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Abstract. In this short note, we establish an edge-isoperimetric inequality for arbitrary product

graphs. Our inequality is sharp for subsets of many different sizes in every product graph. In particular,

it implies that the 2d-element sets with smallest edge-boundary in the hypercube are subcubes and

is only marginally weaker than the Bollobás–Leader edge-isoperimetric inequalities for grids and tori.

Additionally, it improves two edge-isoperimetric inequalities for products of regular graphs proved by

Erde, Kang, Krivelevich, and the first author and answers two questions about edge-isoperimetry in

powers of regular graphs raised in their work.

1. Introduction

Given a graph G with vertex set V , a key part of the (edge-)isoperimetric problem is to determine,

for every k ∈ N, the quantity

ik(G) := min

{
eG(A,A

c)

|A|
: A ⊆ V ∧ |A| = k

}
,

where eG(A,A
c) is the number of edges of G with exactly one endpoint in A. For more details about

discrete isoperimetric problems, we refer the interested reader to the surveys [2, 3, 9].

In this note, we will consider the isoperimetric problem for product graphs. Instances of this problem

have been studied in depth for several well-known product graphs, such as hypercubes [1, 8, 10, 11],

Hamming graphs [11], grids, and tori [4]. Here, we will investigate the isoperimetric problem for

arbitrary product graphs. The motivation for considering this problem in such generality comes

partially from the results of (and the questions posed in) the recent work [6], where isoperimetric

estimates played a crucial role in studying bond percolation on product graphs.

Given a positive integer n and an arbitrary sequence of finite graphs G1, . . . , Gn, the product graph

G1□ · · ·□Gn is the graph whose vertex set is V (G1) × · · · × V (Gn) and whose edges are all pairs

{u, v} for which there is an index j ∈ JnK such that ujvj ∈ E(Gj) and um = vm for all m ̸= j. In

order to state our main result, we require the following definition. Given an m-vertex graph G, let

ψG : [0, logm] → [0,∞) be the convex minorant of the function {log k : k ∈ JmK} ∋ x 7→ iex(G); in

other words, ψG is the largest convex function satisfying ψG(log k) ⩽ ik(G) for all k ∈ JmK.1 Observe

that ψG is piecewise linear and that the only points where its derivative is not continuous are of the

form log k for some integer k ∈ JmK. Further, ψG is decreasing, as ik(G) ⩾ 0 = im(G) for all k ∈ JmK
and thus the left derivative of ψG at logm is nonpositive.
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States–Israel Binational Science Foundation (BSF) and the United States National Science Foundation (NSF); and the

ERC Consolidator Grant 101044123 (RandomHypGra).
1Here and throughout the paper, log denotes the natural logarithm.
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Theorem 1. Let n be a positive integer, let G1, . . . , Gn be an arbitrary sequence of finite graphs, and

let G := G1□ · · ·□Gn. For every ∅ ≠ A ⊆ V (G),

eG(A,Ac) ⩾ |A| ·min

{
n∑

i=1

ψGi(hi) : 0 ⩽ hi ⩽ log |V (Gi)| ∧
n∑

i=1

hi = log |A|

}
.

In particular, if G1 = · · · = Gn = G, then

eG(A,Ac) ⩾ |A| · n · ψG

(
(log |A|)/n

)
.

Let us note that Theorem 1 gives a sharp bound for every n, every sequence G1, . . . , Gn, and sets A

of many different sizes. To see this, assume for simplicity that G1 = · · · = Gn = G for some graph

G with m vertices, so that G = G1□ · · ·□Gn =: Gn. Consider arbitrary integers k1, k2 ∈ JmK with

k1 < k2 such that ψG(log ki) = iki(G) for both i ∈ J2K and ψG is linear on [log k1, log k2]. Further, let

A1, A2 ⊆ V (G) be sets witnessing |Ai| = ki and eG(Ai, A
c
i ) = iki(G) · ki for both i ∈ J2K. Then, for all

nonnegative integers n1 and n2 satisfying n1 + n2 = n, the set A := An1
1 ×An2

2 ⊆ V (G)n satisfies

eGn(A,Ac)

|A|
= n1 · ik1(G) + n2 · ik2(G) = n1 · ψG(log k1) + n2 · ψG(log k2)

= n · ψG

(n1
n

· log k1 +
n2
n

· log k2
)
= n · ψG

(
(log |A|)/n

)
.

The above argument extends to product graphs that are not necessarily powers of a single graph. In

this general case, the lower bound on eG(A,Ac) is achieved by sets A of the form A1×· · ·×An, where

Ai ⊆ V (Gi) satisfies eGi(Ai, A
c
i )/|Ai| = i|Ai|(Gi) = ψGi(log |Ai|) and, further, there is a real number r

such that, for each i ∈ JnK, the left derivative of ψGi at log |Ai| is at most r while the right derivative

of ψGi at log |Ai| is at least r (where we assume that the left derivative of ψi at 0 is −∞ and its right

derivative at log |V (Gi)| is zero).

