
LOWER TAILS VIA RELATIVE ENTROPY

GADY KOZMA AND WOJCIECH SAMOTIJ

Abstract. We show that the naive mean-field approximation correctly predicts the leading

term of the logarithmic lower tail probabilities for the number of copies of a given subgraph in

G(n, p) and of arithmetic progressions of a given length in random subsets of the integers in the

entire range of densities where the mean-field approximation is viable.

Our main technical result provides sufficient conditions on the maximum degrees of a uniform

hypergraph H that guarantee that the logarithmic lower tail probabilities for the number of

edges induced by a binomial random subset of the vertices of H can be well-approximated by

considering only product distributions. This may be interpreted as a weak, probabilistic version

of the hypergraph container lemma that is applicable to all sparser-than-average (and not only

independent) sets.

1. Introduction

This paper is concerned with the phenomenon that, in many cases, conditioning on an atypical

event leads to a mixture of product measures. An emblematic is the family of n-vertex graphs

with no triangles. It is clear that if one divides JnK := {1, . . . , n} into two parts and takes only

edges with one endpoint in each part, the resulting graph has no triangles. The classical result

of Erdős, Kleitman, and Rothschild [18] states that the vast majority of triangle-free graphs

have such simple structure. In other words, if we condition the random graph G(n, 1
2) to have

no triangles, the resulting measure can be approximated by the following process: First, choose

a random partition of the vertices into two parts (according to a measure that strongly favours

partitions into approximately equal parts). Then, choose the edges randomly and independently,

with edges between the parts having probability 1
2 and edges inside the parts having probability 0.

Since, conditioned on the partition, the measure becomes a product measure, the overall process

is called a mixture of product measures.

The aim of this work is to establish sufficient conditions for such a phenomenon to occur in the

context of large deviations for subgraph counts in the binomial random graph G(n, p). Here, the

seminal work of Chatterjee and Varadhan [9] has clarified that there are in fact two independent

steps involved. The first is to show that the distribution of the random graph conditioned on a

tail event can be described by a (small) mixture of product measures. The second is to describe

the relevant measures, which, as it turns out, are those among all product measures (essentially)

supported on the relevant tail event that have the least entropic cost. The main result of [9]

completes the first of these two steps and can be summarised1 as follows: Denote by Xn the

number of copies of a given graph in the binomial random graph G(n, p). If the edge probability

p is fixed and n tends to infinity, then

− logP
(
Xn > (1 + δ)E[Xn]

)
= (1 + o(1)) · Φn,p(δ), (1)

where Φn,p(δ) is the least entropic cost of a product measure supported on the upper tail event

(we will give a formal definition below); the analogous result holds for the lower tail. As for

the second step, the problem of calculating Φn,p(δ) turned out to be very difficult. Even in the
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seemingly simple case of triangle counts, only partial results are known [25, 30]. In this paper,

we address only the first step, namely, obtaining an identity akin to (1).

A substantial drawback of the approach taken by [9], which is based on Szemerédi’s regularity

lemma, is that it does not extend to sparse random graphs. (One may instead use the so-called

weak regularity lemma of Frieze and Kannan [19], but this allows one to extend (1) only to

the regime p > (log n)−c, for some small positive constant c, see [26].) This was first rectified

by the breakthrough work of Chatterjee and Dembo [8], who developed a general technique for

computing large deviation probabilities of nonlinear functions of independent Bernoulli random

variables, such as subgraph counts in G(n, p). In the context of subgraph counts in G(n, p), the

general result of [8] implies that (1) continues to hold as long as p > n−α for some α > 0 that

depends only on the graph whose copies are counted.

The paper of Chatterjee and Dembo inspired a series of further developments. Their general

technique was further simplified and strengthened by Eldan [17]. In the context of upper tails for

subgraph counts in G(n, p), the range of validity of the approximation (1) was further extended

by the works of Augeri [1] (for cycles), of Cook and Dembo [11] (for arbitrary graphs), and

of Cook, Dembo, and Pham [12] (for arbitrary graphs and, more generally, arbitrary uniform

hypergraphs). The expression Φn,p(δ) in the right-hand side of (1) was computed in the range

n−1/∆ � p� 1, where ∆ is the maximum degree of the graph for cliques [26] and, subsequently,

for arbitrary subgraphs [6]. A very different, combinatorial technique for computing upper tail

probabilities of polynomials of independent Bernoulli random variables was recently developed

by Harel, Mousset, and Samotij [20]. This technique was used to resolve the upper tail problem

completely for cliques [20] and, subsequently, for all regular graphs [5]. More precisely, these

works showed that the approximation (1) is valid in the entire range of densities p where it was

expected to hold.

Let us stress that all of the works on large deviations of subgraph counts in sparse random

graphs mentioned above were primarily concerned with the upper tail. (In fact, the techniques

developed in both [1] and [20] are inapplicable to the lower tail problem.) Historically, the

upper tail problem is considered to be more difficult of the two. Whereas Janson,  Luczak,

and Ruciński [22] determined the logarithm of the lower tail probability up to a multiplicative

constant, for every graph and all densities p, already in the late 1980s, the order of magnitude of

the logarithm of the upper tail probability in the special case of triangle counts was determined

only around ten years ago [7, 16].

In this paper, we offer a new, entropy-based approach to the large deviation problem that is

particularly effective in estimating lower tails. The idea of using entropy estimates for studying

nonlinear large deviations was first used in [24] (that paper is a few years older than the current

one, unlike what one might think by examining arXiv submission dates). Ultimately it stems

from Avez’s entropy approach to study random walks and amenability, see [2]. A straightforward

corollary of our main technical result is that the analogue of (1) holds for counts of arbitrary

subgraphs in G(n, p) in the entire range where such an approximation was expected to be valid.

1.1. New results. We start with a special case of our result for triangles and p = 1
2 . Of course,

this case is mostly covered by [9], but we will get to values of p not covered by the literature

in Theorem 2 below. We first state the minimisation problem that formalises the phrase ‘least

entropic cost’ in this setting. Given a function q :
(JnK

2

)
→ [0, 1], let G(n, q) denote the random

graph obtained by retaining each edge e of Kn independently with probability qe. For each

t > 0, define

Qt :=
{
q ∈ [0, 1](

JnK
2 ) : E

[
NK3

(
G(n, q)

)]
6 t
}
,
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where NK3(G) is the number of triangles in G, and

Φn(t) := min


∑

e∈(JnK
2 )

(
qe log qe + (1− qe) log(1− qe) + log 2

)
: q ∈ Qt

 . (2)

Note that q log q + (1 − q) log(1 − q) + log 2 is the difference in entropies of Bernoulli random

variables with success probabilities 1
2 and q.

Theorem 1. Let Xn denote the number of triangles in G(n, 1
2). For every n and every t > 0,

logP(Xn 6 t) 6 −Φn(t+ n23/8) + 2n15/8. (3)

Remark. Note that the two error terms in the above estimate are better than o(n3) and o(n2),

respectively. In the remainder of this paper, we follow the literature and prove results with error

terms in the corresponding estimates of the lower tail probabilities being inexplicit, but here we

made an exception.

We now formulate a general result concerning the lower tail of subgraph counts in G(n, p). In

order to phrase the minimisation problem in the case p 6= 1
2 , it is convenient to first define

ip(q) := q log
q

p
+ (1− q) log

1− q
1− p

.

Further, given graphs H and G, let NH(G) denote the number of copies of H in G. For every

graph H, integer n, real p ∈ (0, 1), and every η ∈ [0, 1], let

ΦH
n,p(η) := min


∑

e∈(JnK
2 )

ip(qe) : E
[
NH

(
G(n, q)

)]
6 η · E

[
NH

(
G(n, p)

)] ,

where the minimum is taken over all q ∈ [0, 1](
JnK
2 ), of course. Recall that the 2-density of a

graph H is the quantity m2(H) defined as follows: If H has at least two edges, then

m2(H) := max

{
eF − 1

vF − 2
: F ⊆ H, eF > 2

}
;

otherwise, m2(H) := 1
2 . The notation F ⊆ H here means that F is a subgraph of H. For

example, m2( ) = 2 but m2( ) = 5
2 because the maximum is attained at the subgraph .

Theorem 2. For every nonempty graph H, all p0 < 1, and every ε > 0, there exists a constant

L such that the following holds: Suppose that Ln−1/m2(H) 6 p 6 p0 and let X := NH

(
G(n, p)

)
.

Then, for every η ∈ [0, 1],

(1− ε) · ΦH
n,p(η + ε) 6 − logP

(
X 6 ηE[X]

)
6 (1 + ε) · ΦH

n,p

(
(1− ε)η

)
.

A key feature of Theorem 2 is that the lower-bound assumption on p is optimal up to constants.

To see this, note first that, by Harris’s inequality, for every F ⊆ H,

P(X = 0) = P
(
H * G(n, p)

)
> P

(
F * G(n, p)

)
> (1− peF )n

vF > exp(−2nvF peF ).

Moreover, m2(H) is defined so that nvF peF = o(n2p) for some F ⊆ H precisely when p �
n−1/m2(H). On the other hand, for all H, n, p, and η < 1, we have ΦH

n,p(η) > cn2p for some

positive c that depends only on H and η (see Lemma 22 below).

The boundary case η = 0 in Theorem 2, the probability that a random graph is H-free,

has been extensively studied in the literature. In particular,  Luczak [27] computed the asymp-

totics of logP
(
K3 * G(n, p)

)
for all p � n−1/m2(K3) and derived an asymptotic formula for

logP
(
H * G(n, p)

)
, for every nonbipartite graph H and all p � n−1/m2(H), from the so-called

K LR conjecture [23], which was proved some fifteen years later by Balogh, Morris, and Samotij [3]

and by Saxton and Thomason [28]. In fact, the hypergraph container theorems proved in [3, 28]
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can be used to compute the asymptotics of the logarithms of these probabilities directly, using

simple, well-known results in extremal graph theory, see [3, §1.3].

Our methods allow us to generalise Theorem 2 to s-uniform hypergraphs in a straightforward

way. Suppose that H is a nonempty s-uniform hypergraph. The s-density of H is the quantity

ms(H) defined as follows: If H has at least two edges, then

ms(H) := max

{
eF − 1

vF − s
: F ⊆ H, eF > 2

}
; (4)

otherwise, ms(H) := 1
s . For every integer n, real p ∈ (0, 1), and every η ∈ [0, 1], we define

ΦH
n,p(η) analogously to the graph case:

ΦH
n,p(η) := min


∑

e∈(JnK
s )

ip(qe) : E
[
NH

(
G(s)(n, q)

)]
6 η · E

[
NH

(
G(s)(n, p)

)] ,

where G(s)(n, q) is the binomial random s-uniform hypergraph with vertex set JnK.

Theorem 3. For every nonempty s-uniform hypergraph H, all p0 < 1, and every ε > 0, there

exists a constant L such that the following holds: Suppose that Ln−1/ms(H) 6 p 6 p0 and let

X := NH

(
G(s)(n, p)

)
. Then, for every η ∈ [0, 1],

(1− ε) · ΦH
n,p(η + ε) 6 − logP

(
X 6 ηE[X]

)
6 (1 + ε) · ΦH

n,p

(
(1− ε)η

)
.

As in Theorem 2, the lower-bound assumption on p in Theorem 3 is optimal and the asymp-

totics of logP(X = 0) can be derived from the hypergraph container theorems.

