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Abstract

Let P be a non-trivial hereditary property of graphs and let k be the minimum

chromatic number of a graph that does not belong to P. We prove that, for every

fixed p ∈ (0, 1), the maximum possible number of edges in a subgraph of the random

graph G(n, p) which belongs to P is, with high probability,(
1− 1

k − 1
+ o(1)

)
p

(
n

2

)
.

1 Introduction

Let P be an arbitrary hereditary property of graphs, that is, a family of graphs that is

closed under isomorphism and the operation of taking induced subgraphs. We assume

throughout that P is non-trivial, i.e., it contains all edgeless graphs and misses some

graph. For a graph G, let ex(G,P) denote the maximum number of edges of a subgraph

of G that belongs to P; the above definition of non-triviality guarantees that this number

is well-defined. In this note we determine, for every fixed edge probability p ∈ (0, 1), the

typical asymptotic value of ex(G,P) for the random graph G = G(n, p) as n tends to

infinity. This is stated in the following theorem.

Theorem 1.1. Let P be a non-trivial hereditary property of graphs and let k = k(P) ≥ 2

denote the minimum chromatic number of a graph that does not belong to P. Then, for

every fixed p ∈ (0, 1), the random graph G = G(n, p) satisfies, with high probability:

ex(G,P) =

(
1− 1

k − 1
+ o(1)

)
p

(
n

2

)
,

where the o(1)-term tends to 0 as n tends to infinity.
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In fact, our argument yields the assertion of the theorem under the weaker assumption

that n−c ≤ p = p(n) ≤ 1 − n−c for some positive constant c that depends only on the

property P, see Proposition 2.1 below for the sparse case, the dense case follows in the

same way.

In the statement above and throughout the rest of this note, the term “with high

probability” (whp, for short) means, as usual, with probability tending to 1 as n tends to

infinity.

The assertion of Theorem 1.1 for principal monotone properties (that is, properties

defined by avoiding a single graph) is known in a strong form, and the precise range of

the probability p = p(n) for which it holds has been determined in [5, 7], following a

considerable number of earlier results establishing special cases. There are, however, far

more hereditary properties than monotone ones. A few arbitrarily chosen examples are

perfect graphs, graphs with no induced hole of length 57, graphs containing no set of 10

vertices that span exactly 34 edges, or intersection graphs of discs in the plane.

The (short) proof of the theorem is presented in the next section. The third and final

section contains some concluding remarks and open problems. Throughout the rest of this

note, we systematically omit all floor and ceiling signs.

2 The proof

In this section, we prove Theorem 1.1. Let P be a hereditary property and put k =

k(P) (≥ 2). For the lower bound, note that every graph G contains a (k − 1)-colorable

subgraph with at least (1− 1
k−1)|E(G)| edges. Since every such subgraph belongs to P by

the definition of k = k(P), when G = G(n, p) with1 p ≫ n−2, then the assertion that

ex(G,P) ≥
(
1− 1

k − 1
− o(1)

)
p

(
n

2

)
(1)

holds whp follows from the (standard and easy) fact that |E(G)| is concentrated around

its expectation as long as pn2 tends to infinity.

We now turn to the proof of the upper bound on ex(G,P). We start by observing

that, for every graph G and all L /∈ P, letting FL denote the property of not containing L

as an induced subgraph, we have P ⊆ FL and thus ex(G,P) ≤ ex(G,FL). The following

proposition establishes an optimal upper bound on ex(G,FL) in the case where G is

a sparse binomial random graph. Recall that the 2-density of a nonempty graph L is

defined by

m2(L) = max

{
|E(K)| − 1

|V (K)| − 2
: K ⊆ L with |E(K)| ≥ 2

}
,

when L has at least two edges, and m2(L) = 1/2 when L has only one edge. This notion

is defined so that p ≫ n−1/m2(L) precisely when, for every subgraph K ⊆ L with at

least two edges, the expected number of copies of K in G(n, p) is asymptotically much

1When we write f ≪ g (resp. f ≫ g), we mean f = o(g) (resp. g = o(f)).
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bigger than pn2. In particular, it is not hard to see that the lower-bound assumption

p ≫ n−1/m2(L) is necessary.

