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Abstract

Let Γ be a hypergraph with vertex set Ω, let p : Ω → [0, 1], and let Ωp be a random
set formed by including every ω ∈ Ω independently with probability p(ω). We investigate
the general question of deriving fine (asymptotic) estimates for the probability that Ωp is
an independent set in Γ, which is an omnipresent problem in probabilistic combinatorics.
Our main result provides a sequence of lower and upper bounds on this quantity, each of
which can be evaluated explicitly. Under certain natural conditions, we obtain an explicit
closed formula that is asymptotic to this probability. We demonstrate the applicability
of our results with two concrete examples: subgraph containment in random graphs and
arithmetic progressions in random subsets of the integers.

1 Introduction

Let Γ be a hypergraph with vertex set Ω and, given p : Ω→ [0, 1], let Ωp be a random subset
of Ω formed by including every ω ∈ Ω independently with probability p(ω). What is the
probability that Ωp is an independent set in Γ? This very general question arises in many
different settings.

Example 1. Let F be a graph, let n ∈ N, and let Ω = E(Kn) =
(

[n]
2

)
be the edge set of the

complete graph with vertex set [n] := {1, . . . , n}. Let Γ be the collection of the edge sets of all
copies of F in Kn. Fix some p ∈ [0, 1] and let p(ω) = p for every ω ∈ Ω. Then we are asking
for the probability that the random graph Gn,p is F -free, that is, it does not contain F as a
(not necessarily induced) subgraph.

Example 2. An arithmetic progression of length r ∈ N (an r-AP for short) is a subset of the
integers of the form {a+ kb : k ∈ [r]}. Let Ω = [n], let Γ be the set of all r-APs in [n], and let
p(ω) = p for all ω ∈ Ω. Then we are asking for the probability that the random subset [n]p is
r-AP-free.
∗Research supported in part by the Israel Science Foundation grant 1147/14 (WS)
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Example 3. Let Ω be a finite set of points in the plane. Include a triple {i, j, k} in Γ if the
points i, j, k lie on a common line. Now we are asking for the probability that the random
subset Ωp of points is in general position.

It is not hard to find other natural examples that provide further motivation for studying
this general question. We make the following definition for the sake of brevity.

Definition 4. An increasing family is a triple (Ω,Γ, p), where Ω is a finite set, Γ is a collection
of non-empty subsets of Ω, and p is a map from Ω to (0, 1).1

Given an increasing family (Ω,Γ, p), we shall fix an (arbitrary) ordering of the elements of
Γ as γ1, . . . , γN . We then let Xi be the indicator variable of the event that γi ⊆ Ωp and we
set X = X1 + · · · + XN . Thus, X counts the number of sets in Γ that are fully contained in
Ωp and our goal is to compute the probability that X = 0. Of course the notations Ωp, γi,
Xi, X, and N all depend on a given increasing family (Ω,Γ, p), but we shall always suppress
this dependence as it will be clear from the context.

Most of the time, we will be interested in sequences (Ωn,Γn, pn) of increasing families,
indexed by a parameter n that tends to infinity, and ask:

What are the asymptotics of the probability P[X = 0] as n→∞?

This question can also be viewed as a computational problem: we want to derive closed
formulas that are asymptotic to P[X = 0], at least for various ranges of the parameter p.

1.1 The Harris and Janson inequalities

The main reason why computing P[X = 0] is challenging is that the variables X1, . . . , XN are
usually not independent. However, this is not to say that there is no structure at all: every
random variable Xi is a non-decreasing function on the product space {0, 1}Ω. An important
inequality that applies in this case is the Harris inequality :

Theorem 5 (Harris inequality [10]). Let X and Y be random variables defined on a product
probability space over {0, 1}Ω. If X and Y are both non-decreasing (or non-increasing), then

E[XY ] ≥ E[X]E[Y ].

If X is non-decreasing and Y is non-increasing, then

E[XY ] ≤ E[X]E[Y ].

In our setting, for every I ⊆ [N ], the random variable
∏
i∈I(1−Xi) is non-increasing, so

we easily deduce from Harris’ inequality that

P[X = 0] = E

[
N∏
i=1

(1−Xi)

]
≥

N∏
i=1

(1−E[Xi]). (1)

Note that (1) would be true with equality if X1, . . . , XN were independent. An upper bound
on P[X = 0] is given by Janson’s inequality, which states that the reverse of (1) holds up to

1For technical reasons, we shall exclude the case that p(ω) ∈ {0, 1}. That case can always be addressed by
changing Γ or by a continuity argument.
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a multiplicative error term that is an explicit function of the pairwise dependencies between
the Xi. More formally, for indices i, j ∈ [N ], we write i ∼ j if i 6= j and γi ∩ γj 6= ∅. Further,
we define the sum of joint moments

∆2 =
∑
i∼j

E[XiXj ].

Theorem 6 (Janson’s inequality [2, 15]). For every increasing family,

P[X = 0] ≤ exp(−E[X] + ∆2). (2)

To compare this with (1), we will now assume that the individual probabilities of γi ⊆ Ωp

are not too large, say E[Xi] ≤ 1 − ε for some ε > 0. In this case, we may use the fact that
1− x ≥ exp(−x− x2/(1− x)) ≥ exp(−x− x2/ε) for x ∈ [0, 1− ε] to obtain from (1)

P[X = 0] ≥
∏
i∈[N ]

(1−E[Xi]) ≥ exp(−E[X]− δ1/ε), (3)

where
δ1 =

∑
i∈[N ]

E[Xi]
2. (4)

Combining this with (2), we get

P[X = 0] = exp
(
−E[X] +O(δ1 + ∆2)

)
. (5)

If δ1+∆2 = o(1), then (5) gives the correct asymptotics of P[X = 0]. The condition ∆2 = o(1)
requires that the pairwise correlations among the Xi vanish asymptotically in a well-defined
sense. This rather strict requirement is not satisfied in many natural settings, including the
ones presented in Examples 1–3 for certain choices of p. It is therefore an important question
to obtain better approximations of P[X = 0] in cases when the pairwise dependencies among
the Xi are not negligible. This is the starting point of our investigations.

1.2 Triangles in random graphs

Even though our results can and will be phrased in the general framework of increasing families
and are thus widely applicable, we believe that it is useful to keep in mind the following well
studied instance of the problem that will serve as a guiding example.

Example 7. Suppose that X denotes the number of triangles in Gn,p, as in Example 1 with
F = K3. Since each triangle has three edges, we have E[Xi] = p3 for all i. Thus E[X] =

(
n
3

)
p3

and δ1 = O(n3p6). Moreover, we have ∆2 = O(n4p5), because if two distinct triangles
intersect, then their union is the graph with 4 vertices and 5 edges. Thus (5) implies that as
long as p = o(n−4/5), we have

P[X = 0] = exp
(
− n3p3/6 + o(1)

)
.

This result was already obtained by Erdős and Rényi [8] under the much stronger assumption
that p = O(n−1). The assumption on p was later weakened by Frieze [9] to p = O(n−1+c)
for some small constant c > 0. Extending the above result, Wormald [24] and later Stark
and Wormald [22] obtained asymptotic expressions for P[X = 0] even when p = ω(n−4/5)
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and thus (5) no longer gives an asymptotic bound. For example, it was shown in [22] that if
p = o(n−7/11), then

P[X = 0] = exp
(
− n3p3

6
+
n4p5

4
− 7n5p7

12
+
n2p3

2
− 3n4p6

8
+

27n6p9

16
+ o(1)

)
.

One goal of the present paper is to give a simple interpretation of the individual terms in
this formula. Indeed, we will formulate a general result from which the above formula may
be obtained by a few short calculations. More precisely, we will prove a generalization of (5)
that takes into account the k-wise dependencies between the Xi for all k ≥ 2.

1.3 Joint cumulants, clusters, dependency graphs

Let A = {Z1, . . . , Zm} be a finite set of real-valued random variables. The joint moment of
the variables in A is

∆(A) := E[Z1 · · ·Zm]. (6)

The joint cumulant of the variables in A is

κ(A) :=
∑

π∈Π(A)

(|π| − 1)!(−1)|π|−1
∏
P∈π

∆(P ), (7)

where Π(A) denotes the set of all partitions of A into non-empty sets. In particular,

κ({X}) = E[X],

κ({X,Y }) = E[XY ]−E[X]E[Y ],

κ({X,Y, Z}) = E[XY Z]−E[X]E[Y Z]−E[Y ]E[XZ]−E[Z]E[XY ] + 2E[X]E[Y ]E[Z].

The joint cumulant κ(A) can be regarded as a measure of the mutual dependence of the
variables in A. For example, κ({X,Y }) is simply the covariance of X and Y . In particular,
κ({X,Y }) = 0 if X and Y are independent. More generally, the following holds.

Proposition 8. Let A be a finite set of real-valued random variables. If A can be partitioned
into two subsets A1 and A2 such that all variables in A1 are independent of all variables in
A2, then κ(A) = 0.

In fact, Proposition 8 remains valid when one replaces the independence assumption with
the weaker assumption that ∆(B1 ∪ B2) = ∆(B1)∆(B2) for all B1 ⊆ A1 and B2 ⊆ A2. An
elegant proof of Proposition 8 can be found in [1]. The proposition motivates the definition
of the following notion.

Definition 9 (decomposable, cluster). A set A of random variables is decomposable if there
exists a partition A = A1 ∪A2 such that the variables in A1 are independent of the variables
in A2. A non-decomposable set is also called a cluster.

For an increasing family (Ω,Γ, p), it is natural to define the dependency graph GΓ as the
graph on the vertex set [N ] whose edges are all pairs {i, j} such that γi ∩ γj 6= ∅. We write
Ck for the collection of all k-element subsets V ⊆ [N ] such that GΓ[V ] is connected. Since we
have assumed that p(ω) 6∈ {0, 1} for all ω ∈ Ω, a set of variables {Xi : i ∈ V } forms a cluster
if and only if V ∈ C|V |. In particular, we have κ({Xi : i ∈ V }) = 0 whenever V 6∈ C|V |. Set

κk =
∑
V ∈Ck

κ({Xi : i ∈ V }) and ∆k =
∑
V ∈Ck

∆({Xi : i ∈ V }). (8)
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Note that this definition is consistent with the definition of ∆2 given above. Moreover, it
follows from (7) and the Harris inequality that |κk| ≤ Ck∆k for some Ck depending only on k.

1.4 The main result

Let (Ω,Γ, p) be an increasing family. Given a subset V ⊆ [N ], we write

∂(V ) := NGΓ
(V ) \ V

for the external neighbourhood of V in the dependency graph, and let

λ(V ) :=
∑

i∈∂(V )

E[Xi |
∏
j∈V

Xj = 1]

be the expected number of external neighbours i of V such that γi ⊆ Ωp, conditioned on
γj ⊆ Ωp for all j ∈ V . Then, for k ∈ N we define

Λk := max
{
λ(V ) : V ⊆ [N ], 1 ≤ |V | ≤ k

}
.

We say that a sequence of increasing families is sparse if max {P[Xi = 1] : i ∈ [N ]} = o(1) and
that it is subcritical if Λk = O(1) for every constant k ∈ N.