The final application of our new entropy method is a solution to the lower tail problem for

the number of arithmetic progression of a give length in a binomial random subset of JnK, which

will demonstrate that symmetry is not crucial for our methods. Given a function q : JnK→ [0, 1],

we denote by JnKq the random subset of JnK obtained by independently retaining each i ∈ JnK
with probability qi. For a positive integer k and a set I ⊆ JnK, let Ak(I) denote the number of

k-term arithmetic progressions in I.

Theorem 4. For every positive integer k, all p0 < 1, and every ε > 0, there exists a constant L

such that the following holds: Suppose that Ln−1/(k−1) 6 p 6 p0 and let X := Ak
(
JnKp

)
. Then,

for every η ∈ [0, 1],

(1− ε) · Φk
n,p(η + ε) 6 − logP

(
X 6 ηE[X]

)
6 (1 + ε) · Φk

n,p

(
(1− ε)η

)
.

As before, the lower-bound assumption on p in Theorem 4 is optimal and the asymptotics of

logP(X = 0) can be derived from the hypergraph container theorems, see [3, Theorem 1.1].

1.2. The main technical result. A natural way to generalise Theorems 2, 3, and 4 is to

represent the combinatorial objects we are counting as edges of an auxiliary hypergraph (no

relation to the hypergraphs of Theorem 3). This way, each of the respective random variables

counts the number of edges of such a hypergraph that are induced by random subset of its

vertices. This idea is not new – the transference principles of Conlon and Gowers [10] and

Schacht [29] and the hypergraph container theorems [3, 28] are prime examples of why taking

such an abstract viewpoint may prove beneficial in our context. For example, in order to express

the number of triangles in G(n, p) this way, we consider the 3-uniform hypergraph with vertex

set
(JnK

2

)
, the edge set of the complete graph on JnK, whose hyperedges are the

(
n
3

)
triples of

edges that form triangles in the complete graph on JnK.
We are thus led to ask the following general question: Given a hypergraph H and a p ∈ [0, 1],

what is the probability that a random subset of the vertices of H formed by independently

retaining each vertex with probability p contains atypically few hyperedges? For extra generality,

we allow the edges of the hypergraph to have positive weights.
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Suppose that a hypergraph H is equipped with a weight function d : H → (0,∞). We shall

denote by e(H ) the sum
∑

A∈H dA of all edge weights and, for every set B ⊆ V (H ), we shall

write

degH B :=
∑

B⊆A∈H

dA. (5)

Moreover, for every s ∈ JrK, we define

∆s(H ) := max {degH B : B ⊆ V and |B| = s} .

Note that when dA = 1 for every A ∈H , then we may simply view H as a hypergraph; in this

case, the above definitions give the usual notions of edge counts and degrees.

Let H be a hypergraph and denote V = V (H ) for brevity. Let Y = (Yv)v∈V be a sequence

of i.i.d. Bernoulli random variables with success probability p, one for every vertex of the hy-

pergraph H , and let R be the corresponding random subset of V , i.e., R := {v ∈ V : Yv = 1}.
For a function q : V → [0, 1], we let Y (q) = (Y ′v)v∈V be a sequence of independent Bernoulli

random variables such that Y ′v has success probability qv for each v ∈ V and let R(q) be the

corresponding random subset of V . For every nonnegative real η, define

ΦH
p (η) := min

{
DKL

(
Y (q) ‖Y

)
: q ∈ [0, 1]V and E[e(H [R(q)])] 6 η · E[e(H [R])]

}
, (6)

where DKL is the Kullback–Leibler divergence, so that,

DKL

(
Y (q) ‖Y

)
=
∑
v∈V

ip(qv) =
∑
v∈V

qv log
qv
p

+ (1− qv) log
1− qv
1− p

.

Here and below, H [R] stands for the restriction of H to R, namely the hypergraph whose

vertices are R and whose hyperedges are {A ∈ H : A ⊆ R}; thus e(H [R]) =
∑

A⊆R dA. Also,

for W ⊆ V (H ), we write H −W in place of H [V (H ) \W ].

Theorem 5. For every integer r and all p0 < 1, ε > 0, and K, there exists a positive λ and

a C such that the following holds. Let V be a finite set and let H be a nonempty r-uniform

hypergraph with vertex set V and weight function d : H → (0,∞). Let p ∈ (0, p0] and let R be

the p-random subset of V . Suppose that, for every s ∈ JrK, the maximal degree ∆s(H ) satisfies

∆s(H ) 6 K · (λp)s−1 · e(H )

v(H )
. (7)

Then, letting X := e(H [R]), for every nonnegative real η,

− logP
(
X 6 ηE[X]

)
> (1− ε)ΦH

p (η + ε)− C.

Remark. Our argument gives the following explicit dependence of λ and C on the parameters:

λ > 10−5K−2r−4ε9(1− p0) and C 6 106K2r5ε−9(1− p0)−1 log
1

1− p0
.

The readers familiar with the hypergraph container method will likely notice striking simi-

larities between the assumptions of Theorem 5 and the assumptions of the container lemmas

proved in [3, 4]. This is not a coincidence – the boundary case η = 0 in Theorem 5 bounds the

probability that the random set R is independent in H from above by ΦH
p (ε), a minimum over

all distributions q ∈ [0, 1]V such that R(q) induces at most εe(H ) edges in H , in expectation

(cf. the combinatorial notion of containers for independent sets in [3, 28]).

While it might be tempting to replace ΦH
p (η+ ε) in the assertion of Theorem 5 with ΦH

p (η),

or at least ΦH
p ((1 + ε)η), this is not always possible for η very close to zero. To see this,

observe first that ΦH
p (0) = (α(H ) − v(H )) · log(1 − p), where α(H ) is the largest size of an

independent set in H . Suppose now that H is the union of two hypergraphs with the same

vertex set V : a dense hypergraph H1 with α(H1) > v(H )/2 and a very sparse hypergraph H2

with α(H2) 6 v(H )/4. (For example, if M and v(H ) are sufficiently large as a function of
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the uniformity r only, then a random hypergraph with Mv(H ) edges will typically have this

property). Now, on the one hand,

ΦH
p (0) >

(
α(H2)− v(H )

)
· log(1− p) > 3v(H )

4
· log

1

1− p
but, on the other hand, by Harris’s inequality, the p-random subset of some largest independent

set of H1 has probability at least (1− pr)e(H2) to be independent also in H2 and thus, when p

is sufficiently small,

P(X = 0) > (1− p)v(H )−α(H1) · e−2pre(H2) > (1− p)2v(H )/3,

showing that − logP(X = 0) is not close to ΦH
p (0).

For easier comparison with the literature, let us reformulate Theorem 5 in the language

of polynomials. We retain the notations V , Y , and Y (q) as above. We replace a weighted

hypergraph H with a homogeneous polynomial f by turning each edge A of H with the

monomial dA ·
∏
v∈A yv. The definition of Φ thus becomes

Φf
p(η) = min

{
DKL(Y (q) ‖Y ) : q ∈ [0, 1]V ,E[f(Y (q))] 6 η · E[f(Y )]

}
.

Moreover, the assumption (7) can be now expressed in terms of partial derivatives of f . Given

a B = {v1, . . . , vk} ⊆ V and a polynomial f in |V | variables, we denote

∂Bf :=
∂

∂v1
· · · ∂

∂vk
f.

The following statement is a reformulation of Theorem 5.

Theorem 6. For every integer r and all p0 < 1, ε > 0, and K, there exists a positive λ and a

C such that the following holds. Let V be a finite set and let f be an r-homogeneous V -variate

multilinear polynomial with nonnegative coefficients. Let p ∈ (0, p0] and let Y = (Yv)v∈V be

a sequence of i.i.d. Ber(p) random variables. Suppose that, for every nonempty B ⊆ V with

|B| 6 r,

∂Bf(1) 6 K · (λp)|B|−1 · f(1)

|V |
.

Then, letting X := f(Y ), for every nonnegative real η,

− logP
(
X 6 ηE[X]

)
> (1− ε)Φf

p(η + ε)− C.

When f is a linear function, the variable X from the statement of the theorem is a sum of

independent random variables. In this case, our argument can be simplified tremendously. The

special case f(y) = y1 + · · · + yn, which corresponds to the binomial distribution, is treated in

§4.2, where a short, entropy-based proof of the optimal tail estimate

P
(
Bin(n, p) 6 nq

)
6 exp

(
− n · ip(q)

)
is given.

1.3. Lower bounds on the lower tail. We end the results section with a lower bound on the

lower tail probabilities from the statements of Theorems 5 and 6 that matches the upper bounds

proved by these theorems. Since the proof of this lower bound is a relatively standard tilting

argument, we relegate it to §6. Here is the exact formulation (in the language of Theorem 6).

Theorem 7. For every p0 < 1 and ε > 0, there exists a C such that the following holds.

Let V be a finite set, let Y = (Yv)v∈V be a sequence of i.i.d. Ber(p) random variables, let

f : {0, 1}V → [0,∞) be an arbitrary increasing function, and let X := f(Y ). Then, for every

nonnegative real η,

− logP
(
X 6 ηE[X]

)
6 (1 + ε)Φf

p

(
(1− ε)η

)
+ C.
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1.4. Organisation of the paper. The remainder of this paper is organised as follows. In

Section 2, we outline of the proof of Theorem 1 and discuss some of the additional ideas required

in the proof of Theorem 2 in the case H = K3. In Section 3, which is merely three pages long,

we present a complete proof of Theorem 1. In Section 4, we recall some basic properties of

the Kullback–Leibler divergence and prove the key technical lemma (Lemma 16) that relates

independence and conditional KL-divergence. Subsection 4.2 contains a short entropy-based

proof of optimal tail bounds for binomial distributions, which might be of independent interest.

Our main technical result, Theorem 5, is proved in Section 5. The matching lower bound for

lower tail probabilities, Theorem 7, is proved in Section 6. Finally, Section 7 contains short

derivations of Theorems 2, 3, and 4.

2. Proof outline

2.1. Triangle count in G(n, 1
2). Let us first explain how to prove Theorem 1, i.e., the upper

bound on the lower tail of the number of triangles. Considering only G(n, 1
2), which is the uni-

form distribution on n-vertex graphs, allows us to phrase the argument in the familiar language

of entropy rather than using the Kullback–Leibler divergence. The argument sketched here is

described in full in §3 and takes no more than three pages.

Let Y be the random graph G(n, 1
2) conditioned on having at most t triangles. Then

logP(X 6 t) = H(Y )−
(
n

2

)
log 2, (8)

where H is the entropy of Y . Examine the distribution of the first edge (i.e., of Y12) under the

conditioning.2 For every integer r > 0, let

hr := H(Y12 | edges with at least one endpoint larger than n− r),

where H(· | ·) is the usual conditional entropy. Since conditional entropy is nonnegative and

it decreases as one increases the conditioning, we have 0 6 hr+1 6 hr for every r. Since

h0 = H(Y12) 6 log 2, there must be some r 6
√
n such that hr − hr+1 6 C/

√
n, where C is an

absolute constant.

Denote by Sr the edges from the definition of hr, so that hr = H(Y12 | Sr). Since both

{1, n−r} and {2, n−r} belong to Sr+1 \Sr, we may use the monotonicity of conditional entropy

again to sandwich H(Y12 | Sr, Y1,n−r, Y2,n−r) between hr and hr+1:

hr+1 = H(Y12 | Sr+1) 6 H(Y12 | Y1,n−r, Y2,n−r, Sr) 6 H(Y12 | Sr) = hr.

Hence, we also get the inequality

H(Y12 | Sr)−H(Y12 | Y1,n−r, Y2,n−r, Sr) 6 C/
√
n.