Acknowledgement. We thank Joshua Erde, Mihyun Kang, and Michael Krivelevich for their helpful

comments and suggestions.

Organisation. In Section 2, we present the (short) proof of Theorem 1, and in Section 3, we discuss

several applications of Theorem 1 and compare them with known results in the literature.

2. Proof of Theorem 1

Our argument builds on the beautiful entropy-based proof of an optimal edge-isoperimetric inequal-

ity for the hypercube presented by Boucheron, Lugosi, and Massart in [5, Section 4.4]. The entropy

of a discrete random variable X taking values in a countable set X is the quantity H(X) defined by

H(X) := −
∑
x∈X

P(X = x) logP(X = x).

In particular, if X is finite and X is uniform on X , then H(X) = log |X |. Further, given random

variables X and Y taking values in countable sets X and Y, respectively, we define the conditional

entropy of X given Y , denoted H(X | Y ), to be the average entropy of the random variable X

conditioned on the outcome of Y ; in other words,

H(X | Y ) := −
∑
y∈Y

P(Y = y)
∑
x∈X

P(X = x | Y = y) logP(X = x | Y = y).
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Let n be a positive integer and suppose that G = G1□ · · ·□Gn for some arbitrary sequence

G1, . . . , Gn of finite graphs. Consider an arbitrary nonempty set A ⊆ V (G) = V (G1)×· · ·×V (Gn) and

let X = (X1, . . . , Xn) be a uniformly chosen random vertex of A. For every v ∈ V (G) and each i ∈ JnK,
denote by v(i) the projection of v along the ith coordinate, that is, v(i) = (v1, . . . , vi−1, vi+1, . . . , vn).

Further, given an x ∈ A, let Ai(x) ⊆ V (Gi) denote the support of Xi conditioned on X(i) = x(i). Our

first key observation is that

eG(A,Ac) =
∑
x∈A

n∑
i=1

eGi (Ai(x), Ai(x)
c)

|Ai(x)|
⩾
∑
x∈A

n∑
i=1

i|Ai(x)|(Gi).

Denoting by ki the (random) size of |Ai(X)|, we may rewrite the above inequality as

eG(A,Ac) ⩾ |A| ·
n∑

i=1

E[iki(Gi)]. (1)

By the definition of ψGi and by Jensen’s inequality, we have, for every i ∈ JnK,

E[iki(Gi)] ⩾ E[ψGi(log ki)] ⩾ ψGi

(
E[log ki]

)
.

Our second key observation is that E[log ki] is precisely the conditional entropy H(Xi | X(i)). Substi-

tuting the above inequality into (1), we conclude that

eG(A,Ac) ⩾ |A| ·
n∑

i=1

ψGi

(
H(Xi | X(i))

)
.

The main assertion of the theorem now follows as, for each i ∈ JnK, the function ψGi is decreasing,

0 ⩽ H(Xi | X(i)) ⩽ H(Xi) ⩽ log |V (Gi)| for each i, and
n∑

i=1

H(Xi | X(i)) ⩽ H(X) = log |A|,

by Han’s inequality [7] (see [5, Theorem 4.1] for a compact statement). Finally, if G1 = · · · = Gn = G,

then we may use the convexity of ψG again to deduce that, for all sequences (hi)
n
i=1 that sum to log |A|,

n∑
i=1

ψG(hi) ⩾ n · ψG

(
n∑

i=1

hi
n

)
= n · ψG

(
log |A|
n

)
.

as claimed. □

3. Applications

3.1. Hamming graphs and the hypercube. Let Km be the complete graph on m vertices, so that

G := Kn
m is the Hamming graph H(n,m). Since ik(Km) = m − k ⩾ (m − 1) · (1 − logm k) for all

k ∈ JmK, where the inequality follows from the convexity of x 7→ log x, we have

ψKm(x) ⩾ (m− 1) · (1− x/ logm) (2)

for all x ∈ [0, logm]. Therefore, by Theorem 1, for all nonempty A ⊆ V (H(n,m)), we have

eH(n,m)(A,A
c) ⩾ |A| · (m− 1) (n− logm |A|) . (3)

Observe that (3) is sharp whenever A induces a copy of H(t,m) for some t ∈ JnK. In this sense,

one may view it as a weak version of the edge-isoperimetric inequality for Hamming graphs due to
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Lindsey [11].2 In particular, the casem = 2, may be viewed as a weak version of the edge-isoperimetric

inequality for the hypercube [1, 8, 10, 11].