In other words, a sequence (Ωn,Γn, pn)n∈N is sparse if

lim
n→∞

max
γ∈Γn

P[γ ⊆ (Ωn)pn ] = 0

and it is subcritical if for every every k,

lim sup
n→∞

max
V⊆Γn,|V |≤k

E
[∣∣{γ ∈ Γn : γ ∩

⋃
V 6= ∅, γ \

⋃
V ⊆ (Ωn)pn

}∣∣] <∞.
Our main result is the following.

Theorem 10. Suppose that (Ωn,Γn, pn)n∈N is a sparse and subcritical sequence of increasing
families and let X denote the number of edges of Γn that are fully contained in (Ωn)pn. Then
for every k ∈ N,

P[X = 0] = exp
(
− κ1 + κ2 − κ3 + · · ·+ (−1)kκk +O(δ1 + ∆k+1)

)
as n→∞, where δ1, κ1, . . . , κk, and ∆k+1 are defined as above.

In the applications considered in this paper, it will always be the case that κk = ∆k+o(∆k)
for every fixed k. For example, this is automatically so if max {p(ω) : ω ∈ Ωn} = o(1), as can
be seen from definition (7). In such cases, the first-order behaviour of κk is thus given by ∆k.
However, this does not mean that we can then replace κi by ∆i in the formula for P[X = 0]
given by Theorem 10, because the lower-order terms in the κi can be non-negligible, see, e.g.,
the proof of Corollary 15.

The fact that κ1 = E[X] shows that the case k = 1 of Theorem 10 gives (a slight weakening
of) Janson’s inequality (5). Unlike Janson’s inequality, our Theorem 10 requires the additional
assumptions of sparsity and subcriticality. Whereas the sparsity condition is rather natural2,

2Even if all the Xi are independent, but maxi E[Xi] = Ω(1), then it is not true that P[X = 0] = exp(−κ1 +
o(1)) for the simple reason that 1− x 6= e−x+o(1) unless x = o(1).
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the latter condition is hard to motivate and perhaps not necessary. As we will see further
below, subcriticality implies that ∆k+1 = O(∆k) for all constant k, which gives at least an
indication of the type of assumption that is involved.

We shall derive Theorem 10 from a more general result, Theorem 11 below. Even though
the former is sufficiently general to handle all applications considered in this paper, the latter
has the advantage that it can be applied in certain non-sparse settings. Its disadvantage lies
in the fact that the error terms are somewhat less transparent.

For a set of random variables A, we define

δ(A) := ∆(A) ·max {E[X] : X ∈ A}.

and for k ∈ N we set

δk :=
∑
V ∈Ck

δ({Xi : i ∈ V }) and ρk := max
V⊆[N ]

1≤|V |≤k

P[Xi = 1 for some i ∈ V ∪ ∂(V )].

Observe that the above definition of δk generalises (4).

Theorem 11. Let (Ω,Γ, p) be an increasing family and let k ∈ N. Assume that there is some
ε > 0 such that E[Xi] ≤ 1− ε for all i ∈ [N ] and ρk+1 ≤ 1− ε. Then there exists K = K(k, ε)
such that ∣∣ logP[X = 0] + κ1 − κ2 + κ3 − · · ·+ (−1)k+1κk

∣∣ ≤ K · (δ1,K + ∆k+1,K), (9)

where

δ1,K =
K∑
r=1

δr and ∆k+1,K =
K∑

r=k+1

∆r.

We will show that Theorem 11 implies Theorem 10 in Section 2. The proof of Theorem 11,
which is the main part of this paper, will be presented in Section 3.

1.5 Applications and examples

1.5.1 Random hypergraphs

A fundamental question studied by the random graphs community, raised already in the
seminar paper of Erdős and Rényi [8], is to determine the probability that Gn,p contains no
copies of a given ‘forbidden’ graph F . The classical result of Bollobás [5], proved independently
by Karoński and Ruciński [16], determines this probability asymptotically for every strictly
balanced3 F , but only for p such that the expected number of copies of F in Gn,p is constant.
(In the case when F is a tree or a cycle, this was done earlier by Erdős and Rényi [8] and
in the case when F is a complete graph, by Schürger [21].) It was later proved by Frieze [9]
that the same estimate remains valid as long as the expected number of copies of F in Gn,p is
o(nε) for some positive constant ε that depends only on F . Prior to this work and the work
of Stark and Wormald [22], the strongest result of this form (i.e., determining the probability
of being F -free asymptotically) for a general graph F followed from Harris’ and Janson’s
inequalities, see (5). Finally, we remark that for several special graphs F , the probability that
Gn,p (or Gn,m) is F -free can be computed very precisely either when p = 1/2 or, in some

3A graph F is strictly balanced if eF /vF > eH/vH for every proper nonempty subgraph H of F .
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cases, even for all sufficiently large p = o(1) (or m = o(n2)) using the known precise structural
characterisations of F -free graphs, see [4, 11, 17, 18].

We consider the following natural generalisation of this question. Let G(r)
n,p denote the

random r-uniform hypergraph (r-graph for short) on n vertices containing every possible
edge (r-element subset of the vertices) with probability p, independently of other edges. (In
particular, G(2)

n,p is simply the binomial random graph Gn,p.) Given a family F = {F1, . . . , Ft}
of r-graphs, what is the probability that G(r)

n,p is F-free, that is, it simultaneously avoids all
copies of all r-graphs in F? We will assume that the r-graphs in F are pairwise non-isomorphic
and that they do not have isolated vertices; in any case, removing duplicates from F or isolated
vertices from a hypergraph in F does not affect the probability that we are interested in.

We now define (Ωn,Γn, pn) similarly as we did in Example 1. That is, we let Ωn =
(

[n]
r

)
be

the edge set of K(r)
n , the complete r-graph with vertex set [n], let Γn be the collection of edge

sets of subhypergraphs of K(r)
n that are isomorphic to one of the r-graphs in F , and let pn be

a sequence of probabilities (which, however, we interpret as constant functions on Ωn). Then
(Ωn,Γn, pn) is a sequence of increasing families and P[X = 0] is the probability that G(r)

n,pn is
F-free. Using Theorem 10, we can get the correct asymptotics for this probability in a range
of pn.

For an r-graph F , define

m∗(F ) := min

{
eF − eH
vF − vH

: H ⊆ F with vH < vF and eH > 0

}
,

where vK and eK denote, respectively, the numbers of vertices and edges in an r-graph K.
For a family F of r-graphs, we then set

m∗(F) := min{m∗(F ) : F ∈ F} and d(F) := min {eF /vF : F ∈ F}.

Corollary 12. Let F be a finite family of r-uniform hypergraphs, each containing at least two
edges, and assume that (pn)n∈N satisfies

npm∗(F)
n = o(1) and np2d(F)

n = o(1). (10)

Then for every k ∈ N, as n→∞,

P
[
G(r)
n,p is F-free

]
= exp

(
− κ1 + κ2 − · · ·+ (−1)kκk +O(∆k+1) + o(1)

)
.

In Corollary 12, the first condition on pn in (10) ensures that the associated sequence of
increasing families is sparse and subcritical (thus allowing the application of Theorem 10),
whereas the second condition ensures that δ1 = o(1). These two conditions can be simplified
under certain natural assumptions on the family F . Recall that the r-density of an r-graph
F with at least two edges is

mr(F ) := max

{
eH − 1

vH − r
: H ⊆ F with eH > 1

}
and that F is r-balanced if the maximum above is achieved with H = F , that is, if mr(F ) =
(eF − 1)/(vF − r). Observe that for every F with at least two edges, we have

mr(F ) ≥ eF − 1

vF − r
≥ m∗(F ).
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We claim that if F is r-balanced, then in fact mr(F ) = m∗(F ). Indeed, writing αK =
(eK − 1)/(vK − r), we see that for every H ⊆ F with vH < vF and eH > 1,

eF − eH
vF − vH

=
(eF − 1)− (eH − 1)

(vF − r)− (vH − r)
=
αF (vF − r)− αH(vH − r)

(vF − r)− (vH − r)
≥ mr(F ),

since mr(F ) = αF ≥ αH (as F is r-balanced) and this inequality continues to hold if eH = 1.
Thus m∗(F ) ≥ mr(F ). Moreover, if r = 2, then the second condition in (10) follows from
the first condition, since 2eF /vF ≥ (eF − 1)/(vF − 2) for every graph F and consequently
m∗(F) ≤ 2d(F) for every family of graphs F .

Corollary 13. Let F be a finite family of 2-balanced graphs and assume that (pn)n∈N satisfies
pn = o(n−1/m2(F )) for every F ∈ F . Then for every k ∈ N, as n→∞,

P [Gn,p is F-free] = exp
(
− κ1 + κ2 − · · ·+ (−1)kκk +O(∆k+1) + o(1)

)
.

Suppose that F is a finite family of 2-balanced graphs, let m2(F) = minF∈F m2(F ), and
fix an arbitrary positive ε. If we replace the assumption of Corollary 13 with the stronger
assumption that p = O(n−1/m2(F)−ε), the corollary gives an asymptotic formula for the prob-
ability that Gn,p is F-free. (Moreover, it is not hard to see that this formula is exp(f(n, p))
for some bivariate polynomial f with rational coefficients.) This is an immediate consequence
of the fact that ∆k+1 = o(1) whenever k is sufficiently large as a function of ε and F , which
we shall now verify. To this end, suppose that C is a collection of k copies of graphs from
F in Kn that form a cluster in the sense of Definition 9 and let G be the union of these k
subgraphs of Kn. Since C is a cluster, one can order its elements as F1, . . . , Fk such that Fi+1

intersects F1 ∪ · · · ∪ Fi for each i ∈ [k − 1]. As this intersection is clearly a subgraph of Fi+1,
one can show (using induction on i) that

eG − 1

vG − 2
≥ m∗(F) = min

F∈F
m2(F ).

On the other hand, there are functions v, V : N→ N depending only on F such that v(k)→∞
as k →∞ and v(k) ≤ vG ≤ V (k) for every G that is obtained from a cluster of k copies of F
in a complete graph of an arbitrary order. Consequently,

∆k+1 ≤ pn2

V (k+1)∑
i=v(k+1)

2(i
2)
(
pm2(F)n

)i−2
= O

(
n2−ε·m2(F)·(v(k+1)−2)

)
and thus ∆k+1 = o(1) whenever k is sufficiently large as a function of F and ε.

Of course, neither Corollary 12 nor Corollary 13 would be particularly useful if one could
not compute the values κk for at least several small integers k. We perform these calculations
for two special cases.

Corollary 14. If p = o(n−4/5), then the probability that Gn,p is simultaneously K3-free and
C4-free is asymptotically

exp
(
− n3p3

6
− n4p4

8
+
n6p7

4
+
n5p6

2

)
.