By symmetry, we may replace (1, 2, n − r) in the above inequality with any three different

elements (i, j, k) of Jn− rK and get

H(Yij | Sr)−H(Yij | Yik, Yjk, Sr) 6 C/
√
n.

We now apply Pinsker’s inequality, which states that, for any two variables T and U , if H(T )−
H(T | U) is small, then T and U must be approximately independent. We apply this to the

variables Yij conditioned on Sr to conclude that, conditioned on Sr, the three edges of every

triangle are (typically) approximately independent.

Recall now the definition of Φn(t). It is the minimum of −H
(
G(n, q)

)
+
(
n
2

)
log 2 over all

functions q :
(JnK

2

)
→ [0, 1] such that

T (q) := E
[
#triangles in G(n, q)

]
6 t.

2We assume that the vertex set of G(n, 1
2
) is JnK and think of Y ∈ {0, 1}(

JnK
2 ) as the characteristic vector of

the edge set of the conditioned random graph.
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Consider the function qij := E[Yij | Sr]. The approximate independence of the Yij gives that

T (q) is (typically) approximately the expected number of triangles in Y , which is at most t, by

the definition of Y . Hence, T (q) 6 t+ o(t), where the o(t) error term comes from the fact that

the Yij are only approximately independent. We conclude that

H
(
(Yij)i,j6n−r | Sr

)
6

∑
i,j6n−r

H(Yij | Sr) 6 −Φn(t+ o(t)) +

(
n

2

)
log 2.

Since Sr has only at most n3/2 edges, its entropy is negligible and we get

H(Y ) = H(Sr) +H
(
(Yij)i,j6n−r | Sr

)
6 (1− o(1)) · Φn(t+ o(t)) +

(
n

2

)
log 2,

as needed.

Examining the proof above, we see that the crucial step is that of proving conditional approx-

imate independence. Why was the conditioning necessary? Because Y is not close to a product

measure but rather a mixture of product measures. Heuristically, the conditioning chooses one

product measure from the mixture.

2.2. Triangle count in G(n, p) and beyond. What is needed to prove Theorem 1 with G(n, 1
2)

replaced by G(n, p)? Since the latter is no longer a uniform distribution, in order to phrase a

suitable analogue of (8), we certainly have to replace entropy with entropy relative to a product

of p-Bernoulli variables (relative entropy is also called the Kullback–Leibler divergence, though

note that the sign of the Kullback–Leibler divergence is minus that of what a straightforward

analogue of entropy would have) and we need an analogue of Pinsker’s inequality for (conditional)

relative entropy. These two ideas would have been enough to solve the lower tail (as well as

the upper tail) problem for triangles in G(n, p) for all p > n−c, where c is an absolute positive

constant.

In order to extend the argument to all p � n−1/2, one needs to prove a version of Pinsker’s

inequality that provides a stronger upper bound on the difference of probabilities that two

measures assign to rare events (rather than arbitrary events, as measured by the total variation

distance). Furthermore, in order to use this strengthening of Pinsker’s inequality, we also need

to note that, when we condition our random graph on the lower tail event, the probability of

every edge is at most p, even when we further condition on Sr. This follows from the Harris

inequality (aka the FKG inequality). The use of Harris’s inequality is the main (but not the

only) reason why our methods are not as efficient for the upper tail problem.

The general setting of Theorem 5, which lacks symmetry, requires a serious overhaul of the

argument. (Having said that, even in the setting of K4 counts in G(n, p), which still has a

lot of symmetry, the argument sketched above does not work under the optimal assumption

p � n−2/5.) We no longer increase the conditioning in small steps (recall the definition of hr
above) but rather in large chunks, which are chosen randomly. The crux of the matter is relating

the decrease in entropy caused by conditioning on each such random chunk to approximate inde-

pendence of the remaining variables. Here, the key role is played by Lemma 16, an improvement

of Pinsker’s inequality that is inspired by the statement of Janson’s inequality [21].

3. The lower tail of triangle count in G(n, 1
2)

As explained above, our proof of Theorem 1 revolves around (information-theoretic) entropy.

For convenience of the reader, we shall recall here the definitions of entropy and conditional

entropy and list all of their properties required for our argument; for proofs of these properties,

we refer the reader to [13, Chapter 2].
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3.1. Preliminaries. The entropy of a random variable X taking values in a finite set X is the

quantity H(X) defined by

H(X) := −
∑
x∈X

P(X = x) logP(X = x).

Further, given two random variables X and Y that take values in finite sets X and Y , respec-

tively, and have a joint distribution, the (conditional) entropy of X conditioned on Y is the

quantity H(X | Y ) defined as follows:

H(X | Y ) :=
∑
y∈Y

P(Y = y)H
(
X{Y=y}),

where X{Y=y} denotes X conditioned on the event that Y = y, so that, for every x ∈ X and

every y ∈ Y with P(Y = y) 6= 0,

P
(
X{Y=y} = x

)
=

P(X = x, Y = y)

P(Y = y)
.

The above definitions ensure that entropies and conditional entropies are always nonnegative.

Moreover, it is easy to verify that

H(X | Y ) = H(X,Y )−H(Y ). (9)

In the remainder of this section, a discrete random variable will mean a random variable

taking values in some finite set. The following elementary inequalities should be familiar to

readers who have encountered the notion of entropy.

Lemma 8. Suppose that X, Y , and Z are discrete random variables and that X takes values

in a finite set X . We have:

(i) H(X) 6 log |X | and equality holds iff X is uniform on X ;

(ii) H(X | Y ) 6 H(X) and equality holds iff X and Y are independent;

(iii) H(X | Y,Z) 6 H(X | Y );

(iv) H(X,Y | Z) 6 H(X | Z) +H(Y | Z).

The main ingredient in our proof is Pinsker’s inequality (see [15, Problem 3.18]), which, in

our context, can be viewed as a ‘stability’ version of (ii) in Lemma 8. The statement requires

the following notation: For two random variables X and Y , we denote by X × Y the random

variable obtained by first letting X̃ and Ỹ be two independent copies of X and Y , respectively,

and then defining X × Y = (X̃, Ỹ ). In other words, L (X × Y ) = L (X) ×L (Y ), where, as

usual, L (X) stands for the law of X, i.e., the measure induced by X on its space of values.

Lemma 9. Suppose that X and Y are discrete random variables. We have

dTV

(
(X,Y ), X × Y

)
6
√

2
(
H(X)−H(X | Y )

)
,

where dTV denotes the total variation distance.

3.2. The argument. Let Y denote the random graph G(n, 1
2) conditioned on having at most t

triangles. In other words, Y is a uniformly chosen random graph with vertex set JnK := {1, . . . , n}
and at most t triangles. In particular, Lemma 8(i) implies that

logP(Xn 6 t) = H(Y )−
(
n

2

)
log 2. (10)

In order to bound the entropy of Y from above, it will be convenient to view Y as the random

vector (Ye)e∈Kn , where Ye indicates whether e is an edge of Y . For a subvector S of Y and

every e ∈ Kn, we will write Y S
e to denote the random variable whose (random) distribution is

the distribution of Ye conditioned on S, so that P(Y S
e = 1) = E[Ye | S]. The following lemma

captures the notion of conditional approximate independence (recall the proof sketch in §2.1).
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Lemma 10. There exists a subgraph F ⊆ Kn with at most n3/2 edges and such that, for every

{i, j, k} ∈
(JnK

3

)
, letting S := (Yf )f∈F and

dSijk := dTV

(
(Y S
ij , Y

S
ik , Y

S
jk), Y

S
ij × Y S

ik × Y S
jk

)
,

we have E[dSijk] 6 2n−1/4.

Proof. For a nonnegative integer r, let Fr be the subgraph of Kn comprising all edges {i, j}
satisfying max{i, j} > n− r, let Sr := (Yf )f∈Fr and let hr := H(Y12 | Sr). By Lemma 8(iii), the

function r 7→ hr is decreasing and hence, for some r 6
√
n, we must have

hr − hr+1 6
h0 − h√n√

n
.

Bounding the numerator is easy. On the one hand, we have

h0 = H(Y12) 6 log 2,

as Y12 takes only two values, see Lemma 8(i); on the other hand, hr > 0 for every r, as

conditional entropy is always nonnegative. Thus, there must be an r with 0 6 r 6
√
n − 1

such that hr − hr+1 6 (log 2)/
√
n. Fix one such r and let F = Fr and S = Sr; note that

e(F ) 6 rn 6 n3/2. Since F ⊆ F ∪
{
{1, n− r}, {2, n− r}

}
⊆ Fr+1, Lemma 8(iii) implies that

hr+1 = H(Y12 | Sr+1) 6 H(Y12 | S, Y1,n−r, Y2,n−r) 6 H(Y12 | S) = hr

and, consequently,

H(Y12 | S)−H(Y12 | S, Y1,n−r, Y2,n−r) 6 (log 2)/
√
n. (11)

By symmetry (every permutation of Jn− rK fixes F ), we may replace the triple of indices (1, 2, n−
r) in (11) with any ordered triple (i, j, k) of distinct elements of Jn− rK. Using the definition of

conditional entropy, we may rewrite this upgraded inequality as

E
[
H(Y S

ij )−H(Y S
ij | Y S

ik , Y
S
jk)︸ ︷︷ ︸

λSijk

]
6 (log 2)/

√
n,

where E averages over the values of S.

Fix an arbitrary triple {i, j, k} ∈
(JnK

3

)
. If max{i, j, k} > n − r, then at least two out of the

three pairs ij, ik, jk belong to F ; consequently, at least two out the three corresponding variables

Y S
ij , Y S

ik , Y S
jk are trivial (for every evaluation of S), which implies that dSijk = 0. Therefore, we

may assume that {i, j, k} ∈
(Jn−rK

3

)
. For brevity, denote A = Y S

ij , B = Y S
ik , and C = Y S

jk, so that

dSijk = dTV

(
(A,B,C), A×B × C

)
6 dTV

(
(A,B,C), A× (B,C)

)
+ dTV

(
A× (B,C), A×B × C

)
= dTV

(
(A,B,C), A× (B,C)

)︸ ︷︷ ︸
d1

+ dTV

(
(B,C), B × C

)︸ ︷︷ ︸
d2

.

Pinsker’s inequality (Lemma 9) implies that

d1 6
√

1
2

(
H(A)−H(A | B,C)

)
=
√

1
2λ

S
ijk.

Further,

d2 6 dTV

(
(A,B,C), (A,B)× C

)
6
√

1
2

(
H(C)−H(C | A,B)

)
=
√

1
2λ

S
jki

(the first inequality is easy to check). We conclude that

E
[
dSijk

]
6 E

[√
1
2λ

S
ijk

]
+ E

[√
1
2λ

S
jki

]
6
√

1
2E[λSijk] +

√
1
2E[λSijk]

6 2

√
(log 2)/(2

√
n) 6 2n−1/4,

where the second inequality follows from the Cauchy–Schwarz inequality. �
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Let F be the graph from the statement of Lemma 10 and let S = (Yf )f∈F , as in the claim.

The chain rule for conditional entropies, identity (9) above, and Lemma 8(iv) imply that

H(Y ) = H(S) +H
(
(Ye)e∈Kn\F | S

)
6 H(S) +

∑
e∈Kn\F

H(Ye | S).

Since S takes at most 2e(F ) different values and e(F ) 6 n3/2, we further have, by Lemma 8(i),

H(Y ) 6 n3/2 log 2 +
∑
e∈Kn

H(Ye | S), (12)

where we also used the fact that conditional entropies are nonnegative to extend the range of

the sum from Kn \ F to Kn (in fact, H(Ye | S) = 0 for every e ∈ F ).

