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We show that the naive mean-field approximation correctly predicts the
leading term of the logarithmic lower tail probabilities for the number of
copies of a given subgraph in G(n,p) and of arithmetic progressions of a
given length in random subsets of the integers in the entire range of densities
where the mean-field approximation is viable.

Our main technical result provides sufficient conditions on the maximum
degrees of a uniform hypergraph H that guarantee that the logarithmic lower
tail probabilities for the number of edges induced by a binomial random sub-
set of the vertices of H can be well-approximated by considering only prod-
uct distributions. This may be interpreted as a weak, probabilistic version of
the hypergraph container lemma that is applicable to all sparser-than-average
(and not only independent) sets.

1. Introduction. This paper is concerned with the phenomenon that, in many cases,
conditioning on an atypical event leads to a mixture of product measures. An emblematic
example is the family of n-vertex graphs with no triangles. It is clear that if one divides
JnK := {1, . . . , n} into two parts and takes only edges with one endpoint in each part, the
resulting graph has no triangles. The classical result of Erdős, Kleitman, and Rothschild [18]
states that the vast majority of triangle-free graphs have such simple structure. In other words,
if we condition the random graph G(n, 12) to have no triangles, the resulting measure can be
approximated by the following process: First, choose a random partition of the vertices into
two parts (according to a measure that strongly favours partitions into approximately equal
parts). Then, choose the edges randomly and independently, with edges between the parts
having probability 1

2 and edges inside the parts having probability 0. Since, conditioned on
the partition, the measure becomes a product measure, the overall process is called a mixture
of product measures.

The aim of this work is to establish sufficient conditions for such a phenomenon to occur
in the context of large deviations for subgraph counts in the binomial random graph G(n,p).
Here, the seminal work of Chatterjee and Varadhan [9] has clarified that there are in fact two
independent steps involved. The first is to show that the distribution of the random graph
conditioned on a tail event can be described by a (small) mixture of product measures. The
second is to describe the relevant measures, which, as it turns out, are those among all product
measures (essentially) supported on the relevant tail event that have the least entropic cost.
The main result of [9] completes the first of these two steps and can be summarised1 as
follows: Denote by Xn the number of copies of a given graph in the binomial random graph
G(n,p). If the edge probability p is fixed and n tends to infinity, then

(1) − logP
(
Xn ⩾ (1 + δ)E[Xn]

)
= (1+ o(1)) ·Φn,p(δ),

where Φn,p(δ) is the least entropic cost of a product measure supported on the upper tail event
(we will give a formal definition below); the analogous result holds for the lower tail. (Here
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and throughout the paper, log denotes the natural logarithm.) As for the second step, the
problem of calculating Φn,p(δ) turned out to be very difficult. Even in the seemingly simple
case of triangle counts, only partial results are known [26, 34]. In this paper, we address only
the first step, namely, obtaining an identity akin to (1).

A substantial drawback of the approach taken by [9], which is based on Szemerédi’s reg-
ularity lemma, is that it does not extend to sparse random graphs. (One may instead use the
so-called weak regularity lemma of Frieze and Kannan [19], but this allows one to extend (1)
only to the regime p⩾ (logn)−c, for some small positive constant c, see [27].) This was first
rectified by the breakthrough work of Chatterjee and Dembo [8], who developed a general
technique for computing large deviation probabilities of nonlinear functions of independent
Bernoulli random variables, such as subgraph counts in G(n,p). In the context of subgraph
counts in G(n,p), the general result of [8] implies that (1) continues to hold as long as
p⩾ n−α for some α> 0 that depends only on the graph whose copies are counted.

The paper of Chatterjee and Dembo inspired a series of further developments. Their gen-
eral technique was further simplified and strengthened by Eldan [17]. In the context of upper
tails for subgraph counts in G(n,p), the range of validity of the approximation (1) was fur-
ther extended by the works of Augeri [1] (for cycles), of Cook and Dembo [11] (for arbitrary
graphs), and of Cook, Dembo, and Pham [12] (for arbitrary graphs and, more generally,
arbitrary uniform hypergraphs). The expression Φn,p(δ) in the right-hand side of (1) was
computed in the range n−1/∆ ≪ p≪ 1, where ∆ is the maximum degree of the graph for
cliques [27] and, subsequently, for arbitrary subgraphs [6]. A very different, combinatorial
technique for computing upper tail probabilities of polynomials of independent Bernoulli ran-
dom variables was recently developed by Harel, Mousset, and Samotij [20]. This technique
was used to resolve the upper tail problem completely for cliques [20] and, subsequently, for
all regular graphs [5]. More precisely, these works showed that the approximation (1) is valid
in the entire range of densities p where it was expected to hold.