Corollary 15. If p = o(n−7/11), then the probability that Gn,p is triangle-free is asymptotically

exp
(
− n3p3

6
+
n4p5

4
− 7n5p7

12
+
n2p3

2
− 3n4p6

8
+

27n6p9

16

)
.
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Corollary 15 was obtained independently by Stark and Wormald [22], who also proved a
similar result in Gn,m, the uniform random graph with n vertices and m edges. It extends
a result of Wormald [24] that applies to a smaller range of p. However, the derivation of
Corollary 15 from Theorem 10 is very short compared to the proofs in [22] and [24].

1.5.2 Arithmetic progressions

As a second application, we will estimate the probability that a binomial random subset of [n]
is r-AP-free, i.e., does not contain any arithmetic progression of length r. Given a sequence
(pn)n∈N of probabilities, we define a sequence of increasing families (Ωn,Γn, pn) by setting
Ωn = [n] and letting Γn be the set of all r-APs contained in [n] (and, again, considering pn as
a constant function on Ωn). Then P[X = 0] is the probability that the random subset [n]pn
is r-AP-free.

Corollary 16. Let r ≥ 3 and assume that pn = o(n−1/(r−1)). Then for k ∈ N, as n→∞,

P
[
[n]p is r-AP-free

]
= exp

(
− κ1 + κ2 − κ3 + · · ·+ (−1)kκk +O(∆k+1) + o(1)

)
.

The assumption on pn simply makes sure that the family is subcritical and that δ1 = o(1).
Observe that every pair of integers lies in at most

(
r
2

)
many r-APs. If follows that for every

` ≥ 2, there are O(n`) subsets of [n] with at most `(r − 1) elements that are unions of r-APs
contained in [n] and that a set of i integers contains at most

(
i
2

)(
r
2

)
many r-APs. Consequently,

if p = O(n−1/(r−1)−ε) for some positive ε, then ∆k+1 = o(1) whenever k is sufficiently large as
a function of r and ε. In particular, for such p, Corollary 16 gives an asymptotic formula for
the probability that [n]p is r-AP-free. To give a concrete example, we perform the calculations
for r = 3 and k = 2.

Corollary 17. If p = o(n−4/7), then the probability that [n]p is 3-AP-free is asymptotically

exp
(
− n2p3

4
+

7n3p5

12

)
.

1.6 Related work and open problems

Janson’s inequality was first proved (by Svante Janson himself) during the 1987 conference on
random graphs in Poznań, in response to Bollobás’ announcement of his estimate [6] for the
chromatic number of random graphs, which requires a strong upper bound on the probability
that a random graph contains no large cliques. A related estimate was found, during the same
conference, by Łuczak. Janson’s original proof was based on the analysis of the moment-
generating function of X whereas Łuczak’s proof used martingales. Both of these arguments
can be found in [14]. Our proof of Theorem 11 is inspired by a subsequent proof of Janson’s
inequality that was found soon afterwards by Boppana and Spencer [7]; it uses only the
Harris inequality. Somewhat later, Janson [12] showed that his proof actually gives bounds
for the whole lower tail, and not just for the probability P[X = 0]. Around the same time,
Suen [23] proved a correlation inequality that is very similar to Janson’s. Suen’s inequality
gives a slightly weaker estimate (which was later sharpened by Janson [13]), but is applicable
in a much more general context. Another generalisation of Janson’s inequality was obtained
recently by Riordan and Warnke [19].
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In [24], Wormald proved that if p = o(n−2/3), then

P[Gn,p is K3-free] = exp
(
− n3p3

6
+
n4p5

4
− 7n5p7

12
+ o(1)

)
, (11)

whereas for Gn,m with m = d
(
n
2

)
and d = o(n−2/3), we have

P[Gn,m is K3-free] = exp
(
− n3d3

6
+ o(1)

)
.

These results were strengthened recently by Stark and Wormald [22], who obtained the bound
in Corollary 15 (which implies (11)) and also the bound

P[Gn,m is K3-free] = exp
(
− n3d3

6
+
n2d3

2
− n4d6

8
+ o(1)

)
,

where m = d
(
n
2

)
, which holds when d = o(n−7/11). In fact, they were able to obtain a more

general result, which states that in the range where Corollary 12 is applicable, the probability
that Gn,p or Gn,m is F -free is approximated by the exponential of the first few terms of a
power series in n and p (resp. d) whose terms depend only on F . However, the way in which
these terms are computed is rather implicit. In contrast, in the setting of binomial random
subsets, such as Gn,p, our Theorem 10 explains what these terms are.

While our results (and our methods) apply only to binomial subsets (e.g., Gn,p and not
Gn,m), the results for Gn,p could conceivably be transferred to Gn,m using the identity

P[Gn,m is F -free] =
P[Gn,p is F -free] ·P[e(Gn,p) = m | Gn,p is F -free]

P[e(Gn,p) = m]
. (12)

It was shown by Stark and Wormald [22] that the conditional probability in the right-hand
side of (12) can be computed explicitly, for a carefully chosen p of the same order of magnitude
as d. However, this is not at all an easy task.

It would be interesting to establish a similar relationship in the more abstract and general
setting of hypergraphs. If this was possible, Theorem 10 could be used to count independent
sets of a given (sufficiently small) cardinality in general hypergraphs. In some sense, this would
complement the counting results that can be obtained with the so-called hypergraph container
method developed by Balogh, Morris, and Samotij [3] and by Saxton and Thomason [20].
Whereas the container method applies to somewhat large independent sets, which exhibit a
“global” structure, our Theorem 10 would yield estimates on the number of smaller independent
sets that only exhibit “local” structure. In particular, the container method can be used to
estimate the probability that Gn,p is F -free whenever p = ω(n−1/m2(F )) for every nonbipartite
graph F . For p in this range, Gn,p conditioned on being F -free is approximately (χ(F )− 1)-
partite with very high probability. On the other hand, our method (and the method of [22])
applies whenever p = o(n−1/m2(F )), provided that F is 2-balanced. For p in this range, the
edges of Gn,p conditioned on being F -free are still distributed very uniformly with probability
very close to one.

2 Proof of Theorem 10

In this section, we will show that Theorem 11 implies Theorem 10. To do so, we start with
the following lemma, which also clarifies the definition of Λk.
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Lemma 18. Every increasing family satisfies the following for every k ≥ 1:

∆k+1/∆k ≤ Λk and δk+1/δk ≤ Λk.

Proof. For every V ∈ Ck+1 there exist at least two distinct i ∈ V such that V \ {i} ∈ Ck.
Indeed, every connected graph with at least two vertices has at least two non-cut vertices.
Therefore for each V ∈ Ck+1 we can make a canonical choice of a set V − ⊂ V such that
V − ∈ Ck and

max {E[Xi] : i ∈ V } = max {E[Xi] : i ∈ V −}. (13)

Denoting by iV the unique element in V \V −, we have iV ∈ ∂(V −), since GΓ[V ] is connected.
Moreover,

∆({Xi : i ∈ V }) = ∆({Xi : i ∈ V −}) ·E[XiV |
∏
i∈V −

Xi = 1]

and, analogously,

δ({Xi : i ∈ V }) = δ({Xi : i ∈ V −}) ·E[XiV |
∏
i∈V −

Xi = 1].

It follows that

∆k+1 ≤
∑

V −∈Ck

∆({Xi : i ∈ V −})
∑

j∈∂(V −)

E[Xj |
∏
i∈V −

Xi = 1]

=
∑

V −∈Ck

∆({Xi : i ∈ V −}) · λ(V −) ≤ ∆k · Λk

and, analogously, δk+1 = δk · Λk.

Proof of Theorem 10 from Theorem 11. Let (Ωn,Γn, pn) be a sparse and subcritical sequence
of increasing families. Let ε > 0 be arbitrary, fix k ∈ N, and let K = (k, ε) be such that
Theorem 11 holds with k and ε. We verify that (Ωn,Γn, pn) satisfies the assumptions of
Theorem 11 for all sufficiently large n. First, since the sequence is sparse, E[Xi] ≤ 1 − ε for
all i ∈ [N ] and all sufficiently large n. Next, fix some V ⊆ [N ] of size at most k+ 1. Then for
sufficiently large n, we have

∑
i∈V E[Xi] ≤ (1− ε)/2 (by sparsity) and∑

i∈∂(V )

E[Xi] ≤ λ(V ) ·P[
∏
i∈V

Xi = 1] ≤ λ(V ) ·max{E[Xi] : i ∈ [N ]} ≤ (1− ε)/2,

(using sparsity and subcriticality), which implies that, by the union bound,

ρk+1 = max
V⊆[N ]

1≤|V |≤k+1

P[Xi = 1 for some i ∈ V ∪ ∂(V )] ≤ 1− ε.

Therefore Theorem 11 yields

| logP[X = 0] + κ1 − κ2 + · · ·+ (−1)k+1κk| ≤ K · (δ1,K + ∆k+1,K) (14)

for sufficiently large n. It remains to show that the right-hand side of (14) is O(∆k+1 + δ1).
By Lemma 18 and since ΛK = O(1), we see that

K · δ1,K = K ·
K∑
r=1

δr = O(δ1) and K ·∆k+1,K = K ·
K∑

r=k+1

∆r = O(∆k+1),

which completes the proof.
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3 Proof of Theorem 11

Let (Ω,Γ, p) be an increasing family. We start the proof by establishing some notational
conventions. Given a subset V ⊆ [N ], we use the abbreviations

XV :=
∏
i∈V

Xi and XV :=
∏
i∈V

(1−Xi).

Note that these are the indicator variables for the events “γi ⊆ Ωp for all i ∈ V ” and “γi 6⊆ Ωp

for all i ∈ V ”, respectively. Besides being positively correlated, the variables XV satisfy the
FKG lattice condition

E[XU ]E[XV ] ≤ E[XU∪V ]E[XU∩V ] for all U, V ⊆ [N ]. (15)

To see that this is true, rewrite (15) using E[XW ] =
∏
ω∈

⋃
i∈W γi

p(ω), take logarithms of both
sides, and note that∑
ω∈

⋃
i∈U∪V γi

log p(ω) =
∑

ω∈
⋃

i∈U γi

log p(ω) +
∑

ω∈
⋃

i∈V γi

log p(ω)−
∑

ω∈(
⋃

i∈U γi)∩(
⋃

i∈V γi)

log p(ω)

≥
∑

ω∈
⋃

i∈U γi

log p(ω) +
∑

ω∈
⋃

i∈V γi

log p(ω)−
∑

ω∈
⋃

i∈U∩V γi

log p(ω),

since log p(ω) < 0 for all ω and
⋃
i∈U∩V γi ⊆

(⋃
i∈U γi

)
∩
(⋃

i∈V γi
)
. We will also use the

notation
µπ :=

∏
P∈π

E[XP ]

whenever π is a set of subsets of [N ] (usually a partition of some subset of [N ]). Thus for a
non-empty subset V ⊆ [N ], the value

κ(V ) :=
∑

π∈Π(V )

(−1)|π|−1(|π| − 1)!µπ (16)

is the joint cumulant of {Xi : i ∈ V }. For the sake of brevity, we will from now on write κ(V )
instead of κ({Xi : i ∈ V }). Recall that for a non-empty subset V ⊆ [N ], we denote by ∂(V )
the external neighbourhood of V in the dependency graph, that is,

∂(V ) = NGΓ
(V ) \ V.

