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Abstract. The loop O(n) model is a model for a random collection of non-intersecting loops on
the hexagonal lattice, which is believed to be in the same universality class as the spin O(n) model.
It has been conjectured that both the spin and the loop O(n) models exhibit exponential decay of
correlations when n > 2. We verify this for the loop O(n) model with large parameter n, showing
that long loops are exponentially unlikely to occur, uniformly in the edge weight x. Our proof
provides further detail on the structure of typical configurations in this regime. Putting appropriate
boundary conditions, when nx6 is sufficiently small, the model is in a dilute, disordered phase in
which each vertex is unlikely to be surrounded by any loops, whereas when nx6 is sufficiently large,
the model is in a dense, ordered phase which is a small perturbation of one of the three ground
states.

1. Introduction

After the introduction of the Ising model [19] and Ising’s conjecture that it does not undergo a
phase transition, physicists tried to find natural generalizations of the model with richer behavior.
In [12], Heller and Kramers described the classical version of the celebrated quantum Heisenberg
model where spins are vectors in the (two-dimensional) unit sphere in dimension three. Later,
Stanley introduced the spin O(n) model by allowing spins to take values in higher-dimensional
spheres [26]. We refer the interested reader to [7] for a history of the subject.

Formally, a configuration of the spin O(n) model on a finite graph G is an assignment σ ∈ Ω :=

(
√
n · Sn−1)V (G) of spins to each vertex of G, where Sn−1 ⊆ Rn is the (n − 1)-dimensional unit

sphere and the choice of the radius
√
n serves as a convenient normalization. The Hamiltonian of

the model is defined by

HG,n(σ) := −
∑

{u,v}∈E(G)

〈σu, σv〉 ,

where 〈·, ·〉 denotes the scalar product in Rn. At inverse temperature β, we define the finite Gibbs
measure µG,n,β to be the probability measure on Ω given by

dµG,n,β(σ) :=
1

Zspin
G,n,β

exp [−βHG,n(σ)] dσ,

where Zspin
G,n,β, the partition function, is given by

Zspin
G,n,β :=

∫
Ω

exp [−βHG,n(σ)] dσ (1)

and dσ is the uniform probability measure on Ω (i.e., the product measure of the uniform distribu-
tions on

√
n · Sn−1 for each vertex in G).

By taking the weak limit of measures on larger and larger subgraphs of an infinite planar lattice,
such as Z2 or the hexagonal lattice H, an infinite volume measure µn,β can be defined, and one
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may ask whether a phase transition occurs at some critical inverse temperature. From this point
of view, the behavior of the model is very different for different values of n:

• For n = 1, the model is simply the Ising model, which is known to undergo a phase
transition between an ordered and a disordered phase, as proved by Peierls [24] (refuting
Ising’s conjecture). The critical inverse temperature has been computed for the square and
the hexagonal lattices and it is fair to say that a lot is known about the behavior of the
model. We refer the reader to [8, 9, 23] and references therein for an overview of the recent
progress on the subject.
• For n = 2, the model is the so-called XY model (first introduced in [28]). Since the

spin space S1 is a continuous group, the Mermin–Wagner theorem [21] guarantees that
there is no phase transition between ordered and disordered phases. Still, a Kosterlitz–
Thouless phase transition occurs as proved in [17, 27, 20, 11]. That is, below some critical
inverse temperature, the spin-spin correlations µn,β[〈σu, σv〉] decay exponentially fast in the
distance between u and v, while above this critical inverse temperature, they decay only
like an inverse power of the distance.
• For n ≥ 3, it is predicted that no phase transition occurs [25] and that spin-spin correlations

decay exponentially fast at every positive temperature. The n = 3 case, corresponding to
the classical Heisenberg model, is of special interest. Let us mention that this prediction
is part of a more general conjecture asserting that planar spin systems with non-Abelian
continuous spin space do not exhibit a phase transition. As of today, the n ≥ 3 case
remains wide open. The best known results in this direction can be found in [18], where a
1/n expansion is performed as n tends to infinity.

On the hexagonal lattice H, the spin O(n) model can be related to the so-called loop O(n) model
introduced in [6]. Before providing additional details on the relation, let us define the loop O(n)
model. A loop is a finite subgraph of H which is isomorphic to a simple cycle. A loop configuration
is a spanning subgraph of H in which every vertex has even degree; see Figure 1. The non-
trivial finite connected components of a loop configuration are necessarily loops, however, a loop
configuration may also contain isolated vertices and infinite simple paths. We shall often identify
a loop configuration with its set of edges, disregarding isolated vertices. In this work, a domain
H is a non-empty finite connected induced subgraph of H whose complement H \ V (H) induces
a connected subgraph of H (in other words it does not have “holes”). For convenience, all of our
results will be stated for domains although the definitions and techniques may sometimes be applied
in greater generality. Given a domain H and a loop configuration ξ, we denote by LoopConf(H, ξ)
the collection of all loop configurations ω that agree with ξ on E(H) \E(H). Finally, for a domain
H and a loop configuration ω, we denote by LH(ω) the number of loops in ω which intersect E(H)
and by oH(ω) the number of edges of ω ∩H.

Definition 1.1. Let H be a domain and let ξ be a loop configuration. Let n and x be positive
real numbers. The loop O(n) measure on H with edge weight x and boundary conditions ξ is the

probability measure PξH,n,x on LoopConf(H, ξ) defined by

PξH,n,x(ω) :=
xoH(ω)nLH(ω)

ZξH,n,x
, ω ∈ LoopConf(H, ξ),

where ZξH,n,x is the unique constant which makes PξH,n,x a probability measure.

We note that the loop O(n) model is defined for any real n > 0 whereas the spin O(n) model
is only defined for positive integer n. Let us now briefly discuss the connection between the loop
and the spin O(n) models (with integer n) on a domain H ⊂ H. Rewriting the partition function
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Zspin
H,n,β given by (1) using the approximation et ≈ 1 + t gives

Zspin
H,n,β =

∫
Ω

∏
{u,v}∈E(H)

eβ〈σu,σv〉 dσ ≈
∫
Ω

∏
{u,v}∈E(H)

(1 + β〈σu, σv〉) dσ

=
∑

ω⊂E(H)

βoH(ω)

∫
Ω

∏
{u,v}∈E(ω)

〈σu, σv〉 dσ.

The integral on the right-hand side equals nLH(ω) if ω ∈ LoopConf(H, ∅) and 0 otherwise; see
Appendix A for the calculation. Here, the normalization of taking spins on the sphere of radius√
n is used. Hence, substituting x for β,

Zspin
H,n,x ≈

∑
ω∈LoopConf(H,∅)

xoH(ω)nLH(ω) = Z∅H,n,x.

In the same manner, the spin-spin correlation of u, v ∈ V (H) may be approximated as follows.

µH,n,x[〈σu, σv〉] =

∫
Ω
〈σu, σv〉 exp [−xHH,n(σ)] dσ

Zspin
H,n,x

≈ n ·

∑
ω∈LoopConf(H,∅,u,v)

xoH(ω)nL
′
H(ω)J(ω)

∑
ω∈LoopConf(H,∅)

xoH(ω)nLH(ω)
, (2)

where LoopConf(H, ∅, u, v) is the set of spanning subgraphs of H in which the degrees of u and v
are odd and the degrees of all other vertices are even. Here, for ω ∈ LoopConf(H, ∅, u, v), oH(ω) is
the number of edges of ω∩H, L′H(ω) is the number of loops in ω which intersect H after removing

an arbitrary simple path in ω between u and v, and J(ω) := 3n
n+2 if there are three disjoint paths

in ω between u and v and J(ω) := 1 otherwise (in which case, there is a unique simple path in ω
between u and v); see Appendix A for the calculation.

Unfortunately, the above approximation is not justified for any x > 0. Nevertheless, (2) provides
a heuristic connection between the spin and the loop O(n) models and suggests that both these
models reside in the same universality class. For this reason, it is natural to ask whether the
prediction about the absence of phase transition is valid for the loop O(n) model.

Question 1.2. Does the quantity on the right-hand side of (2) decay exponentially fast in the
distance between u and v, uniformly in the graph H, whenever n > 2 and x > 0?

In this article, we partially answer this question. In Theorem 1.5 below, we show that for all
sufficiently large n and any x > 0, the quantity on the right-hand side of (2) decays exponentially
fast for a large class of graphs H. The theorem is a consequence of a more detailed understanding
of the Gibbs measures of the loop O(n) model. We show that for small x the model is in a dilute,
disordered phase, where the sampled loop configuration is rather sparse and the probability of
seeing long loops surrounding a given vertex decays exponentially in the length (see Figure 2a).
For large x, the same exponential decay holds but for a different reason. There, the model is in
a dense, ordered phase, which is a perturbation of a periodic ground state. In the ground state
all loops have length 6 and a typical perturbation does not make them significantly longer (see
Figure 2b).

The x =∞ Model. We shall also consider the limit of the loop O(n) model as the edge weight x
tends to infinity. This means restricting the model to ‘optimally packed loop configurations’, i.e.,
loop configurations having the maximal possible number of edges.

Definition 1.3. Let H be a domain and let ξ be a loop configuration. For n > 0, the loop O(n)
measure on H with edge weight x = ∞ and boundary conditions ξ is the probability measure on
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Figure 1. On the left, a loop configuration. On the right, a proper 3-coloring of
the triangular lattice T (the dual of the hexagonal lattice H), inducing a partition
of T into three color classes T0, T1, and T2. The 0-phase ground state ω0

gnd is the

(fully-packed) loop configuration consisting of trivial loops around each hexagon
in T0.

LoopConf(H, ξ) defined by

PξH,n,∞(ω) :=
g∞(oH(ω)) · nLH(ω)

ZξH,n,∞
, ω ∈ LoopConf(H, ξ),

where g∞ is defined by

g∞(m) :=

{
0 if m < max{oH(ω) : ω ∈ LoopConf(H, ξ)}
1 otherwise

(3)

and ZξH,n,∞ is the unique constant making PξH,n,∞ a probability measure.

We note that if a loop configuration ω ∈ LoopConf(H, ξ) is fully packed, i.e., every vertex in
V (H) has degree 2, then ω is optimally packed.

Before concluding this section, let us mention that the loop O(n) model with n ≤ 2 is also of
great interest; see Section 4 for a discussion.

1.1. Results. In order to state our main results, we need several more definitions (see Figure 1
for their illustration). We consider the triangular lattice T := (0, 2)Z + (

√
3, 1)Z, and view the

hexagonal lattice H as its dual lattice, obtained by placing a vertex at the center of every face
(triangle) of T, so that each edge e of H corresponds to the unique edge e∗ of T which intersects e.
Since vertices of T are identified with faces of H, they will be called hexagons instead of vertices.
We will also say that a vertex or an edge of H borders a hexagon if it borders the corresponding
face of H.

There are exactly 6 proper colorings of T with the colors {0, 1, 2}. For the rest of the paper, we
fix an arbitrary proper coloring and let Tc be the set of hexagons colored by c, c ∈ {0, 1, 2}. A trivial
loop is a loop of length exactly 6. Define the c-phase ground state ωc

gnd to be the (fully-packed)
loop configuration consisting of all the trivial loops surrounding hexagons in Tc. We shall say that
a domain H is of type c, c ∈ {0, 1, 2}, if every edge {u, v} ∈ ωc

gnd satisfies either u, v ∈ V (H) or

u, v /∈ V (H). Equivalently, if H is the interior of a circuit contained in T \ Tc; see Section 2.1 for
the precise definitions. Consequently, H is of type c if and only if

LoopConf(H, ∅) = {ω ∩ E(H) : ω ∈ LoopConf(H,ωc
gnd)}. (4)

Finally, we shall say that a loop surrounds a vertex v of H if any infinite simple path in H starting at
v intersects a vertex of this loop. In particular, if a loop passes through a vertex then it surrounds
it as well.
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(a) n = 8 and x = 0.5. Theorem 1.6 shows that the
limiting measure is unique for domains with vacant
boundary conditions when x is small.

(b) n = 8 and x = 2. Theorem 1.8 shows that typical
configurations are small perturbations of the ground
state for large n and x.

Figure 2. Two samples of random loop configurations with large n. Configurations
are on a 60 × 45 domain of type 0 and are sampled via Glauber dynamics for 100
million iterations started from the empty configuration.

Theorem 1.4. There exist n0, α > 0 such that for any n ≥ n0 and any x ∈ (0,∞] the following
holds. For any c ∈ {0, 1, 2}, any domain H of type c, any u ∈ V (H) and any integer k > 6, we
have

P∅H,n,x(there exists a loop of length k surrounding u) ≤ n−αk.

As follows from Theorem 1.8 below, when n and nx6 are sufficiently large, it is likely that u is
contained in a trivial loop (a loop of length 6). Thus, the assumption that k > 6 is necessary. The
techniques involved in the proof of Theorem 1.4 also imply the following result, which partially
answers Question 1.2.

Theorem 1.5. There exist n0, α > 0 such that for any n ≥ n0 and any x ∈ (0,∞) the following
holds. For any c ∈ {0, 1, 2}, any domain H of type c, any integer k and any u, v ∈ V (H) at graph
distance k from each other, we have∑

ω∈LoopConf(H,∅,u,v)

xoH(ω)nL
′
H(ω)J(ω)

∑
ω∈LoopConf(H,∅)

xoH(ω)nLH(ω)
≤ n−αk ·

{
x if x ≥ 1

xk/2 if x < 1
.

Our techniques provide additional information on the Gibbs measures of the loop O(n) model.
For small parameter x > 0, under vacant boundary conditions, the model is in a dilute, disordered
phase, where loops are rare and tend to be short; see Figure 2a. This is relatively simple to show
and is proved in Corollary 3.2. A consequence of this fact is the existence of a unique limiting Gibbs
measure when exhausting the hexagonal lattice H via domains with vacant boundary conditions.

Theorem 1.6. There exists c > 0 such that for any n > 0 and 0 < x ≤ c satisfying nx6 ≤ c
the following holds. Let Hk be an increasing sequence of domains satisfying ∪kHk = H. Then the
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measures P∅Hk,n,x converge as k → ∞ to an infinite-volume measure PH,n,x which is supported on
loop configurations with no infinite paths.