Let us stress that all of the works on large deviations of subgraph counts in sparse random
graphs mentioned above were primarily concerned with the upper tail. (In fact, the techniques
developed in both [1] and [20] are inapplicable to the lower tail problem.) Historically, the
upper tail problem is considered to be the more difficult of the two. Whereas Janson, Łuczak,
and Ruciński [23] determined the logarithm of the lower tail probability up to a multiplicative
constant, for every graph and all densities p, already in the late 1980s, the order of magni-
tude of the logarithm of the upper tail probability in the special case of triangle counts was
determined only around ten years ago [7, 16].

In this paper, we offer a new, entropy-based approach to the large deviation problem that is
particularly effective in estimating lower tails. The idea of using entropy estimates for study-
ing nonlinear large deviations was first used in [25] (that paper is a few years older than the
current one, unlike what one might think by examining arXiv submission dates). Ultimately
it stems from Avez’s entropy approach to study random walks and amenability, see [2]. A
straightforward corollary of our main technical result is that the analogue of (1) holds for
counts of arbitrary subgraphs in G(n,p) in the entire range where such an approximation
was expected to be valid.

1.1. New results. We start with a special case of our result for triangles and p = 1
2 . Of

course, this case is mostly covered by [9], but we will get to values of p not covered by
the literature in Theorem 2 below. We first state the minimisation problem that formalises
the phrase ‘least entropic cost’ in this setting. Given a function q :

(JnK
2

)
→ [0,1], let G(n, q)

denote the random graph obtained by retaining each edge e of Kn independently with prob-
ability qe. For each t⩾ 0, define

Qt :=
{
q ∈ [0,1](

JnK
2 ) : E

[
NK3

(
G(n, q)

)]
⩽ t
}
,
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where NK3(G) is the number of triangles in G, and

(2) Φn(t) :=min


∑

e∈(JnK
2 )

(
qe log qe + (1− qe) log(1− qe) + log 2

)
: q ∈ Qt

 .

Note that q log q+(1−q) log(1−q)+log 2 is the difference in entropies of Bernoulli random
variables with success probabilities 1

2 and q.

THEOREM 1. Let Xn denote the number of triangles in G(n, 12). For every n and every
t⩾ 0,

(3) logP(Xn ⩽ t)⩽−Φn(t+ n23/8) + 2n15/8.

REMARK. Note that the two error terms in the above estimate are better than o(n3) and
o(n2), respectively, whereas it is not difficult to verify that Φn(t) ⩾ Ω(n2) whenever t ⩽
E[Xn]−Ω(n3), see Lemma 21. In the remainder of this paper, we follow the literature and
prove results with error terms in the corresponding estimates of the lower tail probabilities
being inexplicit, but here we made an exception.

We now formulate a general result concerning the lower tail of subgraph counts in G(n,p).
In order to phrase the minimisation problem in the case p ̸= 1

2 , it is convenient to first define

ip(q) := q log
q

p
+ (1− q) log

1− q

1− p

and ip(0) := log 1
1−p . Further, given graphs H and G, let NH(G) denote the number of copies

of H in G (throughout, we mean this as subgraphs and not as induced subgraphs). For every
graph H , integer n, real p ∈ (0,1), and every η ∈ [0,1], let

ΦH
n,p(η) :=min


∑

e∈(JnK
2 )

ip(qe) : E
[
NH

(
G(n, q)

)]
⩽ η ·E

[
NH

(
G(n,p)

)] ,

where the minimum is taken over all q ∈ [0,1](
JnK
2 ).

Recall that the 2-density of a graph H is the quantity m2(H) defined as follows: If H has
at least two edges, then

m2(H) :=max

{
eF − 1

vF − 2
: F ⊆H,eF ⩾ 2

}
;

otherwise, m2(H) := 1
2 . The notation F ⊆ H here means that F is a subgraph of H . For

example, m2( ) = 2 but m2( ) = 5
2 because the maximum is attained at the subgraph .