We define
ρV := P[Xi = 1 for some i ∈ V ∪ ∂(V )], (17)

so that ρk+1 = max {ρV : V ⊆ [N ], 1 ≤ |V | ≤ k + 1}. Moreover, we set

I(V ) := [N ] \ (V ∪ ∂(V )).

Neglecting the distinction between an index i and the variable Xi, we may say that ∂(V )
contains the variables outside of V that are dependent on V and I(V ) contains those that are
independent of V . Recall also that Ci is the collection of all i-element sets A ⊆ [N ] such that
GΓ[A] is connected. We will also write Ci(`) for the subset of Ci comprising all A ∈ Ci with
maxA = `.
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Assume that there is ε > 0 such that E[Xi] ≤ 1− ε for all i ∈ [N ]. Then we need to show
that for every k ∈ N such that ρk+1 ≤ 1− ε, there is some K = K(k, ε) such that∣∣∣ logP[X = 0] +

∑
i∈[k]

(−1)i+1κi

∣∣∣ ≤ K · (δ1,K + ∆k+1,K),

where

δ1,K =
K∑
i=1

δi and ∆k+1,K =
K∑

i=k+1

∆i.

To do so, we first write out the probability that X = 0 using the chain rule:

P[X = 0] =
∏
`∈[N ]

P[X` = 0 | X [`−1] = 1] =
∏
`∈[N ]

(
1−E[X` | X [`−1] = 1]

)
.

Note that by the Harris inequality, E[X` | X [`−1] = 1] ≤ E[X`] ≤ 1− ε . Taking logarithms of
both sides of the above equality and using the fact that | log(1−x)+x| ≤ x2/ε for x ∈ [0, 1−ε],
we get ∣∣∣ logP[X = 0] +

∑
`∈[N ]

E[X` | X [`−1] = 1]
∣∣∣ ≤ ∑

`∈[N ]

E[X` | X [`−1] = 1]2/ε.

Hence, using again E[X` | X [`−1] = 1] ≤ E[X`],∣∣∣ logP[X = 0] +
∑
`∈[N ]

E[X` | X [`−1] = 1]
∣∣∣ ≤ ∑

`∈[N ]

E[X`]
2/ε = δ1/ε. (18)

Thus, our main goal becomes estimating the sum∑
`∈[N ]

E[X` | X [`−1] = 1]. (19)

We shall do this by approximating (19) by an expression involving the quantities

q(V, S) :=
(−1)|V |−1 E[XV ]

E[XS\I(V ) | XS∩I(V ) = 1]
, (20)

This ratio is well-defined for all V, S ⊆ [N ] because

E[XS\I(V ) | XS∩I(V ) = 1] ≥ E[XS\I(V )] > 0,

which is a consequence of the Harris inequality and the assumption that p(ω) < 1 for all
ω ∈ Ω. The relationship between (19) and (20) is made precise in the following lemma:

Lemma 19. Let k ∈ N be such that ρk+1 ≤ 1− ε. Then∣∣∣ ∑
`∈[N ]

E[X` | X [`−1] = 1]−
∑
`∈[N ]

∑
i∈[k]

∑
V ∈Ci(`)

q(V, [`− 1])
∣∣∣ ≤ ∆k+1/ε.

We postpone the proof of Lemma 19 to Section 3.1 and instead show how it implies the
assertion of the theorem. Before we do this, we need several additional definitions.
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V U

Figure 1: The set U attaches to V , i.e., U ↪→ V , but not vice-versa.

V

W

Figure 2: A partition in ΠC
V (W ). Note that V is the union of components of the subgraph

induced by the part containing it. If the dashed edge were in GΓ, then the partition would no
longer be in ΠC

V (W ).

Definition 20 (Attachment). Given subsets U, V ⊆ [N ], let us say that U attaches to V ,
in symbols U ↪→ V , if every connected component of GΓ[U ∪ V ] contains a vertex of V (see
Figure 1).

We state the following simple facts for future reference:

(i) We have ∅ ↪→ V for every V ⊆ [N ].

(ii) If i ∈ ∂(V ), then {i} ↪→ V .

(iii) If U ↪→ V and U ′ ↪→ V then also U ∪ U ′ ↪→ V .

(iv) If V ∈ C|V | and U ↪→ V , then U ∪ V ∈ C|U∪V |.
Definition 21. Suppose that ∅ 6= V ⊆W ⊆ [N ]. We define

ΠC
V (W ) ⊆ Π(W )

to be the set of all partitions π of W that contain a part P ∈ π such that V ⊆ P and V is
the union of connected components of GΓ[P ] (see Figure 2).

Next, for ∅ 6= V ⊆W ⊆ [N ], we define

κV (W ) :=
∑

π∈ΠC
V (W )

(−1)|π|−1(|π| − 1)!µπ. (21)

Note that this is very similar to the definition (16) of κ(W ), except that we sum over ΠC
V (W )

instead of Π(W ). For i ≥ 0 and all V, S ⊆ [N ] where V 6= ∅, we set

κ
(k)
V (S) :=

∑
V⊆W⊆V ∪S
W↪→V
|W |≤k

(−1)|W |−1κV (W ). (22)
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Undoubtedly this is a very complicated definition. However, it serves as a convenient ‘bridge’
between q(V, [`− 1]) and the values κi, as shown by the following two lemmas:

Lemma 22. Let k ∈ N be such that ρk+1 ≤ 1− ε. Then there is some K = K(k, ε) such that∣∣∣ ∑
`∈[N ]

∑
i∈[k]

∑
V ∈Ci(`)

(
q(V, [`− 1])− κ(k)

V ([`− 1])
)∣∣∣ ≤ K · (δ1,K + ∆k+1,K).

Lemma 23. For every k ∈ N, we have∑
`∈[N ]

∑
i∈[k]

∑
V ∈Ci(`)

κ
(k)
V ([`− 1]) =

∑
i∈[k]

(−1)i+1κi.

We claim that Theorem 11 is an easy consequence of Lemmas 19, 22, and 23. Indeed, let
k ∈ N and assume that ρk+1 ≤ 1 − ε. If follows from (18), the above three lemmas, and the
triangle inequality that∣∣∣ logP[X = 0] +

∑
i∈[k]

(−1)i+1κi

∣∣∣ ≤ δ1/ε+ ∆k+1/ε+K ′ · (δ1,K′ + ∆k+1,K′)

for some K ′ = K ′(k, ε). The assertion of the theorem now follows simply by observing that
the right-hand side above is at most K · (δ1,K + ∆k+1,K) for K = K ′ + 1/ε.

3.1 Proof of Lemma 19

We derive Lemma 19 from the following auxiliary lemma, which will also be used in the proof
of Lemma 22.

Lemma 24. Assume that V, S ⊆ [N ] are disjoint. Then for every integer k ≥ 0,

(−1)k ·E[XV | XS = 1] ≤ (−1)k+|V |−1
∑

U⊆S,U↪→V
|U |≤k

q(V ∪ U, S). (23)

Proof. We claim that it suffices to prove that for every integer k ≥ 0,

(−1)k ·E
[
XVXS

]
≤

∑
U⊆S,U↪→V

0≤|U |≤k

(−1)k+|U |E
[
XV ∪U

]
E
[
XS∩I(V ∪U)

]
. (24)

Indeed, (24) implies (23) because

E
[
XS∩I(V ∪U)

]
= P

[
XS = 1

]
·E
[
XS\I(V ∪U) | XS∩I(V ∪U) = 1

]−1

and because definition (20) gives

q(V ∪ U, S) =
(−1)|V |+|U |−1 E[XV ∪U ]

E[XS\I(V ∪U) | XS∩I(V ∪U) = 1]
.

We prove (24) by induction on k. When k = 0, this inequality simplifies to

E[XVXS ] ≤ E[XV ]E[XS∩I(V )],
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which holds because XS ≤ XS∩I(V ) and because XV and XS∩I(V ) are independent. Assume
now that k ≥ 1 and that (24) holds for all k′ with 0 ≤ k′ < k. It follows from the Bonferroni
inequalities that

(−1)k ·XS∩∂(V ) ≤ (−1)k ·
∑

U ′⊆S∩∂(V )
|U ′|≤k

(−1)|U
′|XU ′ . (25)

Since S and V are disjoint and ∂(V )∪V = V c, then multiplying (25) through by XVXS∩I(V )

and taking expectations yields

(−1)k ·E[XVXS ] ≤
∑

U ′⊆S∩∂(V )
|U ′|≤k

(−1)k+|U ′|E[XV ∪U ′XS∩I(V )] (26)

Observe that for every U ′ ⊆ S∩∂(V ), the sets V ∪U ′ and S∩I(V ) are disjoint. In particular,
if U ′ is non-empty, then we may appeal to the induction hypothesis (with k ← k − |U ′|) to
bound each term in the right-hand side of (26) as follows. As S ∩ I(V ) ∩ I(V ∪ U ′ ∪ U ′′) =
S ∩ I(V ∪ U ′ ∪ U ′′), then

(−1)k+|U ′| ·E[XV ∪U ′XS∩I(V )]

≤
∑

U ′′⊆S∩I(V )
U ′′↪→V ∪U ′

0≤|U ′′|≤k−|U ′|

(−1)k+|U ′|+|U ′′|E[XV ∪U ′∪U ′′ ]E[XS∩I(V ∪U ′∪U ′′)]. (27)

Finally, observe that every non-empty U ⊆ S such that U ↪→ V can be partitioned into a
non-empty U ′ ⊆ S ∩ ∂(V ) and an U ′′ ⊆ S ∩ I(V ) such that U ′′ ↪→ (V ∪ U ′) in a unique way.
Indeed, one sets U ′ = U ∩∂(V ) and U ′′ = U \U ′; this is the only such partition. Since ∅ ↪→ V
by definition, then bounding each term in (26) that corresponds to a non-empty U ′ using (27)
and rearranging the sum gives (24).

Proof of Lemma 19. Fix an ` ∈ [N ] and an integer k such that ρk+1 ≤ 1 − ε. Invoking
Lemma 24 with V = {`} and S = [`− 1] twice, first with k ← k − 1 and then with k ← k, to
get both an upper and a lower bound on E[X` | X [`−1]], we obtain∣∣∣E[X` | X [`−1] = 1]−

∑
U⊆[`−1],U↪→{`}
|U |≤k−1

q(U ∪ {`}, [`− 1])
∣∣∣ ≤ ∣∣∣ ∑

U⊆[`−1],U↪→{`}
|U |=k

q(U ∪ {`}, [`− 1])
∣∣∣.