It follows that the limiting measure PH,n,x does not depend on the specific choice of exhausting
sequence (Hk) as one may interleave two such sequences to obtain another convergent sequence.
Consequently, it also follows that PH,n,x is invariant under automorphisms of H. Our proofs apply
also when one allows Hk to be arbitrary finite subgraphs of H rather than domains but we do
not state this explicitly as our work is mostly concerned with domains. The restriction to vacant
boundary conditions is, however, essential for our proofs with the difficulty stemming from the fact
that non-vacant boundary conditions may force the existence of long paths in the configuration
(see Figure 3b). Still, it may be that there is a unique Gibbs measure in this regime of small x and
we provide a discussion of this in Section 4.

For large parameter x > 0 and large n, the situation changes dramatically. Here, we obtain
that the model is in a dense, ordered phase, where, under the ωc

gnd boundary conditions, a typical
configuration is a perturbation of that ground state. As a consequence of this structure, the model
has at least three different limiting Gibbs measures in this regime of n and x. We state this precisely
in the following theorem. To lighten the notation, we write Pc

H,n,x for the loop O(n) measure on H
with boundary conditions ωc

gnd.

Theorem 1.7. There exists C > 0 such that for any n ≥ C and any x ∈ (0,∞] satisfying nx6 ≥ C
the following holds. Let Hk be an increasing sequence of domains satisfying ∪kHk = H. Then, for
every c ∈ {0, 1, 2}, the measures Pc

Hk,n,x
converge as k → ∞ to an infinite-volume measure Pc

H,n,x
which is supported on loop configurations with no infinite paths. Furthermore, these three measures
are distinct.

Similarly to before, it follows that, for each c ∈ {0, 1, 2}, the limiting measure Pc
H,n,x does

not depend on the specific choice of exhausting sequence (Hk) and that Pc
H,n,x is invariant under

automorphisms preserving the set Tc. However, as these measures are distinct for different c, they
are not invariant under all automorphisms. In particular, if each Hk is of type c, as Pc

Hk,n,x
= P∅Hk,n,x

by (4), we have that P∅Hk,n,x also converges to Pc
H,n,x, in contrast to the behavior obtained in

Theorem 1.6 for small x. It would be interesting to determine whether the measures {Pc
H,n,x}c∈{0,1,2}

are the only extremal Gibbs measures. That is, whether every other infinite-volume measure is a
convex combination of these three measures.

As mentioned above, in the ordered regime (large x and n), a typical configuration drawn from
Pc
H,n,x is a perturbation of the c-phase ground state, ωc

gnd (see Figure 2b). This is made precise in
the following theorem, which we state for the c = 0 phase for concreteness of our definitions. In
order to measure how close ω0

gnd and a typical loop configuration are, we introduce the notion of

a breakup. Fix a domain H and let ω ∈ LoopConf(H,ω0
gnd) be a loop configuration. Let A(ω) be

the set of vertices of H belonging to trivial loops surrounding hexagons in T0 and let B(ω) be the
unique infinite connected component of A(ω). For u ∈ H, define the breakup C(ω, u) of u to be the
connected component of H \ B(ω) containing u, setting C(ω, u) = ∅ if u ∈ B(ω). We also define
∂C(ω, u) to be the internal vertex boundary of C(ω, u), i.e., the set of vertices of C(ω, u) adjacent
to a vertex not in C(ω, u) (thus in B(ω)).

Theorem 1.8. There exists c > 0 such that for any x ∈ (0,∞], any n > 0, any domain H, any
u ∈ V (H) and any positive integer k, we have

P0
H,n,x(|∂C(ω, u)| ≥ k) ≤ (cn ·min{x6, 1})−k/15.

One should note that the above theorem contains the implicit assumption that n ≥ C and
nx6 ≥ C, as otherwise the statement is trivial.
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(a) Domains for which there exists a single fully-packed
loop configuration (with vacant boundary conditions).
Using such domains, one may obtain many weak limits
of the probability measures P∅H,n,∞.

(b) A domain with boundary conditions in-
ducing a unique loop configuration with min-
imal number of edges. Such domains give rise
to a Gibbs measure for x = 0 which contains
an infinite interface passing near 0.

Figure 3. Constructing multiple Gibbs measures when x = 0 or x = ∞ through
suitable domains and boundary conditions.

In this work, we mainly study the loop O(n) model with either vacant or ground state boundary
conditions. To obtain a complete picture regarding the possible Gibbs measures, one must also
study the model for general boundary conditions. As mentioned above, understanding the Gibbs
measures in each regime of n and x, and in particular, determining the number of extremal Gibbs
measures, is an interesting problem. Theorem 1.6 and Theorem 1.7 bring us closer to this goal,
providing a partial answer in the regimes nx6 ≤ c and nx6 ≥ C, for large n. In this regard, one may
ask what happens in the intermediate regime, i.e., when c < nx6 < C and n is large. For instance,
one may ask whether or not there is a single transition curve, perhaps of the form nx6 = c′. If
indeed this is the case, it would be interesting to investigate the number of extremal Gibbs measures
on this curve, determining whether there is a unique such Gibbs measure (as Theorem 1.6 suggests
for nx6 ≤ c), 3 such measures (as Theorem 1.7 suggests for nx6 ≥ C), 4 such measures, or perhaps
a different quantity.

Remark. For x = 0 and x = ∞, many other Gibbs measures can be constructed. For instance,
for positive integers a and b, let Ha,b be the “rectangle” of width 2a + 1 and height b (measured
in hexagons) with the origin at the center, as in Figure 3a (on the left). It is not hard to check
that the configuration depicted in the figure is the unique fully-packed loop configuration (with

vacant boundary conditions) inside Ha,b. Thus, the probability measure P∅Ha,b,n,∞ is supported on a

single configuration. The measures P∅Ha,b,n,∞ converge (as a, b→∞) to the constant configuration

of infinite vertical paths covering the entire lattice. By considering different domains, one may
construct many more examples of this nature (once again, see Figure 3a). One may also look
at the limiting model as x tends to 0, which corresponds to requiring the configuration to have
the minimal number of edges. For the vacant boundary conditions, the limiting Gibbs measure
is a Dirac measure on the empty configuration. Using alternative boundary conditions, one may
construct several distinct Gibbs measures (see, e.g., Figure 3b).

1.2. Overview of the proof. Our proofs make use of the following simple lemma.

Lemma 1.9. Let p, q > 0 and let E and F be two events in a discrete probability space. If there
exists a map T : E → F such that P(T(e)) ≥ p · P(e) for every e ∈ E, and |T−1(f)| ≤ q for every
f ∈ F , then

P(E) ≤ q

p
· P(F ).
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Proof. We have

p · P(E) ≤
∑
e∈E

P(T(e)) =
∑
e∈E

∑
f∈F

P(f)1{T(e)=f} =
∑
f∈F
|T−1(f)| · P(f) ≤ q · P(F ). �

The results for small x are obtained via a fairly standard, and short, Peierls argument, by
applying the above lemma to the map which removes loops. For details, we refer the reader to
Section 3.1. The main novelty of this work lies in the study of the loop O(n) model for large x.

In the large x regime the idea is to apply the above lemma to a suitably defined ‘repair map’. This
map takes a configuration ω sampled with 0-phase ground state boundary conditions (or vacant
boundary conditions in a domain of type 0) and having a large breakup and returns a ‘repaired’
configuration in which the breakup is significantly reduced. The map operates by identifying regions
in which the configuration resembles one of the three ground states. Regions resembling the ω1

gnd

state are ‘shifted down’ by one hexagon to resemble ω0
gnd and similarly regions resembling ω2

gnd are

‘shifted up’ by one hexagon to resemble ω0
gnd. Regions resembling the ω0

gnd state are left untouched.
Regions which do not resemble any of the ground states are completely replaced by trivial loops
from the ω0

gnd state. We show that this yields a new loop configuration, compatible with the
boundary conditions, and having much higher probability. To finish using Lemma 1.9, we further
show that the number of preimages of a given loop configuration is exponentially smaller than the
probability gain. This yields the main lemma of our paper, Lemma 2.11, from which our results
for large x are later deduced. The repair map is illustrated in Figure 6 and is formally defined in
Section 2.3 following the definitions of ‘flowers’, ‘gardens’ and ‘clusters’ which we require to make
precise the notion of resembling a ground state.

1.3. Graph notation. Throughout this paper, given a graph G, we shall denote its vertex and
edge sets by V (G) and E(G), respectively. If x, y ∈ V (G) are such that {x, y} ∈ E(G), we say that
x and y are adjacent (or neighbors) in G and we drop the dependence on G if it is clear from the
context. For a vertex x and an edge e such that x ∈ e, we say that e is incident to x and that x is
an endpoint of e. For A ⊂ V (G), we define its (vertex) boundary ∂A by

∂A :=
{
x ∈ A : {x, y} ∈ E(G) for some y 6∈ A

}
.

The following is a standard lemma which gives a bound on the number of connected induced
subgraphs of a graph.

Lemma 1.10 ([2, Chapter 45]). Let G be a graph with maximum degree d ≥ 3. The number of
connected subsets of V (G) containing a given vertex and k other vertices is at most (e(d− 1))k.

1.4. Organization of the article. The rest of the article is structured as follows. Section 2
introduces the repair map and proves the main lemma, Lemma 2.11. In Section 3 we derive our
theorems. The statements regarding large x are deduced from the main lemma whereas the parts
pertaining to small x, being simpler, are obtained directly. In Section 4 we discuss several directions
for future research.

2. Flowers, gardens and the repair map

This section is devoted to the formulation and proof of the main lemma, Lemma 2.11. We start
by stating a few definitions in Section 2.1. In particular, we introduce the notions of a circuit,
c-flower, c-garden and c-cluster, and gather some easy general facts about these objects. The main
lemma is stated in Section 2.2 and the remaining sections are devoted to its proof. Section 2.3
introduces the repair map, which will play the role of T in Lemma 1.9. Section 2.4 compares the
probability of a configuration and its image under the repair map (which corresponds to estimating
p in Lemma 1.9). Section 2.5 gathers the last ingredients (mainly an estimate for the number
of possible preimages under the repair map, which corresponds to bounding q in Lemma 1.9) to
conclude the proof of Lemma 2.11.
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Figure 4. A garden. The dashed line denotes a vacant circuit σ ⊂ T \ Tc, where
c ∈ {0, 1, 2}. The edges inside σ, along with the edges crossing σ, then comprise a
c-garden of ω, since every hexagon in Tc∩∂Inthex(σ) is surrounded by a trivial loop.

2.1. Definitions and gardening. A circuit is a simple closed path in T, which may be viewed as
a sequence of hexagons γ = (γ0, . . . , γm), m ≥ 3, satisfying the following two properties:

• γm = γ0 and γi 6= γj for every 0 ≤ i < j < m,
• γi and γi+1 are neighbors (in T) for every 0 ≤ i < m.

Define γ∗ to be the set of edges {γi, γi+1}∗ ∈ E(H) for 0 ≤ i < m.
We proceed with three standard geometric facts regarding circuits and domains. For complete-

ness, these facts are proved in Appendix B.

Fact 2.1. If γ is a circuit then the removal of γ∗ splits H into exactly two connected components,
one of which is infinite, denoted by Ext(γ), and one of which is finite, denoted by Int(γ). Moreover,
each of these are induced subgraphs of H.

Let γ be a circuit. We denote the vertex sets and edge sets of Int(γ),Ext(γ) by IntV(γ),ExtV(γ)
and IntE(γ),ExtE(γ), respectively. Note that {IntV(γ),ExtV(γ)} is a partition of V (H) and that
{IntE(γ),ExtE(γ), γ∗} is a partition of E(H). We also define Inthex(γ) to be the set of faces of
Int(γ), i.e., the set of hexagons z ∈ T having all their six bordering vertices in Int(γ). Since Int(γ)
is induced, this is equivalent to having all six bordering edges in Int(γ).

Note that, by Fact 2.1, Int(γ) is a domain. The converse is also true.

Fact 2.2. Circuits are in one-to-one correspondence with domains via γ ↔ Int(γ).

Hence, every domain H may be written as H = Int(γ) for some circuit γ. Recalling the definition
from Section 1.1 of a domain of type c ∈ {0, 1, 2}, one should also note that H is of type c if and
only if γ ⊂ T \ Tc.

Fact 2.3. Let σ and σ′ be two circuits such that σ∗ ∩ (σ′)∗ 6= ∅ or Int(σ)∩ Int(σ′) 6= ∅. Then there
exists a circuit γ ⊂ σ ∪ σ′ such that γ∗ ⊂ σ∗ ∪ (σ′)∗ and Int(σ) ∪ Int(σ′) ⊂ Int(γ).

Definition 2.4 (c-flower, c-garden, vacant circuit; see Figure 4). Let c ∈ {0, 1, 2} and let ω be a
loop configuration. A hexagon x ∈ Tc is a c-flower of ω if it is surrounded by a trivial loop in ω. A
subset E ⊂ E(H) is a c-garden of ω if there exists a circuit σ ⊂ T \ Tc such that E = IntE(σ) ∪ σ∗
and every x ∈ Tc ∩ ∂Inthex(σ) is a c-flower of ω. In this case, we denote σ(E) := σ. A circuit σ is
vacant in ω if ω ∩ σ∗ = ∅.

We say that E ⊂ E(H) is a garden of ω if it is a c-garden of ω for some c ∈ {0, 1, 2}. We stress
the fact that a garden is a subset of the edges of H. We continue with several simple properties of
circuits, gardens and loop configurations which will be used throughout the paper.
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Lemma 2.5. Let ω and ω′ be two loop configurations.

(a) If σ is a vacant circuit in ω then ω ∩ IntE(σ) and ω ∩ ExtE(σ) are loop configurations.
(b) If E is a garden of ω then σ(E) is a vacant circuit in ω.
(c) If E is a garden of ω then ω ∩ E and ω \ E are loop configurations.
(d) If ω and ω′ are disjoint then ω ∪ ω′ is a loop configuration.
(e) If ω′ is contained in ω then ω \ ω′ is a loop configuration.