THEOREM 2. For every nonempty graph H , all p0 < 1, and every ε > 0, there exists a
constant L such that the following holds: Suppose that Ln−1/m2(H) ⩽ p ⩽ p0 and let X :=
NH

(
G(n,p)

)
. Then, for every η ∈ [0,1],

(1− ε) ·ΦH
n,p(η+ ε)⩽− logP

(
X ⩽ ηE[X]

)
⩽ (1 + ε) ·ΦH

n,p

(
(1− ε)η

)
.

A key feature of Theorem 2 is that the lower-bound assumption on p is optimal up to
constants. To see this, note first that, by Harris’s inequality, for every F ⊆H and p= o(1),

P(X = 0) = P
(
H ⊈G(n,p)

)
⩾ P

(
F ⊈G(n,p)

)
⩾ (1− peF )n

vF ⩾ exp(−2nvF peF ).
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Moreover, m2(H) is defined so that nvF peF = o(n2p) for some F ⊆H precisely when p≪
n−1/m2(H). On the other hand, for all H , n, p, and η < 1, we have ΦH

n,p(η)⩾ cn2p for some
positive c that depends only on H and η (see Lemma 21 below).

The boundary case η = 0 in Theorem 2, the probability that a random graph is H-free, has
been extensively studied in the literature. In particular, Łuczak [28] computed the asymp-
totics of logP

(
K3 ⊈G(n,p)

)
for all p≫ n−1/m2(K3) and derived an asymptotic formula for

logP
(
H ⊈ G(n,p)

)
, for every nonbipartite graph H and all p ≫ n−1/m2(H), from the so-

called KŁR conjecture [24], which was proved some fifteen years later by Balogh, Morris,
and Samotij [3] and by Saxton and Thomason [32]. In fact, the hypergraph container theorems
proved in [3, 32] can be used to compute the asymptotics of the logarithms of these probabil-
ities directly, using simple, well-known results in extremal graph theory, see [3, §1.3].

Our methods allow us to generalise Theorem 2 to k-uniform hypergraphs in a straightfor-
ward way. Suppose that H is a nonempty k-uniform hypergraph. The k-density of H is the
quantity mk(H) defined as follows: If H has at least two edges, then

(4) mk(H) :=max

{
eF − 1

vF − k
: F ⊆H,eF ⩾ 2

}
;

otherwise, mk(H) := 1
k . For every integer n, real p ∈ (0,1), and every η ∈ [0,1], we define

ΦH
n,p(η) analogously to the graph case:

ΦH
n,p(η) :=min


∑

e∈(JnK
k )

ip(qe) : E
[
NH

(
G(k)(n, q)

)]
⩽ η ·E

[
NH

(
G(k)(n,p)

)] ,

where G(k)(n, q) is the binomial random k-uniform hypergraph with vertex set JnK.

THEOREM 3. For every nonempty k-uniform hypergraph H , all p0 < 1, and every ε > 0,
there exists a constant L such that the following holds: Suppose that Ln−1/mk(H) ⩽ p⩽ p0
and let X :=NH

(
G(k)(n,p)

)
. Then, for every η ∈ [0,1],

(1− ε) ·ΦH
n,p(η+ ε)⩽− logP

(
X ⩽ ηE[X]

)
⩽ (1 + ε) ·ΦH

n,p

(
(1− ε)η

)
.

As in Theorem 2, the lower-bound assumption on p in Theorem 3 is optimal and the
asymptotics of logP(X = 0) can be derived from the hypergraph container theorems.

The final application of our new entropy method is a solution to the lower tail problem
for the number of arithmetic progressions of a given length in a binomial random subset
of JnK, which will demonstrate that symmetry is not crucial for our methods. Given a function
q : JnK → [0,1], we denote by JnKq the random subset of JnK obtained by independently
retaining each i ∈ JnK with probability qi. For a positive integer k and a set I ⊆ JnK, let
Ak(I) denote the number of k-term arithmetic progressions in I .

THEOREM 4. For every positive integer k, all p0 < 1, and every ε > 0, there exists a
constant L such that the following holds: Suppose that Ln−1/(k−1) ⩽ p ⩽ p0 and let X :=
Ak

(
JnKp

)
. Then, for every η ∈ [0,1],

(1− ε) ·Φk
n,p(η+ ε)⩽− logP

(
X ⩽ ηE[X]

)
⩽ (1 + ε) ·Φk

n,p

(
(1− ε)η

)
.