Since the sets U ∪ {`} with U ⊆ [`− 1], U ↪→ {`}, and |U | = i− 1 are precisely the elements
of Ci(`), we can rewrite the above inequality as∣∣∣E[X` | X [`−1] = 1]−

∑
i∈[k]

∑
V ∈Ci(`)

q(V, [`− 1])
∣∣∣ ≤ ∑

V ∈Ck+1(`)

|q(V, [`− 1])|. (28)

It follows from definition (20) and Harris’ inequality that

|q(V, S)| = E[XV ]

E[XS\I(V ) | XS∩I(V ) = 1]

=
E[XV ]

1−P[Xi = 1 for some i ∈ S \ I(V ) | XS∩I(V ) = 1]
≤ E[XV ]

1− ρV
,
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Since ρV ≤ ρk+1 ≤ 1− ε for all V with |V | = k + 1, summing (28) over all ` ∈ [N ] yields∣∣∣ ∑
`∈[N ]

E[X` | X [`−1] = 1]−
∑
`∈[N ]

∑
i∈[k]

∑
V ∈Ci(`)

q(V, [`− 1])
∣∣∣ ≤ ∆k+1/ε,

which is precisely the assertion of the lemma.

3.2 Proof of Lemma 22 – preliminaries

The goal of this subsection is to prove a recursive formula for κV (W ), Lemma 28 below, which
will be used in the proof of Lemma 22.

Definition 25. Suppose that ∅ 6= V ⊆W ⊆ [N ]. Define sets ΠV (W ) and Π↪→
V (W ) as follows:

1. ΠV (W ) is the set of all partitions of W that contain V as a part;

2. Π↪→
V (W ) is the set of all partitions π ∈ ΠV (W ) such that U ↪→ V for all U ∈ π \ {V }.

Since by now we have defined several different classes of partitions of a set W , now is a
good moment to pause and convince ourselves that

Π↪→
V (W ) ⊆ ΠV (W ) ⊆ ΠC

V (W ) ⊆ Π(W ).

As a first step towards the promised recursive formula, we give an alternative expression for
κV (W ).

Definition 26 (Degree of a part in a partition). For a partition π of a subset of [N ] and any
part P ∈ π, let dπ(P ) denote the number of parts P ′ ∈ π \{P} such that GΓ contains an edge
between P ′ and P . We call dπ(P ) the degree of P in π.

Lemma 27. If ∅ 6= V ⊆W ⊆ [N ], then

κV (W ) =
∑

π∈ΠV (W )

(−1)|π|−1χV (π)µπ,

where

χV (π) =

{
1 if |π| = 1

dπ(V )(|π| − 2)! if |π| ≥ 2.

Proof. Given a π ∈ ΠC
V (W ), let P denote the part of π containing V . Define a map

f : ΠC
V (W ) → ΠV (W ) as follows. If P = V , then let f(π) = π. Otherwise, let f(π) be

the partition obtained from π by splitting P into V and P \ V . Clearly,

κV (W ) =
∑

π∈ΠC
V (W )

(−1)|π|−1(|π| − 1)!µπ =
∑

π∈ΠV (W )

∑
π′∈f−1(π)

(−1)|π
′|−1(|π′| − 1)!µπ′ .

Observe that every π ∈ ΠV (W ) has exactly |π|−dπ(V ) preimages via f . One of them is π
itself and there are |π| − 1− dπ(V ) additional partitions obtained from π by merging V with
some other part Q ∈ π such that Gγ contains no edges between V and Q. In particular, there
is one preimage of size |π| and there are |π|−1−dπ(V ) preimages of size |π|−1. Furthermore,
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V P

Figure 3: A set in CutV (P ). Every element of CutV (P ) is a cutset in GΓ(V ∪ P ) that
disconnects V from P .

note that µπ′ = µπ for every π′ ∈ f−1(π). Indeed, for every Q ∈ π with no edges of GΓ

between Q and V , we have

E[XV ] ·E[XQ] = E[XVXQ] = E[XV ∪Q].

It follows that

κV (W ) =
∑

π∈ΠV (W )

(−1)|π|−1
(

(|π| − 1)!− (|π| − 1− dπ(V )) · (|π| − 2)!
)
µπ

=
∑

π∈ΠV (W )

(−1)|π|−1χV (π)µπ,

as claimed.

The following lemma is the main result of this subsection and the essential combinatorial
ingredient of the proof of Lemma 22.

Lemma 28. Suppose that ∅ 6= V ⊆ W ⊆ [N ] and W ↪→ V . For a set P ⊆ W \ V such that
P ↪→ V , write CutV (P ) for the collection of all sets C satisfying ∂(V ) ∩ P ⊆ C ⊆ P and
C ↪→ V . Then

κV (W ) = E[XV ]
∑

π∈Π↪→
V (W )

(−1)|π|−1(|π| − 1)!
∏
P∈π
P 6=V

∑
C∈CutV (P )

κC(P ). (29)

Proof. Denote the right hand side of (29) by rV (W ). We need to show κV (W ) = rV (W ). Let
us first rewrite the inner sum in (29). To this end, fix some non-empty P ⊆W \ V such that
P ↪→ V . By the definition of κC(P ), see (21),∑

C∈CutV (P )

κC(P ) =
∑

C∈CutV (P )

∑
π∈ΠC

C(P )

(−1)|π|−1(|π| − 1)!µπ. (30)

We may write this double sum more compactly as follows. For brevity, let ∂P (V ) := ∂(V )∩P .
Denote by Π̃V (P ) the set of all partitions π ∈ Π(P ) such that some Q ∈ π contains all
neighbours of V in P , that is, such that ∂P (V ) ⊆ Q for some Q ∈ π. We claim that∑

C∈CutV (P )

κC(P ) =
∑

π∈Π̃V (P )

(−1)|π|−1(|π| − 1)!µπ. (31)
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Indeed, this follows from (30) because, letting

Q(V, P ) = {(C, π) : C ∈ CutV (P ) and π ∈ ΠC
C(P )},

the projection p2 : Q(V, P ) 3 (C, π) 7→ π ∈ Π(P ) is a bijection between Q(V, P ) and Π̃V (P ).
This is because for every (C, π) ∈ Q(V, P ), C is the union of those connected components of
GΓ(Q) that intersect ∂P (V ). Furthermore, observe that the right-hand side of (31) is simply
the joint cumulant of the set

PV := {Xi : i ∈ P \ ∂P (V )} ∪ {X∂P (V )},

which is obtained from P by replacing {Xi : i ∈ ∂P (V )} with the single variable X∂P (V ).
Therefore, it follows from (31) that

rV (W ) = E[XV ]
∑

π∈Π↪→
V (W )

(−1)|π|−1(|π| − 1)!
∏
P∈π
P 6=V

κ(PV ). (32)

Let Π′V (W ) be the set of all partitions in ΠV (W ) whose every part, except possibly V
itself, contains a neighbour of V . We claim that the product in the right-hand side of (32) is
zero for every π ∈ Π′V (W ) \ Π↪→

V (W ) and hence we may replace Π↪→
V (W ) with Π′V (W ) in the

range of summation in (32). Indeed, if π ∈ Π′V (W )\Π↪→
V (W ), then there is a P ∈ π \{V } such

that ∂P (V ) 6= ∅ but P 6↪→ V . In particular, some connected component of GΓ[P ] is disjoint
from ∂P (V ) and hence κ(PV ) = 0. Expanding κ(PV ) again, we obtain

rV (W ) = E[XV ]
∑

π∈Π′V (W )

(−1)|π|−1(|π| − 1)!
∏
P∈π
P 6=V

∑
π′∈Π̃V (P )

(−1)|π
′|−1(|π′| − 1)!µπ′ . (33)

Let us write P to denote the set of all pairs (π, π∗) ∈ Π′V (W )×ΠV (W ) obtained as follows.
Choose an arbitrary partition π ∈ Π′V (W ) and refine every P ∈ π \ {V } by replacing it by
some πP ∈ Π̃V (P ), so that ∂P (V ) is contained in a single part of πP ; finally, let π∗ be the
resulting partition of W .

Suppose that (π, π∗) ∈ P. Enumerate the parts of π as V, P1, . . . , Pt and suppose that π∗

was obtained from π by refining each Pj into ij + 1 parts, so that |π∗| = t+ 1 + i1 + . . .+ it.
Then, letting

f(π, π∗) = ft(i1, . . . , it) := (−1)tt!
∏
i∈[t]

(−1)ij ij ! = (−1)|π
∗|−1t!

∏
j∈[t]

ij !,

we may rewrite (33) as
rV (W ) =

∑
(π,π∗)∈P

f(π, π∗)µπ∗ . (34)

Fix some π∗ ∈ ΠV (W ) and note that π∗ contains dπ∗(V ) parts other than V that intersect
∂(V ). Write s := |π∗|, t := dπ∗(V ), and π∗ = {V, P ∗1 , . . . , P ∗s−1} so that P ∗1 , . . . , P ∗t are the
parts intersecting ∂(V ). Fix an arbitrary permutation σ of [s−1] such that σ(1) ∈ [t]. Such a
σ can be used to define a π such that (π, π∗) ∈ P in the following way. Consider the sequence
P ∗σ := (P ∗σ(1), . . . , P

∗
σ(s−1)). For every i ∈ [t], let Pi be the union of P ∗i and all the P ∗j , with

j ∈ [s− 1] \ [t], for which P ∗i is the right-most element among P ∗1 , . . . , P ∗t that is to the left of
P ∗j in P ∗σ . (Since σ(1) ∈ [t], then each P ∗j with j ∈ [s − 1] \ [t] has one of P ∗1 , . . . , P ∗t left of
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it.) A moment’s thought reveals that each partition π with (π, π∗) ∈ P is obtained this way
from exactly |f(π, π∗)| permutations σ. It follows that

rV (W ) =
∑

π∗∈ΠV (W )

(−1)|π
∗|−1µπ∗

∑
π∈Π′V (W )
(π,π∗)∈P

|f(π, π∗)|

=
∑

π∗∈ΠV (W )

(−1)|π
∗|−1µπ∗ · |{σ ∈ Sym(|π∗| − 1) : σ(1) ∈ {1, . . . , dπ∗(V )}}|

=
∑

π∗∈ΠV (W )

(−1)|π
∗|−1µπ∗ · χV (π∗),

where χV (π∗) is as defined in Lemma 27. By Lemma 27, we conclude that rV (W ) = κV (W ),
as required.

3.3 Proof of Lemma 22

For V, S ⊆ [N ] and k ∈ N such that 0 ≤ |V | ≤ k, we define

κ̃
(k)
V (S) := (−1)|V |−1 E[XV ]

∑
0≤i≤k−|V |

( ∑
U⊆S,U↪→V

1≤|U |≤k−|V |

κ
(k−|V |)
U (S ∩ I(V ))

)i
(35)

and
q(k)(V, S) := (−1)|V |−1 E[XV ]

∑
0≤i≤k−|V |

( ∑
U⊆S,U↪→V

1≤|U |≤k−|V |

q(U, S ∩ I(V ))
)i
. (36)

Our proof of Lemma 22 consists of three steps. First, in Lemma 29, we show that q(V, S) ≈
q(k)(V, S). Second, in Lemma 30, we show that κ(k)

V (S) ≈ κ̃
(k)
V (S). Finally, the fact that

q(k)(V, S) and κ̃
(k)
V (S) satisfy similar recurrences (given the above approximate equalities)

allows us to prove that also q(V, S) ≈ κ
(k)
V (S). Lemma 22 then follows easily. The precise

definition of ‘≈’ above will be expressed by the following quantities. For integers k and K
satisfying 1 ≤ k ≤ K,

∆k(V ) :=
∑
U↪→V
|U∪V |=k

E[XU∪V ] and ∆k,K(V ) =
K∑
j=k

∆j(V ). (37)

and
δk,K(V ) :=

∑
U↪→V

k≤|U∪V |≤K

E[XU∪V ] max {E[Xi] : i ∈ U ∪ V }. (38)

Lemma 29. Let ε > 0 and k ∈ N be such that ρk ≤ 1 − ε. There exists K = K(k, ε) such
that for all V, S ⊆ [N ] with 1 ≤ |V | ≤ k,

|q(V, S)− q(k)(V, S)| ≤ K ·
(
δ1,K(V ) + ∆k+1,K(V )

)
.
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Proof. Fix V and S as in the statement of the lemma and set

x := P[Xi = 1 for some i ∈ S \ I(V ) | XS∩I(V ) = 1].