Recall that our eventual goal is to compare the entropy of Y to Φn(t), which is defined as

the minimum over certain functions q. Define therefore the S-measurable random function

q :
(JnK

2

)
→ [0, 1] by letting, for each e ∈ Kn,

qe := E[Ye | S] = P(Y S
e = 1).

Letting h : [0, 1]→ [0, log 2] be the function defined by h(x) = −x log x− (1− x) log(1− x), we

may now write

H(Ye | S) = E
[
H(Y S

e )
]

= E[h(qe)].

Let XS denote the number of triangles in Y conditioned on S, that is,

XS :=
∑

{i,j,k}∈(JnK
3 )

Y S
ij Y

S
ikY

S
jk

and let

X̄S :=
∑

{i,j,k}∈(JnK
3 )

qijqikqjk = E
[
NK3

(
G(n, q)

)]
.

Recall the definition of dSijk from the statement of Lemma 10 and observe that∣∣E[Y S
ij Y

S
ikY

S
jk

]
− qijqikqjk

∣∣ 6 dSijk; (13)

indeed, the two terms in the left-hand side are the probabilities of the event that Y S
ij = Y S

ik =

Y S
jk = 1 under the two distributions whose total variation distance is dSijk.

Let

∆ =
∑

{i,j,k}∈(JnK
3 )

dSijk

and note that, by Lemma 10,

E[∆] 6

(
n

3

)
· 2n−1/4 6 n11/4. (14)

Summing (13) over all triples {i, j, k}, we obtain

X̄S 6 E
[
XS
]

+ ∆ 6 t+ ∆,

since XS 6 t with probability one. In particular, the definition of Φn, see (2), implies that∑
e∈Kn

(
log 2− h(eq)

)
> Φn(t+ ∆).

We may conclude that∑
e∈Kn

H(Ye | S) = E

[∑
e∈Kn

h(qe)

]
6

(
n

2

)
log 2− E[Φn(t+ ∆)].

Since Φn is decreasing and nonnegative,

E[Φn(t+ ∆)] > P(∆ 6 n23/8) · Φn(t+ n23/8)
(14)

>
(
1− n−1/8

)
· Φn(t+ n23/8).
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Recalling (10) and (12), this implies that

logP(Xn 6 t) 6 −(1− n−1/8) · Φn(t+ n23/8) + n3/2 6 −Φn(t+ n23/8) + 2n15/8,

as Φn(t) 6
(
n
2

)
log 2 for every t. This finishes the proof of Theorem 1. �

4. The Kullback–Leibler divergence

For the proof of Theorem 5, we need the notion of Kullback–Leibler divergence, or relative

entropy. Let P and Q be random variables taking values in a finite set X and suppose that

L (P )� L (Q), that is, that the distribution of P is absolutely continuous with respect to the

distribution of Q. Denoting by p and q the densities of P and Q, respectively, the Kullback–

Leibler divergence of P from Q (also known as the relative entropy), denoted by DKL(P ‖Q), is

defined as follows:

DKL(P ‖Q) :=
∑
x∈X

p(x) log
p(x)

q(x)
,

where we adopt the convention that 0 log 0
q = 0 for all q. The assumption that L (P )� L (Q),

which is a concise way of saying that p(x) = 0 whenever q(x) = 0, guarantees that DKL(P ‖Q)

is well-defined. A fundamental property of the KL-divergence is that it is always nonnegative;

indeed, since log x 6 x− 1 for all positive x, we have, letting X ′ = {x ∈X : p(x) > 0},

DKL(P ‖Q) = −
∑
x∈X ′

p(x) log
q(x)

p(x)
>
∑
x∈X ′

(
p(x)− q(x)

)
= 1−

∑
x∈X ′

q(x) > 0.

One easily checks that, when Q is a uniformly chosen random element of X , then

DKL(P ‖Q) = log |X | −H(P ),

where H(P ) is the entropy of P (defined in the previous section). In particular, if P is the

uniformly chosen random element of a nonempty subset A ⊆X , then, by Lemma 8(i),

DKL(P ‖Q) = log |X | − log |A | = − logP(Q ∈ A ).

The following property of the KL-divergence, which generalises this identity, is the beginning of

our approach.

Proposition 11. Suppose that Q is a random variable taking values in a finite set X . Suppose

that A ⊆ X satisfies P(Q ∈ A) 6= 0 and let QA be the random variable Q conditioned on the

event {Q ∈ A}. Then

DKL(QA ‖Q) = − logP(Q ∈ A).

Proof. Let q : X → [0, 1] be the probability density function of Q and note that the probability

density function of QA is the function qA : X → [0, 1] defined by

qA(x) :=

{
q(x)

P(Q∈A) if x ∈ A,
0 otherwise.

It follows that

DKL(QA ‖Q) =
∑
x∈X

qA(x) log
qA(x)

q(x)
=
∑
x∈A

q(x)

P(Q ∈ A)
log

1

P(Q ∈ A)
= log

1

P(Q ∈ A)
,

as claimed. �

The next property of the KL-divergence is a generalisation of the chain rule for entropies,

identity (9), and Lemma 8(ii). In fact, the equality in (15) below is a special case of an even

more general identity, the chain rule for relative entropies, see [13, Theorem 2.5.3].
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Proposition 12. Let Q1 and Q2 be random variables taking values in finite sets X1 and X2,

respectively. Suppose that (P1, P2) is an X1 ×X2-valued random variable such that L (Pi) �
L (Qi) for each i. Let Q1 × Q2 denote a random variable whose independent coordinates have

marginals Q1 and Q2, respectively; that is, L (Q1 ×Q2) = L (Q1)×L (Q2). Then

DKL

(
(P1, P2) ‖Q1 ×Q2

)
−DKL(P2 ‖Q2) > DKL(P1 ‖Q1), (15)

where equality holds if and only if P1 and P2 are independent.

The proof of the proposition employs the following elementary inequality, whose proof we

include for the sake of completeness.

Lemma 13. Suppose that I is a finite set and, for each i ∈ I, let ai and bi be nonnegative reals

such that ai = 0 whenever bi = 0. Then, letting a =
∑

i∈I ai and b =
∑

i∈I bi, we have∑
i∈I

ai log
ai
bi
> a log

a

b
.

Moreover, equality holds above if and only if aib = abi for every i ∈ I.

Proof. Without loss of generality, we may assume that ai > 0 (and thus bi > 0) for each i ∈ I.

Since the function x 7→ − log x is strictly convex, Jensen’s inequality implies that∑
i∈I

ai log
ai
bi
− a log

a

b
= a ·

∑
i∈I

ai
a
·
(
− log

abi
aib

)
> −a · log

(∑
i∈I

ai
a
· abi
aib

)
= −a · log 1 = 0

and the inequality is strict unless abi
aib

=
∑

j∈I
aj
a ·

abj
ajb

= 1 for every i ∈ I, as claimed. �

Proof of Proposition 12. Let p : X1×X2 → [0, 1] be the probability density function of (P1, P2)

and, for each i ∈ {1, 2}, let qi : Xi → [0, 1] be the probability density function of Qi. Without

loss of generality, we may assume that qi(xi) > 0 for every i ∈ {1, 2} and each xi ∈ Xi. The

functions p1 : X1 → [0, 1] and p2 : X2 → [0, 1] defined by

p1(x1) :=
∑
x2∈X2

p(x1, x2) and p2(x2) :=
∑
x1∈X1

p(x1, x2)

are the probability density functions of P1 and P2, respectively. Now, denoting by L the left-hand

side of (15), we have

L =
∑

(x1,x2)∈X1×X2

p(x1, x2) log
p(x1, x2)

q1(x1)q2(x2)
−
∑
x2∈X2

p2(x2) log
p2(x2)

q2(x2)

(∗)
=
∑
x1∈X1

∑
x2∈X2

p(x1, x2) log
p(x1, x2)

q1(x1)p2(x2)

(†)
>
∑
x1∈X1

( ∑
x2∈X2

p(x1, x2)

)
log

∑
x2∈X2

p(x1, x2)∑
x2∈X2

q1(x1)p2(x2)

=
∑
x1∈X1

p1(x1) log
p1(x1)

q1(x1)
= DKL(P1 ‖Q1),

where (∗) follows by applying p2(x2) =
∑

x1∈X1
p(x1, x2) to the second sum and (†) follows by

applying Lemma 13 to the inner sum. �

4.1. Divergence from a vector of i.i.d. Bernoulli variables. Throughout this paper, we

shall be estimating divergences of random variables from vectors of independent Ber(p) random

variables. In view of this, it will be convenient for us to define, for a real p ∈ (0, 1), an integer

k > 1, and a random variable X taking values in {0, 1}k, the p-divergence Ip(X) of X by

Ip(X) := DKL

(
X ‖Ber(p)k

)
> 0. (16)
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When X is Bernoulli itself, say with parameter q, then Ip(X) is a function of q which we will

denote by ip. Namely,

ip(q) := Ip
(
Ber(q)

)
= DKL

(
Ber(q) ‖Ber(p)

)
= q log

q

p
+ (1− q) log

1− q
1− p

. (17)

Let us record here, for future reference, that, for every q ∈ (0, 1),

i′p(q) = log
q

p
− log

1− q
1− p

and i′′p(q) =
1

q
+

1

1− q
. (18)

We also define a notion of conditional divergence. Given random variables X and Y that have

a joint distribution and such that X takes values in {0, 1}k for some integer k > 1, we define

the conditional p-divergence of X conditioned on Y

Ip(X | Y ) := E
[
Ip
(
XY
)]

= E
[
DKL

(
XY ‖Ber(p)k

)]
,

where XY denotes the random variable X conditioned on Y , cf. the definition of conditional

entropy.

It is straightforward to verify that, when X takes values in {0, 1}k,

I1/2(X) = k log 2−H(X) and I1/2(X | Y ) = k log 2−H(X | Y ) (19)

and therefore it should not come at a surprise that the divergence and the conditional divergence

defined above satisfy similar inequalities as entropy and conditional entropy, such as the ones

presented in Lemma 8, only in reverse. In particular, Proposition 12 implies that3

Ip(X | Y ) > Ip(X) (20)

and equality holds if and only if X and Y are independent, cf. Lemma 8(ii); moreover, if Y also

takes values in {0, 1}` for some integer `, then

Ip(X,Y ) = Ip(X | Y ) + Ip(Y ) > Ip(X) + Ip(Y ), (21)

where, again, equality holds if and only if X and Y are independent, cf. the chain rule for

entropies (identity (9)). Generalising this further, if Z is another random variable (defined on

the same probability space as X and Y ), then invoking the above inequality with X and Y

replaced by XZ and Y Z and taking the expectation of both sides yields

Ip(X,Y | Z) > Ip(X | Z) + Ip(Y | Z), (22)

cf. Lemma 8(iv). One final property that we shall require is the following fact.

Proposition 14. Suppose that random variables X, Y , and Z have a joint distribution and that

X takes values in {0, 1}k for some integer k > 1. Then, for every p ∈ (0, 1),

Ip(X | Y,Z) = E
[
Ip(X

Y | ZY )
]

Proof. The assertion follows from the definition of conditional p-divergence and the fact that

L
(
X(Y,Z)

)
= L

(
(XY )Z

Y )
almost surely. �

3In order to see this, observe first that Ip(X | Y ) = DKL

(
(X,Y ) ‖Ber(p)k × Y

)
.
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4.2. Interlude. As an illustration of the subadditivity property of the divergence Ip, we will give

a short proof of optimal tail estimates for the binomial distribution (see [14] for generalisations).