As before, the lower-bound assumption on p in Theorem 4 is optimal and the asymp-
totics of logP(X = 0) can be derived from the hypergraph container theorems, see [3, The-
orem 1.1].
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1.2. The main technical result. A natural way to generalise Theorems 2, 3, and 4 is to
represent the combinatorial objects we are counting as edges of an auxiliary hypergraph (no
relation to the hypergraphs of Theorem 3). This way, each of the respective random variables
counts the number of edges of such a hypergraph that are induced by random subset of
its vertices. This idea is not new – the transference principles of Conlon and Gowers [10]
and Schacht [33] and the hypergraph container theorems [3, 32] are prime examples of why
taking such an abstract viewpoint may prove beneficial in our context. For example, in order
to express the number of triangles in G(n,p) this way, we consider the 3-uniform hypergraph
with vertex set

(JnK
2

)
, the edge set of the complete graph on JnK, whose hyperedges are the(

n
3

)
triples of edges that form triangles in the complete graph on JnK.

We are thus led to ask the following general question: Given a hypergraph H and a
p ∈ [0,1], what is the probability that a random subset of the vertices of H formed by inde-
pendently retaining each vertex with probability p contains atypically few hyperedges? For
extra generality, we allow the edges of the hypergraph to have positive weights. However,
we will only discuss uniform hypergraphs here; we will denote by r the common size of all
hyperedges.

Suppose that an r-uniform hypergraph H is equipped with a weight function d : H →
(0,∞). Here and below we do not distinguish in the notation between a hypergraph and its
set of hyperedges, so d is in fact on the hyperedges of H . The set of vertices of H will be
denoted by V (H ). We shall denote by e(H ) the sum

∑
A∈H dA of all edge weights and,

for every set B ⊆ V (H ), we shall write

(5) degH B :=
∑

B⊆A∈H

dA.

Moreover, for every s ∈ JrK, we define

∆s(H ) :=max{degH B :B ⊆ V and |B|= s} .

Note that when dA = 1 for every A ∈ H , then we may simply view H as a hypergraph; in
this case, the above definitions give the usual notions of edge counts and degrees.

Let H be a hypergraph and denote V = V (H ) for brevity. Let Y = (Yv)v∈V be a
sequence of i.i.d. Bernoulli random variables with success probability p, one for every
vertex of the hypergraph H , and let R be the corresponding random subset of V , i.e.,
R := {v ∈ V : Yv = 1}. For a function q : V → [0,1], we let Y (q) = (Y ′

v)v∈V be a sequence
of independent Bernoulli random variables such that Y ′

v has success probability qv for each
v ∈ V and let R(q) be the corresponding random subset of V . For every nonnegative real η,
define

(6) ΦH
p (η) :=min

{
DKL

(
Y (q) ∥Y

)
: q ∈ [0,1]V and E[e(H [R(q)])]⩽ η ·E[e(H [R])]

}
,

where DKL is the Kullback–Leibler divergence, so that,

DKL

(
Y (q) ∥Y

)
=
∑
v∈V

ip(qv) =
∑
v∈V

qv log
qv
p
+ (1− qv) log

1− qv
1− p

.

Here and below, H [R] stands for the restriction of H to R, namely the hypergraph whose
vertices are R and whose hyperedges are {A ∈ H : A ⊆ R}; thus e(H [R]) =

∑
A⊆R dA.

Also, for W ⊆ V (H ), we write H −W in place of H [V (H )\W ]. Finally, v(H ) denotes
the number of vertices in H , i.e., |V |. Note that, unlike e(H ), it does not depend on the
weight function.
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THEOREM 5. For every integer r and all p0 < 1, ε > 0, and K , there exist a positive
λ and a C such that the following holds. Let V be a finite set and let H be a nonempty r-
uniform hypergraph with vertex set V and a weight function d : H → (0,∞). Let p ∈ (0, p0]
and let R be the p-random subset of V . Suppose that, for every s ∈ JrK, the maximum degree
∆s(H ) satisfies

(7) ∆s(H )⩽K · (λp)s−1 · e(H )

v(H )
.

Then, letting X := e(H [R]), for every nonnegative real η,

− logP
(
X ⩽ ηE[X]

)
⩾ (1− ε)ΦH

p (η+ ε)−C.