Then by definition

q(V, S) =
(−1)|V |−1 E[XV ]

E[XS\I(V ) | XS∩I(V ) = 1]
=

(−1)|V |−1 E[XV ]

1− x
. (39)

Since 0 ≤ x ≤ ρV , by Harris’ inequality, and ρV ≤ ρk ≤ 1− ε, as |V | ≤ k, then (39) and the
identity (1− x)−1 = 1 + x+ . . .+ xk−|V | + xk−|V |+1(1− x)−1 yield∣∣q(V, S)− (−1)|V |−1 E[XV ] · (1 + x+ x2 + · · ·+ xk−|V |)

∣∣ ≤ ε−1 E[XV ]ρ
k−|V |+1
V . (40)

We now observe that

E[XV ]ρ
k−|V |+1
V ≤ E[XV ]

( ∑
i∈V ∪∂(V )

E[Xi]
)k−|V |+1

= E[XV ]
∑

i1,...,ik−|V |+1

k−|V |+1∏
j=1

E[Xij ]

and note that if i1, . . . , ik−|V |+1 are distinct elements of ∂(V ), then

E[XV ]

k−|V |+1∏
j=1

E[Xij ] ≤ E[XV ∪{i1,...,ik−|V |+1}]

by Harris’ inequality; if, on the other hand, either ij ∈ V for some j or some two ij are equal,
then Harris’ inequality and the fact that |E[Xi]| ≤ 1 for each i imply the stronger bound

E[XV ]

k−|V |+1∏
j=1

E[Xij ] ≤ E[XV ∪{i1,...,ik−|V |+1}] ·max{E[Xi] : i ∈ V ∪ {i1, . . . , ik−|V |+1}}. (41)

In particular, the right-hand side of (40) is bounded from above by

ε−1 · (k − |V |+ 1)! ·∆k+1(V ) + ε−1 · kk−|V |+1 · δ1,k(V ),

which yields∣∣q(V, S)− (−1)|V |−1 E[XV ] · (1 + x+ · · ·+ xk−|V |)
∣∣ ≤ K1 ·

(
∆k+1(V ) + δ1,k(V )

)
(42)

for some constant K1 that depends only on k and ε.
We claim that there is a constant K2 = K2(k, ε) such that for all i ∈ {0, . . . , k − |V |},

E[XV ] ·
∣∣∣xi − ( ∑

U⊆S,U↪→V
1≤|U |≤k−|V |

q(U, S ∩ I(V ))
)i∣∣∣ ≤ K2 ·

(
δ1,K2(V ) + ∆k+1,K2(V )

)
. (43)

Observe that (42) and (43) imply that

|q(V, S)− q(k)(V, S)| ≤ K ·
(
δ1,K(V ) + ∆k+1,K(V )

)
for some K = K(k, ε), giving the assertion of the lemma. It thus remains to prove (43).
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We first consider the case i = 1. By the Bonferroni inequalities, for every positive j,

(−1)j−1 · x ≤ (−1)j−1 ·
∑

U ′⊆S\I(V )
1≤|U ′|≤j

(−1)|U
′|−1 E[XU ′ | XS∩I(V ) = 1].

Applying Lemma 24 with k ← j − |U ′|, V ← U ′, and S ← S ∩ I(V ), we get that for each
U ′ ⊆ S \ I(V ) with 1 ≤ |U ′| ≤ j,

(−1)|U
′|−1 E[XU ′ | XS∩I(V ) = 1] ≤

∑
U ′′⊆S∩I(V ),U ′′↪→U ′

0≤|U ′′|≤j−|U ′|

q(U ′ ∪ U ′′, S ∩ I(V )).

Next, observe that any non-empty U ⊆ S with U ↪→ V of size at most j can be written
uniquely as the disjoint union of U ′ and U ′′, where U ′ ⊆ V ∪ ∂(V ) and U ′′ ⊆ I(V ) and
U ′′ ↪→ U ′. The previous two equations then imply that

(−1)j−1 · x ≤ (−1)j−1 ·
∑

U⊆S,U↪→V
1≤|U |≤k−|V |

q(U, S ∩ I(V )). (44)

Invoking (44) twice, first with j ← k − |V | and then with j ← k − |V | + 1, to get both an
upper and a lower bound on x, we obtain∣∣∣x− ∑

U⊆S,U↪→V
1≤|U |≤k−|V |

q(U, S ∩ I(V ))
∣∣∣ ≤ ∣∣∣ ∑

U⊆S,U↪→V
|U |=k−|V |+1

q(U, S ∩ I(V ))
∣∣∣

≤
∑

U⊆S,U↪→V
|U |=k−|V |+1

ε−1 E[XU ],
(45)

where the last inequality uses the definition of q(U, S∩IV ) and the assumption that ρk ≤ 1−ε,
see the discussion below (39).

Finally, we show how to deduce (43) from (45). Let

y :=
∑

U⊆S,U↪→V
1≤|U |≤k−|V |

q(U, S ∩ I(V )),

so that the left-hand side of (43) is E[XV ] · |xi − yi|, and observe that, as in (45),

|y| ≤ z :=
∑
U↪→V

1≤|U |≤k−|V |

ε−1 E[XU ].

Fix an i ∈ {1, . . . , k − |V |}. Since |x| ≤ 1, then

|xi − yi| ≤ |x− y| ·
i−1∑
j=0

|xjyi−1−j | ≤ (1 + z)i−1 · |x− y|,

which together with (45) implies that

E[XV ] · |xi − yi| ≤ (1 + z)i−1 E[XV ]
∑
U↪→V

|U |=k−|V |+1

ε−1 E[XU ].
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Note that for pairwise disjoint U1, . . . , Uj ⊆ [N ], Harris’ inequality gives

j∏
`=1

E[XU`
] ≤ E[XU1∪...∪Uj ]

and if U1, . . . , Uj ⊆ [N ] are not pairwise disjoint, then the stronger FKG lattice condition (15)
implies that

j∏
`=1

E[XU`
] ≤ E[XU1∪...∪Uj ] ·max{E[Xi] : i ∈ U1 ∪ . . . ∪ Uj}.

In particular, using a similar reasoning as for bounding the right-hand side of (40), we obtain

(1 + z)i−1 E[XV ]
∑
U↪→V

|U |=k−|V |+1

ε−1 E[XU ] ≤ K4 ·
(
δ1,ik(V ) + ∆k+1,ik+1(V )

)

for sufficiently large K4 = K4(k, ε). This shows (43) and hence the the lemma.

Lemma 30. For all k ∈ N there exists K = K(k) such that the following holds. Suppose that
V, S ⊆ [N ] where 1 ≤ |V | ≤ k. Then

|κ(k)
V (S)− κ̃(k)

V (S)| ≤ K ·
(
δ1,K(V ) + ∆k+1,K(V )

)
.

Proof. Fix k, S, and V as in the statement of the lemma and let

x :=
∑

U⊆S,U↪→V
1≤|U |≤k−|V |

κ
(k−|V |)
U (S ∩ I(V )),

so that
κ̃

(k)
V (S) = (−1)|V |−1 E[XV ](1 + x+ x2 + · · ·+ xk−|V |). (46)

Recalling the definition (22), we may rewrite

x =
∑

U⊆S,U↪→V
1≤|U |≤k−|V |

∑
U⊆W⊆U∪(S∩I(V ))
W↪→U,|W |≤k−|V |

(−1)|W |−1κU (W ). (47)

Recalling from the statement of Lemma 28 that

CutV (W ) = {U ⊆W : U ↪→ V and ∂(V ) ∩W ⊆ U},

we may switch the order of summation in (47) to obtain

x =
∑

W⊆S,W↪→V
1≤|W |≤k−|V |

∑
U∈CutV (W )

(−1)|W |−1κU (W ).

For the sake of brevity, write

f(W ) :=
∑

U∈CutV (W )

(−1)|W |−1κU (W ).
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We may now rewrite (46) as

κ̃
(k)
V (S) = (−1)|V |−1 E[XV ]

k−|V |∑
i=0

∑
W1,...,Wi⊆S
W1,...,Wi↪→V

1≤|W1|,...,|Wi|≤k−|V |

f(W1) · . . . · f(Wi). (48)

Consider first the total contribution κ̃1 to the right-hand side of (48) of terms corresponding
to W1, . . . ,Wi ⊆ S \ V that are pairwise disjoint and whose union has size at most k − |V |.
Each such term may be regarded as a partition of the setW := V ∪W1∪. . .∪Wi which satisfies
V ⊆ W ⊆ S and |W | ≤ k; this partition {V,W1, . . . ,Wi} belongs to Π↪→

V (W ). Conversely,
given a W with these properties, every partition π ∈ Π↪→

V (W ) corresponds to exactly (|π|−1)!
such terms; this is the number of ways to order the elements of π \ {V } as W1, . . . ,Wi.
Therefore,

κ̃1 = (−1)|V |−1 E[XV ]
∑

V⊆W⊆V ∪S
W↪→V,|W |≤k

∑
π∈Π↪→

V (W )

(|π| − 1)!
∏
P∈π
P 6=V

f(P ).

In particular, Lemma 28 gives

κ̃1 = (−1)|V |−1
∑

V⊆W⊆V ∪S
W↪→V,|W |≤k

(−1)|W |−|V |κV (W ) = κ
(k)
V (S).

Every term in the right-hand side of (48) corresponding to W1, . . . ,Wi that is not included in
κ̃1 either satisfies |V ∪W1 ∪ . . . ∪Wi| > k or the sets V,W1, . . . ,Wi are not pairwise disjoint.
Let κ̃2 := κ̃

(k)
V (S) denote the total contribution of these terms. Since for every W ,

|f(W )| ≤
∑
U⊆W

|κU (W )| ≤
∑

π∈Π(W )

|π|!µπ ≤ |W ||W |E[XW ],

there is a constant K1 that depends only on k such that

|κ̃2| ≤ K1 E[XV ]
∑

W1,...,Wi

i∏
j=1

E[XWj ],

where the sum ranges over all i ≤ k − |V | and W1, . . . ,Wi ⊆ S, each of size at most k − |V |,
such that either |V ∪W1∪ . . .∪Wi| > k or the sets V,W1, . . . ,Wi are not pairwise disjoint. An
argument analogous to the one given at the end of the proof of Lemma 29, employing Harris’
inequality and the stronger FKG lattice condition (15), gives

|κ̃2| ≤ K ·
(
δ1,K(V ) + ∆k+1,K(V )

)
for some K that depends only on k.