Proof. To see (a), let σ be a vacant circuit in ω. Since any path between Int(σ) and Ext(σ) intersects
σ∗, and since ω ∩ σ∗ = ∅, every loop of ω is contained in either Int(σ) or Ext(σ), and thus, (a)
follows.

We now show (b). Let E be a c-garden of ω, c ∈ {0, 1, 2}, and let σ := σ(E). One of the
endpoints of every edge e ∈ σ∗ must border a hexagon in Tc ∩ ∂Inthex(σ). By the definition of a
c-garden, this hexagon is a c-flower, and hence, e cannot belong to ω. Thus, σ is vacant in ω.

In light of (a) and (b), (c) is immediate.
To establish (d), it suffices to show that no vertex has degree 3 in ω′ ∪ ω. Indeed, if a vertex

has degree 3 then one of the edges incident to it must be contained in both ω and ω′, which is a
contradiction.

Finally, the last statement is straightforward. �

Lemma 2.6. Let c ∈ {0, 1, 2}, let σ ⊂ T \ Tc be a circuit, let z ∈ Tc be a hexagon and let V (z)
denote the six vertices in H bordering z. Then

z ∈ Inthex(σ) ⇐⇒ V (z) ∩ IntV(σ) 6= ∅.

Proof. Recall that, by definition, z ∈ Inthex(σ) if and only if V (z) ⊂ IntV(σ). Thus, it suffices to
check that if v ∈ V (z)∩ IntV(σ) and u ∈ V (z) is adjacent to v then u ∈ IntV(σ). Indeed this is the
case, as otherwise, {u, v} ∈ σ∗ and z ∈ σ, which contradicts the assumption that σ ⊂ T \ Tc. �

We proceed to discuss disjointness and containment properties of c-gardens.

Lemma 2.7. Let ω be a loop configuration and let E1 and E2 be two c-gardens of ω for some
c ∈ {0, 1, 2}. If there exists a vertex which is the endpoint of an edge in E1 and an edge in E2, then
E1 ∪ E2 is contained in a c-garden of ω.

Proof. Denote σ1 := σ(E1) and σ2 := σ(E2). Let us first show that necessarily Int(σ1)∩Int(σ2) 6= ∅
or σ∗1 ∩ σ∗2 6= ∅. To this end, let v, u, w ∈ V (H) be such that {v, u} ∈ E1 and {v, w} ∈ E2. If

v ∈ IntV(σ1) ∩ IntV(σ2) then we are done. Otherwise, suppose without loss of generality that
v ∈ ExtV(σ1) so that u ∈ IntV(σ1). If also v ∈ ExtV(σ2) then necessarily w = u and w ∈ IntV(σ2)
as σ1, σ2 ⊂ T \ Tc. If instead v ∈ IntV(σ2) then either u ∈ IntV(σ2) or {v, u} ∈ σ∗1 ∩ σ∗2.

By Fact 2.3, there exists a circuit γ ⊂ σ1∪σ2 such that Int(σ1)∪ Int(σ2) ⊂ Int(γ). In particular,
E1 ∪ E2 ⊂ E, where E := Int(γ) ∪ γ∗. It remains to show that E is a c-garden of ω. Since, by
Lemma 2.6, Tc ∩ ∂Inthex(γ) ⊂ ∂Inthex(σ1) ∪ ∂Inthex(σ2), this follows from the assumption that E1

and E2 are c-gardens of ω. �

Lemma 2.8. Let ω be a loop configuration, let E0 be a c0-garden of ω and let E1 be a c1-garden
of ω with c0, c1 ∈ {0, 1, 2} distinct. Then, either E0 ⊂ E1, E1 ⊂ E0 or E0 ∩ E1 = ∅.

Proof. Assume without loss of generality that c0 = 0, c1 = 1 and that E0 ∩ E1 6= ∅. Denote
σ0 := σ(E0) ⊂ T \ T0 and σ1 := σ(E1) ⊂ T \ T1. Consider an infinite path in H beginning with
some edge of E0∩E1 and let e ∈ E(H) be the first edge on this path that is not in IntE(σ0)∩IntE(σ1)
(maybe the first edge itself). We may assume without loss of generality that e /∈ IntE(σ0). Thus,
e ∈ σ∗0, and, therefore, e is bordered by a hexagon z ∈ T1 and a hexagon in T2. Since e is also

in E1, z belongs to Inthex(σ1). Now, begin at z and move along the circuit σ0 until reaching a
hexagon y ∈ Inthex(σ1) whose successor y′ is not in Inthex(σ1). If such a hexagon does not exist
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Figure 5. A loop configuration ω ∈ LoopConf(H,ω0
gnd). The 0-clusters are denoted

in green, the 1-clusters in red and the 2-clusters in blue; all taken with respect to
the circuit surrounding the large unshaded domain.

then σ0 ⊂ Inthex(σ1), and hence, E0 ⊂ E1. On the other hand, if such a hexagon does exist, then y′

must be in σ0∩σ1 ⊂ T2, so that y must be in T1. Since y is also in ∂Inthex(σ1), it must be a 1-flower
of ω. But since y is also on σ0, it must be adjacent to a 0-flower of ω, which is a contradiction.
This latter case is therefore impossible, and the lemma is proved. �

Definition 2.9 (c-cluster, c-cluster inside γ). Let c ∈ {0, 1, 2} and let ω be a loop configuration.
A subset C ⊂ E(H) is a c-cluster of ω if it is a c-garden of ω and it is not contained in any other
garden of ω. Let γ be a vacant circuit in ω and note that ω ∩ IntE(γ) is a loop configuration by
Lemma 2.5a. A subset C ⊂ E(H) is a c-cluster of ω inside γ if it is a c-cluster of ω ∩ IntE(γ).

We say that C ⊂ E(H) is a cluster (inside γ) if it is a c-cluster (inside γ) for some c ∈ {0, 1, 2}.
Once again, note that a cluster (inside γ) is a subset of edges of H. Evidently, a cluster of ω inside
γ is also a garden of ω, but it is not necessarily a cluster of ω. The notion of c-cluster inside γ
will be important in the definition of the repair map in Section 2.3. Note that, by Lemma 2.7 and
Lemma 2.8,

any two distinct clusters of ω (inside γ) are edge disjoint, (5)

and, moreover, for any c ∈ {0, 1, 2},

the union of any two distinct c-clusters of ω (inside γ) is a disconnected set of edges, (6)

where a set of edges E is said to be connected if the graph whose vertex set is the set of endpoints
of edges in E and whose edge set is E is connected.
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2.2. Statement of the main lemma. We are now in a position to state the main lemma. It is
convenient to unite the discussion of the cases of x ∈ (0,∞) and x =∞ so that we may handle both
simultaneously. In fact, our arguments are rather robust and extend to a larger class of measures
on LoopConf(H, ξ) defined as follows.

Definition 2.10. Let H be a domain, let ξ be a loop configuration and let n > 0. Let g : {0, 1, 2, ...} →
[0,∞) be a function for which there exists some ω ∈ LoopConf(H, ξ) with g(oH(ω)) > 0. Define the

probability measure PξH,n,g on LoopConf(H, ξ) by

PξH,n,g(ω) :=
g(oH(ω)) · nLH(ω)

ZξH,n,g
, ω ∈ LoopConf(H, ξ),

where ZξH,n,g is the unique constant making PξH,n,g a probability measure.

Note that one recovers the standard loop O(n) model with edge weight x described in Section 1
as a special case of the above definition by letting g = gx if x ∈ (0,∞) and g = g∞ if x = ∞,

where gx(m) := xm and g∞ is the function defined in (3). In later occurrences of PξH,n,g it will

be implicitly assumed that g is such that this measure is well defined (i.e., that there exists some
ω ∈ LoopConf(H, ξ) with g(oH(ω)) > 0). This is certainly the case in the only examples we rely
upon, when g = gx for some x ∈ (0,∞].

A function g : {0, 1, 2, ...} → [0,∞) is said to have ε-bounded decay (ε > 0) if

g(m+ 1) ≥ ε · g(m) for all m ≥ 0. (7)

The main lemma will be stated for functions g with x-bounded decay for 0 < x ≤ 1. Observing
that for x ∈ (0,∞], the function gx has min{x, 1}-bounded decay, we will later be able to apply
the main lemma for any x.

For a loop configuration ω and a vacant circuit γ in ω, denote by V (ω, γ) the set of vertices
v ∈ IntV(γ) such that the three edges of H incident to v are not all contained in the same cluster
of ω inside γ.

Lemma 2.11. There exists an absolute constant c > 0 such that for any n > 0, any 0 < x ≤ 1,
any g with x-bounded decay, any circuit γ ⊂ T \ T0 and any positive integer k, we have

P∅Int(γ),n,g

(
∂IntV(γ) ⊂ V (ω, γ) and |V (ω, γ)| ≥ k

)
≤ (cnx6)−k/15.

By symmetry, we may take γ to be a circuit in T \ Tc for any c ∈ {0, 1, 2}. Moreover, by the
domain Markov property, we may allow any domain H and any boundary conditions ξ, as long as
γ is vacant. Therefore, we obtain the following corollary.

Corollary 2.12. There exists an absolute constant c > 0 such that for any n > 0, any 0 < x ≤ 1,
any g with x-bounded decay, any domain H, any loop configuration ξ, any c ∈ {0, 1, 2}, any circuit

γ ⊂ T \ Tc for which Int(γ) ⊂ H and PξH,n,g(γ vacant) > 0 and any positive integer k, we have

PξH,n,g
(
∂IntV(γ) ⊂ V (ω, γ) and |V (ω, γ)| ≥ k

∣∣ γ vacant
)
≤ (cnx6)−k/15.

In particular,

PξH,n,g
(
∂IntV(γ) ⊂ V (ω, γ)

∣∣ γ vacant
)
≤ (cnx6)−|∂IntV(γ)|/15.

One should note that Lemma 2.11 and Corollary 2.12 contain the implicit assumption that
n ≥ nx6 ≥ C, as otherwise the statement is trivial.
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2.3. Definition of the repair map. For the remainder of this section, we fix a circuit γ ⊂ T \T0

and set H := Int(γ). Consider a loop configuration ω such that γ is vacant in ω. The idea of the
repair map is to modify ω as follows:

• Edges in 1-clusters inside γ are shifted down “into the 0-phase”.
• Edges in 2-clusters inside γ are shifted up “into the 0-phase”.
• Edges in 0-clusters inside γ are left untouched.
• Finally, the remaining edges which are not inside clusters, but are in the interior of γ (these

edges will be called bad), are overwritten to “match” the 0-phase ground state, ω0
gnd.

See Figure 6 for an illustration of this map.
In order to formalize this idea, we need a few definitions. A shift is a graph automorphism of

T which maps every hexagon to one of its neighbors. We henceforth fix a shift ↑ which maps T0

to T1 (and hence, maps T1 to T2 and T2 to T0), and denote its inverse by ↓ . A shift naturally
induces mappings on the set of vertices and the set of edges of H. We shall use the same symbols,
↑ and ↓ , to denote these mappings. Recall from Section 1.1 that T has a coordinate system given
by (0, 2)Z + (

√
3, 1)Z and that (T0,T1,T2) are the color classes of an arbitrary proper 3-coloring

of T. In our figures we make the choice that (0, 0) ∈ T0 and (0, 2) ∈ T1 so that ↑ is the map
(a, b) 7→ (a, b+ 2).

For a loop configuration ω ∈ LoopConf(H, ∅) and c ∈ {0, 1, 2}, let Ec(ω) ⊂ E(H) be the union of
all c-clusters of ω. Note that, since H = Int(γ), for ω ∈ LoopConf(H, ∅), the notions of a c-cluster
and a c-cluster inside γ coincide. For a ω ∈ LoopConf(H, ∅), define also

Ebad(ω) := (IntE(γ) ∪ γ∗) \
(
E0(ω) ∪ E1(ω) ↓ ∪ E2(ω) ↑

)
(8)

and

E(ω) := (IntE(γ) ∪ γ∗) \
(
E0(ω) ∪ E1(ω) ∪ E2(ω)

)
. (9)

Note that, by (5), {E0(ω), E1(ω), E2(ω), E(ω)} is a partition of IntE(γ) ∪ γ∗. Thus, Lemma 2.5
implies that

ω ∩ E0(ω), ω ∩ E1(ω), ω ∩ E2(ω) and ω ∩ E(ω) are pairwise disjoint loop configurations. (10)

See Figure 6 and Figure 5 for an illustration of these notions. Finally, we define the repair map

Rγ : LoopConf(H, ∅)→ LoopConf(H, ∅)
by

Rγ(ω) :=
(
ω ∩ E0(ω)

)
∪
(
ω ∩ E1(ω)

) ↓ ∪ (ω ∩ E2(ω)
) ↑ ∪ (ω0

gnd ∩ Ebad(ω)
)
.

The fact that the mapping is well-defined, i.e., that Rγ(ω) is indeed in LoopConf(H, ∅), is not
completely straightforward. This follows from the following proposition, together with the simple
property in Lemma 2.5d.

Proposition 2.13. Let ω ∈ LoopConf(H, ∅). Then ω0
gnd ∩Ebad(ω), ω ∩E0(ω) and (ω ∩E1(ω)) ↓ ∪

(ω ∩ E2(ω)) ↑ are pairwise disjoint loop configurations in LoopConf(H, ∅).

We require the following simple geometric lemma.

Lemma 2.14. Let σ ⊂ T \ T0 and σ′ ⊂ T \ T1 be circuits.

(a) If Int(σ′) ⊂ Int(σ) then Int(σ′) ↓ ⊂ Int(σ).
(b) If Int(σ′) ⊂ Ext(σ) then Int(σ′) ↓ ⊂ Ext(σ).
(c) If Int(σ′) ∩ Int(σ) = ∅ then Int(σ′) ↓ ∩ Int(σ) = ∅.

Proof. We first prove (a). The assumption that Int(σ′) ⊂ Int(σ) implies that Inthex(σ′) ⊂ Inthex(σ).
By Lemma 2.6, any vertex v in Int(σ) borders a hexagon in Inthex(σ). Thus, it suffices to show that
Inthex(σ′) ↓ ⊂ Inthex(σ). Assume towards a contradiction that there exists a hexagon z ∈ Inthex(σ′)
such that z ↓ /∈ Inthex(γ). In such case, z ↓ must be in σ ∩ σ′ ⊂ T2, and consequently, z ∈ T0.