Let us make some remarks on the formulation of Theorem 5. We first note that the
parameter K is needed only for the case s = 1, where (7) becomes simply ∆1(H ) ⩽
Ke(H )/v(H ). For all s > 1 it could have been removed from (7) by choosing λ slightly
smaller. In applications (see §7) we choose K according to the ∆1 of the hypergraph in ques-
tion, get a λ from the theorem, and that restricts the range of applicable p, though only by a
constant.

Our argument gives the following explicit dependence of λ and C on the parameters:

λ⩾
ε9(1− p0)

105K2r4
and C ⩽

106K2r5

ε9(1− p0)
log

1

1− p0
.

Most importantly, the dependence on ε is polynomial.
The readers familiar with the hypergraph container method will likely notice striking sim-

ilarities between the assumptions of Theorem 5 and the assumptions of the container lemmas
proved in [3, 4]. This is not a coincidence – the boundary case η = 0 in Theorem 5 bounds
the probability that the random set R is independent in H from above by ΦH

p (ε), a mini-
mum over all distributions q ∈ [0,1]V such that R(q) induces at most εe(H ) edges in H , in
expectation (cf. the combinatorial notion of containers for independent sets in [3, 32]).

While it might be tempting to replace ΦH
p (η + ε) in the assertion of Theorem 5 with

ΦH
p (η), or at least ΦH

p ((1 + ε)η), this is not always possible for η very close to zero. To see
this, examine the case η = 0. Recalling the definition (6) of Φ, we see that at η = 0 we need to
consider only q such that E[e(H [R(q)])]⩽ 0. But e(H [R(q)])⩾ 0, and it is zero only when
H [R(q)] is empty, i.e., when R(q) is an independent set. Thus the expectation can be 0 only
when q is supported on an independent set. Minimising DKL(Y

(q) ∥Y ) under this restriction,
we see that the minimiser is a function q which takes the value p on some independent set of
largest size and 0 elsewhere. We get ΦH

p (0) = (v(H )−α(H )) · | log(1−p)|, where α(H )
is the largest size of an independent set in H .

Suppose now that H is the union of two hypergraphs with the same vertex set V : a dense
hypergraph H1 with α(H1) ⩾ v(H )/2 and a very sparse hypergraph H2 with α(H2) ⩽
v(H )/4. (For example, if M and v(H ) are sufficiently large as a function of the uniformity
r only, then a random hypergraph with Mv(H ) edges will typically have this property).
Now, on the one hand, α(H )⩽ α(H2) so

ΦH
p (0)⩾

(
v(H )− α(H2)

)
· | log(1− p)|⩾ 3v(H )

4
· | log(1− p)|.

But, on the other hand, by Harris’s inequality, the p-random subset of some largest indepen-
dent set of H1 has probability at least (1− pr)e(H2) to be independent also in H2 and thus,
when p is sufficiently small,

P(X = 0)⩾ (1− p)v(H )−α(H1) · e−2pre(H2) ⩾ (1− p)2v(H )/3,
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showing that − logP(X = 0) is not close to ΦH
p (0).

For easier comparison with the literature, let us reformulate Theorem 5 in the language
of polynomials. We retain the notations V , Y , and Y (q) as above. We replace a weighted
hypergraph H with a homogeneous polynomial f by turning each edge A of H into the
monomial dA ·

∏
v∈A yv . The definition of Φ thus becomes

Φf
p(η) =min

{
DKL(Y

(q) ∥Y ) : q ∈ [0,1]V ,E[f(Y (q))]⩽ η ·E[f(Y )]
}
.

Moreover, the assumption (7) can be now expressed in terms of partial derivatives of f . Given
a B = {v1, . . . , vk} ⊆ V and a polynomial f in |V | variables, we denote

∂Bf :=
∂

∂v1
· · · ∂

∂vk
f.

The following statement is a reformulation of Theorem 5.

THEOREM 5’. For every integer r and all p0 < 1, ε > 0, and K , there exist a positive λ
and a C such that the following holds. Let V be a finite set and let f be an r-homogeneous
V -variate multilinear polynomial with nonnegative coefficients. Let p ∈ (0, p0] and let Y =
(Yv)v∈V be a sequence of i.i.d. Ber(p) random variables. Suppose that, for every nonempty
B ⊆ V with |B|⩽ r,

∂Bf(1)⩽K · (λp)|B|−1 · f(1)
|V |

.

Then, letting X := f(Y ), for every nonnegative real η,

− logP
(
X ⩽ ηE[X]

)
⩾ (1− ε)Φf

p(η+ ε)−C.