Proposition 2.1. Let L be a nonempty graph. If n−1/m2(L) ≪ p = p(n) ≪ 1, then the

random graph G = G(n, p) whp satisfies

ex(G,FL) ≤
(
1− 1

χ(L)− 1
+ o(1)

)
p

(
n

2

)
.

We will derive the proposition from the following “supersaturated” version of the

random analogue of Turán’s theorem in G(n, p) proved by Conlon and Gowers [5] (under

an additional technical assumption on L) and by Schacht [7] (in full generality):

Theorem 2.2 ([5, 7]). For every nonempty graph L and every ε > 0, there exists δ > 0

such that the following holds for every p = p(n) ≫ n−1/m2(L). With high probability, every

subgraph G′ of the random graph G(n, p) with

|E(G′)| ≥
(
1− 1

χ(L)− 1
+ ε

)
p

(
n

2

)
contains at least δn|V (L)|p|E(L)| copies of L.

Remark. Even though the above result is not explicitly stated in either [5] or [7], one

obtains it easily by: (i) using the stronger conclusion of [5, Theorem 9.4] while deriving [5,

Theorem 10.9]; (ii) replacing [7, Theorem 3.3] with its stronger version [7, Lemma 3.4]

in the derivation of [7, Theorem 2.7]. A stronger version of Theorem 2.2, with optimal

dependence of δ on ε and L, is stated and proved in [6, Theorem 1.10].

Proof of Proposition 2.1. It suffices to show that, for every fixed ε > 0, with high proba-

bility, every subgraph G′ ⊆ G with at least (1− 1
χ(L)−1 + ε)p

(
n
2

)
edges contains more (not

necessarily induced) copies of L than the total number of copies of all strict supergraphs

of L (with the same vertex set) in G. (We note that a similar idea was used in [4] to de-

rive upper bounds on induced Ramsey numbers.) On the one hand, Theorem 2.2 implies

that each G′ as above contains at least δn|V (L)|p|E(L)| copies of L. On the other hand, a

simple application of Markov’s inequality gives that, with probability 1−O(
√
p), the total

number of copies of all strict supergraphs of L is at most O(n|V (L)|p|E(L)|+1/2). Since we

assume that p ≪ 1, the latter of the above two quantities is much smaller.

The following statement is a straightforward corollary of the definition of k and Propo-

sition 2.1 invoked with some L /∈ P with χ(L) = k.

Corollary 2.3. For every ε > 0, there exists a graph H such that

ex(H,P) <

(
1− 1

k − 1
+ ε

)
e(H).

We will now deduce the statement of Theorem 1.1 from Corollary 2.3 and the following

standard probabilistic estimate.
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Lemma 2.4. Let H be a fixed graph, let ε > 0 be a small positive real and let p ∈ (0, 1) be

a fixed real. Let G = G(n, p) be the random graph and let µ = µ(H,n, p) be the expected

number of induced copies of H in G that contain a fixed edge of G. Then, whp, for every

edge e of G the number of induced copies of H in G containing e is at least (1− ε)µ and

at most (1 + ε)µ.

Proof. Fix an edge e of Kn, assume it belongs to E(G), and apply the edge exposure

martingale to the random variable Xe counting the number of induced copies of H in

G that contain e. As p and H are fixed, the expectation of this random variable is

µ = Θ(nh−2), where h is the number of vertices of H and the hidden constant in the Θ-

notation is a function of p and H. The existence or nonexistence of each of the potential

2n − 4 edges of G (besides e) incident with e can change the value of Xe by at most

O(nh−3). Similarly, each of the
(
n−2
2

)
other edges can change the value of Xe by at most

O(nh−4). Therefore, by Azuma’s Inequality (see, e.g., [2, Chapter 7]), the probability that

Xe deviates from its expectation by

λ ·
[
(2n− 4)O(n2h−6) +

(
n− 2

2

)
O(n2h−8)

]1/2
= λ ·O(nh−5/2) = λ ·O

(
µ√
n

)
is at most 2e−λ2/2. In particular, letting λ = a

√
log n, we deduce that the probability that

Xe deviates from its expectation µ by a · µ
√
logn√
n

is at most n−Ω(a2). Taking a sufficiently

large constant a, this implies the desired result by the union bound.