Theorem 15. For every positive integer n, every p ∈ (0, 1), and all q ∈ [0, p],

P
(
Bin(n, p) 6 nq

)
6 exp

(
− n · ip(q)

)
= exp

(
−n ·DKL

(
Ber(q) ‖Ber(p)

))
.

Proof. Let Y = (Y1, . . . , Yn) be a sequence of i.i.d. Ber(p) random variables, let A denote

the event that Y1 + · · · + Yn 6 nq, and let Y ′ = (Y ′1 , . . . , Y
′
n) be Y conditioned on A . By

Proposition 12,

− logP
(
Bin(n, p) 6 nq

)
= − logP(A ) = DKL(Y ′ ‖Y ) = Ip(Y

′)
(21)

>
n∑
k=1

Ip(Y
′
k).

By symmetry, for every k ∈ JnK,

E[Y ′k] =
1

n

n∑
j=1

E[Y ′j ] 6 q.

In particular, since ip is decreasing on [0, p] and q 6 p, we have

Ip(Y
′
k) = ip

(
E[Y ′k]

)
> ip(q),

which concludes the proof of the theorem. �

4.3. The key lemma. The following is our key lemma. Its role in the proof of Theorem 5 will

be analogous to the role that Pinsker’s inequality (Lemma 9) played in the proof of Theorem 1.

Lemma 16. Let Y be a {0, 1}-valued random variable and let E1, . . . , Em be a sequence of Z-

measurable events, for some random variable Z. Suppose that E[Y | Z] 6 p′ for some p′ > 0.

Then, letting µ = E[Y ] = P(Y = 1),

Ip(Y | Z)− Ip(Y ) >
1

2p′

m∑
i=1

(
P(Y = 1 | Ei)− µ

)2P(Ei)−
p′

2

∑
16i<j6m

P(Ei ∩ Ej). (23)

Let us first show that Lemma 16 generalises Pinsker’s inequality (Lemma 9) for {0, 1}-valued

random variables. More precisely, let Y ∈ {0, 1} and Z be two random variables and let Y × Z
be the random variable whose independent coordinates have marginals Y and Z. Let E1 be the

Z-measurable event
{
P(Y = 1 | Z) 6 P(Y = 1)

}
and let E2 be the complementary event. As

P(Y = 1 | Z)− P(Y = 1) is nonpositive on E1 (respectively, nonnegative on E2), we have

dTV
(
(Y,Z), Y × Z

)
=

2∑
i=1

(−1)i ·
(
P(Y = 1 | Ei)− P(Y = 1)

)
· P(Ei).

In particular, the Cauchy–Schwarz Inequality gives

dTV
(
(Y, Z), Y × Z

)2
6

(
2∑
i=1

(
P(Y = 1 | Ei)− P(Y = 1)

)2 · P(Ei)

)
·
(
P(E1) + P(E2)

)
.

It thus follows from Lemma 16, invoked with p = 1/2 and p′ = 1, that

dTV
(
(Y, Z), Y × Z

)2
6 2 ·

(
I1/2(Y | Z)− I1/2(Y )

) (19)
= 2 ·

(
H(Y )−H(Y | Z)

)
; (24)

this is precisely Pinsker’s inequality (Lemma 9). In the proof of Theorem 5, we will use Lemma 16

with p′ = p, which will result in a much stronger bound.
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Proof of Lemma 16. Observe first that the case µ = 0 is trivial. Indeed, by (20), the left-hand

side of (23) is always nonnegative and, when µ = 0, each term in the first sum in the right-hand

side of (23) vanishes, as Y = 0 almost surely. We will thus assume that µ > 0. For the sake of

brevity, let g := E[Y | Z], so that

Ip(Y | Z) = E
[
Ip(Y

Z)
]

= E[ip(g)],

where ip is the function defined in (17). Expanding ip into a Taylor series of order two around

µ with Lagrange remainder gives

ip(g) = ip(µ) + i′p(µ) · (g − µ) + i′′p(ξg) ·
(g − µ)2

2
(25)

for some ξg with 0 < ξg 6 max{µ, g}. Recall from (17) and (18) that the first term ip(µ) is

Ip
(
Ber(µ)

)
= Ip(Y ) and that i′′p(ξ) = 1

ξ + 1
1−ξ . When we take expectations (over Z) of both

sides of (25), the term i′p(µ) · (g − µ) disappears, as E[g] = E[Y ] = µ, and thus we end up with

Ip(Y | Z)− Ip(Y ) = E
[(

1

ξg
+

1

1− ξg

)
· (g − µ)2

2

]
.

Since µ, g 6 p′, we have
1

ξg
+

1

1− ξg
>

1

ξg
> min

{
1

µ
,

1

g

}
>

1

p′

and we conclude that

Ip(Y | Z)− Ip(Y ) >
1

2p′
· E
[
(g − µ)2

]
>

1

2p′

∫
E1∪···∪Em

(g − µ)2 dP. (26)

It follows from Bonferroni’s inequality (inclusion-exclusion) that∫
E1∪···∪Em

(g − µ)2 dP >
m∑
i=1

∫
Ei

(g − µ)2 dP−
∑

16i<j6m

∫
Ei∩Ej

(g − µ)2 dP.

Since 0 6 g, µ 6 p′, then (g − µ)2 6 (p′)2. Applying the Cauchy–Schwarz Inequality to each of

the terms of the first sum above, we obtain∫
E1∪···∪Em

(g − µ)2 dP >
m∑
i=1

(
1

P(Ei)

∫
Ei

g dP− µ
)2

P(Ei)−
∑

16i<j6m

∫
Ei∩Ej

(p′)2 dP

=
m∑
i=1

(
P(Y = 1 | Ei)− µ

)2P(Ei)− (p′)2
∑

16i<j6m

P(Ei ∩ Ej),

which, substituted into (26), yields the desired inequality (23). �

5. Upper bounds for the lower tail

In this section, we prove Theorem 5. Recall that we are given a hypergraph H on a set V

and that R denotes a random subset of V where every element is included independently with

probability p.

5.1. First reductions. Let Y = (Yv)v∈V be the indicator of R conditioned on the lower tail

event e(H [R]) 6 ηpre(H ). Proposition 11 and the definition of Ip give

− logP
(
e(H [R]) 6 ηpre(H )

)
= Ip(Y ),

so from now on Ip(Y ) will be our main focus. It will be convenient to define, for every W ⊆ V ,

H(W ) :=
∑

v∈V \W

Ip
(
Yv | (Yw)w∈W

)
.
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The point of making this definition is that

Ip
(
Y
) (21)

= Ip
(
(Yv)v∈V \W | (Yw)w∈W

)
+ Ip

(
(Yw)w∈W

)
(16)

> Ip
(
(Yv)v∈V \W | (Yw)w∈W

) (22)

>
∑

v∈V \W

Ip
(
Yv | (Yw)w∈W

)
= H(W ),

(27)

and thus our goal becomes to find a set W such that H(W ) > (1− ε)ΦX(η + ε)− C.

We will relate H(W ) to the quantity Φ(η+ ε) in the following way. First, define the function

f : [0, 1]V → R by letting, for each q ∈ [0, 1]V ,

f(q) :=
∑
A∈H

dA
∏
v∈A

qv.

In other words, f(q) is the expected number of edges of H induced by a random subset of V

obtained by retaining each v ∈ V independently with probability qv. Note that f(Y ) = e(H [R])

and that

Φ(η + ε) = min

{∑
v∈V

ip(qv) : q ∈ [0, 1]V , f(q) 6 (η + ε)pre(H )

}
.

Second, given a W ⊆ V , we define a random function qW : V → [0, 1] by letting, for each v ∈ V ,

qWv :=

{
E [Yv | (Yw)w∈W ] if v /∈W,

p otherwise.

Finally, we write

H(W )
(∗)
=

∑
v∈V \W

E[ip(q
W
v )] = E

[∑
v∈V

ip(q
W
v )

]
(†)
> P

(
f(qW ) 6 (η + ε)pre(H )

)
· Φ(η + ε),

where (∗) follows from the definitions of H, ip, and qW ; and where (†) uses ip > 0 and bounds

the expectation from below by the probability of the event f(qW ) 6 (η + ε)pre(H ) times the

minimum of the sum
∑

v∈V ip(q
W
v ) on that event. In particular, it suffices to produce a set W

such that

P
(
f(qW ) 6 (η + ε)pre(H )

)
> 1− ε. (28)

Conditioning on
(
Yw
)
w∈W for various W ⊆ V will repeat so much that it is better to have a

shorthand for it. Define therefore

EW [·] := E [· | (Yw)w∈W ] (29)

(so that our qW can now be written as qWv = EW [Yv] for v /∈ W ). For similar reasons, given an

A ⊆ V , define

YA :=
∏
a∈A

Ya.

Since f(Y ) = e(H [R]) 6 ηpre(H ) almost surely (and, consequently, EW [f(Y )] 6 ηpre(H )

for every W ⊆ V ), we may obtain lower bounds on the probability in the left-hand side of (28)

by bounding from above the right-hand side of the following inequality:∣∣f(qW )− EW [f(Y )]
∣∣ 6 ∑

A∈H

dA ·
∣∣∣∣ ∏
a∈A

EW (Ya)− EW [YA]

∣∣∣∣.
In order to do so, we will quantify the difference between

∏
v∈A EW [Yv] and EW [

∏
v∈A Yv] for a

typical A ∈ H . This is related to conditioned almost independence of the variables {Yv}v∈A.

However, we are not studying full independence, but only with respect to the event that all Yv
are 1. To continue our analysis, we need a few preliminaries, which will be the topic of the next

section.
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5.2. Preliminaries. At various places we will need the following corollary of Harris’s inequality:

Claim 17. EW [YA] 6 p|A| for all W ⊆ V and all A ⊆ V \W .

Proof. Fix some possible value y ∈ {0, 1}W for (Yw)w∈W . Writing E for the event A ⊆ R and

recalling that Y is the indicator of R conditioned on the lower tail event e(H [R]) 6 ηpre(H ),

E
[
YA | (Yw)w∈W = y

]
=

P
(
YA = 1, (Yw)w∈W = y

)
P
(
(Yw)w∈W = y

)
=

P
(
E, (Rw)w∈W = y, e(H [R]) 6 ηpre(H )

)
P
(

(Rw)w∈W = y, e(H [R]) 6 ηpre(H )
)

=
P
(
E, e(H [R]) 6 ηpre(H )

∣∣∣ (Rw)w∈W = y
)

P
(
e(H [R]) 6 ηpre(H ) | (Rw)w∈W = y

)
Since the elements of V are included in R independently, conditioning on (Rw)w∈W gives a

product measure on (Rv)v∈V \W . Moreover, under the conditioned measure, the event E is

increasing and the lower tail event e(H [R]) 6 ηpre(H ) is decreasing. The claim follows from

Harris’s inequality. �

Claim 18. For every nonempty, finite set A and every function F : P(A)→ R,

F (A)−
∏
a∈A

F ({a}) =
∑
B⊆A
|B|>2

∑
b∈B

1(|A|
|B|
)
|B|
·
(
F (B)− F (B \ {b})F ({b})

) ∏
a∈A\B

F ({a}).

(As usual, P(A) denotes the power set of A.)