3.2. The grid. Let Pm be the path with m ⩾ 3 vertices, so that G := Pn
m is the n-dimensional

m × · · · ×m grid. Note that ik(Pm) = 1/k for every k ∈ Jm− 1K and that im(Pm) = 0. For every

z ∈ [0, logm), let ℓz be the line passing through the points (z, e−z) and (logm, 0), that is, the line

y = e−z · (logm − x)/(logm − z). Since the points {(log k, 1/k) : k ∈ Jm− 1K} lie on the graph of

the convex function x 7→ e−x and ℓlogm−1 has the largest (that is, least negative) slope among all our

lines ℓz, we may deduce that

ψPm(x) ⩾

e−x if 0 ⩽ x ⩽ logm− 1,

e/m · (logm− x) if logm− 1 ⩽ x ⩽ logm.
(4)

In fact, ψPm is the piecewise linear function defined by the points (0, 1), . . . , (log k∗, 1/k∗), and (logm, 0),

where k∗ ∈ Jm− 1K is the index k for which ℓlog k has the largest slope. It is not hard to see that

k∗ ∈ {⌊m/e⌋, ⌈m/e⌉}, but whether it is the floor or the ceiling of m/e depends on the value of m. For

example, k∗ = ⌊3/e⌋ = 1 when m = 3, whereas k∗ = ⌈5/e⌉ = 2 when m = 5.

With the lower bound (4) in place, we can now use Theorem 1 to derive edge-isoperimetric inequal-

ities for G. When |A| ⩽ (m/e)n, we have

eG(A,Ac) ⩾ |A| · n · e−(log |A|)/n = n · |A|1−1/n

and when (m/e)n ⩽ |A| ⩽ mn/2, we have

eG(A,Ac) ⩾ |A| · n · e
m

(
logm− (log |A|)/n

)
=

|A|
m

· e log m
n

|A|
.

For comparison, Bollobás and Leader [4] showed that, for all A ⊆ V (G) with |A| ⩽ mn/2,

eG(A,Ac) ⩾
|A|
m

·min

{
r ·
(
mn

|A|

)1/r

: r ∈ JnK

}
.

Since the minimum above is achieved at r = n whenever |A| ⩽ (m/e)n, our bound matches that of

Bollobás and Leader in this range. In the complementary range (m/e)n ⩽ |A| ⩽ mn/2, the ratio

between the two bounds does not exceed

min

{
⌈log x⌉ · x1/⌈log x⌉

e log x
: 2 ⩽ x ⩽ en

}
⩽ max

{
ey−1

y
: log 2 ⩽ y ⩽ 1

}
=

2

e log 2
⩽ 1.062.

3.3. The torus. Let Cm be the cycle with m vertices, so that G := Cn
m is the n-dimensional discrete

torus with side length m. Since ik(Cm) = 2ik(Pm) for all k ∈ JmK, we have ψCm = 2ψPm . Thus,

Theorem 1 and the estimate (4) yield

eG(A,Ac) ⩾

2n · |A|1−1/n if |A| ⩽ (m/e)n,

|A|/m · 2e log(mn/|A|) if |A| ⩾ (m/e)n.

For comparison, Bollobás and Leader [4] showed that, for all A ⊆ V (G) with |A| ⩽ mn/2,

eG(A,Ac) ⩾
|A|
m

·min

{
2r

(
mn

|A|

)1/r

: r ∈ JnK

}
,

2Lindsey’s inequality is the stronger statement that each initial interval in the lexicographic ordering of JmKn has the
smallest edge-boundary among all sets of the same size.
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and hence, as in the case of grid graphs, our bound matches theirs whenever |A| ⩽ (m/e)n and is off

by a multiplicative factor of at most 2/(e log 2) in the complementary range.

3.4. Products of regular graphs. For every i ∈ JnK, let Gi be a di-regular graph on mi vertices, let

G := G1□ · · ·□Gn, and note that G is also regular of degree d := d1+ · · ·+ dn. Since Gi is di-regular,

we have ik(Gi) ⩾ di−k+1 = ik(Kdi+1) for all k ∈ Jdi + 1K. Consequently, ψGi(x) ⩾ di · (1− logdi+1 x)

for all x ∈ [0, logmi], see (2). Thus, by Theorem 1,

eG(A,Ac) ⩾ |A| ·

(
d−max

{
n∑

i=1

di · hi
log(di + 1)

: 0 ⩽ hi ⩽ logmi ∧
n∑

i=1

hi = log |A|

})

⩾ |A| ·
(
d−max

i∈JnK

di
log(di + 1)

· log |A|
)

= |A| ·
(
d−D · logD+1 |A|

)
,

where D := maxi∈JnK di. This substantially improves [6, Theorem 1].