Lemma 31. Let k ∈ N be such that ρk ≤ 1− ε. Then there exists K = K(k, ε) such that for
all V, S ⊆ [N ] where 1 ≤ |V | ≤ k, we have

|q(V, S)− κ(k)
V (S)| ≤ K ·

(
δ1,K(V ) + ∆k+1,K(V )

)
.
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Proof. We prove the lemma by complete induction on k. To this end, let k ≥ 0 and suppose
that the statement holds for all k′ ∈ N with k′ < k. By the triangle inequality

|q(V, S)− κ(k)
V (S)| ≤ |q(V, S)− q(k)(V, S)|+ |q(k)(V, S)− κ̃(k)

V (S)|+ |κ̃(k)
V (S)− κ(k)

V (S)|.

Lemmas 29 and 30 imply that

|q(V, S)− q(k)(V, S)|+ |κ̃(k)
V (S)− κ(k)

V (S)| ≤ K1 ·
(
δ1,K1(V ) + ∆k+1,K1(V )

)
for some sufficiently large K1 = K1(k, ε) and thus it suffices to show that there is some
K2 = K2(k, ε) such that

|q(k)(V, S)− κ̃(k)
V (S)| ≤ K2 ·

(
δ1,K2(V ) + ∆k+1,K2(V )

)
. (49)

To this end, observe first that since k− |V | < k, then the induction hypothesis states that
there is a constant K ′ = K ′(k, ε) such that∣∣q(U, S ∩ I(V ))− κ(k−|V |)

U (S ∩ I(V ))
∣∣ ≤ K ′ · (δ1,K′(U) + ∆k−|V |+1,K′(U)

)
(50)

for all U such that 1 ≤ |U | ≤ k − |V |. Let

x :=
∑

U⊆S,U↪→V
1≤|U |≤k−|V |

κ
(k−|V |)
U (S ∩ I(V ))

and, as in the proof of Lemma 29,

y :=
∑

U⊆S,U↪→V
1≤|U |≤k−|V |

q(U, S ∩ I(V )).

Observe that
|y| ≤ z :=

∑
U↪→V

1≤|U |≤k−|V |

ε−1 E[XU ],

as in the proof of Lemma 29, and that (50) implies that

|x− y| ≤ w := K ′ ·
∑
U↪→V

1≤|U |≤k−|V |

(
δ1,K′(U) + ∆k−|V |+1,K′(U)

)
. (51)

For any i ≥ 1, we have

|xi − yi| ≤ |x− y| ·
i−1∑
j=0

|xjyi−1−j | ≤ |x− y| · (|x|+ |y|)i−1 ≤ w(2z + w)i−1.

It follows that
|q(k)(V, S)− κ̃(k)

V (S)| ≤
∑

1≤i≤k−|V |

E[XV ] · w(2z + w)i−1. (52)

Similarly as in the proofs of Lemmas 29 and 30, one sees that the FKG lattice condition (15)
implies that the right hand side of (52) is bounded from above byK2 ·

(
δ1,K2(V )+∆k+1,K2(V )

)
,

provided K2 = K2(k, ε) is sufficiently large, as claimed.
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Proof of Lemma 22. It follows from Lemma 31 that there is K1 = K1(k, ε) such that∣∣∣ ∑
`∈[N ]

∑
i∈[k]

∑
V ∈Ci(`)

(
q(V, [`− 1])− κ(k)

V (S)
)∣∣∣ ≤ ∑

`∈[N ]

∑
i∈[k]

∑
V ∈Ci(`)

K1 ·
(
δ1,K1(V ) + ∆k+1,K1(V )

)
.

But if we choose K sufficiently large then the right-hand side is at most K ·
(
δ1,K + ∆k+1,K

)
,

as required.

3.4 Proof of Lemma 23

Fix an integer k and an ` ∈ [N ]. Recalling (22), we rewrite the `th term of the sum from the
statement of the lemma as follows:∑

i∈[k]

∑
V ∈Ci(`)

κ
(k)
V ([`− 1]) =

∑
i∈[k]

∑
V ∈Ci(`)

∑
V⊆W⊆V ∪[`−1]

W↪→V
|W |≤k

(−1)|W |−1κV (W ).

It follows from Definition 20 that if V is connected thenW ↪→ V if and only ifW is connected.
Therefore, changing the order of the last two sums in the right-hand side of the above identity
yields ∑

i∈[k]

∑
V ∈Ci(`)

κ
(k)
V ([`− 1]) =

∑
i∈[k]

∑
W∈Ci(`)

∑
V ∈CW

(−1)|W |−1κV (W ), (53)

where CW denotes the collection of all connected sets V ⊆W with maxV = maxW .
We claim that for each W ∈ Ci(`),

κ(W ) =
∑
V ∈CW

κV (W ). (54)

Observe first that establishing this claim completes the proof of the lemma. Indeed, substi-
tuting (54) into (53) and summing over all ` gives∑

`∈[N ]

∑
i∈[k]

∑
V ∈Ci(`)

κ
(k)
V ([`− 1]) =

∑
i∈[k]

∑
`∈[N ]

∑
W∈Ci(`)

(−1)|W |−1κ(W )

=
∑
i∈[k]

(−1)i−1
∑
W∈Ci

κ(W ) =
∑
i∈[k]

(−1)i−1κi.

Therefore, we only need to prove the claim. To this end, fix a W ∈ Ci(`). Recalling (16)
and (29), it clearly suffices to show that {ΠC

V (W ) : V ∈ CW } is a partition of Π(W ). Obviously,
ΠC
V (W ) ⊆ Π(W ) for each V ∈ CW . Conversely, given an arbitrary π ∈ Π(W ), let P ∈ π be the

part containing maxW and let V be the connected component of maxW in GΓ[P ]. Clearly,
V ∈ CW and π ∈ ΠC

V (W ). Moreover, the connected component of maxW in GΓ[P ] is the
only set V with this property, and so the sets ΠC

V (W ) and ΠC
U (W ) are disjoint for distinct

U, V ∈ CW .

4 Proofs of the corollaries

To apply Theorem 10, all one needs to do is check the conditions (sparsity and subcriticality),
compute the value δ1, and compute as many values κk as one wants. The last part is typically
the most labour-intensive. In this section, we carry out these calculations for the example
applications mentioned in the introduction.
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4.1 Random hypergraphs

We briefly recall the setup. We have an integer r ≥ 2 and a set F = {F1, . . . , Ft} of pairwise
non-isomorphic r-uniform hypergraphs, each having at least two edges and no isolated vertices.
We are interested in the asymptotic probability that H(r)

n,p avoids all copies of F1, . . . , Ft. We
encode this problem as an increasing family (Ω,Γn, pn), as follows. We set Ωn =

(
[n]
r

)
. For

each i ∈ [t], we let Γi,n be the collection of all edge sets of copies of Fi in K
(r)
n , and we set

Γn = Γ1,n ∪ · · · ∪ Γt,n. Lastly, we may take pn to be any sequence of probabilities, which we
interpret as constant functions on Ωn. Recall also the definitions:

m∗(F ) = min

{
eF − eH
vF − vH

: H ⊆ F with vH < vF and eH > 0

}
and

m∗(F) = min {m∗(F ) : F ∈ F} and d(F) = min {eF /vF : F ∈ F}.

Proof of Corollary 12. In light of Theorem 10 it is enough to show that

pn = o
(

min
{
n−1/m∗(F), n−2d(F)

})
implies that δ1 = o(1) and that (Ωn,Γn, pn) is sparse and subcritical. The sparsity condition
follows from the assumption that pn = o(1). For δ1, we have

δ1 =
∑
i∈[N ]

E[Xi]
2 ≤

∑
F∈F

nvF p2eF
n = o(1),

since pn = o(n−vF /2eF ) for each F ∈ F . Last but not least, we verify the subcriticality
condition. To this end, let V ⊆ [N ] be a set of size at most k and for γ ⊆ Ωn, write
σV (γ) := γ \

⋃
i∈V γi. We may classify all γi ∈ Γn with i ∈ ∂(V ) according to the isomorphism

type of the r-graph spanned by the edges in γi \ σV (γi), that is, γi ∩
⋃
j∈V γj . Note that

this is always the isomorphism type of a nonempty induced subhypergraph of some F ∈ F .
Accordingly,

λ(V ) =
∑

i∈∂(V )

E[Xi |
∏
j∈V

Xj = 1] =
∑

i∈∂(V )

p|σV (γi)|
n ≤

∑
j∈[t]

∑
H

(
kmax
F∈F

vF
)vHnvFj

−vHp
eFj
−eH

n ,

where H goes over all induced subhypergraphs of Fj with at least one edge. Since for every
F ∈ F and H ⊆ F with vF < vH and eH > 0 we have nvF−vH)peF−eHn = o(1), we see that
if n is large enough, then λ(V ) ≤ Ck for some constant Ck depending only on k and F (but
not on V ). It follows that Λk is bounded as n→∞. Hence (Ωn,Γn, pn) is subcritical and by
Theorem 10 we have

P[X = 0] = exp
(
− κ1 + κ2 − κ3 + · · ·+ (−1)kκk +O(∆k+1) + o(1)

)
for all constants k.

From now on, assume that r = 2. To prove Corollaries 14 and 15, we need to compute the
quantities κk for small values of k. This can be done by the following general approach: We
first enumerate all ‘isomorphism types’ of clusters in Ck. Then we compute the joint cumulant
for each isomorphism type. Finally we multiply each value with the size of the respective
isomorphism class. This is made more precise as follows.
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Definition 32. An F-complex is a non-empty set of subgraphs of Kn, each of which is
isomorphic to a graph in F . An F-complex C is irreducible if it cannot be written as the
union of two F-complexes C1 and C2 where every graph in C1 is edge-disjoint from every
graph in C2. The set of all irreducible F-complexes of cardinality k is denoted by Ck(F). The
graph GC of an F-complex C is the subgraph of Kn formed by taking the union of (the edge
sets of) the graphs in C.

Note that there is a natural bijection φ between the sets A ⊆ [N ] of size k and the F-
complexes of size i: φ maps A = {a1, . . . , ak} to the F-complex C = {G1, . . . , Gk}, where Gi
is the subgraph of Kn spanned by the edges in γai (recall that we have assumed that none
of the graphs in F have isolated vertices). Note also that φ|Ck is a bijection between Ck and
Ck(F). We can therefore write κ(C) for an F-complex C without ambiguity, obtaining

κk =
∑

C∈Ck(F)

κ(C).

Using (7) we can easily express κ(C) in terms of GC :

κ(C) =
∑

π∈Π(C)

(|π| − 1)!(−1)|π|−1
∏
C′∈π

p
eGC′ . (55)

Definition 33. Let C1 and C2 be F-complexes. A map f : V (GC1)→ V (GC2) is an isomor-
phism from C1 to C2 if for every graph H ∈ C1, the graph f(H) belongs to C2. We denote
by Aut(C) the group of automorphisms of C, that is of isomorphisms from C to C.