Proof. The identity holds trivially when |A| = 1 and we may thus assume that |A| > 2. Observe

first that the right-hand side is a linear combination of terms of the form

K∅ :=
∏
a∈A

F ({a}) and KB := F (B) ·
∏

a∈A\B

F ({a}),

where B ⊆ A satisfies |B| > 2. The term K∅ appears only when |B| = 2 in the outer sum and

it is easy to verify that its coefficient is

−
(
|A|
2

)
· 2 · 1(|A|

2

)
· 2

= −1.

Fix an arbitrary B ⊆ A with |B| > 2. On the one hand, the term KB appears with a positive

sign exactly |B| times (once for each b ∈ B) and the respective coefficient is

1(|A|
|B|
)
|B|

;

on the other hand, it appears with a negative sign (B is then in fact B \ {b}) exactly |A| − |B|
times (once for each b ∈ A \B) and the respective coefficient is (note that |B| 6 |A| − 1 in this

case)
−1( |A|

|B|+1

)
(|B|+ 1)

In particular, when B 6= A, then the positive and the negative contributions cancel, as

|B| · 1(|A|
|B|
)
|B|

=
1(|A|
|B|
) = (|A| − |B|) · 1( |A|

|B|+1

)
(|B|+ 1)

,

and it is easy to check that the sum of the coefficients of KA is 1. �
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5.3. The argument. Fix an arbitrary nonempty A ⊆ V \W . Applying Claim 18 with F (B) =

EW [YB] yields

EW [YA]−
∏
a∈A

EW [Ya] =
∑
B⊆A
|B|>2

∑
b∈B

1(|A|
|B|
)
|B|
· (EW [YB]− EW [YB\{b}]EW [Yb]︸ ︷︷ ︸

DW (B,b)

) ·
∏

a∈A\B

EW [Ya]

(this is the definition of DW ). Consequently, by the triangle inequality,∣∣∣EW [YA]−
∏
a∈A

EW [Ya]
∣∣∣ 6 ∑

B⊆A
|B|>2

∑
b∈B

1(|A|
|B|
)
|B|
· |DW (B, b)| ·

∏
a∈A\B

EW [Ya]

(∗)
6
∑
B⊆A
|B|>2

∑
b∈B

1(|A|
|B|
)
|B|
· |DW (B, b)| · p|A|−|B|,

where (*) follows from Claim 17. We sum this inequality over all A ∈ H −W = H [V \W ],

take expectation over
(
Yv
)
v∈W , and get (recall that our hypergraph is r-uniform, so |A| = r for

every A ∈H )

E

[ ∑
A∈H −W

dA ·
∣∣∣EW [YA]−

∏
a∈A

EW [Ya]
∣∣∣]

6 E

[ ∑
A∈H −W

∑
B⊆A
|B|>2

∑
b∈B

dA(
r
|B|
)
|B|
· |DW (B, b)| · pr−|B|

]
. (30)

We now wish to apply the Cauchy–Schwarz Inequality to the right-hand side of (30). However,

since the resulting expression would be too long, we first define

E (W ) := E

[ ∑
A∈H −W

∑
B⊆A
|B|>2

∑
b∈B

dA ·DW (B, b)2(
r
|B|
)
|B| · p2|B|

]
, (31)

and then Cauchy–Schwarz yields

E

[ ∑
A∈H −W

dA ·
∣∣∣EW [YA]−

∏
a∈A

EW [Ya]
∣∣∣]

6

( ∑
A∈H −W

∑
B⊆A
|B|>2

∑
b∈B

dAp
2r(

r
|B|
)
|B|

)1/2

· E (W )1/2 = pr
(
(r − 1)e(H −W )

)1/2 · E (W )1/2, (32)

where we used the identity
∑

B,b
1

( r
|B|)|B|

= r − 1, which holds because enumerating over all

B ⊆ A of a given size and all b ∈ B cancels the denominator perfectly. Let us remark that most

readers might be better off ignoring all these combinatorial factors. We chose to estimate them

carefully in order to optimise the dependency of λ and C (from the statement of the theorem)

on r. However, in most applications r will be an absolute constant.

The essence of our argument is establishing the following dichotomy: Either

(i) E[EW ] is quite small, or

(ii) H(W ∪W ′) > H(W ) + Ω
(
p|V |

)
for some small W ′ ⊆ V \W .

If (i) holds, then, by (32), we will have that EW [YA]−
∏
a∈A EW [Ya] is small (on average), and

a few simple manipulations (done at the end of the proof of Theorem 5, page 24) will show that
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our candidate set W satisfies (28). Otherwise, (ii) holds and we replace W with W ∪W ′; this

can happen only O(1) times since

H(W )
(27)

6 Ip(Y ) = − logP
(
e(H [R]) 6 ηpre(H )

)
6 − logP(R = ∅) = |V | · log

1

1− p
6 |V | · p

1− p
6 |V | · p

1− p0
.

(33)

Lemma 19. For all positive α, β, and K, there exist λ and V0 such that the following holds:

If |V | > V0 and H satisfies (7) for every s ∈ JrK, then there exists a set W ⊆ V with at most

α|V | elements that satisfies

E (W ) 6 β · e(H ).

Proof. Without loss of generality, we may assume that α < 1/2, β < 1, and K > 1. We first

define a few constants:

γ :=
β2

300Kr
, τ := αγ(1− p0), λ :=

τ

2r
, and V0 := 8r2/τ. (34)

A short calculation shows that the definition of V0 guarantees that

τ · V0/2− r
V0/2− r

>
τ

21/r
and

V0/2

V0/2− 1
6 21/(2r). (35)

As explained above, we shall build our set W in several rounds, starting with W being the

empty set. In each round, we will use the following claim, which implements the dichotomy

mentioned above.

Claim 20. Suppose that W ⊆ V satisfies E (W ) > β · e(H ) and |V \W | > V0/2. Then there

exists a set W ′ ⊆ V \W with at most τ |V | elements such that

H(W ∪W ′) > H(W ) + γp|V |. (36)

Proof of Claim 20. Let W ′ be a uniformly chosen subset of V \W with density τ , that is, with

exactly bτ · |V \W |c elements. We will show that, under the assumption that E (W ) > βe(H )

and |V \W | > V0/2, we have

E
[
H(W ∪W ′)

]
> (1− τ) ·H(W ) + 2γp|V |. (37)

Consequently, since

τ ·H(W )
(33)

6
τ

1− p0
· p|V | (34)

= αγp|V | < γp|V |, (38)

the desired inequality (36) must hold for some W ′.

We now write

H(W ∪W ′)−H(W ) =
∑

v∈V \(W∪W ′)

Ip(Yv | (Yw)w∈W∪W ′)−
∑

v∈V \W

Ip(Yv | (Yw)w∈W )

=
∑

v∈V \(W∪W ′)

Ip(Yv | (Yw)w∈W∪W ′)− Ip(Yv | (Yw)w∈W )

︸ ︷︷ ︸
I

−
∑
v∈W ′

Ip(Yv | (Yw)w∈W )︸ ︷︷ ︸
II

. (39)

By linearity of expectation,

E [II] =
bτ · |V \W |c
|V \W |

·H(W ) 6 τ ·H(W ),

and thus (37) will follow if we show that

J := E [I] > 2γp|V |. (40)
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In order to bound J from below, we will apply our main lemma (Lemma 16), conditionally

on
(
Yw : w ∈W

)
, with Z =

(
Yw : w ∈W ′

)
and a careful choice of the sequence of Z-measurable

events that we shall now define. To this end, for each v ∈ V \W , let

H (v) :=
{
B ⊆ V \W : |B| > 2, v ∈ B, and B ⊆ A for some A ∈H −W

}
and let G (v) be the random subset of H (v) formed by including each B ∈ H (v) satisfying

B \ {v} ⊆W ′ with probability σB, which we will specify later, independently for each such B.

Let S :=
(
Yw
)
w∈W and, for every v ∈ V \ (W ∪W ′), let Y S

v denote Yv conditioned on S, that

is, the random variable whose (random) distribution is the distribution of Yv conditioned on S.

Define

JS(v) := Ip
(
Y S
v |

(
Y S
w

)
w∈W ′

)
− Ip

(
Y S
v

)
,

The next step is to apply Lemma 16. Recall that we need to supply the lemma with a sequence

of events. The number of events in our application will also be random, but it will depend only

on W ′ and G (v), so let us fix their choice for the time being. For each B ∈ G (v), let ESB be

the event that Y S
B\{v} = 1; note that ESB is (Y S

w )w∈W ′-measurable, as B \ {v} ⊆ W ′. Since

E
[
Y S
v | (Y S

w )w∈W ′
]

= EW∪W ′ [Yv] 6 p, by Claim 17, we may apply Lemma 16 with Y = Y S
v ,

Z = (Y S
w : w ∈ W ′), the events ESB, and p′ = p to get (recall the definition of DW given at the

start of § 5.3)

JS(v) >
1

2p

∑
B∈G (v)

(
P(Y S

v = 1 | ESB)− E[Y S
v ]
)2P(ESB)− p

2

∑
B,B′∈G (v)
B 6=B′

P(ESB ∩ ESB′)

=
1

2p

∑
B∈G (v)

DW (B, v)2

EW [YB\{v}]
− p

2

∑
B,B′∈G (v)
B 6=B′

EW [YB\{v} · YB′\{v}].

Since every edge of G (v) contains v and is disjoint from W , Claim 17 implies that EW [YB\{v}] 6

p|B|−1 and EW [YB\{v} · YB′\{v}] 6 p|B∪B
′|−1 for all B,B′ ∈ G (v). This observation allows us to

simplify our lower bound for JS(v) to

2 · JS(v) >
∑

B∈G (v)

DW (B, v)2

p|B|
−

∑
B,B′∈G (v)
B 6=B′

p|B∪B
′| =: G(v)− L(v), (41)

i.e., G(v) is the first sum and L(v) is the second.

We now return to the J from (40). It is the expectation (over W ′) of the sum I defined

in (39), each of whose summands is the expectation (over S) of JS(v), see Proposition 14. We

wish to exchange the sum and expectation, but since the sum is over v 6∈ W ′ (recall (39)) and

this is an event, we need to condition on it. Hence we arrive at

J
(40)
=

∑
v∈V \W

P(v /∈W ′) · E
[
E
[
JS(v) | v /∈W ′

]]
(41)

>
1− τ

2
· E

 ∑
v∈V \W

E
[
G(v)− L(v) | v /∈W ′

] , (42)

where E and P denote the expectation and the probability over the random choice of the set W ′

and the hypergraphs G (v) and over S. In the remainder of the proof, we shall estimate the

right-hand side of (42).

We start with the estimate of the G terms. We define

G′(v) := E
[
G(v) | v /∈W ′

]
=

∑
B∈H (v)

P
(
B ∈ G (v) | v /∈W ′

)
· DW (B, v)2

p|B|
.
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For every B ∈H (v), we have (recall the assumption that |V \W | > V0/2)

P
(
B ∈ G (v) | v /∈W ′

)
= P

(
B \ {v} ⊆W ′ | v /∈W ′

)
· σB

=

|B|−2∏
i=0

bτ |V \W |c − i
|V \W | − i− 1

· σB

>

(
τ |V \W | − r
|V \W | − r

)|B|−1

· σB
(35)

>
τ |B|−1

2
· σB.