(a) The breakup is found by exploring 0-flowers from the
boundary.

(b) The clusters are found within the breakup.

(c) Bad edges are discarded. (d) The clusters are shifted into the 0-phase.

(e) The empty area outside the shifted clusters is now
compatible with the 0-phase ground state.

(f) Trivial loops are packed in the empty area outside the
shifted clusters.

Figure 6. An illustration of finding the breakup and applying the repair map in it. The
initial loop configuration is modified step-by-step, resulting in a loop configuration with
many more loops and at least as many edges. Formal definitions are in Section 2.3.
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Therefore, as z ∈ Inthex(σ′) and σ′ ⊂ T \ T1, Lemma 2.6 implies that the three neighbors of z in
T1 belong to Inthex(σ′) ⊂ Inthex(σ). This implies that z ↓ has three neighbors in T0 ∩ Inthex(σ). In
particular, the six vertices bordering z ↓ belong to Int(σ), implying that z ↓ ∈ Inthex(σ), which is a
contradiction.

The proof of (b) is very similar to that of (a) and so we omit it.
Finally, (c) follows from (b), as Int(σ′) ∩ Int(σ) = ∅ implies that Int(σ′) ⊂ Ext(σ), since Int(σ′)

is an induced subgraph. �

Proof of Proposition 2.13. For the sake of brevity, throughout the proof, we drop ω from the nota-
tion of the above sets and write Ebad, E0, E1 and E2.

Step 1: ω ∩ E0, (ω ∩ E1) ↓ ∪ (ω ∩ E2) ↑ and ω0
gnd ∩ Ebad are contained in Int(γ).

Since γ is vacant in both ω and ω0
gnd, it follows that ω ∩ E0 and ω0

gnd ∩ Ebad are contained in

Int(γ). It remains to show that (ω ∩ E1) ↓ and (ω ∩ E2) ↑ are contained in Int(γ). We show this
only for (ω ∩E1) ↓ , as the other case is symmetric. Let E be a 1-garden of ω. We must show that
(ω ∩ E) ↓ ⊂ Int(γ). Since (ω ∩ E) ↓ ⊂ Int(σ(E)) ↓ , this follows from Lemma 2.14.

Step 2: ω ∩ E0, (ω ∩ E1) ↓ ∪ (ω ∩ E2) ↑ and ω0
gnd ∩ Ebad are pairwise disjoint.

By definition, Ebad (and therefore ω0
gnd ∩Ebad) is disjoint from the other two sets. It remains to

show that ω∩E0 is disjoint from (ω∩E1) ↓ and (ω∩E2) ↑ . We show this only for ω∩E0 and (ω∩E1) ↓ ,
as the other case is symmetric. Let E and E′ be 0- and 1-gardens of ω, respectively. We must show
that (ω ∩ E) ∩ (ω ∩ E′) ↓ = ∅. By Lemma 2.5b, (ω ∩ E) ∩ (ω ∩ E′) ↓ ⊂ Int(σ(E)) ∩ Int(σ(E′)) ↓ ,
which is empty by (5) and Lemma 2.14.

Step 3: ω ∩ E0, (ω ∩ E1) ↓ ∪ (ω ∩ E2) ↑ and ω0
gnd ∩ Ebad are loop configurations.

We first show that ω0
gnd ∩Ebad is a loop configuration. Observe that E0 ∪ (E1) ↓ ∪ (E2) ↑ is the

union of IntE(σ)∪σ∗ for a collection of circuits σ ⊂ T \T0. Since every circuit σ ⊂ T \T0 is vacant
in ω0

gnd, Lemma 2.5 implies that ω0
gnd∩ (E0∪ (E1) ↓ ∪ (E2) ↑ ) is a loop configuration, and thus, also

that ω0
gnd ∩ Ebad = (ω0

gnd \ (E0 ∪ (E1) ↓ ∪ (E2) ↑ )) \ Ext(γ) is a loop configuration.

Since ω∩E0 is a loop configuration, by (10), it only remains to check that (ω∩E1) ↓∪(ω∩E2) ↑ is a
loop configuration. In light of (10) and Lemma 2.5(d,e), it suffices to show that (ω∩E1) ↓ ∩(ω∩E2) ↑

is a loop configuration. For convenience, we prove this separately in the next lemma. �

For a hexagon z ∈ T, we denote by E(z) the six edges bordering z. We call a hexagon z ∈ T
double-clustered for ω if E(z ↑ ) ∈ E1(ω) and E(z ↓ ) ∈ E2(ω). Denote by dbl(ω) the subset of all
hexagons in Inthex(γ) that are double-clustered for ω.

Lemma 2.15. Let ω ∈ LoopConf(H, ∅). Then dbl(ω) ⊂ T0 and (ω ∩ E1(ω)) ↓ ∩ (ω ∩ E2(ω)) ↑

consists solely of the trivial loops surrounding the hexagons in dbl(ω). That is,

(ω ∩ E1(ω)) ↓ ∩ (ω ∩ E2(ω)) ↑ =
⋃

z∈dbl(ω)

E(z).

Proof. Let z ∈ dbl(ω). Then z ↑ ∈ Inthex(σ(E1)) and z ↓ ∈ Inthex(σ(E2)), where E1 and E2 are
1- and 2-clusters of ω, respectively. If follows from Lemma 2.6 and (5) that z ∈ T0 and that
z /∈ Inthex(σ(E1)) ∪ Inthex(σ(E2)). Thus, z ↑ is a 1-flower of ω and z ↓ is a 2-flower of ω. In
particular, E(z) ⊂ (ω ∩ E1(ω)) ↓ ∩ (ω ∩ E2(ω)) ↑ .

For the opposite containment, let e ∈ (ω ∩ E1(ω)) ↓ ∩ (ω ∩ E2(ω)) ↑ . Then e ↑ ∈ IntE(σ(E1)) ∪
σ(E1)∗ and e ↓ ∈ IntE(σ(E2)) ∪ σ(E2)∗, where E1 and E2 are 1- and 2-clusters of ω, respectively.
Since, by Lemma 2.5b, σ(E1) and σ(E2) are vacant in ω, we have e ↑ ∈ IntE(σ(E1)) and e ↓ ∈
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IntE(σ(E2)). In particular, both endpoints of e ↑ belong to IntV(σ(E1)) and both endpoints of e ↓

belong to IntV(σ(E2)). Therefore, by Lemma 2.6, e must border a hexagon z in T0, and V (z ↑ ) ⊂ E1

and V (z ↓ ) ⊂ E2, where V (z) denotes the six vertices bordering z. Thus, z ∈ dbl(ω). �

2.4. Comparing the probabilities of Rγ(ω) and ω. As in Section 2.3, we henceforth fix a circuit
γ ⊂ T \ T0 and denote H := Int(γ). Our goal now is to compare the probabilities of Rγ(ω) and ω.

Proposition 2.16. Let n > 0 and 0 < x ≤ 1 satisfy nx6 ≥ 1. Then, for any g with x-bounded
decay and any ω ∈ LoopConf(H, ∅), we have

P∅H,n,g(Rγ(ω)) ≥ (nx6)|V (ω,γ)|/15 · P∅H,n,g(ω).

The proof of Proposition 2.16 is based on showing that applying the repair map can only increase
the number of loops and edges and estimating carefully the amounts by which they increase.

We begin with two preliminary lemmas. Denote by V bad(ω) the subset of IntV(γ) composed of
endpoints of edges in Ebad(ω). Recall the definition of V (ω, γ) from Section 2.2.

Lemma 2.17. For any ω ∈ LoopConf(H, ∅), we have

|V bad(ω)| = |V (ω, γ)|+ 6 · | dbl(ω)|.

Proof. As before, set Ec := Ec(ω) for c ∈ {0, 1, 2}. Let U := IntV(γ) \ V (ω, γ) be the set of
vertices whose three incident edges are all contained in exactly one of the sets E0, E1 or E2. Let
U ′ := IntV(γ)\V bad(ω) be the set of vertices whose three incident edges are all contained in exactly
one of the sets E0, (E1) ↓ or (E2) ↑ . The lemma will follow if we show that |U |− |U ′| = 6 · | dbl(ω)|.

For E ⊂ E(H), denote by Int(E) the set of vertices whose three incident edges belong to E.
Note that, for a c-garden E of ω, we have Int(E) = IntV(σ(E)). Thus, it follows from Lemma 2.14
that if E and E′ are 0- and 1-gardens of ω, respectively, then Int(E) ∩ Int(E′) ↓ = ∅. On the
other hand, Int(E0) is the union of the interiors of the 0-clusters of ω in γ which comprise E0,
because, by (6), the union of every two of them is disconnected. Since the analogous statement
is also true for Int(E1), we conclude that Int(E0) ∩ Int(E1) ↓ = ∅. By symmetry, we also have
Int(E0) ∩ Int(E2) ↑ = ∅.

By the inclusion-exclusion principle, recalling from (5) that the sets E0, E1 and E2 are pairwise
disjoint, we obtain

|U ′| = |Int(E0) ∪ Int(E1) ↓ ∪ Int(E2) ↑ |

= |Int(E0)|+ |Int(E1) ↓ |+ |Int(E2) ↑ | − |Int(E1) ↓ ∩ Int(E2) ↑ |

= |Int(E0)|+ |Int(E1)|+ |Int(E2)| − |Int(E1) ↓ ∩ Int(E2) ↑ |

= |Int(E0) ∪ Int(E1) ∪ Int(E2)| − |Int(E1) ↓ ∩ Int(E2) ↑ |

= |U | − |Int(E1) ↓ ∩ Int(E2) ↑ |.

Finally, observe that, by Lemma 2.6, Int(E1) ↓ ∩Int(E2) ↑ is precisely the set of vertices that border
the hexagons in dbl(ω) and that each such vertex is incident to a unique double-clustered hexagon
(since dbl(ω) ⊂ T0, by Lemma 2.15). Consequently,

|Int(E1) ↓ ∩ Int(E2) ↑ | = 6 · | dbl(ω)|. �

For our next lemma, we require the following definition. A functional on loops is a map φ that
assigns a real number to each loop in H. We say that φ is ↑ -invariant if φ(L ↑ ) = φ(L) for every
loop L and φ(L) = φ(L′) for any two trivial loops L and L′. Given such a functional, we extend φ
to finite loop configurations ω by summing over all the loops, i.e., by setting

φ(ω) :=
∑

L∈loops(ω)

φ(L),
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where loops(ω) is the set of loops in ω.
Recall the definition of E(ω) from (9) and let TrivLoop ⊂ H denote a trivial loop.

Lemma 2.18. For any ω ∈ LoopConf(H, ∅) and any ↑ -invariant functional φ on loops, we have

φ
(
Rγ(ω)

)
− φ(ω) = φ(TrivLoop) · |V (ω, γ)|/6− φ(ω ∩ E(ω)).

Proof. As before, set Ec := Ec(ω) for c ∈ {0, 1, 2} and Ebad := Ebad(ω). Recall from Proposi-
tion 2.13 that each loop of Rγ(ω) belongs to one of the following pairwise disjoint loop configura-

tions: ω ∩ E0, ω0
gnd ∩ Ebad, or (ω ∩ E1) ↓ ∪ (ω ∩ E2) ↑ . Thus, the definition of a functional implies

that

φ(Rγ(ω)) = φ(ω ∩ E0) + φ(ω0
gnd ∩ Ebad) + φ

(
(ω ∩ E1) ↓ ∪ (ω ∩ E2) ↑

)
. (11)

We claim that ω0
gnd ∩ Ebad consists of |V bad(ω)|/6 trivial loops. As ω0

gnd ∩ Ebad is a loop con-

figuration and ω0
gnd is a fully-packed loop configuration containing only trivial loops, it suffices to

show that each vertex in V bad(ω) is incident to at least two edges in Ebad. We may write

Ebad = (IntE(γ) ∪ γ∗) \
⋃
i

(IntE(σi) ∪ σ∗i ) =
⋂
i

ExtE(σi) \ ExtE(γ)

for some circuits σi ⊂ T \T0. Let v ∈ V bad(ω) and let z be the hexagon in T0 which v borders. By
Lemma 2.6, the six edges bordering z must belong to IntE(γ) and to ExtE(σi) for each i. Hence,
they belong to Ebad, and, in particular, two edges incident to v belong to Ebad, as required.

Thus, the ↑ -invariance of φ implies

φ(ω0
gnd ∩ Ebad) = φ(TrivLoop) · |V bad(ω)|/6. (12)

Recalling Lemma 2.15, the inclusion-exclusion principle and the ↑ -invariance of φ imply that

φ
(
(ω ∩ E1) ↓ ∪ (ω ∩ E2) ↑

)
= φ((ω ∩ E1) ↓ ) + φ((ω ∩ E2) ↑ )− φ

(
(ω ∩ E1) ↓ ∩ (ω ∩ E2) ↑

)
= φ(ω ∩ E1) + φ(ω ∩ E2)− φ(TrivLoop) · | dbl(ω)|.

(13)

Using Lemma 2.17 and identities (11), (12) and (13), we obtain

φ(Rγ(ω)) = φ(ω ∩ E0) + φ(ω ∩ E1) + φ(ω ∩ E2) + φ(TrivLoop) · |V (ω, γ)|/6.

Finally, by (10),

φ(ω) = φ(ω ∩ E0) + φ(ω ∩ E1) + φ(ω ∩ E2) + φ(ω ∩ E(ω)),

and the lemma follows by subtracting the last two displayed equations. �

Proof of Proposition 2.16. Fix a loop configuration ω ∈ LoopConf(H, ∅) and denote

∆L := LH(Rγ(ω))− LH(ω),

∆o := oH(Rγ(ω))− oH(ω).

With these definitions, we have

P∅H,n,g(Rγ(ω))

P∅H,n,g(ω)
=
g(oH(Rγ(ω))) · nLH(Rγ(ω))

g(oH(ω)) · nLH(ω)
=
g(oH(ω) + ∆o)

g(oH(ω))
· n∆L.