Assume further that each Gi is connected, so that ik(Gi) ⩾ ik(Pmi) for all k ∈ JmiK. It follows

from (4) that ψGi(x) ⩾ e/mi · (logmi − x) for all x ∈ [0, logmi]. Therefore, by Theorem 1,

eG(A,Ac) ⩾ |A| ·min

{
n∑

i=1

e

mi
· (logmi − hi) : 0 ⩽ hi ⩽ logmi ∧

n∑
i=1

hi = log |A|

}

⩾ |A| ·min

{
n∑

i=1

egi
mi

: gi ⩾ 0 ∧
n∑

i=1

gi = log
|V (G)|
|A|

}
= |A| · e

M
· log |V (G)|

|A|
,

where M := maxi∈JnKmi. When M ⩾ 3, this improves the respective lower bound on eG(A,Ac) given

by [6, Theorem 2] by a multiplicative factor of e(1− 1/M) logM .

3.5. Powers of regular graphs. Let G be a connected m-vertex, d-regular graph and let G := Gn.

For every k ∈ Jm− 1K, let ℓk be the line passing through (log k, ik(G)) and (logm, 0), that is, the

line y = ik(G) · (logm− x)/(logm− log k). Let k∗ be the smallest index k such that ℓk has the least

negative slope among all our lines and note that, for all x ∈ [0, logm],

ψG(x) ⩾ ik∗(G) ·
logm− x

logm− log k∗
(5)

Let yG be the y-intercept of ℓk∗ . Note that yG ⩽ d (as i1(G) = d) and that yG = d if and only if

k∗ = 1. Further, observe that yG = ik∗(G) · logm/(logm− log k∗). Hence, by Theorem 1,

eG(A,Ac) ⩾ |A| · ik∗(G)

logm− log k∗
· log m

n

|A|
= |A| · yG · (n− logm |A|). (6)

Since (5) holds with equality for all x ∈ [log k∗, logm], inequality (6) is tight for sets A with many

different sizes, see the construction described below the statement of Theorem 1.

We now address two questions posed in [6]. First, [6, Question 7.1] asked whether there are constants

cG, CG such that ia(G) = cG · log(mn/a) + CG for all a ∈ JmnK. In other words, [6, Question 7.1]

asks whether ia(G) is essentially linear in log a. The construction presented below the statement

Theorem 1 shows that the lower bound on ia(G) implied by the theorem is sharp whenever log a =

(n1/n) · log k1 + (n2/n) · log k2 for some n1, n2 satisfying n1 + n2 = n and k1, k2 ∈ JmK2 such that

[log k1, log k2] supports one of the linear pieces of ψG. This fact implies that ia(G) in not linear in

log a whenever ψG itself is not linear. Since there are regular graphs G for which ψG has more than

one linear piece (for example, when G = Cm for m ⩾ 5), the answer to [6, Question 7.1] is negative.
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Further, [6, Question 7.2] asked for a characterisation of m-vertex d-regular graphs G for which

sets of the form Bt := {u}t × V (G)n−t have the smallest edge-boundary among all mn−t-element

sets of vertices of G, for all t ∈ JnK. We note that this is closely related to the classical problem of

finding sufficient conditions for a graph to admit a nested sequence of sets that achieve the smallest

edge-boundary (among all sets of a given size), see [3, 9] and references therein. Since

eG(Bt, B
c
t ) = |Bt| · t · d = |Bt| ·

d

logm
· log m

n

|Bt|
,

it follows from (6) that a sufficient condition is yG = d. We will show below that, for large enough n,

this is also a necessary condition.

Suppose that G is an m-vertex, d-regular graph with yG < d, let k∗ ∈ {2, . . . ,m− 1} be the index

defined above, and let S ⊆ V (G) be a k∗-element set witnessing eG(S, S
c) = |S| · ik∗(G). Fix a small

positive ε. By Dirichlet’s approximation theorem, there exist positive integers s and t such that∣∣s logm− t log(m/k∗)
∣∣ ⩽ ε/2, (7)

which implies that (1 − ε)mt ⩽ (k∗)t · ms ⩽ (1 + ε)mt. Consider the graph G := Gs+t and sets of

vertices A := St × V (G)s and B := {u}s × V (G)t. Note that, by (7),

eG(A,Ac) = |A| · yG
logm

· t log(m/k∗) ⩽ |A| · (syG + ε) ⩽ mt · (1 + ε)(syG + ε).

Let C be a set of size exactly mt that is obtained by adding to / removing from A at most εmt vertices

in an arbitrary manner. Since ∆(G) = (s+ t)d, we clearly have

eG(C,Cc)− eG(A,Ac) ⩽ εmt · (s+ t)d ⩽ εmtsd

(
1 +

logm+ ε/2

log(m/k∗)

)
,

where the second inequality follows from (7). Since we assumed that yG < d, it is clear that choosing

ε sufficiently small (as a function of m and d − yG only) gives eG(C,Cc) < mtsd = eG(B,Bc). This

means that the set B does not have the smallest edge boundary among all sets of mt vertices of G.
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