When f is a linear function, the variable X from the statement of the theorem is a sum
of independent random variables. In this case, our argument can be simplified tremendously.
The special case f(y) = y1 + · · · + yn, which corresponds to the binomial distribution, is
treated in §4.2, where a short, entropy-based proof of the optimal tail estimate

P
(
Bin(n,p)⩽ nq

)
⩽ exp

(
− n · ip(q)

)
is given.

1.3. Lower bounds on the lower tail. We end the results section with a lower bound
on the lower tail probabilities from the statements of Theorems 5 and 5’ that matches the
upper bounds proved by these theorems. Since the proof of this lower bound is a relatively
standard tilting argument, we relegate it to §6. Here is the exact formulation (in the language
of Theorem 5’).

THEOREM 6. For every p0 < 1 and ε > 0, there exists a C such that the following holds.
Let V be a finite set, let Y = (Yv)v∈V be a sequence of i.i.d. Ber(p) random variables, let
f : {0,1}V → [0,∞) be an arbitrary increasing function, and let X := f(Y ). Then, for every
nonnegative real η,

− logP
(
X ⩽ ηE[X]

)
⩽ (1 + ε)Φf

p

(
(1− ε)η

)
+C.
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1.4. Organisation of the paper. The remainder of this paper is organised as follows. In
Section 2, we outline of the proof of Theorem 1 and discuss some of the additional ideas
required in the proof of Theorem 2 in the case H = K3. In Section 3, which is merely
three pages long, we present a complete proof of Theorem 1. In Section 4, we recall some
basic properties of the Kullback–Leibler divergence and prove the key technical lemma
(Lemma 15) that relates independence and conditional KL-divergence. Subsection 4.2 con-
tains a short entropy-based proof of optimal tail bounds for binomial distributions, which
might be of independent interest. Our main technical result, Theorem 5, is proved in Sec-
tion 5. The matching lower bound for lower tail probabilities, Theorem 6, is proved in Sec-
tion 6. Finally, Section 7 contains short derivations of Theorems 2, 3, and 4.

1.5. Note added in proof. After this work had been completed, we learned that an earlier
work of Jain, Koehler, and Risteski [21] had independently exploited the connections be-
tween entropy and conditional independence in order to establish quantitative bounds on the
tightness of the mean-field approximation to the free energy of Ising models on finite graphs
(and, more generally, order-k Markov random fields on a finite set of vertices). Their use
of the so-called ‘pinning lemma’ [21, Theorem 3.2] of Manurangsi and Raghavendra [29],
which extends earlier work of Raghavendra and Tan [31] and of Montanari [30], and the way
it is combined with Pinsker’s inequality, closely resemble our proof of Theorem 1.

2. Proof outline.

2.1. Triangle count in G(n, 12). Let us first explain how to prove Theorem 1, i.e., the
upper bound on the lower tail of the number of triangles. Considering only G(n, 12), which
is the uniform distribution on n-vertex graphs, allows us to phrase the argument in the fa-
miliar language of entropy rather than using the Kullback–Leibler divergence. The argument
sketched here is described in full in §3 and takes no more than three pages.

Let Y be the random graph G(n, 12) conditioned on having at most t triangles. Then

(8) logP(X ⩽ t) =H(Y )−
(
n

2

)
log 2,

where H is the entropy of Y . Examine the distribution of the first edge (i.e., of Y12) under
the conditioning.2 For every integer m⩾ 0, let

hm :=H(Y12 | edges with at least one endpoint larger than n−m),

where H(· | ·) is the usual conditional entropy. Since conditional entropy is nonnegative and
it decreases as one increases the conditioning, we have 0⩽ hm+1 ⩽ hm for every m. Since
h0 =H(Y12)⩽ log 2, there must be some m⩽

√
n such that hm − hm+1 ⩽C/

√
n, where C

is an absolute constant.
Denote by Sm the edges from the definition of hm, so that hm =H(Y12 | Sm). Since both

{1, n−m} and {2, n−m} belong to Sm+1 \Sm, we may use the monotonicity of conditional
entropy again to sandwich H(Y12 | Sm, Y1,n−m, Y2,n−m) between hm and hm+1:

hm+1 =H(Y12 | Sm+1)⩽H(Y12 | Y1,n−m, Y2,n−m, Sm)⩽H(Y12 | Sm) = hm.

Hence, we also get the inequality

H(Y12 | Sm)−H(Y12 | Y1,n−m, Y2,n−m, Sm)⩽C/
√
n.