We will show first that

P∅H,n,g(Rγ(ω)) ≥ (nx6)∆L · P∅H,n,g(ω). (14)

Since 0 < x ≤ 1 and g has x-bounded decay, see (7), in order to obtain (14), it suffices to prove
that 0 ≤ ∆o ≤ 6∆L. Lemma 2.18 applied to the ↑ -invariant functionals φ1 and φ2 defined by

φ1(L) := 1 and φ2(L) := |E(L)| for every loop L
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implies (respectively) that

∆L = |V (ω, γ)|/6− | loops(ω ∩ E(ω))|, (15)

∆o = |V (ω, γ)| − |ω ∩ E(ω)|. (16)

Since every loop contains at least six edges, we have

6 ·∆L−∆o = |ω ∩ E(ω)| − 6 · | loops(ω ∩ E(ω))| ≥ 0.

Furthermore, the fact that ω ∩ E(ω) is a loop configuration implies that

|ω ∩ E(ω)| =
∑

L∈loops(ω)

E(L)⊂E(ω)

|E(L)| =
∑

L∈loops(ω)

E(L)⊂E(ω)

|V (L)| ≤ |V (ω, γ)|, (17)

where the last inequality follows from the simple observation that each vertex in a loop contained
in E(ω) is incident to at most one edge of a cluster. Now, (16) and (17) imply that ∆o ≥ 0, which
completes the proof of (14).

As we have assumed that nx6 ≥ 1, it remains to show that ∆L ≥ |V (ω, γ)|/15. Since every
trivial loop of ω is contained in a cluster, there are no trivial loops of ω in E(ω). Any non-trivial
loop contains at least 10 edges, and hence, by (17),

| loops(ω ∩ E(ω))| ≤ |ω ∩ E(ω)|/10 ≤ |V (ω, γ)|/10.

Substituting this estimate into (15) yields

∆L = |V (ω, γ)|/6− | loops(ω ∩ E(ω)| ≥ |V (ω, γ)|/15,

thus concluding the proof. �

2.5. Proof of the main lemma. In this section, we establish several properties of the repair map
Rγ and prove Lemma 2.11. Let us start with two technical lemmas regarding the connectedness of
V (ω, γ). Let H× be the graph obtained from H by adding an edge between each pair of opposite
vertices of every hexagon, so that H× is a 6-regular non-planar graph.

Lemma 2.19. Let γ ⊂ T \ Tc be a circuit with c ∈ {0, 1, 2}. Then ∂IntV(γ) and ∂ExtV(γ) are
connected in H×.

Proof. We only prove that ∂IntV(γ) is connected, as the proof of the second statement is very
similar. Orient γ with a positive orientation, so that when we move along it, IntV(γ) is always on
the left. Let z be a hexagon on γ. Consider its predecessor z0 and its successor z1 in the cyclic
ordering of γ. Since z0 and z1 belong to the same color class of T, there are only two possible
constellations, up to translation and rotation, of the segment (z0, z, z1): relative to the step from
z0 to z, the step from z to z1 may be either a left turn or a right turn (see Figure 7).

If (z0, z, z1) is a left turn then precisely two vertices bordering z lie in ∂IntV(γ) and these two
vertices are adjacent in H. If (z0, z, z1) is a right turn then again precisely two vertices bordering z
are in ∂IntV(γ) and these two vertices are opposite corners of the hexagon z, and thus adjacent in
H×. In either case, exactly two vertices bordering z are in ∂IntV(γ) and they are adjacent in H×.
Since every vertex in ∂IntV(γ) borders exactly two (consecutive) hexagons in γ, we conclude that
∂IntV(γ) is connected in H×. �

Lemma 2.20. Let ω be a loop configuration and let γ ⊂ T \ T0 be a vacant circuit for ω. If
∂IntV(γ) ⊂ V (ω, γ) then V (ω, γ) is connected in H×.

Proof. First, by Lemma 2.19, ∂IntV(γ) is connected in H×. Therefore, it suffices to show that any
connected component of V (ω, γ) in H× intersects ∂IntV(γ). In order to prove this, we shall show
that for any vertex v ∈ V (ω, γ) \ ∂IntV(γ) there exists a vertex v′ ∈ V (ω, γ) further to the right
than v (i.e., with larger first coordinate in the coordinate system on T defined in Section 1.1),
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u
v z

(a) A left turn. Precisely two vertices u and v
bordering the hexagon z belong to the interior
γ. In particular, they must belong to ∂Int(γ).
These vertices lie on one of the edges bordering
z, and thus, are adjacent in H.

u

v

z

(b) A right turn. Four vertices bordering the
hexagon z belong to the interior of γ, precisely
two of which, u and v, belong to ∂Int(γ). These
vertices lie on opposite corners of z, and thus,
are adjacent in H×.

Figure 7. A circuit γ ⊂ T \ Tc, denoted by the dotted line, is oriented with a
positive orientation so that the interior is to its left and the exterior is to its right.
Every segment (z0, z, z1) of γ then constitutes either a left turn or a right turn.

v v′u

w

(a) v is the left-most vertex of
some hexagon.

v w

(b) v is the right-most vertex
of some hexagon.

Figure 8. Left-most and right-most vertices.

which is connected to v by an H×-path in V (ω, γ). Since V (ω, γ) ⊂ IntV(γ), this will imply that
the connected component of V (ω, γ) in H× containing v intersects ∂IntV(γ), as required.

Observe that every vertex in H is either the left-most or the right-most vertex of some hexagon.
Assume first that v ∈ V (ω, γ) \ ∂IntV(γ) is the left-most vertex of a hexagon (see Figure 8a).
Assume that the vertices u and w to the top-right and to the bottom-right of v are not in V (ω, γ).
Then there exist two clusters E and E′ of ω such that u ∈ IntV(σ(E)) and w ∈ IntV(σ(E′)). If z
and z′ are the unique hexagons containing u and w but not v, respectively, then, by Lemma 2.6,
z ∈ Inthex(σ(E)) and z′ ∈ Inthex(σ(E′)). Thus, z and z′ are surrounded by trivial loops. In this
case, the vertex directly to the right of v cannot be an internal vertex of a cluster, and hence, it
belongs to V (ω, γ). Since it is adjacent to v in H×, we found v′ as required.

Assume now that v ∈ V (ω, γ) \ ∂IntV(γ) is the right-most vertex of a hexagon (see Figure 8b).
If the vertex w to the right of v is not in V (ω, γ) then there exists c ∈ {0, 1, 2} and a c-cluster E
of ω such that w ∈ IntV(σ). Clearly, v ∈ ∂ExtV(σ) ⊂ V (ω, γ). Moreover, since w is in IntV(σ),
∂ExtV(σ) contains a vertex which is further to the right than v. The claim now follows by noticing
that, by Lemma 2.19, ∂ExtV(σ) is connected in H×. �

Proof of Lemma 2.11. Let γ ⊂ T\T0 be a circuit and denote H := Int(γ). Let n > 0 and 0 < x ≤ 1.
We may assume throughout the proof that nx6 is sufficiently large, as otherwise the statement is
trivial. We shall show that for any V ⊂ IntV(γ),

P∅H,n,g(V (ω, γ) = V ) ≤ (2
√

2)|V | · (nx6)−|V |/15. (18)

In light of Lemma 2.20 and Lemma 1.10, Lemma 2.11 will then follow from (18) by summing over
all sets V with ∂IntV(γ) ⊂ V ⊂ IntV(γ) such that V is connected in H× and has cardinality at
least k.

In order to prove (18), we shall apply Lemma 1.9 to the (restricted) repair map

Rγ : {ω ∈ LoopConf(H, ∅) : V (ω, γ) = V } → LoopConf(H, ∅).
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By Proposition 2.16, we may take p = (nx6)|V |/15. It remains to estimate, for each V , the maximum
number of preimages under Rγ of a given loop configuration.

Let ω be such that V (ω, γ) = V and let E(V ) be the set of edges with both endpoints in V .
We claim that the set ω \ E(V ) is determined by Rγ(ω). Indeed, for every e ∈ E(H) \ E(V ), the
following is true:

• If e /∈ IntE(γ) then e /∈ ω (since ω ∈ LoopConf(H, ∅)).
• If one of the two endpoints of e is in V (note that the second endpoint cannot be in V since
e /∈ E(V )), then e ∈ σ(E)∗ for some cluster E of ω. In particular, e /∈ ω, since σ(E) is
vacant in ω, by Lemma 2.5b.
• If both endpoints of e are not in V , then e belongs to a c-cluster E of ω for some c ∈ {0, 1, 2}.

In this case, ω ∩ E equals either Rγ(ω) ∩ E, Rγ(ω) ↑ ∩ E or Rγ(ω) ↓ ∩ E, depending on
whether c = 0, c = 1 or c = 2, respectively. Hence, it suffices to determine the value c from
V . To this end, consider a path from an endpoint of e to V , and let {u, v} be the first edge
on this path such that v ∈ V and u /∈ V . Then, since {u, v} ∈ σ(E)∗ and σ(E) ⊂ T \ Tc,
we see that c is the unique element in {0, 1, 2} such that y, z /∈ Tc, where {y, z}∗ = {u, v}.

In conclusion, since given V (ω, γ) = V , Rγ(ω) uniquely determines ω \ E(V ), the number of
preimages of a given loop configuration is at most the number of subsets of E(V ). Since there are

at most 3|V |/2 edges with both endpoints in V , there are at most 23|V |/2 subsets of E(V ). Thus,
Lemma 1.9 implies (18). �

3. Proofs of main theorems

Throughout this section, we continue to use the notation introduced in Section 2.1. The proofs of
the main theorems mostly rely on the main lemma, Lemma 2.11, and its corollary, Corollary 2.12.
We apply these for the functions g = gx for x ∈ (0,∞], where, as before, gx(m) = xm for x ∈ (0,∞)

and g∞ is the function defined in (3), so that the probability measures PξH,n,gx and PξH,n,x coincide.
As the lemma and corollary require that g has x-bounded decay for some 0 < x ≤ 1, we note that
gx has min{x, 1}-bounded decay for all x ∈ (0,∞].

3.1. Exponential decay of loop lengths. As mentioned in the introduction, the results for small
x follow via a Peierls argument. The following lemma gives an upper bound on the probability that
a given collection of loops appears in a random loop configuration.

Lemma 3.1. Let H be a domain and let ξ be a loop configuration. Then, for any n > 0, any x > 0
and any A ∈ LoopConf(H, ∅), we have

PξH,n,x(A ⊂ ω) ≤ nLH(A)xoH(A).

Proof. Consider the map

T : {ω ∈ LoopConf(H, ξ) : A ⊂ ω} → LoopConf(H, ξ)

defined by
T(ω) := ω \A.

Clearly, T is well-defined (see Lemma 2.5e) and injective. Moreover, since LH(T(ω)) = LH(ω) −
LH(A) and oH(T(ω)) = oH(ω)− oH(A), we have

P∅H,n,x(T(ω)) = P∅H,n,x(ω) · n−LH(A)x−oH(A).

Hence, the statement follows from Lemma 1.9. �

Corollary 3.2. For any n > 0, any x > 0, any domain H, any vertex u ∈ V (H) and any positive
integer k, we have

P∅H,n,x(there exists a loop of length k surrounding u) ≤ kn(2x)k.
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Proof. Denote by ak the number of simple paths of length k in H starting at a given vertex. Clearly,
ak ≤ 3 · 2k−1. It is then easy to see that the number of loops of length k surrounding u is at most
kak−1 ≤ k2k. Thus, the result follows by the union bound and Lemma 3.1. �

We also require the following lemma. We say that a circuit γ surrounds a subgraph A ⊂ H if
A ⊂ Int(γ) and that γ is inside A if Int(γ) ⊂ A. We say that a circuit γ contains a circuit σ if
Int(σ) ⊂ Int(γ).

Lemma 3.3. Let c′ ∈ {0, 1, 2}, let H be a domain of type c′ and let ω ∈ LoopConf(H, ∅). Let
U ⊂ V (H) be a connected subset and assume that no vertex in U belongs to a trivial loop in ω.
Then there exists a c ∈ {0, 1, 2} and a circuit γ ⊂ T \ Tc inside H such that γ is vacant in ω and
U ∪ ∂IntV(γ) ⊂ V (ω, γ).

Proof. Let us first extend the notion of a breakup. For c ∈ {0, 1, 2} and a circuit γ ∈ T \ Tc which
is vacant in ω, let A(ω, γ) be the set of vertices of H belonging to trivial loops in ω surrounding
hexagons in Tc (i.e., the vertices bordering c-flowers in ω), and let B(ω, γ) be the unique infinite
connected component of ExtV(γ) ∪ A(ω, γ). For u ∈ H, define C(ω, γ, u) to be the connected
component of H \ B(ω, γ) containing u, setting C(ω, γ, u) = ∅ if u ∈ B(ω, γ). By definition, when
C(ω, γ, u) is non-empty, the subgraph of H induced by C(ω, γ, u) is a domain. Assume that C(ω, γ, u)
is non-empty and let Γ(ω, γ, u) be the circuit satisfying C(ω, γ, u) = IntV(Γ(ω, γ, u)).

We claim that Γ(ω, γ, u) is vacant in ω, is contained in T \ Tc and satisfies ∂C(ω, γ, u) ⊂
V (ω,Γ(ω, γ, u)). To see this, denote σ := Γ(ω, γ, u) and let e = {v, w} ∈ σ∗ be an edge with
v ∈ C(ω, γ, u) and w /∈ C(ω, γ, u). In particular, v /∈ B(ω, γ) and w ∈ B(ω, γ). If w /∈ A(ω, γ) then
e ∈ γ∗ so that e /∈ ω and e ∈ T \ Tc. Otherwise, w ∈ A(ω, γ) and so it borders a c-flower z of ω.
Since v /∈ A(ω, γ), v does not border z, and thus, e /∈ ω and e ∈ T \ Tc. It remains to check that
v ∈ V (ω, σ). Indeed, since v /∈ A(ω, γ), v does not border a c-flower of ω, and hence, cannot belong
to any cluster of ω inside σ (as σ is vacant in ω). Thus v ∈ V (ω, σ).

