independent set of H with at least 3n2p/5 elements. Since every

independent set of H is contained in some member of C, each of which has at most n2/2

elements, we have

Pr(B) 6
∑
C∈C

Pr
(
|R ∩ C| > 3n2p/5

)
6 |C| · Pr

(
Bin(n2/2, p) > 3n2p/5

)
.

Standard estimates for upper tails of binomial distributions (Lemma 5.1) yield

Pr
(
Bin(n2/2, p) > 3n2p/5

)
6 exp

(
−n2p/150

)
and, consequently,

Pr(B) 6 |C| · exp
(
−n2p/150

)
6 exp

(
−n2p/300

)
6 exp(−n/300) 6 1/2,

provided that n is sufficiently large.

Finally, we prove Lemma 7.2 by combining our ‘packaged’ hypergraph container

lemma, Theorem 1.6, with the following supersaturation statement for the hypergraph

H of L-collinear s-tuples.

Lemma 7.3. If Q ⊆ P has at least n2/3 points, then e
(
H[Q]

)
> |L|.

Proof. Define bs : R→ R by

bs(x) =

{(
x
s

)
if x > s− 1,

0 if x 6 s− 1,

so that bs is convex and bs(a) =
(
a
s

)
whenever a is a nonnegative integer. Jensen’s

inequality gives

e
(
H[Q]

)
=
∑
`∈L

(
|` ∩Q|
s

)
=
∑
`∈L

bs
(
|` ∩Q|

)
> |L| · bs

(
1

|L|
·
∑
`∈L
|` ∩Q|

)
.
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Recall that, for every h ∈ JhmaxK, the lines in Lh cover all but at most n2/10 points of

P . In particular, for every such h,∑
`∈Lh

|` ∩Q| > |Q| − n2

10
>
n2

5

and thus

1

|L|
·
∑
`∈L
|` ∩Q| = 1

|L|
·
hmax∑
h=1

∑
`∈Lh

|` ∩Q| > hmax

|L|
· n

2

5
>
m

5
.

Consequently,

e
(
H[Q]

)
> |L| · bs

(
m/5

)
= |L| ·

(
m/5

s

)
> |L|,

as claimed. �

Proof of Lemma 7.2. Set

q =
p

300m5 log n
and E = |L|.

We now verify that we may apply Theorem 1.6, with α ← 1/2 and β ← 1/3, to the

hypergraph H. First, we have

αβq · v(H) =
pn2

1800m5 log n
> 109s7 and 104s5q =

104s5p

300m5 log n
6

1

log n
6 β,

provided that n is sufficiently large. Second, for every t ∈ {2, . . . , s}, by (35) and (36),

( q

106s5

)t−1
· E

v(H)
=

(
p

3 · 108s5m5 log n

)t−1

· |L|
n2
>

(
K ·m5 · n−1/(s−1)

3 · 108s5

)s−1

· n

12m2

=

(
K

3 · 103

)s−1

· 1

12m2
> 2m >

(
m− t
s− t

)
= ∆t(H),

provided that K is sufficiently large. The theorem supplies a collection C of containers

for the independent sets of H such that

|C| 6 exp
(
104s5β−1 log(e/α) · q log(e/q) · v(H)

)
6 exp

(
m5 · q log n · n2

)
6 exp

(
pn2/300

)
,

where we used the inequality q > e/n, which holds if K is sufficiently large, and, for

every C ∈ C, either |C| 6 α · v(H) = n2/2 or there is a subset W ⊆ C with |W | >
(1 − β)|C| = 2|C|/3 such that e(H[W ]) < E = |L|. We claim that, in fact, |C| 6 n2/2

for every C ∈ C. Indeed, if |C| > n2/2 and W ⊆ C satisfies |W | > 2|C|/3 > n2/3, then

e(H[W ]) > |L|, by Lemma 7.3. �

8. Upper bounds on Ramsey numbers

In this section, we derive the upper bounds on Folkman numbers and on induced

Ramsey numbers stated in Theorems 1.4 and 1.5. We shall do this by building containers

for non-Ramsey colourings of subgraphs of a large complete graph KN and examining

how a random subgraph of KN , drawn with an appropriately chosen distribution for

each of the two theorems, intersects these containers. This approach to studying Ramsey

properties of random graphs was introduced in the work of Nenadov and Steger [34]. The
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only Ramsey-theoretic ingredient in our proof is the following supersaturated version of

Ramsey’s theorem, which is a refinement of [34, Corollary 2.2].