2We assume that the vertex set of G(n, 12 ) is JnK and think of Y ∈ {0,1}(
JnK
2 ) as the characteristic vector of

the edge set of the conditioned random graph.
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By symmetry (every permutation of Jn−mK preserves Sm), we may replace (1,2, n−m)
in the above inequality with any three different elements (i, j, k) of Jn−mK and get

H(Yij | Sm)−H(Yij | Yik, Yjk, Sm)⩽C/
√
n.

We now apply Pinsker’s inequality, which states that, for any two variables T and U , if
H(T )−H(T | U) is small, then T and U must be approximately independent. We apply this
to the variables Yij conditioned on Sm to conclude that, conditioned on Sm, the three edges
of every triangle are (typically) approximately independent.

Recall now the definition of Φn(t) given in (2). It is the minimum of −H
(
G(n, q)

)
+(

n
2

)
log 2 over all functions q :

(JnK
2

)
→ [0,1] such that

T (q) := E
[
#triangles in G(n, q)

]
⩽ t.

Consider the function qij := E[Yij | Sm]. The approximate independence of the Yij gives that
T (q) is (typically) approximately the expected number of triangles in Y , which is at most t,
by the definition of Y . Hence, T (q)⩽ t+o(t), where the o(t) error term comes from the fact
that the Yij are only approximately independent. We conclude that

H
(
(Yij)i,j⩽n−m | Sm

)
⩽

∑
i,j⩽n−m

H(Yij | Sm)⩽−Φn(t+ o(t)) +

(
n

2

)
log 2.

Since Sm has only at most n3/2 edges, its entropy is negligible and we get

H(Y ) =H(Sm) +H
(
(Yij)i,j⩽n−m | Sm

)
⩽ (1− o(1)) ·Φn(t+ o(t)) +

(
n

2

)
log 2,

as needed.
Examining the proof above, we see that the crucial step is that of proving conditional

approximate independence. Why was the conditioning necessary? Because Y is not close to
a product measure but rather a mixture of product measures. Heuristically, the conditioning
chooses one product measure from the mixture.

2.2. Triangle count in G(n,p) and beyond. What is needed to prove Theorem 1 with
G(n, 12) replaced by G(n,p)? Since the latter is no longer a uniform distribution, in order to
phrase a suitable analogue of (8), we certainly have to replace entropy with entropy relative to
a product of p-Bernoulli variables (relative entropy is also called the Kullback–Leibler diver-
gence, though note that the sign of the Kullback–Leibler divergence is minus that of what a
straightforward analogue of entropy would have been) and we need an analogue of Pinsker’s
inequality for (conditional) relative entropy. These two ideas would have been enough to
solve the lower tail (as well as the upper tail) problem for triangles in G(n,p) for all p⩾ n−c,
where c is an absolute positive constant.

In order to extend the argument to all p≫ n−1/2, one needs to prove a version of Pinsker’s
inequality that provides a stronger upper bound on the difference of probabilities that two
measures assign to rare events (rather than arbitrary events, as measured by the total variation
distance). Furthermore, in order to use this strengthening of Pinsker’s inequality, we also need
to note that, when we condition our random graph on the lower tail event, the probability of
every edge is at most p, even when we further condition on Sm. This follows from the Harris
inequality (aka the FKG inequality). The use of Harris’s inequality is the main (but not the
only) reason why our methods are not as efficient for the upper tail problem.

The general setting of Theorem 5, which lacks symmetry, requires a serious overhaul of
the argument. (Having said that, even in the setting of K4 counts in G(n,p), which still has
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a lot of symmetry, the argument sketched above does not work under the optimal assump-
tion p≫ n−2/5.) We no longer increase the conditioning in small steps (recall the definition
of hm above) but rather in large chunks, which are chosen randomly. The crux of the mat-
ter is relating the decrease in entropy caused by conditioning on each such random chunk
to approximate independence of the remaining variables. Here, the key role is played by
Lemma 15, an improvement of Pinsker’s inequality that is inspired by the statement of Jan-
son’s inequality [22].

3. The lower tail of triangle count in G(n, 1
2
). As explained above, our proof of The-

orem 1 revolves around (information-theoretic) entropy. For convenience of the reader, we
shall recall here the definitions of entropy and conditional entropy and list all of their prop-
erties required for our argument; for proofs of these properties, we refer the reader to [13,
Chapter 2].