We are now ready to find the required circuit γ. Fix a vertex u ∈ U . Begin with the circuit γ
corresponding to H, i.e., H = Int(γ). Now, replace γ with the circuit Γ(ω, γ, u). If u ∈ V (ω, γ)
then, since U is connected and no vertex in U belongs to a trivial loop in ω, U ⊂ V (ω, γ) and
we are finished. Otherwise, all three edges incident to u are contained in some cluster E of ω
inside γ. Note that Int(σ(E)) is strictly contained in Int(γ), since IntV(σ(E)) ∩ V (ω, γ) = ∅ and
∂IntV(γ) ⊂ V (ω, γ). Thus, replacing γ with σ(E) and iterating the above process, we obtain the
required circuit. �

Proof of Theorem 1.4. Suppose that n0 is a sufficiently large constant, let n ≥ n0 and let
x ∈ (0,∞] be arbitrary. Let c′ ∈ {0, 1, 2}, let H be a domain of type c′ and let u ∈ V (H). We

shall estimate the probability that, in a random loop configuration drawn from P∅H,n,x, the vertex
u is surrounded by a non-trivial loop of length k. We consider two cases, depending on the relative
values of n and x.

Suppose first that nx6 < n1/50. Since n ≥ n0, we may assume that 2x ≤ n−4/25 and that
kn−k/120 ≤ 1 for all k > 0. By Corollary 3.2, for every k ≥ 7,

P∅H,n,x(there exists a loop of length k surrounding u) ≤ kn(2x)k ≤ kn1−4k/25

≤ kn−k/60 ≤ n−k/120.

We now assume that nx6 ≥ n1/50. Since n ≥ n0, we may assume that n ·min{x6, 1} is sufficiently
large for our arguments to hold. Let L ⊂ H be a non-trivial loop of length k surrounding u. Note
that, if ω ∈ LoopConf(H, ∅) has L ⊂ ω then, by Lemma 3.3, for some c ∈ {0, 1, 2}, there exists a
vacant circuit γ ⊂ T \ Tc in ω such that V (L) ∪ ∂IntV(γ) ⊂ V (ω, γ). By Corollary 2.12, for every
fixed circuit γ ⊂ T \ Tc,

P∅H,n,x(γ vacant and V (L) ∪ ∂IntV(γ) ⊂ V (ω, γ)) ≤ (cn ·min{x6, 1})−|V (L)∪∂IntV(γ)|/15.
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Thus, denoting by G(u) the set of circuits γ contained in T \ Tc for some c ∈ {0, 1, 2} and having
u ∈ IntV(γ) ⊂ V (H), we obtain

P∅H,n,x(L ⊂ ω) ≤
∑

γ∈G(u)

(cn ·min{x6, 1})−|V (L)∪∂IntV(γ)|/15

≤
∞∑
`=1

D`(cn ·min{x6, 1})−max{`,k}/15

≤ (c′n ·min{x6, 1})−k/15,

where we used the facts that the length of a circuit γ such that |∂IntV(γ)| = ` is at most 3`, that
the number of circuits of length at most 3` surrounding u is bounded by D` for some sufficiently
large constant D, and in the last inequality we used the assumption that n ·min{x6, 1} is sufficiently
large. Since the number of loops of length k surrounding a given vertex is smaller than k2k, our
assumptions that nx6 ≥ n1/50 and n ≥ n0 yield

P∅H,n,x(there exists a loop of length k surrounding u) ≤ k2k(c′n1/50)−k/15 ≤ n−k/800.

Proof of Theorem 1.5. The proof is very similar to that of Theorem 1.4. The main difference
is the following replacement of Lemma 2.11. Recall that every λ ∈ LoopConf(H, ∅, u, v) contains
a simple path between u and v. For every λ ∈ LoopConf(H, ∅, u, v), let p(λ, u) be the connected
component of u (equivalently, of v) in λ and denote ωλ := λ \ p(λ, u), so that ωλ is a loop config-
uration in LoopConf(H, ∅). For a circuit γ for which Int(γ) ⊂ H, let E(H,u, v, γ, k) be the set of
configurations λ ∈ LoopConf(H, ∅, u, v) such that

• γ is vacant in ωλ;
• V (p(λ, u)) ⊂ V (ωλ, γ);
• ∂IntV(γ) ⊂ V (ωλ, γ);
• |V (ωλ, γ)| ≥ k.

For ω ∈ LoopConf(H, ∅) and λ ∈ LoopConf(H, ∅, u, v), denote

φH,n,x(ω) := xoH(ω)nLH(ω),

φH,n,x(λ) := xoH(λ)nL
′
H(λ)J(λ).

Lemma 3.4. There exist absolute constants C, c > 0 such that for any n ≥ C and x ∈ (0,∞)
satisfying nx6 ≥ C the following holds. For any circuit γ ⊂ T \ T0, any vertices u, v ∈ V (H) and
any positive integer k, we have∑

λ∈E(Int(γ),u,v,γ,k)

φH,n,x(λ) ≤ min{x, xd(u,v)} · (cn ·min{x6, 1})−k/15
∑

ω∈LoopConf(H,∅)

φH,n,x(ω).

Proof. Fix a circuit γ ⊂ T \ T0 and denote H := Int(γ). Recall the repair map Rγ defined in
Section 2.3 and Proposition 2.16 which compared the probabilities of Rγ(ω) and ω. Let us first
show that one may strengthen the conclusion of Proposition 2.16 when g = gx to obtain

P∅H,n,x(Rγ(ω)) ≥ max{x, 1}|V ′(ω,γ)|(n ·min{x6, 1})|V (ω,γ)|/15 · P∅H,n,x(ω),

for any ω ∈ LoopConf(H, ∅), where V ′(ω, γ) denotes the vertices in V (ω, γ) which are isolated in ω.
Indeed, for 0 < x ≤ 1, this is precisely the conclusion of the original proposition. For x > 1, one
repeats the proof with the following modifications. In (17), modifying the last step, we may obtain
the stronger inequality

|ω ∩ E(ω)| ≤ |V (ω, γ) \ V ′(ω, γ)|.
This then shows that ∆o ≥ |V ′(ω, γ)|. Hence, we conclude that

P∅H,n,x(Rγ(ω)) = x∆on∆L · P∅H,n,x(ω) ≥ x|V ′(ω,γ)|n|V (ω,γ)|/15 · P∅H,n,x(ω),
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as required.
Now, fix a subset V ⊂ IntV(γ) and consider the map

S : {λ ∈ E(H,u, v, γ, k) : V (ωλ, γ) = V } → LoopConf(H,ω0
gnd)

defined by S(λ) := Rγ(ωλ). Then, as φH,n,x(λ) = x|E(p(λ,u))|J(λ) · φH,n,x(ωλ), we have just shown
that

φH,n,x(S(λ))

φH,n,x(λ)
≥ 1

J(λ)
x−|E(p(λ,u,v))|max{x, 1}|V ′(ωλ,γ)|(n ·min{x6, 1})|V (ωλ,γ)|/15.

Thus, since J(λ) ≤ 3 and d(u, v) ≤ |E(p(λ, u))| ≤ |V ′(ωλ, γ)|+ 1, we obtain

φH,n,x(S(λ))

φH,n,x(λ)
≥ 1

3 max{x−1, x−|d(u,v)|} · (nmin{x6, 1})|V (ωλ,γ)|/15.

Now, as was shown in the proof of Lemma 2.11, S(λ) uniquely determines ωλ \E(V ). Noting that
λ \ E(V ) = ωλ \ E(V ), since V (p(λ, u)) ⊂ V (ωλ, γ), we see that the number of preimages of ω

under S is bounded by the number of subsets of E(V ), i.e., |S−1(ω)| ≤ 23|V |/2. Therefore, a minor
variant of Lemma 1.9 (a variant in which the mapping is between different discrete measure spaces,
not necessarily probability spaces, which is proved with the same argument) implies that∑

λ∈E(H,u,v,γ,k)
V (ωλ)=V

φH,n,x(λ) ≤ 3 min{x, xd(u,v)} · (cn ·min{x6, 1})−k/15
∑

ω∈LoopConf(H,∅)

φH,n,x(ω).

The above is the analogue of (18). Finally, as in the proof of Lemma 2.11, the lemma follows by
summing over all sets V with ∂IntV(γ) ⊂ V ⊂ IntV(γ) such that V is connected in H× and has
cardinality at least k. �

Once this lemma is available to us, the proof then goes along the same lines as Section 3.1. For
small x, one easily adapts Lemma 3.1 and its corollary, Corollary 3.2, to show that the ratio decays
exponentially fast in the distance between u and v (simply use the map λ 7→ ωλ). For large x,
one uses Lemma 3.3 to find a vacant circuit γ ⊂ T \ Tc in ωλ (for some c ∈ {0, 1, 2}) such that
V (p(λ, u)) ∪ ∂IntV(γ) ⊂ V (ωλ, γ). The rest of the proof is then the same.

3.2. Small perturbation of ground state.

Proof of Theorem 1.8. By definition, the subgraph of H induced by C(ω, u) is a domain when it
is non-empty. Let Γ(ω, u) be the circuit satisfying C(ω, u) = IntV(Γ(ω, u)). It follows that Γ(ω, u)
is vacant and contained in T \ T0. To see this, note that the edge boundary of B(ω) consists only
of edges {v, w} such that v is on the boundary of a 0-flower y and w is the unique neighbor of v
not lying on the boundary of y; in particular, {v, w} borders a hexagon from T1 and a hexagon
from T2 and {v, w} 6∈ ω. Furthermore, ∂C(ω, u) ⊂ V (ω,Γ(ω, u)). Indeed, if v ∈ ∂IntV(Γ(ω, u))
then, by the definition of B(ω), v does not belong to a trivial loop surrounding a hexagon in T0.
It follows that v does not belong to any cluster of ω inside Γ(ω, u) as Γ(ω, u) is vacant in ω. Thus
v ∈ V (ω,Γ(ω, u)).
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Finally, denoting by Gk(u) the set of circuits γ ⊂ T \ T0 having u ∈ IntV(γ) ⊂ V (H) and
|∂IntV(γ)| ≥ k, Corollary 2.12 implies that

P0
H,n,x(|∂C(ω, u)| ≥ k) ≤

∑
γ∈Gk(u)

P0
H,n,x(Γ(ω, u) = γ)

≤
∑

γ∈Gk(u)

P0
H,n,x(γ vacant and ∂IntV(γ) ⊂ V (ω, γ))

≤
∑

γ∈Gk(u)

(cn ·min{x6, 1})−|∂IntV(γ)|/15

≤
∑
`≥k

D`(cn ·min{x6, 1})−`/15 ≤ (c′n ·min{x6, 1})−k/15,

where c′, D,C ′ are positive constants. In the final inequality, we used the facts that the length of a
circuit γ such that |∂IntV(γ)| = ` is at most 3`, and that the number of circuits of length at most
3` surrounding u is bounded by D` for some sufficiently large constant D.

3.3. Limiting Gibbs measures. Before proving the last two theorems, we require the following
lemma.

Lemma 3.5. Let H and H ′ be two domains, let A ⊂ H ∩H ′ be a non-empty subgraph and let ξ

and ξ′ be loop configurations. Let n > 0, let x ∈ (0,∞] and let ω ∼ PξH,n,x and ω′ ∼ Pξ
′

H′,n,x be

independent. Denote by Ω the event that there exists a circuit surrounding A and inside H ∩ H ′
which is vacant in both ω and ω′. Assume that Ω has positive probability. Then, conditioned on Ω,
the marginal distributions of ω and ω′ on A are equal.

Proof. In this proof, a doubly-vacant circuit is a circuit which is vacant in both ω and ω′. Let
G denote the collection of circuits surrounding A and inside H ∩ H ′. Let σ ∈ G and σ′ ∈ G be
doubly-vacant circuits. Then, since both circuits surround A, Int(σ) ∩ Int(σ′) 6= ∅. By Fact 2.3,
there exists a circuit γ ⊂ σ ∪ σ′ having γ∗ ⊂ σ∗ ∪ (σ′)∗ which contains both σ and σ′. Clearly, γ
is doubly-vacant, surrounds A and is inside H ∩ H ′, and hence, γ ∈ G. Thus, we have a notion
of the “outermost” doubly-vacant circuit in G. On Ω, define Γ to be this circuit. Then, we claim
that, for any circuit γ ∈ G for which the event Ω∩{Γ = γ} has positive probability, conditioned on
Ω ∩ {Γ = γ}, the marginal distribution of (ω, ω′) on A2 is the same as the marginal distribution of

two independent loop configurations sampled from P∅Int(γ),n,x. Indeed, since the event Ω ∩ {Γ = γ}
is determined by ω \ Int(γ) and ω′ \ Int(γ), this follows from the domain Markov property. �

Proof of Theorem 1.6. We start with a lemma.

Lemma 3.6. Let n > 0 and x > 0. For any two domains H and H ′, any vertex u ∈ V (H) and
any positive integer k, we have

P(the connected component of u in ω ∪ ω′ has exactly k edges) ≤ (18emax{n1/6, 1}x)k,

where ω ∼ P∅H,n,x and ω′ ∼ P∅H′,n,x are independent.

Proof. We may assume that max{n1/6, 1}x ≤ 1, since the statement is trivial otherwise. Let Ck be
the set of connected subgraphs of H that have exactly k edges, at most k vertices and contain u.
For C ∈ Ck, call a pair of loop configurations (A,A′) compatible with C if E(A) ∪ E(A′) = E(C).
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Let C be the connected component of u in ω ∪ ω′. Then

P(|C| = k) ≤
∑
C∈Ck

∑
(A,A′) compatible with C

P(A ⊂ ω, A′ ⊂ ω′)

≤
∑
C∈Ck

∑
(A,A′) compatible with C

(n1/6x)oH(A)+oH′ (A
′)

≤ (18e)k(max{n1/6, 1}x)k.