Lemma 8.1. Suppose that n and k are positive integers and let R = R(n; k). If N > R,

then every colouring c : E(KN ) → Jk + 1K either assigns the colour k + 1 to at least

(1/2) · (N/R)2 edges or it contains at least (1/2) · (N/R)n monochromatic copies of Kn

in colours 1, . . . , k.

Proof. The choice of R guarantees that the edge-colouring induced by every subset of R

vertices of KN contains either an edge coloured k + 1 or a monochromatic copy of Kn

in one of the remaining k colours. On the other hand, each edge and each copy of Kn

are contained in, respectively,
(
N−2
R−2

)
and

(
N−n
R−n

)
such subsets. Denoting by M the total

number of monochromatic copies of Kn in colours 1, . . . , k, we thus have(
N

R

)
6
∣∣c−1(k + 1)

∣∣ · (N − 2

R− 2

)
+M ·

(
N − n
R− n

)
. (37)

In particular, since, for every ` ∈ {2, n},(
N

R

)
·
(
N − `
R− `

)−1

=

(
N

`

)
·
(
R

`

)−1

>

(
N

R

)`
inequality (37) implies that either |c−1(k+1)| > (1/2)·(N/R)2 orM > (1/2)·(N/R)n. �

8.1. Folkman numbers (proof of Theorem 1.4). Let k and n be positive integers,

let R = R(n; k) and suppose that an integer N satisfies

N > (ΓknR)21n2
(38)

for some large constant Γ. We shall give a randomised construction of a Kn+1-free

subgraph of KN that satisfies G → (Kn)k, proving that F (n; k) 6 N . We shall from

now on assume that k > 2 and n > 3, as otherwise the assertion of the theorem is trivial.

Suppose that G ⊆ KN . We shall identify a k-colouring c : E(G) → JkK of the edges

of G with the set {
(e, ce) : e ∈ E(G)

}
⊆ E(KN )× JkK.

Let H be the hypergraph with vertex set E(KN ) × JkK whose edges are all sets of the

form

ϕ
(
E(Kn)

)
× {i},

where ϕ : V (Kn) → V (KN ) is an arbitrary injection and i ∈ JkK. If a graph G ⊆ KN

admits a colouring c : E(G) → JkK with no monochromatic copy of Kn, then c, when

viewed as a subset of E(KN )× JkK, is an independent set of H.

We shall say that a graph G ⊆ E(KN ) is compatible with a set C ⊆ E(KN ) × JkK
if there exists a colouring c : E(G) → JkK that is contained in C. Equivalently, G is

compatible with C if and only if
(
{e}× JkK

)
∩C 6= ∅ for every e ∈ E(G). In other words,

defining

X(C) =
{
e ∈ E(KN ) :

(
e× JkK

)
∩ C = ∅

}
,

G is compatible with C if and only if X(C) ∩ E(G) = ∅.
Suppose that p satisfies

D · (knR)20 ·N−2/(n+1) logN 6 p 6
N−2/(n+2)

DR
(39)
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for some large constant D; such a number does indeed exist as (38) implies that

N2/(n+1)−2/(n+2)

logN
> N1/n2

> D2 · (knR)21,

provided that Γ is sufficiently large. The following lemma is key.

Lemma 8.2. There is a family C of at most exp
(

pN2

256R2

)
containers for the independent

sets of H such that |X(C)| >
(
N
4R

)2
for every C ∈ C.

We first show how Lemma 8.2 implies the assertion of the theorem. To this end,

suppose that G ∼ GN,p and denote by Z the number of copies of Kn+1 in G. The upper

bound in (39) implies that

E[Z] 6 p(
n+1

2 )Nn+1 = pN2 ·
(
p(n+2)/2N

)n−1
6

pN2

(DR)(n+2)(n−1)/2
6

pN2

64R2
,

provided that D is sufficiently large. Let G′ be the subgraph obtained from G by

deleting an arbitrary edge from every copy of Kn+1; observe that Kn+1 * G′ and

e(G′) > e(G)− Z.