We conclude that

G′(v) >
1

2τ

∑
B∈H (v)

τ |B| · σB ·DW (B, v)2

p|B|
. (43)

Summing (43) over all v ∈ V \W yields (recall the definition of degH −W given in (5))∑
v∈V \W

G′(v) >
1

2τ

∑
A∈H −W

∑
B⊆A
|B|>2

∑
v∈B

dA
degH −W B

· τ
|B| · σB ·DW (B, v)2

p|B|
, (44)

cf. the definition of E (W ) given in (31). This is a good moment to finally define the probabili-

ties σB. We let

σB := µ ·
degH −W B(
r
|B|
)
|B|(τp)|B|

, (45)

where

µ :=
βτp|V |

16K(r − 1)e(H )
. (46)

Note that σB 6 1 as

degH −W B 6 ∆|B|(H )
(7)

6 K · (λp)|B|−1 · e(H )

|V |
(34)

6 K · (τp)|B|−1 · e(H )

|V |
(46)

6
(τp)|B|

µ
.

Substituting (45) into (44) yields precisely

E
[ ∑
v∈V \W

G′(v)

]
>

µ

2τ

∑
A∈H −W

∑
B⊆A
|B|>2

∑
v∈B

dA · E[DW (B, v)2](
r
|B|
)
|B|p2|B|

(31)
=

µ

2τ
· E (W ). (47)

This concludes our estimate of the G terms.

The estimate of the L terms in (42) is similar, but somewhat more involved. We define

L′(v) := E
[
L(v) | v /∈W ′

]
=

∑
B,B′∈H (v)

B 6=B′

P
(
B,B′ ∈ G (v) | v /∈W ′

)
· p|B∪B′|.

Thus, we need a second moment estimate for the sum of indicators of B ∈ G (v) over all B ∈
H (v). Note first that, for each B 6= B′,

P
(
B,B′ ∈ G (v) | v /∈W ′

)
= P

(
(B ∪B′) \ {v} ⊆W ′ | v /∈W ′

)
· σBσB′

=

|B∪B′|−2∏
i=0

bτ |V \W |c − i
|V \W | − i− 1

· σBσB′

6

(
τ |V \W |
|V \W | − 1

)|B∪B′|−1

· σBσB′
(35)

6 2τ |B∪B
′|−1 · σBσB′ .

Hence

L′(v) 6
2

τ

∑
B,B′∈H (v)

B 6=B′

(τp)|B∪B
′| · σBσB′ . (48)
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Summing (48) over all v ∈ V \W gives∑
v∈V \W

L′(v) 6
2

τ

∑
A,A′∈H −W

∑
B⊆A,B′⊆A′
|B|,|B′|>2
B 6=B′

∑
v∈B∩B′

dA
degH −W B

· dA′

degH −W B′
· (τp)|B∪B′| · σBσ′B

(45)
=

2µ2

τ2p
·

∑
A,A′∈H −W

∑
B⊆A,B′⊆A′
|B|,|B′|>2
B 6=B′

|B ∩B′| · dAdA′(
r
|B|
)
|B|
(
r
|B′|
)
|B′|(τp)|B∩B′|−1

︸ ︷︷ ︸
(∗)

,

where we used the identity |B ∪B′|+ |B ∩B′| = |B|+ |B′|. Rearranging gives

(∗) =
∑

A∈H −W
dA

∑
B⊆A
|B|>2

1(
r
|B|
)
|B|

r−1∑
s=1

s

(τp)s−1

∑
C⊆B
|C|=s

∑
A′∈H −W
C⊆A′

dA′
∑
B′⊆A′
|B|′>2
B∩B′=C

1(
r
|B′|
)
|B′|

︸ ︷︷ ︸
SB,s

.

Now, for every A′ ∈H −W , every s > 1, and every C ⊆ A′ with |C| = s,∑
C⊆B′⊆A′

1(
r
|B′|
)
|B′|

=
r∑

b′=s

(
r−s
b′−s
)(

r
b′

)
b′

=

r∑
b′=s

(
b′

s

)(
r
s

)
b′

=
r∑

b′=s

(
b′−1
s−1

)(
r
s

)
s

=
1

s
6 1.

Hence, for every B with at most r elements and every s > 1,

SB,s 6
∑
C⊆B
|C|=s

∑
A′∈H −W
C⊆A′

dA′ 6

(
|B|
s

)
·∆s(H ) =

|B|
s

(
|B| − 1

s− 1

)
·∆s(H )

(7)

6
|B|
s

(
|B| − 1

s− 1

)
· (λp)s−1 ·K · e(H )

|V |
6
|B|
s
· (rλp)s−1 ·K · e(H )

|V |
.

Consequently,

(∗) 6
∑

A∈H −W
dA

∑
B⊆A
|B|>2

1(
r
|B|
) r−1∑
s=1

(
rλ

τ

)s−1

·K · e(H )

|V |

= e(H −W ) · (r − 1) ·
r−1∑
s=1

(
rλ

τ

)s−1

·K · e(H )

|V |
.

Since rλ = τ/2, we conclude that∑
v∈V \W

L′(v) 6
2µ2

τ2p
· (r − 1) · 2K · e(H )2

|V |
(46)
=

µ

τ
· βe(H )

4
. (49)

Combining this with the estimate (47) gives

J
(42)

>
1− τ

2
· E

 ∑
v∈V \W

G′(v)− L′(v)

 (47,49)

>
(1− τ)

2
· µ
τ
·
(

E (W )

2
− βe(H )

4

)
(∗)
>

(1− τ)

2
· µ
τ
· βe(H )

4

(46)
=

(1− τ)β2

128K(r − 1)
· p|V |

(34)

> 2γp|V |,

where (∗) follows from our assumption that E (W ) > βe(H ). The claim is thus proved. �

Proof of Lemma 19, continued. Suppose that the assertion of the lemma is not true, that is,

E (W ) > β · e(H ) for every W ⊆ V with at most α|V | elements. We will construct a sequence

W0, . . . ,Wj of subsets of V , where j = bα/τc+ 1, such that, for each i ∈ {0, . . . , j},
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(i) |Wi| 6 i · τ |V | and

(ii) H(Wi) > i · γp|V |.
If such a sequence existed, we would have

H(Wj) > j · γp|V | > (α/τ) · γp|V | (34)
= |V | · p

1− p0
,

which contradicts (33).

We start by letting W0 = ∅. Suppose that 0 6 i 6 j−1 and that Wi has already been defined

so that (i) and (ii) hold. Since

|Wi| 6 i · τ |V | 6 bα/τc · τ |V | 6 α|V |,

we have E (Wi) > β · e(H ) by the contradictory assumption. We note also that |V \Wi| > (1−
α)|V | > |V |/2 > V0/2. In particular, Claim 20, invoked with W = Wi, supplies a W ′ ⊆ V \Wi

with at most τ |V | elements that satisfies (36). We let Wi+1 = Wi ∪W ′ and note that

|Wi+1| = |Wi|+ |W ′|
(i)

6 i · τ |V |+ τ |V | = (i+ 1) · τ |V |

and

H(Wi+1) = H(Wi ∪W ′)
(36)

> H(Wi) + γp|V |
(ii)

> (i+ 1) · γp|V |,

so (i) and (ii) continue to hold with i replaced by i+1. This completes the proof of the existence

of the sequence of W0, . . . ,Wj , which yields the desired contradiction. �

Proof of Theorem 5. Let λ and V0 be constants supplied by Lemma 19 invoked with

α :=
ε

2K
and β :=

ε4

4r
.

(We note here that λ > 2−15K−2r−4ε9(1−p0) and V0 = 4r/λ.) We first handle the uninteresting

case |V | < V0. Considering, in the definition of Φ(η), the function q : V → [0, 1] that assigns

zero to all elements of V shows that

Φ(η + ε) 6 Φ(0) 6 |V | · ip(0) = −|V | · log(1− p) 6 −V0 · log(1− p0).

In particular, setting C := −V0 · log(1− p0) makes the assertion of the theorem hold vacuously.

We may thus assume that |V | > V0, so that Lemma 19 supplies a set W ⊆ V with at most

ε/(2K) · |V | elements such that E (W ) 6 ε4/(4r) · e(H ). Let qW : V → [0, 1] be the random

function defined in the proof outline, that is, qWv := EW [Yv] for v ∈ V \W and qWv := p for

v ∈W . We have

E

[ ∑
A∈H −W

dA ·
∣∣∣EW [YA]−

∏
a∈A

qWa

∣∣∣] (32)

6 pr
(
re(H )

)1/2 · E (W )1/2 6
ε2

2
· pre(H ).

In particular, it follows from Markov’s inequality that, with probability at least 1− ε,∑
A∈H −W

dA
∏
a∈A

qWa 6
∑

A∈H −W
dA · EW [YA] +

ε

2
· pre(H ).

However, the definition of Y implies that, deterministically,∑
A∈H −W

dAYA 6
∑
A∈H

dAYA = e(H [R]) 6 ηpre(H )

and thus, with probability at least 1− ε,∑
A∈H −W

dA
∏
a∈A

qWa 6 (η + ε/2) · pre(H ).
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The definition of qW and Claim 17 guarantee that qWv 6 p for every v ∈ V and, therefore,∑
A∈H \(H −W )

dA
∏
a∈A

qWa 6 p
r ·
(
e(H )− e(H −W )

)
6 pr · |W | ·∆1(H )

(7)

6 pr · ε|V |
2K
·K · e(H )

v(H )
=
ε

2
· pre(H ).

Summarising, with probability at least 1− ε, we have

f(qW ) =
∑
A∈H

dA
∏
a∈A

qWa 6 (η + ε) · pre(H ).

Hence, we may conclude that

H(W )
(28)

> P
(
f(qW ) 6 (η + ε)pre(H )

)
· Φ(η + ε) > (1− ε)Φ(η + ε),

as needed. �

6. Lower bounds for the lower tail

In this section, we prove Theorem 7. We will need the following technical lemma.

Lemma 21. For every p0 < 1, there exists a constant K such that the following holds. Suppose

that 0 < p 6 p0 and 0 6 q 6 p, let Y ∼ Ber(q), and let

X := Y log
q

p
+ (1− Y ) log

1− q
1− p

.

Then,

Var(X) 6 KE[X] = Kip(q).

Proof. This is nothing but a calculus exercise, but let us do it in details anyway. Observe first

that the case q = 0 is trivial. Indeed, ip is nonnegative and Var(X) = 0 when q = 0. We will

thus assume that q > 0. A direct computation shows that

Var(X) = q(1− q)
(

log
q

p
− log

1− q
1− p

)2
(18)
= q(1− q)

(
i′p(q)

)2
6 q ·

(
i′p(q)

)2
.

Since ip(p) = i′p(p) = 0, expanding both ip(q) and i′p(q) in Taylor series around q = p with

Lagrange remainder gives q1, q2 ∈ (q, p) such that

ip(q) =
(q − p)2

2
·
(

1

q1
+

1

1− q1

)
>

(q − p)2

2p
, (50)

i′p(q) = (q − p) ·
(

1

q2
+

1

1− q2

)
.

Suppose first that q > p/2. Our assumption that p 6 p0 implies that

1

q2
+

1

1− q2
6

1

q
+

1

1− p
6

2

p
+

1

1− p0
6

(
2 +

p0

1− p0

)
· 1

p
=

2− p0

1− p0
· 1

p

and, consequently,

Var(X) 6 q ·
(
i′p(q)

)2
6

(
2− p0

1− p0

)2

· q · (q − p)
2

p2
6

(
2− p0

1− p0

)2

· 2ip(q).