The second inequality follows from Lemma 3.1 and the fact that ω and ω′ are independent, any
loop consists of at least six edges and n ≥ 1. The last inequality follows from the following three
facts:

• oH(A) + oH′(A
′) ≥ |E(C)| = k and max{n1/6, 1}x ≤ 1;

• since each edge in C must be in either A, A′ or in both, the number of possible pairs of
loop configurations (A,A′) compatible with C is bounded by 3k;
• choosing first a connected set of k vertices and then a subgraph (not necessarily connected)

on these vertices, Lemma 1.10 gives that |Ck| is bounded by 3k(2e)k . �

Let us conclude the proof of Theorem 1.6. Let H and H ′ be two domains and let A ⊂ B ⊂ H∩H ′
be two subdomains. Let ω ∼ P∅H,n,x and ω′ ∼ P∅H′,n,x be independent. Let E be the event that

the union of the connected components of the vertices of A in the graph ω ∪ ω′ intersects H \ B.
Lemma 3.6 implies that

P(E) ≤
∑

v∈V (A)

∞∑
k=d({v},H\B)

(18emax{n1/6, 1}x)k ≤ |V (A)|
∞∑

k=d(A,H\B)

(18emax{n1/6, 1}x)k, (19)

where d(E,F ) is the minimum of the graph distances between a vertex in E and a vertex in F .
Let us now show that, on the complement of E , there exists a circuit γ surrounding A and inside

H ∩ H ′ which is vacant in both ω and ω′. We first define the notion of the outer circuit of a
non-empty finite connected subset U of V (H). Let U ′ be the unique infinite connected component
of V (H) \ U and let U ′′ := V (H) \ U ′. Evidently, U ′′ is a domain containing U . The outer circuit
σ of U is then the circuit corresponding to the subgraph of H induced by U ′′, i.e., U ′′ = IntV(σ),
which exists by Fact 2.2. Note also that ∂IntV(σ) ⊂ ∂U and that if U is contained in some domain
then U ′′ is also contained in the same domain.

Let D be the union of the connected components of vertices of A in ω ∪ ω′. Let γ be the outer
circuit of V (A) ∪ D, and note that, on the complement of E , γ is inside B. Let us show that γ
is vacant in both ω and ω′. To this end, let e = (u, v) ∈ γ∗ be an edge with u ∈ V (A) ∪ D and
v /∈ V (A)∪D. Assume first that u ∈ D. Clearly e /∈ ω ∪ω′, as otherwise, v would also belong to D.
Assume now that u ∈ V (A) \D. Then, by definition of D, u is not contained in a loop of neither ω
nor ω′. In particular, e does not belong to neither ω nor ω′. Thus, γ is vacant in both ω and ω′.

Thus, by Lemma 3.5, the total variation between the measures P∅H,n,x(·|A) and P∅H′,n,x(·|A) is

at most P(E). In light of (19), by taking B large enough, we may make P(E) arbitrarily small.

This implies the convergence of the measures P∅Hk,n,x(·|A) towards a limit. Since this holds for any

domain A, we have established the convergence of P∅Hk,n,x as k → ∞ towards an infinite-volume

measure P∅H,n,x.
The fact that the limiting measure is supported on loop configurations with no infinite paths

is an immediate consequence of Corollary 3.2. Indeed, the corollary shows that in the measure
P∅Hk,n,x the probability that a given vertex is contained in a loop of length m tends to zero with m,
uniformly in k.
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Proof of Theorem 1.7. Let us first show that if n·min{x6, 1} is sufficiently large then the limiting
measures Pc

H,n,x, c ∈ {0, 1, 2}, are distinct (assuming they exist). By Theorem 1.8, if n ·min{x6, 1}
is sufficiently large then, for any z ∈ T0,

P0
H,n,x(z is surrounded by a trivial loop) > 1/2.

Since P1
H,n,x and P2

H,n,x are the measures induced by applying the shifts ↓ and ↑ , respectively, to

P0
H,n,x, the same statement holds for any Pc

H,n,x with z ∈ Tc. Thus, since adjacent hexagons cannot

both be surrounded by trivial loops simultaneously, we conclude that the measures {Pc
H,n,x}c∈{0,1,2}

are distinct.
It remains to show that, for any c ∈ {0, 1, 2}, Pc

Hk,n,x
converges as k →∞ to an infinite-volume

measure Pc
H,n,x which is supported on loop configurations with no infinite paths. Without loss of

generality, we may assume that c = 0. The proof bears similarity with the proof of Theorem 1.6.
We start with a lemma. Recall the definition of B(ω) and C(ω, u) from Section 1.1. For a domain

H and a loop configuration ω ∈ LoopConf(H,ω0
gnd), denote C(ω) := V (H)\B(ω) = ∪u∈V (H)C(ω, u).

Note that, by definition, every two breakups C(ω, u) and C(ω, v), where u, v ∈ V (H), are either
equal or their union is disconnected in H× (as the definition implies that if a vertex belongs to C(ω)
then all vertices bordering the same hexagon in T0 also belong to C(ω)). Thus, every connected
component of C(ω) is a breakup of some vertex, and every H×-connected component of ∂C(ω) is
the boundary of a breakup of some vertex, i.e., equals ∂C(ω, u) for some u ∈ V (H) (recall that this
set is H×-connected, by Lemma 2.19).

Lemma 3.7. There exists an absolute constant c > 0 such that for any n > 0 and x ∈ (0,∞] the
following holds. For any two domains H and H ′, any vertex u ∈ V (H) and any positive integer k,

P(the H×-connected component of u in ∂C(ω) ∪ ∂C(ω′) has cardinality k) ≤ (cn ·min{x6, 1})−k/15,

where ω ∼ P0
H,n,x and ω′ ∼ P0

H′,n,x are independent.

Proof. Let Ck be the set of H×-connected subsets of V (H) of cardinality k containing u. For C ∈ Ck,
call a pair (A,A′) of subsets of V (H) compatible with C if A ∪ A′ = C. We write A ≺ C(ω) if A
is the union of some H×-connected components of ∂C(ω), or equivalently, if every H×-connected
component of A is equal to ∂C(ω, v) for some v ∈ V (H). Now, we claim that for each fixed A we
have

P0
H,n,x(A ≺ C(ω)) ≤ (cn ·min{x6, 1})−|A|/15. (20)

To see this, note that for the probability to be positive, A needs to be a union of ∂IntV(γi) for a
collection of circuits γi ⊂ T \T0 with disjoint interiors. Next, by conditioning on all of the γi being
vacant, we may apply the domain Markov property and Theorem 1.8 to obtain the estimate (20).
Similarly, for each fixed A′ we have that

P0
H′,n,x(A′ ≺ C(ω′)) ≤ (cn ·min{x6, 1})−|A′|/15.

We may assume that cn · min{x6, 1} ≥ 1, since the statement is trivial otherwise. Let C be the
H×-connected component of u in ∂C(ω) ∪ ∂C(ω′). Then

P(|C| = k) ≤
∑
C∈Ck

∑
(A,A′) compatible with C

P(A ≺ C(ω), A′ ≺ C(ω′))

≤
∑
C∈Ck

∑
(A,A′) compatible with C

(cn ·min{x6, 1})−(|A|+|A′|)/15

≤ (15e)k(cn ·min{x6, 1})−k/15.

In the second inequality we used the fact that ω and ω′ are independent. The last inequality follows
from the following three facts:
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• |A|+ |A′| ≥ |C| = k and cn ·min{x6, 1} ≥ 1;
• since each vertex in C is either in A, in A′ or in both, the number of possible pairs (A,A′)

compatible with C is bounded by 3k;
• since H× is 6-regular, Lemma 1.10 implies that |Ck| is bounded by (5e)k . �

Let us conclude the proof of Theorem 1.7. Let H and H ′ be two domains and let A ⊂ B ⊂ H∩H ′
be two domains of type 0. Let ω ∼ P0

H,n,x and ω′ ∼ P0
H′,n,x be independent. Let E be the event

that the union of H×-connected components of vertices in A in ∂C(ω)∪∂C(ω′) intersects V (H) \B.
Lemma 3.7 implies that

P(E) ≤
∑

u∈V (A)

∞∑
k=d({u},H\B)

(cn ·min{x6, 1})−k/15 ≤ |V (A)|
∞∑

k=d(A,H\B)

(cn ·min{x6, 1})−k/15,

where d(E,F ) is the minimum of the graph distances between a vertex in E and a vertex in F .
Let E ′ be the event that A is contained in either C(ω) or C(ω′), i.e., that A is contained entirely
in one breakup (of either ω or ω′). Denote by ρ(m) the smallest possible size of ∂U for a subset
U ⊂ V (H) of size m. Then Theorem 1.8 implies that

P(E ′) ≤ (cn ·min{x6, 1})−ρ(|V (A)|)/15.

Let us now show that, on the complement of E ∪E ′, there exists a circuit γ ⊂ T \T0 surrounding
A and inside H ∩H ′ which is vacant in both ω and ω′. We require the following simple geometric
claim. For brevity, in the rest of the proof we identify a domain with its set of vertices.

If S, T are two domains of type 0 with S 6⊂ T and T 6⊂ S such that S ∪ T is connected

then ∂S ∪ ∂T is H×-connected. If, in addition, S ∩ T 6= ∅ then also ∂S ∩ ∂T 6= ∅
(21)

To see this, note first that ∂S and ∂T are H×-connected by Fact 2.2 and Lemma 2.19. If S ∩T = ∅
then the assumption that S ∪ T is connected implies that a vertex of ∂S is adjacent to a vertex of
∂T yielding that ∂S ∪ ∂T is H×-connected. Assume that S ∩ T 6= ∅. By considering a path in T
from T \ S to T ∩ S it follows that ∂S ∩ T 6= ∅. Similarly, considering a path in T c from S \ T to
(S ∪ T )c shows that ∂S \ T 6= ∅. We conclude that ∂S ∩ ∂T 6= ∅, yielding the claim.

Recall the notion of the outer circuit of a non-empty finite connected subset U of V (H) from
the proof of Theorem 1.6. Let D be the union of the connected components of the vertices of A in
C(ω)∪C(ω′). Let γ be the outer circuit of A∪D. It follows that γ ⊂ T \T0 and that γ is vacant in
both ω and ω′. Indeed, γ ⊂ T \T0 since A is a domain of type 0 and, by the definition of breakup,
each circuit Γ(ω, u) corresponding to the breakup C(ω, u) is in T \ T0. Thus, no edge of γ∗ can
belong to ω ∪ ω′ since otherwise both its endpoints would belong to a breakup.

We claim that, on the complement of E ∪ E ′, γ is inside B. By the definition of γ and since B
is a domain, it suffices to show that A ∪ D ⊂ B. As A ⊂ B, we need only verify that D ⊂ B. On
the complement of E ′, we may write A ∪ D as the union of domains Di of type 0 such that no one
contains another, D0 = A and each Di, i 6= 0, is a breakup of either ω or ω′. Let D′ be the union
of the H×-connected components of the vertices of A in ∂C(ω) ∪ ∂C(ω′). On the complement of E ,
∂A ∪D′ is contained in B. By (21), ∪i∂Di is H×-connected and if Di ∩A 6= ∅ then ∂Di ∩ ∂A 6= ∅.
Thus ∪i∂Di ⊂ ∂A∪D′. We conclude that ∂D ⊂ ∪i∂Di ⊂ B, whence D ⊂ B as we wanted to show.

Thus, by Lemma 3.5, the total variation between the measures P0
H,n,x(·|A) and P0

H′,n,x(·|A) is at

most P(E∪E ′). In particular, fixing a subgraph A′ ⊂ A, the same holds for the measures P0
H,n,x(·|A′)

and P0
H′,n,x(·|A′). Since ρ(m) clearly tends to infinity as m tends to infinity, by first taking A large

enough and then taking B large enough, we may make P(E ∪E ′) arbitrarily small. This implies the
convergence of the measures P0

Hk,n,x
(·|A′) towards a limit. Since this holds for any finite subgraph

A′ of H, we have established the convergence of P0
Hk,n,x

as k → ∞ towards an infinite-volume

measure P0
H,n,x.
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The fact that the limiting measure is supported on loop configurations with no infinite paths is
a consequence of Theorem 1.8. Indeed, if a given vertex u is contained in a loop of length m > 6
then the breakup C(ω, u) must be of size at least m, and hence, ∂C(ω, u) is necessarily of size at
least ρ(m), which tends to infinity with m. Thus, in the measure P0

Hk,n,x
, the probability that u is

contained in a loop of length m > 6 tends to zero with m, uniformly in k.

4. Discussion and open questions

In this work, we investigate the structure of loop configurations in the loop O(n) model with
large parameter n. We show that the chance of having a loop of length k surrounding a given
vertex decays exponentially in k. In addition, we show, under appropriate boundary conditions,
that if nx6 is small, the model is in a dilute, disordered phase whereas if nx6 is large, configurations
typically resemble one of the three ground states. In this section we briefly discuss several open
directions.

Spin O(n). As described in the introduction, the loop O(n) model can be viewed as an approxima-
tion of the spin O(n) model, with the length of loops related to the spin-spin correlation function.
Thus, our results prove an analogue of the well-known conjecture that spin-spin correlations de-
cay exponentially in the spin O(n) model with n ≥ 3 at any positive temperature. Proving the
conjecture itself remains a tantalizing challenge.

Small n. Studying the loop O(n) model for small values of n is of great interest. It is predicted
that the model displays critical behavior only when n ≤ 2. There, it is expected to undergo

a Kosterlitz–Thouless phase transition at xc = 1/
√

2 +
√

2− n, see [22], and exhibit conformal
invariance when x ≥ xc. Mathematical results on this are currently restricted to the cases n = 1
and n = 0, which correspond to the Ising model and the self-avoiding walk, respectively. For these
two cases, the critical values have been identified rigorously in [16] and [10], respectively. In the
n = 1 case, the model has been proved [3, 4] to be conformally invariant at xc = 1/

√
3. For n = 1

and x =∞ the height function of the model may be viewed as a uniformly chosen lozenge tiling of
a domain in the plane. This viewpoint leads to a determinantal process, the dimer model, which
has been analyzed in great detail (see, e.g., [14] for an introduction). Conformal invariance has
also been proved for the double dimer model which is closely related to the case n = 2 and x =∞
(see [15]).

Our results are limited to the case n ≥ n0 and understanding the various behaviors for small
values of n remains a beautiful mathematical challenge. To give a taste of the different possibilities,
we provide some simulation results in Figure 9.