Suppose that G′ 6→ (Kn)k. This means that there is a colouring c : E(G′)→ JkK that is

an independent set of H. Therefore, G′ must be compatible with some container from C.
In other words, there is some C ∈ C such that X(C) ∩ E(G′) = ∅ and, consequently,

|X(C) ∩ E(G)| 6 e(G)− e(G′) 6 Z.

We may conclude that

Pr
(
G′ 6→ (Kn)k

)
6 Pr

(
Z > 2E[Z]

)
+
∑
C∈C

Pr
(
|X(C) ∩ E(G)| 6 2E[Z]

)
. (40)

Fix an arbitrary C ∈ C. Since |X(C)| > N2

16R2 , standard estimates on the lower tails

of binomial distributions (Lemma 5.1) yield

Pr
(
|X(C) ∩ E(G)| 6 2E[Z]

)
6 Pr

(
Bin

(
N2

16R2
, p

)
6

pN2

32R2

)
6 exp

(
− pN2

128R2

)
.

Substituting this estimate and the inequality Pr(Z > 2E[Z]) < 1/2 into (40) yields

Pr
(
G′ 6→ (Kn)k

)
6

1

2
+ exp

(
− pN2

256R2

)
6

1

2
+ e−N 6

3

4
.

In particular, there is a graph G′ ⊆ KN such that G′ + Kn+1 and G′ → (Kn)k, as

claimed.

Proof of Lemma 8.2. Set

s =

(
n

2

)
, q =

p

(10knR)10 logN
, β =

1

16kR2
, and E =

(
N

2R

)n
.

We now verify that we may apply Theorem 1.6, with α ← 1
2k , to the hypergraph H.

First, as s 6 n2, we have, by (38) and (39),

αβq · v(H) >
D · (knR)10 ·N−2/(n+1)

1010
·
(
N

2

)
> N > (Γn)21 > 109s7

and

104s5q 6 104s5 ·N−2/(n+2) 6
104n10

(knR)21n
6

1

16kR2
= β,
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provided that n is sufficiently large. Second, suppose that t ∈ {2, . . . , s} and let ` ∈
{3, . . . , n} be the unique integer satisfying

(
`−1

2

)
< t 6

(
`
2

)
, so that

t− 1 6

(
`

2

)
− 1 =

(`+ 1)(`− 2)

2
6

(n+ 1)(`− 2)

2
.

Since a graph with t edges must have at least ` vertices, we have

∆t(H) = k ·
(
N − `
n− `

)
6 kNn−`

and, consequently,( q

106s5

)t−1
· E

v(H)
· 1

∆t(H)
>
( q

106s5

) (n+1)(`−2)
2 ·

(
N/(2R)

)n
kN2

· 1

kNn−`

>

(
p

1016n20(kR)10 logN

) (n+1)(`−2)
2

· N `−2

k2(2R)n

>

(
pN2/(n+1)

(10knR)20 logN

) (n+1)(`−2)
2

> 1,

where the last inequality follows from (39). The theorem supplies a collection C of

containers for the independent sets of H satisfying

|C| 6 exp
(
104s5β−1 log(e/α) · q log(e/q) · v(H)

)
(41)

such that, for every C ∈ C, either |C| 6 α · v(H) or there is a subset W ⊆ C with

|W | > (1 − β)|C| > |C| − βk
(
N
2

)
and e(H[W ]) < E. We now turn to bounding the

right-hand side of (41) from above. To this end, observe first that v(H) = k
(
N
2

)
6 kN2

and that s5β−1 log(e/α) 6 n10R2k log(2ek). Further, it follows from (39) that, if D is

sufficiently large,
e

q
=
e(10knR)10 logN

p
6 N2/(n+1) 6 N

and thus q log(e/q) 6 p/(10knR)10. Substituting these three estimates into (41) yields

|C| 6 exp

(
104 · n10R2k log(2ek) · p

(10knR)10
· kN2

)
6 exp

(
pN2

256R2

)
,

as desired.