If, on the other hand, q < p/2, then, using the inequality (a− b)2 6 2a2 + 2b2, we get

Var(X)

p
6
q

p

(
log

q

p
− log

1− q
1− p

)2

6
2q

p

(
log

q

p

)2

+
2q

p

(
log

1− q
1− p

)2

6 sup
x∈(0,1/2)

2x(log x)2 +

(
log

1

1− p

)2

6
8

e2
+

(
log

1

1− p0

)2

,
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whereas, since ip is decreasing in the interval [0, p],

ip(q)

p
>
ip(p/2)

p
>

(p/2)2

2p2
=

1

8
. �

Proof of Theorem 7. We may assume without loss of generality that ε < 1. Let q : V → [0, 1] be

the minimiser in the definition of Φ
(
(1−ε)η

)
and let Y ′ = (Y ′v)v∈V be a sequence of independent

Bernoulli random variables with E[Y ′v ] = qv for each v ∈ V , so that

E[f(Y ′)] 6 (1− ε)ηE[f(Y )] and
∑
v∈V

ip(qv) = Φ
(
(1− ε)η

)
.

We claim that qv 6 p for every v ∈ V . Indeed, otherwise ip(qv) > 0 = ip(p) and changing qv to

p can only decrease E[f(Y ′)]. Let Y ⊆ {0, 1}V be arbitrary and note that

P
(
Y ′ ∈ Y

)
=
∑
y∈Y

P(Y ′ = y)

P(Y = y)
· P(Y = y) =

∑
y∈Y

∏
v:yv=1

qv
p

∏
v:yv=0

1− qv
1− p

· P(Y = y)

6 max

exp

 ∑
v:yv=1

log
qv
p

+
∑
v:yv=0

log
1− qv
1− p

 : y ∈ Y

 · P(Y ∈ Y ).

In view of this, define, for each y ∈ {0, 1}V ,

J(y) :=
∑
v:yv=1

log
qv
p

+
∑
v:yv=0

log
1− qv
1− p

,

so that the above inequality may be rewritten as

P(Y ′ ∈ Y ) 6 max
y∈Y

exp
(
J(y)

)
· P(Y ∈ Y ). (51)

Now, let K be the constant given by Lemma 21, let C ′ := K/(2ε2), and define

Y1 :=
{
y ∈ {0, 1}V : f(y) 6 ηE[f(Y )]

}
,

Y2 :=
{
y ∈ {0, 1}V : J(y) 6 (1 + ε)Φ

(
(1− ε)η

)
+ C ′

}
, (52)

It is immediate from these definitions that

P
(
X 6 ηE[X]

)
= P(Y ∈ Y1) > P(Y ∈ Y1 ∩ Y2)

(51)

> P(Y ′ ∈ Y1 ∩ Y2) · exp

(
−max
y∈Y2

J(y)

)
(52)

> P(Y ′ ∈ Y1 ∩ Y2) · exp
(
−(1 + ε)Φ

(
(1− ε)η

)
− C ′

)
.

We will show that P(Y ′ ∈ Y1 ∩ Y2) > ε/2, which will yield the assertion of the theorem with

C := C ′ + log(2/ε).

Since f is nonnegative, Markov’s inequality gives

P
(
f(Y ′) > ηE[f(Y )]

)
6 1− ε

and thus

P(Y ′ ∈ Y1) = P
(
f(Y ′) 6 ηE[f(Y )]

)
> ε;

in particular, it is enough to show that P(Y ′ /∈ Y2) 6 ε/2. To this end, examine J(Y ′). It

is a sum of independent variables (Xv)v∈V , where each Xv is distributed exactly like the X of

Lemma 21, only with q replaced by qv. In particular,

E[J(Y ′)] =
∑
v∈V

E[Xv] =
∑
v∈V

ip(qv) = Φ
(
(1− ε)η

)
and

Var(J(Y ′)) =
∑
v∈V

Var(Xv) 6 K
∑
v∈V

E[Xv] = KE[J(Y ′)].
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Therefore, writing µ := E[J(Y ′)], Chebyshev’s inequality gives

P(Y ′ /∈ Y2) = P
(
J(Y ′) > (1 + ε)µ+ C ′

)
6

Var(J(Y ′))

(εµ+ C ′)2
6

Kµ

(εµ+ C ′)2

6 max
x>0

Kx

(εx+ C ′)2
= max

y>0

K

(εy + C ′/y)2
=

K

4C ′ε
=
ε

2
,

as desired. �

7. Applications

In this section, we derive Theorems 2, 3, and 4 from our main technical result, Theorem 5,

and the general lower bound estimate for lower tail probabilities, Theorem 7. In order to do so,

we just need to represent the number of copies of a given (hyper)graph H in subgraphs of the

complete (hyper)graph (resp. the number of arithmetic progressions of a given length in subsets

of positive integers) as the number of edges in some auxiliary hypergraph H and verify that

H satisfies the assumptions of Theorem 5 when p� n−1/mr(H). This is pretty straightforward,

but we present the full details for the reader’s convenience.

The following easy lemma, which states that ΦH
p , defined in (6) above the statement of

Theorem 5, satisfies ΦH
p (η) = Θ

(
v(H )p

)
for every uniform hypergraph H whose maximum

degree is comparable to its average degree, will be used to absorb the additive constant C from

the assertions of Theorems 5 and 7 into the main term.

Lemma 22. Suppose that H is an r-uniform hypergraph that satisfies

∆1(H ) 6 K · e(H )

v(H )

for some K. Then, for all positive reals p and ε,

ΦH
p (1− ε) > ε2

2K2
· |V |p.

Proof. Let q : V → [0, 1] be a function achieving the minimum in the definition of ΦH
p and note

that qv 6 p for every v ∈ V . Indeed, otherwise ip(qv) > 0 = ip(p) and changing qv to p can only

decrease E[e(H [R(q)])]. As qv 6 p for every v ∈ V , it is easy to conclude that

p|A| −
∏
v∈A

qv 6
∑
v∈A

(p− qv)p|A|−1 (53)

for every A ⊆ V . We may thus conclude that

εpre(H )
(?)

6 pre(H )− E[e(H [R(q)])] =
∑
A∈H

dA ·

(
p|A| −

∏
v∈A

qv

)
(53)

6
∑
A∈H

dA ·
∑
v∈A

(p− qv)pr−1 =
∑
v∈V

(p− qv)pr−1 · degH v

6 ∆1(H ) ·
∑
v∈V

(p− qv)pr−1 = pr−1∆1(H ) ·

(
p|V | −

∑
v∈V

qv

)
,

where (?) follows because q is the minimiser of Φ(1− ε). Consequently,

q̄ :=
1

|V |
∑
v∈V

qv 6 p ·
(

1− εe(H )

|V | ·∆1(H )

)
6 p ·

(
1− ε

K

)
. (54)

Since the function ip is convex and ip(q) >
(q−p)2

2p when q 6 p, see (50), we may conclude that

ΦH
p (1− ε) =

∑
v∈V

ip(qv) > |V | · ip(q̄) > |V | ·
(q̄ − p)2

2p

(54)

>
ε2

2K2
· |V |p,
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as claimed. �

Proof of Theorems 2 and 3. Theorem 2 is merely the special case s = 2 in Theorem 3, so we

focus on Theorem 3. Suppose that H is a nonempty s-uniform hypergraph and let H be the

eH -uniform hypergraph with vertex set V :=
(JnK
s

)
whose hyperedges are the edge sets of all

vH !
|Aut(H)| ·

(
n
vH

)
copies of H in the complete s-uniform hypergraph on JnK (we take dA = 1 for all

A). By symmetry,

∆1(H ) =
eH · e(H )

v(H )
.

Suppose now that B ⊆ V has at least two elements and nonzero degree in H . Then B must

be the edge set of some copy of a subhypergraph F ⊆ H, with eF = |B| > 2, in the complete

s-uniform hypergraph on JnK. Since ms(H) > eF−1
vF−s (recall the definition of ms given in (4)), we

have

degH B 6 nvH−vF = n−(vF−s) · nvH−s 6 n−
eF−1

ms(H) · nvH−s =
(
n
−1

ms(H)

)|B|−1
· nvH−s.

Since B was arbitrary, we may conclude that

∆u(H ) 6
(
n
− 1

ms(H)

)u−1
· nvH−s (55)

for every u > 2.

Let λ be the constant given by Theorem 5 invoked with K = eH and εThm 5 = ε/2 and let C

be the larger of the constants given by Theorems 5 and 7, also with εThm 7 = ε/2. Lastly, let

L = L(ε, λ, C,H) be a sufficiently large constant and suppose that Ln−1/ms(H) 6 p 6 p0.

By choosing L large, we guarantee that n is large as well and, consequently,

e(H )

v(H )
>

(
n
vH

)(
n
s

) > nvH−s

2vH !
.

Together with (55), this estimate implies that, for every u > 2,

∆u(H ) 6 2vH ! ·
( p
L

)u−1
· e(H )

v(H )
6 (λp)u−1 · e(H )

v(H )
,

where in the second inequality we used that L is sufficiently large. By Theorems 5 and 7, for

every η ∈ [0, 1],

(1− ε/2) · ΦH
n,p(η + ε/2)− C 6 − logP

(
X 6 ηE[X]

)
6 (1 + ε/2) · ΦH

n,p

(
(1− ε/2)η

)
+ C.

Finally, we show that we may absorb the additive constant C on both sides of the above

inequality. To this end, we first invoke Lemma 22 to get the following inequality:

ΦH
n,p(1− ε/2) >

ε2

8e2
H

·
(
n

s

)
p >

Lε2

16e2
Hs!
>

2C

ε
, (56)

where we used the assumptions that p > Ln−1/ms(H) > Ln−s and that L is sufficiently large.

To derive the claimed the upper bound on − logP(X 6 ηE[X]), note that, since η 6 1 and the

function η 7→ Φn,p(η) is decreasing, we have

C
(56)

6 (ε/2) · ΦH
n,p

(
(1− ε/2)η

)
and ΦH

n,p

(
(1− ε/2)η

)
6 ΦH

n,p

(
(1− ε)η

)
.

To derive the claimed lower bound, we may assume that η+ε 6 1, since otherwise ΦH
n,p(η+ε) = 0.

Therefore,

C
(56)

6 (ε/2) · ΦH
n.p(η + ε/2) and ΦH

n.p(η + ε/2) 6 ΦH
n,p(η + ε).

This completes the proof of Theorems 2 and 3. �
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Proof of Theorems 4. Let k be a positive integer and let H be the k-uniform hypergraph with

vertex set V := JnK whose hyperedges are the k-term arithmetic progressions in JnK, that is,

H :=
{
{x, x+ d, . . . , x+ (k − 1)d} : x, d ∈ JnK, x+ (k − 1)d 6 n

}
.

Since every number in JnK belongs to at most kn many k-term arithmetic progressions and every

pair of numbers belongs to at most
(
k
2

)
such progressions, we have

∆1(H ) = kn and ∆k(H ) 6 · · · 6 ∆2(H ) 6

(
k

2

)
.

Moreover, since JnK contains at least ckn
2 many k-term progressions, for some constant ck > 0,

provided that n > k, we conclude that e(H ) > ckn2 and hence

∆s(H ) 6 K ·
(
n−

1
k−1

)s−1
· e(H )

v(H )
∀s ∈ {1, . . . , k}

for some constant K that depends only on k. Therefore, when Ln−1/(k−1) 6 p 6 p0 for a

sufficiently large constant L, we may apply Theorems 5 and 7 to derive (with a little help from

Lemma 22) the claimed estimate on − logP(X 6 ηE[X]) for every η ∈ [0, 1], as in the previous

proof. We leave the details to the reader. �
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