It is easy to see that κ assigns equal values to isomorphic F-complexes. The following
simple lemma can then be used to compute the values κk. In the sequel, we will denote by ni

the falling factorial n(n− 1) · · · (n− i+ 1).

Lemma 34. Let Ck(F)/∼= be the set of isomorphism types of F-complexes in Ck(F). Then∑
C∈Ck(F)

κ(C) =
∑

[C]∈Ck(F)/∼=

κ(C) · n
vGC

|Aut(C)|
.

Proof. For each isomorphism type [C], there are nvGC ways to place the vertices of GC into
Kn, and then every element of Ck(F) isomorphic to C is counted once for every automorphism
of C.

Proof of Corollary 14. Suppose that F = {K3, C4} and that p = o(n−4/5). Since both K3

and C4 are 2-balanced and

min
{
m2(K3),m2(C4)

}
= min{2, 3/2} ≥ 5/4,

we can apply Corollary 13, which states that the probability that Gn,p is simultaneously
K3-free and C4-free is

exp
(
− κ1 + κ2 − κ3 +O(∆4) + o(1)

)
.

Figure 4 shows all seven non-isomorphic irreducible F-complexes of size at most two. Using
Lemma 34, the contribution to κk from a given F-complex C of size k is

κ(C) · n
vGC

|Aut(C)|
.
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Figure 4: The irreducible {K3, C4}-complexes of size at most two.

For the complexes shown in Figure 4, we can easily calculate |Aut(C)|manually; going through
the figure from the top left to the bottom right, we obtain the values

6, 8, 4, 4, 4, 2, 2.

Therefore we have

κ1 =
n3p3

6
+
n4p4

8

and

κ2 =
n4(p5 − p6)

4
+
n6(p7 − p8)

4
+
n5(p6 − p8)

4
+
n5(p6 − p7)

2
+
n4(p5 − p7)

2

=
n6p7

4
+

3n5p6

4
+ o(1),

since p = o(n−4/5).
When calculating κ3, we first observe that the graphs of the third F-complex and the fifth

F-complex in Figure 4 each contain a C4 that is not already part of the complex and that the
graph of the bottom right F-complex contains a triangle that is not a part of the complex.
Let κ′3 denote the contribution of the two F-complexes of size three that are obtained from
one of these three complexes of size two by adding the ‘extra’ C4 or K3. Then

κ′3 =
n4(p5 − 2p8 − p9 + 2p10)

4
+
n5(p6 − 3p10 + p12)

4
=
n5p6

4
+ o(1).

On the other hand, the contribution of every other F-complex of to κ3 is at most in the order
of (p + np2 + n2p3) · κ2, because, except in the two cases mentioned above, the graph of a
complex of size three is obtained from the graph of a complex of size two by adding either a
new edge, or a new vertex and two new edges, or two new vertices and three new edges. Using
the assumption p = o(n−4/5), we get

(p+ np2 + n2p3) · κ2 = O(n6p8 + n5p7 + n7p9 + n8p10) = o(1),

and therefore

κ3 =
n5p6

4
+ o(1).

Similar considerations show that

∆4 ≤ O
(
(p+ np2 + n2p3) · κ′3

)
+O

(
(1 + p+ np2 + n2p3) · (κ3 − κ′3)

)
= o(1).
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Figure 5: The irreducible {K3}-complexes of size at most four. The four complexes in the
bottom row are negligible when p = o(n−7/11).

Since our assumption on p implies that max{κ1, κ2, κ3} = o(n), we can replace the falling fac-
torials ni in κ1, κ2, κ3 with powers ni with only an additive error of o(1). Thus the probability
that Gn,p, with p = o(n−4/5), is simultaneously triangle-free and C4-free is asymptotically

exp
(
− n3p3

6
− n4p4

8
+
n6p7

4
+
n5p6

2

)
,

as claimed.

Proof of Corollary 15. Suppose that F = {K3} and that p = o(n−7/11). Since K3 is 2-
balanced and m2(K3) = 2 ≥ 11/7, we can apply Corollary 13, which tells us that the proba-
bility that Gn,p is triangle-free is

exp
(
− κ1 + κ2 − κ3 + κ4 +O(κ5) + o(1)

)
.

In Figure 5 we see representations of all isomorphism types of irreducible F-complexes of
size up to four. Generating a similar list of complexes of size five would most likely require
the help of a computer.

By Lemma 34, the contribution to κk from the isomorphism type of an F-complex C of
size k is

κ(C) · n
vGC

|Aut(C)|
.

For the complexes shown in Figure 5, it is not too difficult to calculate |Aut(C)| by hand. In
fact, since the automorphism group of K3 comprises all 3! permutations of V (K3), automor-
phisms of {K3}-complexes are simply automorphisms of the 3-uniform hypergraphs involved4.

4But for general F , it is wrong to think of an F-complex isomorphism as a hypergraph isomorphism.
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For example, the leftmost F-complex in the second row has exactly two automorphisms: the
trivial one, and the unique automorphism exchanging the vertices belonging to exactly one
triangle. Under our assumptions on p, we have κk = ∆k + o(1) for k ∈ {3, 4}. This is the case
because |κk −∆k| = O(p∆k) and

p∆3 ≤ O(n5p8 + n4p7) = o(1) and p∆4 ≤ p ·O(1 + p+ p2n) ·∆3 = o(1),

see Figure 5.
Now we just work through the figure row by row (from the top left to the bottom right)

and in this order, we compute (using the first row)

κ1 =
n3p3

6
,

κ2 =
n4(p5 − p6)

4
,

κ3 = ∆3 + o(1) =
n5p7

2
+
n5p7

12
+
n4p6

6
+ o(1),

and (using the other rows)

κ4 = ∆4 + o(1) =
n6p9

2
+
n6p9

2
+
n6p9

6
+
n6p9

2
+
n6p9

48
+
n4p6

24
+O(n5p8) + o(1).

The term O(n5p8) represents the contribution of the four complexes in the bottom row of
Figure 5, which is o(1), as p = o(n−7/11). Finally, we have

∆5 = O(p∆4 + np2∆4 + n5p8 + n5p9) = O(n4p7 + n5p8 + n6p10 + n7p11) = o(1),

since the graph of an F-complex of size five must be obtained by adding either a new edge or
a new vertex and two new edges to one of the graphs in Figure 5, or else it must be isomorphic
to one of the first three graphs in the bottom row of Figure 5 (as the graphs of the remaining
complexes of size four contain only triangles that are already in the complex).

Finally, κ1 = n3p3/6 = (n3 − 3n2)p3/6 + o(1) and, since max{κ2, κ3, κ4} = o(n), we may
replace the falling factorials ni in the remaining expressions by ni. Adding up the terms in
−κ1 +κ2−κ3 +κ4, we obtain that the probability that Gn,p with p = o(n−7/11) is triangle-free
is asymptotically

exp
(
− n3p3

6
+
n4p5

4
− 7n5p7

12
+
n2p3

2
− 3n4p6

8
+

27n6p9

16

)
,

as claimed.

4.2 Arithmetic progressions

As explained in the introduction, we let Ωn = [n] and let Γn be the set of r-APs in [n]. We
let pn be a sequence of probabilities. This defines (Ωn,Γn, pn), where, as before, we regard pn
as both a real number and a constant function on Ωn.

Proof of Corollary 16. Suppose that pn = o(n−1/(r−1)). Then (Ωn,Γn, pn) is clearly sparse.
Now the corollary will follow from Theorem 10 provided that δ1 = o(1) and that (Ωn,Γn, pn)
is subcritical. We verify that these two conditions are satisfied.
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To this end, observe first that any two distinct numbers a, b ∈ [n] are contained in at most(
r
2

)
many arithmetic progressions of length r. In particular, |N | ≤

(
n
2

)(
r
2

)
and so

δ1 = O(n2p2r) = o(1).

Also, given any V ⊆ [N ] of size at most k, we have

λ(V ) =
∑

i∈∂(V )

E[Xi |
∏
j∈V

Xj = 1] = O(1 + npr−1) = O(1),

since each r-AP intersecting the set
⋃
j∈V γj either intersects this set in at least two elements

(there are only constantly many such choices, so their contribution is O(1)) or in exactly one
element (contributing O(npr−1)). We conclude that Λk = O(1), completing the proof.

Proof of Corollary 17. Assume that p = o(n−4/7). Then by Corollary 16 with r = 3 and
k = 2,

P[X = 0] = exp
(
− κ1 + κ2 +O(∆3) + o(1)

)
,

It remains to calculate κ1, κ2, and ∆3. For i ∈ [n], the number of 3-APs containing i is

f(i) =
n

2
+ min {i, n− i}+O(1),

where min {i, n− i} counts the 3-APs that have i as their midpoint, and n/2 counts the others.
Thus the total number of 3-APs in [n] is

1

3

n∑
i=1

f(i) =
n2

4
+O(n),

and therefore (using np3 = o(1))

κ1 =
n2p3

4
+ o(1).

If {Xi, Xj} is a cluster of size two, then |γi ∩ γj | is either 1 or 2. The number of pairs γi, γj
intersecting in two elements is at most

(
n
2

)(
3
2

)2, so the contribution of these pairs to κ2 is
O(n2p4), which is o(1) by our assumption on p. The number of pairs {γi, γj} with i 6= j and
|γi ∩ γj | ≥ 1 is precisely

∑n
i=1

(
f(i)

2

)
and hence the number M of pairs with |γi ∩ γj | = 1

satisfies

M =

n∑
i=1

(
f(i)

2

)
+O(n2) =

1

2

n∑
i=1

f(i)2 +O(n2).

Since

n∑
i=1

f(i)2 =

n∑
i=1

(
n/2 + min {n− i, i}

)2
+O(n2) = 2

bn/2c∑
i=1

(n/2 + i)2 +O(n2)

= 2

(
n3

3
− (n/2)3

3

)
+O(n2) =

7n3

12
+O(n2),

using n2p4 = o(1) we get that

κ2 = M(p5 − p6) +O
(
n2(p4 − p6)

)
=

17n3p5

24
+ o(1).
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Lastly, we claim that ∆3 = O(n4p7) = o(1). Indeed, let C∗3 be the family of all {i, j, k} ∈ C3

such that |γi ∪ γj ∪ γk| < 7. Since any two distinct numbers are contained in at most three
3-APs, a simple case analysis shows that∑

V ∈C∗3

∆({Xi : i ∈ V }) = O(n2p5 + n3p6) = o(1).

On the other hand, ∆({Xi : i ∈ V }) = p7 for every V ∈ C3 \ C∗3 . Thus,

∆3 ≤ |C3|p7 +
∑
V ∈C∗3

∆({Xi : i ∈ V } = O(n4p7 + n2p4 + n3p6) = o(1)

and we conclude that the probability that [n]p contains no 3-AP is asymptotically

exp
(
− n2p3

4
+

7n3p5

12

)
,

as claimed.
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