It remains to show that |X(C)| >
(
N
4R

)2
for every C ∈ C. Suppose that this were not

true. If |C| 6 αv(H) = k
2k

(
N
2

)
= 1

2

(
N
2

)
, then

|X(C)| >
(
N

2

)
− |C| > 1

2

(
N

2

)
>

(
N

4R

)2

,

so we may assume that |C| > αv(H). In particular, there must be a subset W ⊆ C with

|C \W | 6 βk
(
N
2

)
such that e(H[W ]) < E. Observe that

|X(W )| 6 |X(C)|+ |C \W | 6
(
N

4R

)2

+ βk

(
N

2

)
6

N2

8R2
(42)

and let c : E(KN ) → Jk + 1K be an arbitrary colouring such that (e, ce) ∈ W for every

e /∈ X(W ) and ce = k + 1 otherwise. By Lemma 8.1, either |X(W )| = |c−1(k + 1)| >
(1/2) ·(N/R)2 or the colouring c has at least (1/2) ·(N/R)n monochromatic copies of Kn

in colours 1, . . . , k. However, the former inequality contradicts (42) and thus the latter



AN EFFICIENT CONTAINER LEMMA 47

must hold. Finally, note that, if K is an arbitrary copy of Kn in KN that c colours with

some i ∈ JkK, then E(K)× {i} ⊆W . This implies that e(H[W ]) > (1/2) · (N/R)n > E,

contradicting our assumption. �

8.2. Induced Ramsey numbers (proof of Theorem 1.5). Let k be a positive inte-

ger, let H be an arbitrary n-vertex graph, let R = R(n; k), and suppose that an integer

N satisfies

N > (10n2kR)7n. (43)

We shall prove that, with probability very close to one, the uniformly chosen random

subgraph of KN is induced-Ramsey for H in k colours, proving that Rind(H; k) 6 N .

We shall from now on assume that k > 2 and n > 3, as otherwise the assertion of the

theorem is trivial.

Suppose that G ⊆ KN . We shall identify a k-colouring c : E(G) → JkK of the edges

of G with the set{
(e, ce) : e ∈ E(G)

}
∪
{

(e, 0) : e ∈ E(KN ) \ E(G)
}
⊆ E(KN )× {0, . . . , k}.

(That is, we extend c to a colouring of E(KN ) by colouring all edges of KN \ G zero.)

Let H be the hypergraph with vertex set E(KN )×{0, . . . , k} whose edges are all sets of

the form (
ϕ
(
E(H)

)
× {i}

)
∪
(
ϕ
(
E(Kn) \ E(H)

)
× {0}

)
,

where ϕ : V (H) → V (KN ) is an arbitrary injection and i ∈ JkK. If a graph G ⊆ KN

admits a colouring c : E(G)→ JkK such that c−1(i) does not contain a copy of H that is

induced in G for any i ∈ JkK, then c, when viewed as a subset of E(KN )× {0, . . . , k}, is

an independent set of H.

We shall say that a graph G ⊆ E(KN ) is compatible with a set C ⊆ E(KN ) ×
{0, . . . , k} if there exists a colouring c : E(G)→ JkK that is contained in C. Equivalently,

G is compatible with C if and only if (e, 0) ∈ C for every e ∈ E(KN ) \ E(G) and(
{e} × JkK

)
∩ C 6= ∅ for every e ∈ E(G). In other words, defining

X1(C) =
{
e ∈ E(KN ) : (e, 0) /∈ C

}
and

X2(C) =
{
e ∈ E(KN ) :

(
e× JkK

)
∩ C = ∅

}
,

G is compatible with C if and only if X1(C) ⊆ E(G) and X2(C) ∩ E(G) = ∅. The

following lemma is key.

Lemma 8.3. There is a family C of at most exp
(

N2

100R2

)
containers for the independent

sets of H such that |X1(C) ∪X2(C)| >
(
N
4R

)2
for every C ∈ C.