Proof of Theorem 1.1. Let P and k = k(P) be as in the statement of the theorem. Fix

a small real ε > 0 and let H be the graph from Corollary 2.3. Fix p ∈ (0, 1) and let

G = G(n, p) be the binomial random graph. Let H = {Hi}i∈I be the collection of all

induced copies of H in G. By Lemma 2.4, whp the number of subgraphs Hi containing

any edge of G is at least (1−ε)µ and at most (1+ε)µ, where µ > 0 is the expected number

of such subgraphs. Assuming this holds, let G′ be a subgraph of G that belongs to P.

We need to estimate the number of edges of G′ from above. We will do so by comparing

two bounds on the size of the set S of all ordered pairs (e,Hi), where e is an edge of G′,

Hi ∈ H, and e is also an edge of Hi. Since every edge of G′ is contained in at least (1−ε)µ

of the graphs Hi, we have:

|S| ≥ |E(G′)|(1− ε)µ. (2)

On the other hand, since H satisfies the assertion of Lemma 2.3,

|S| ≤ |H|
(
1− 1

k − 1
+ ε

)
|E(H)| (3)

as every Hi can contain at most (1− 1
k−1 + ε)|E(H)| edges of G′. Indeed,

(V (Hi), E(G′) ∩ E(Hi))

is an induced subgraph of G′, and as G′ lies in P which is hereditary, so does this graph.

Therefore, each Hi ∈ H can contain at most (1 − 1
k−1 + ε)|E(H)| edges of G′. Finally,
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since no edge of G lies in more than (1 + ε)µ members of H, it follows that

|H||E(H)| ≤ |E(G)|(1 + ε)µ. (4)

Combining (2), (3), and (4), we conclude that

|E(G′)|(1− ε)µ ≤ |S| ≤ |H|
(
1− 1

k − 1
+ ε

)
|E(H)|

≤
(
1− 1

k − 1
+ ε

)
|E(G)|(1 + ε)µ.

Therefore

|E(G′)| ≤
(
1− 1

k − 1
+ ε

)
|E(G)|1 + ε

1− ε
<

(
1− 1

k − 1
+ 4ε

)
|E(G)|,

where here we used that ε > 0 is small. Since ε can be chosen to be arbitrarily small, this

shows that whp

ex(G,P) ≤
(
1− 1

k − 1
+ o(1)

)
|E(G)| =

(
1− 1

k − 1
+ o(1)

)
p

(
n

2

)
.

This, together with (1), completes the proof of the theorem.

3 Concluding remarks

• Theorem 1.1 can be proved in a more self-contained way, using Szemerédi’s Regu-

larity Lemma and following the approach in [1, Section 4.4]. Since unlike the proof

described here, this proof does not work for p ≤ n−ε when ε > 0 is fixed, we omit

the details.

• It may be interesting to characterize all edge probabilities p for which the assertion

of Theorem 1.1 holds. It is not difficult to describe hereditary properties (even

monotone ones) for which the fraction of edges of G(n, p) that lie in a maximum

subgraph that belongs to the property changes, whp, several times as p = p(n)

increases from 0 to 1.

• Our main result, Theorem 1.1, shows that if P misses a bipartite graph, then for

G = G(n, p) we have whp ex(G,P) = o(n2). It would be interesting to provide a

more accurate estimate for this “bipartite” case. It seems plausible that in this case

ex(G,P) ≤ n2−ε for some ε = ε(P) > 0.

• The typical edit distance of a random graph from a hereditary property is very

different from the typical minimum number of edges that have to be deleted from

it to get a graph that belongs to the property. The latter quantity is the one

studied here, the former is treated, for example, in [3]. An example illustrating

the difference is that of the property of avoiding an induced copy of a long even
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cycle C2k. Theorem 1.1 shows that for, say, p = 1/2, whp one has to delete nearly

all (1/4 + o(1))n2 edges of G(n, 1/2) to get a subgraph that contains no induced

copy of C2k. On the other hand, since the vertices of C2k cannot be covered by k−1

cliques it suffices, whp, to add to G(n, 1/2) only (1/4+o(1))n2/(k−1) edges in order

to cover all its vertices by k − 1 cliques, ensuring that the resulting graph will not

contain an induced copy of C2k.
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