The Gibbs measures. Our results shed light on the Gibbs measures of the loop O(n) model
when n ≥ n0 and either nx6 ≤ c or nx6 ≥ C. The structure for n ≥ n0 and c ≤ nx6 ≤ C remains
unclear; see Figure 9d and Figure 2. Is there a single xc(n) at which the model transitions from
the dilute, disordered phase to the dense, ordered phase? What happens when x = xc(n)?

When n ≥ n0 and nx6 ≥ C we prove that the model has at least three different Gibbs measures,
distinguished by a choice of a sublattice of the triangular lattice. Are these the only extremal
Gibbs measures in this regime (i.e., is every other measure a convex combination of these three
measures)? This would be in the spirit of the Aizenman–Higuchi theorem [1, 13] which proves that
the only extremal Gibbs measures for the 2D Ising model are the two pure states. This theorem
was recently extended to the q-state Potts model in [5].

For small values of max{n, 1}x6 we prove the existence of a limiting Gibbs measure when ex-
hausting space via an increasing sequence of domains with vacant boundary conditions. Is this
Gibbs measure unique for each choice of n and x in this regime? Intuitively, the difficulty in prov-
ing this lies in dealing with domains with boundary conditions which force an interface (i.e., part
of a loop) through the domain (similarly to the situation in Figure 3b). If this interface passes
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(a) n = 0.8 and x = 0.55. (b) n = 0.8 and x = 0.6.

(c) n = 2 and x = 1/
√

2 ≈ 0.707. (d) n = 8 and x = 1.

Figure 9. A few samples of random loop configurations. Configurations are on a
60 × 45 domain of type 0 and are sampled via Glauber dynamics for 100 million
iterations started from the empty configuration. The conjectured phase transition

point for n = 0.8 is xc = 1/
√

2 +
√

2− 0.8 ≈ 0.568 and for n = 2 is xc = 1/
√

2 ≈
0.707. Theorem 1.4 shows that long loops are exponentially unlikely for large n.

near the origin with non-negligible probability, one would obtain a limiting Gibbs measure hav-
ing an infinite path with positive probability. However, one expects interfaces to follow diffusive
scaling, similarly to random walk paths, and as such should have negligible probability to pass
close to the origin when the domain is large. Making such an intuition rigorous is quite non-trivial
and was recently carried out successfully in [5] for planar Potts models. Adapting the ideas in [5]
to the loop O(n) model poses quite a challenge as these rely on specific properties of the Potts
model. Roughly, the strategy in [5] proceeds by showing that when starting from a large domain H
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with arbitrary boundary conditions, only a uniformly bounded number of interfaces will reach the
boundary of a smaller subdomain H ′. Then it is shown that these bounded number of interfaces
follow diffusive scaling as in the intuition above. The first part, bounding the number of interfaces
between the boundary of H and H ′, may possibly be carried out for the loop O(n) model by using
Lemma 1.9; configurations with many long interfaces may be ‘rewired’, erasing most of these inter-
faces and replacing them with short connections along the boundary of H, yielding configurations
with much higher probability. The second part, however, showing the diffusive scaling, remains a
major obstacle.

Appendix A. Integrals

In this section, we present a detailed derivation of the formulas approximating the partition
function and the spin-spin correlations in the spin O(n) model on a finite subgraph H of the
hexagonal lattice. Let u, v ∈ V (H) be distinct vertices and let H+ be the (possibly multi-)graph
obtained by adding an edge eu,v between u and v to H. In the introductory section, the derivation
was reduced to computing integrals of the form

I(ω) :=

∫
Ω

∏
{w,w′}∈E(ω)

〈σw, σw′〉 dσ,

where Ω = (
√
n · Sn−1)V (H), ω is an arbitrary subgraph of H+, and dσ is the product of |V (H)|

uniform probability measures on
√
n · Sn−1. Note first that, by symmetry, making the substitution

σw ← −σw for some w ∈ V (H) does not change the value of this integral and consequently I(ω) = 0
unless every vertex has even degree in ω. In other words, if ω ⊂ H then I(ω) = 0 unless ω is a loop
configuration, i.e., ω ∈ LoopConf(H, ∅), and I(ω + eu,v) = 0 unless the degrees of u and v in ω are
odd and the degrees of all other vertices are even, i.e., ω ∈ LoopConf(H, ∅, u, v).

We shall repeatedly make use of the following identity. For every x, y ∈ Rn,∫
√
n·Sn−1

〈x, z〉〈z, y〉 dz = 〈x, y〉, (22)

where dz is the uniform probability measure on
√
n ·Sn−1. Note that both sides of (22) are bilinear

functions of x and y and therefore it is enough to verify that (22) holds when x and y are two
vectors from the canonical basis {e1, . . . , en} of Rn. By symmetry, for each i,∫

√
n·Sn−1

〈ei, z〉〈z, ei〉 dz =
1

n

n∑
i=1

∫
√
n·Sn−1

〈z, ei〉2 dz =
1

n

∫
√
n·Sn−1

‖z‖2dz = 1,

If i 6= j, substituting (z1, . . . , zn)← (z1, . . . , zi−1,−zi, zi+1, . . . , zn) yields∫
√
n·Sn−1

〈ei, z〉〈z, ej〉 dz = −
∫
√
n·Sn−1

〈ei, z〉〈z, ej〉 dz = 0.

Suppose first that ω ∈ LoopConf(H, ∅). Since the loops of ω are vertex-disjoint, I(ω) =∏
L⊂ω I(L), where L ranges over all loops of ω. Suppose now that L is a loop through vertices

v0, . . . , v`, where v` = v0. Invoking (22) repeatedly yields

I(L) =

∫
Ω
〈σv0 , σv1〉 · · · 〈σv`−1, σv`〉 dσ =

∫
Ω
〈σv0 , σv0〉 dσ = n,

giving I(ω) = nLH(ω).
Suppose now that ω ∈ LoopConf(H, ∅, u, v), let C be the connected component of u (and v) in ω,

and note that C must contain a simple path P connecting u and v. Since we have already proved
that I(L) = n for every loop L, in order to compute I(ω+eu,v), it is enough to compute I(C+eu,v).
A simple case analysis shows that C is either (i) the path P , (ii) the path P and a loop intersecting
P in one of its endpoints, (iii) the path P and two vertex-disjoint loops, each intersecting P in one
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of its endpoints, or (iv) the path P and two other simple paths connecting u and v, each pair of
paths sharing only the vertices u and v. Since the edge eu,v closes P into a loop, invoking (22)
repeatedly to ‘contract’ loops yields that I(C + eu,v) equals n in case (i), n2 in case (ii), and n3 in
case (iii). In case (iv), since C is not a collection of edge-disjoint loops, invoking (22) repeatedly
only gives

I(C + eu,v) =

∫∫
√
n·Sn−1

〈x, y〉4 dxdy,

which is somewhat more difficult to compute. Using symmetry and the fact that the projection of
the Lebesgue measure on Sn−1 ⊂ Rn onto the first coordinate gives the measure on [−1, 1] with

density (1− t2)
n−3
2 up to a normalization constant, we obtain

I(C + eu,v) =

∫
√
n·Sn−1

〈x,
√
ne1〉4 dx = n4

∫
√
n·Sn−1

〈x/
√
n, e1〉4 dx

= n4 ·
∫ 1
−1 t

4(1− t2)
n−3
2 dt∫ 1

−1(1− t2)
n−3
2 dt

=
3n3

n+ 2
,

where one may obtain the final identity using integration by parts.

Appendix B. Circuits and domains

Here we prove some facts about circuits and domains.

Proof of Fact 2.1. Let γ be a circuit and denote by Hγ the subgraph of H obtained by removing
from H all edges in γ∗. Let Ext(γ) be the set of vertices that are the endpoint of some infinite
simple path in Hγ .

First, we claim that Ext(γ) is a connected component of Hγ . To see this, note first that by
definition, Ext(γ) is a union of connected components of Hγ . Furthermore, since γ∗ is finite, there
exists an R and a vertex u ∈ V (H) such that the complement of the ball of radius R (in the graph
distance determined by H) centered at u induces the same connected graph HR in both H and
Hγ . Finally, every infinite simple path in H intersects HR and therefore Ext(γ) consists of a single
connected component.

Second, we claim that the set of endpoints of the edges in γ∗ intersects at most two connected
components of Hγ , one of which is Ext(γ). To see this, suppose that γ = (γ0, . . . , γm) as in the
definition in Section 2.1. In order to prove the first part of our claim, it suffices to show that for
each i ∈ {1, . . . ,m − 1}, there are two connected sets of vertices each of which intersects both
{γi−1, γi}∗ and {γi, γi+1}∗. To see this, note that {γi−1, γi}∗ and {γi, γi+1}∗ are the only two out of
six edges surrounding the hexagon γi that belong to γ∗. Consequently, the removal of γ∗ partitions
the six vertices surrounding γi into two connected sets, each of which intersects both {γi−1, γi}∗
and {γi, γi+1}∗. For the second part of the claim, consider an arbitrary infinite simple path in H
which uses an edge from γ∗. Let {v, w} be the last edge of γ∗ on this path and observe that either
v or w belongs to Ext(γ). Therefore, Ext(γ) is one of the two connected components that contains
an endpoint of an edge of γ∗.

Third, we claim that Ext(γ) 6= V (H). If this were not the case, then in particular there would be a
{v, w} ∈ γ∗ such that both v and w belong to the same connected component of Hγ . Consequently,
there would be a simple path P in Hγ that connects v and w. The edge {v, w} and P would then
form a cycle in H that contains exactly one edge of γ∗. This is impossible since the basic 6-cycles
surrounding the hexagons of T generate the cycle space of H and each of these basic cycles intersects
γ∗ in either 0 or 2 edges.

Fourth, we claim that V (H) \ Ext(γ) is connected, that is, every two v, w /∈ Ext(γ) are in the
same connected component of Hγ . To see this, consider two infinite simple paths Pv and Pw in H
that start at v and w, respectively. Since v, w /∈ Ext(γ), both Pv and Pw contain an edge from γ∗.
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Let {v1, v2} ∈ γ∗ and {w1, w2} ∈ γ∗ be the first such edges on Pv and Pw, respectively. Clearly
v, v1 and w,w1 lie in the same connected components, other than Ext(γ). By our second claim, v1

and w1 must belong to the same connected component. Hence, v and w also belong to the same
connected component, which we shall from now on denote by Int(γ).

Finally, we show that both Ext(γ) and Int(γ) are induced subgraphs of H and that Int(γ) is
finite. The first assertion follows from the fact that the two endpoints of each edge of γ∗ belong to
different connected components, which we have already established above. If the second assertion
were false, then Int(γ) would be an infinite connected graph and hence it would contain an infinite
path, contradicting the fact that Int(γ) ∩ Ext(γ) = ∅. �

Proof of Fact 2.2. Let H be a domain. Let A denote the vertex set of H and let E be the set of
edges of H with exactly one endpoint in A. It suffices to show that E = γ∗ for some circuit γ.

We first claim that for each hexagon x ∈ T, either zero or two out of the six edges surrounding x
belong to E. To see this, note first that exactly one of the two endpoints of each edge of E belongs
to A and hence the number of edges surrounding x that are in E is even. If it were more than
two, there would be four vertices v1, v2, v3, v4 bordering x such that (v1, v2, v3, v4) is their clockwise
ordering with respect to x, v1, v3 ∈ A and v2, v4 6∈ A. As both A and V (H)\A are connected, there
is a path in A from v1 to v3 and a path in V (H) \ A from v2 to v4. These two paths are clearly
vertex disjoint, but as H is planar, they must intersect, a contradiction.

Let T be the auxiliary graph with vertex set T whose edges are all pairs {x, y} such that {x, y}∗ ∈
E. It follows from the above claim that the degree of every vertex of T is either 0 or 2. In particular,
every nontrivial connected component of T is a circuit. Let γ be one of these circuits. By Fact 2.1,
γ∗ splits H into exactly two connected components. As γ∗ ⊆ E and Int(γ) is finite and non-empty,
it must be that V (H) \A ⊆ Ext(γ) and A ⊆ Int(γ). Consequently, A = Int(γ). �

Proof of Fact 2.3. Denote A := IntV(σ), A′ := IntV(σ′) and B := A ∪ A′. Let us first show that
B is connected. If A ∩ A′ 6= ∅ then this is immediate. Otherwise, by assumption, there exists an
edge {v, u} ∈ σ∗ ∩ (σ′)∗. Assume without loss of generality that v ∈ A and u /∈ A. Then u ∈ A′
and v /∈ A′, and thus, B is connected.

Let C be the unique infinite connected component of V (H) \ B and let H := V (H) \ C. It is
straightforward to check that H is finite, B ⊂ H and ∂H ⊂ ∂B. Since B is connected, this implies
that H is connected. Thus, as V (H) \H = C is connected, the subgraph of H induced by H is a
domain.

By Fact 2.2, there exists a circuit γ such that H = IntV(γ). It remains to check that γ∗ ⊂
σ∗ ∪ (σ′)∗ (the fact that γ ⊂ σ ∪ σ′ follows from this). Let {v, u} ∈ γ∗ be such that v ∈ H and
u /∈ H. In particular, v ∈ B and u /∈ B. Thus, either v ∈ A so that {v, u} ∈ σ∗, or v ∈ A′ so that
{v, u} ∈ (σ′)∗. �
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19. W. Lenz, Beitrag zum Verständnis der magnetischen Eigenschaften in festen Körpern., Phys. Zeitschr. 21 (1920),

613–615.
20. Oliver A. McBryan and Thomas Spencer, On the decay of correlations in SO(n)-symmetric ferromagnets, Comm.

Math. Phys. 53 (1977), no. 3, 299–302. MR 0441179 (55 #14043)
21. N David Mermin and H Wagner, Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional

isotropic Heisenberg models, Physical Review Letters 17 (1966), 1133–1136.
22. Bernard Nienhuis, Exact Critical Point and Critical Exponents of O(n) Models in Two Dimensions, Physical

Review Letters 49 (1982), no. 15, 1062–1065.
23. J. Palmer, Planar Ising correlations, Progress in Math. Physics, vol. 49, Birkhäuser Boston Inc., Boston, MA,
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