Assuming that Lemma 8.3 is true, suppose that G ∼ GN,1/2. If G 6→ind (H)k, then G

must be compatible with some container from C. It follows that

Pr
(
G 6→ind (H)k

)
6
∑
C∈C

Pr
(
X1(C) ⊆ E(G) and X2(C) ∩ E(G) = ∅

)
6
∑
C∈C

2−|X1(C)∪X2(C)| 6 |C| · 2−(N/(4R))2

6 exp

(
N2

100R2
− N2 log 2

16R2

)
6 exp (−N) .
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Proof of Lemma 8.3. Set

s =

(
n

2

)
, q =

1

(kR)5
, β =

1

16kR2
, and E =

(
N

2R

)n
.

We now verify that we may apply Theorem 1.6, with α ← 1
3k , to the hypergraph H.

First, as s 6 n2, we have

αβq · v(H) =
1

48(kR)7
· (k + 1)

(
N

2

)
> N > 2n/2 > 109s7

and

104s5q =
104s5

(kR)5
6

104n10

(kR)5
6

104n10

(kR)2 · 2n
6

1

16kR2
= β,

provided that n is sufficiently large. Second, suppose that t ∈ {2, . . . , s} and let ` ∈
{3, . . . , n} be the unique integer satisfying

(
`−1

2

)
< t 6

(
`
2

)
, so that

t− 1 6

(
`

2

)
− 1 =

(`+ 1)(`− 2)

2
6 n(`− 2).

Since a graph with t edges must have at least ` vertices, we have

∆t(H) = k ·
(
N − `
n− `

)
6 kNn−`

and, consequently,( q

106s5

)t−1
· E

v(H)
· 1

∆t(H)
>
( q

106s5

)n(`−2)
·
(
N/(2R)

)n
kN2

· 1

kNn−`

=

(
1

106(skR)5

)n(`−2)

· N `−2

k2(2R)n

>

(
N1/n

107(skR)6

)n(`−2)

> 1,

where the last inequality follows from (43). The theorem supplies a collection C of

containers for the independent sets of H satisfying

|C| 6 exp
(
104s5β−1 log(e/α) · q log(e/q) · v(H)

)
6 exp

(
107n10R2k log k · 5 log (ekR)

(kR)5
· (k + 1)

(
N

2

))
6 exp

(
N2

100R2

)
,

provided that n is sufficiently large, such that, for every C ∈ C, either |C| 6 α · v(H) or

there is a subset W ⊆ C with |W | > (1− β)|C| > |C| − β(k + 1)
(
N
2

)
and e(H[W ]) < E.

It remains to show that |X1(C)∪X2(C)| >
(
N
4R

)2
for every C ∈ C. Suppose that this

were not true and set X(C) = X1(C) ∪X2(C). If |C| 6 αv(H) = k+1
3k

(
N
2

)
6 1

2

(
N
2

)
, then

|X(C)| >
(
N

2

)
− |C| > 1

2

(
N

2

)
>

(
N

4R

)2

,

so we may assume that |C| > αv(H). In particular, there must be a W ⊆ C with

|C \W | 6 β(k + 1)
(
N
2

)
such that e(H[W ]) < E. Observe that

|X(W )| 6 |X(C)|+ |C \W | 6
(
N

4R

)2

+ β(k + 1)

(
N

2

)
6

N2

8R2
(44)
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and let c : E(KN ) → Jk + 1K be an arbitrary colouring such that (e, ce) ∈ W for every

e /∈ X(W ) and ce = k + 1 otherwise. By Lemma 8.1, either |X(W )| = |c−1(k + 1)| >
(1/2) · (N/R)2 or the colouring c has at least (1/2) · (N/R)n monochromatic copies

of Kn in colours 1, . . . , k. However, the former inequality contradicts (44) and thus

the latter must hold. Let K be an arbitrary copy of Kn in KN that c colours with

some i ∈ JkK. Since E(K) ∩ X1(W ) = ∅, then E(K) × {0, i} ⊆ W and, as a result,

any injection ϕ : V (H) → V (K) corresponds to an edge of H[W ]. This implies that

e(H[W ]) > (1/2) · (N/R)n > E, contradicting our assumption. �
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16. P. Erdős, On some problems in graph theory, combinatorial analysis and combinatorial number the-

ory, Graph theory and combinatorics (Cambridge, 1983), Academic Press, London, 1984, pp. 1–17.
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