3.1. Preliminaries. The entropy of a random variable X taking values in a finite set X
is the quantity H(X) defined by

H(X) :=−
∑
x∈X

P(X = x) logP(X = x).

Further, given two random variables X and Y that take values in finite sets X and Y ,
respectively, and have a joint distribution, the (conditional) entropy of X conditioned on Y
is the quantity H(X | Y ) defined as follows:

H(X | Y ) :=
∑
y∈Y

P(Y = y)H
(
X{Y=y}),

where X{Y=y} denotes X conditioned on the event that Y = y, so that, for every x ∈ X and
every y ∈ Y with P(Y = y) ̸= 0,

P
(
X{Y=y} = x

)
=

P(X = x, Y = y)

P(Y = y)
.

The above definitions ensure that entropies and conditional entropies are always nonnegative.
Moreover, it is easy to verify that

(9) H(X | Y ) =H(X,Y )−H(Y ).

In the remainder of this section, a discrete random variable will mean a random variable
taking values in some finite set. The following elementary inequalities should be familiar to
readers who have encountered the notion of entropy.

LEMMA 7. Suppose that X , Y , and Z are discrete random variables and that X takes
values in a finite set X . We have:

(i) H(X)⩽ log |X | and equality holds iff X is uniform on X ;
(ii) H(X | Y )⩽H(X) and equality holds iff X and Y are independent;
(iii) H(X | Y,Z)⩽H(X | Y );
(iv) H(X,Y | Z)⩽H(X | Z) +H(Y | Z).

The main ingredient in our proof is Pinsker’s inequality (see [15, Problem 3.18]), which,
in our context, can be viewed as a ‘stability’ version of (ii) in Lemma 7. The statement
requires the following notation: For two random variables X and Y , we denote by X × Y
the random variable obtained by first letting X̃ and Ỹ be two independent copies of X and
Y , respectively, and then defining X ×Y = (X̃, Ỹ ). In other words, L (X ×Y ) = L (X)×
L (Y ), where, as usual, L (X) stands for the law of X , i.e., the measure induced by X on
its space of values.
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LEMMA 8. Suppose that X and Y are discrete random variables. We have

dTV
(
(X,Y ),X × Y

)
⩽
√

2
(
H(X)−H(X | Y )

)
,

where dTV denotes the total variation distance.

3.2. The argument. Let Y denote the random graph G(n, 12) conditioned on having at
most t triangles. In other words, Y is a uniformly chosen random graph with vertex set
JnK := {1, . . . , n} and at most t triangles. In particular, Lemma 7(i) implies that

(10) logP(Xn ⩽ t) =H(Y )−
(
n

2

)
log 2.

In order to bound the entropy of Y from above, it will be convenient to view Y as the
random vector (Ye)e∈Kn , where Ye indicates whether e is an edge of Y . For a subvector S
of Y and every e ∈ Kn, we will write Y S

e to denote the random variable whose (random)
distribution is the distribution of Ye conditioned on S, so that P(Y S

e = 1) = E[Ye | S]. The
following lemma captures the notion of conditional approximate independence (recall the
proof sketch in §2.1).

LEMMA 9. There exists a subgraph F ⊆Kn with at most n3/2 edges and such that, for
every {i, j, k} ∈

(JnK
3

)
, letting S := (Yf )f∈F and

dSijk := dTV
(
(Y S

ij , Y
S
ik , Y

S
jk), Y

S
ij × Y S

ik × Y S
jk

)
,

we have E[dSijk]⩽ 2n−1/4.

PROOF. For a nonnegative integer m, let Fm be the subgraph of Kn comprising all edges
{i, j} satisfying max{i, j} > n −m, let Sm := (Yf )f∈Fm and let hm := H(Y12 | Sm). By
Lemma 7(iii), the function m 7→ hm is decreasing and hence, for some m ⩽

√
n, we must

have

hm − hm+1 ⩽
h0 − h√

n√
n

.

Bounding the numerator is easy. On the one hand, we have

h0 =H(Y12)⩽ log 2,

as Y12 takes only two values, see Lemma 7(i); on the other hand, hm ⩾ 0 for every m, as
conditional entropy is always nonnegative. Thus, there must be an m with 0⩽m⩽

√
n− 1

such that hm − hm+1 ⩽ (log 2)/
√
n. Fix one such m and let F = Fm and S = Sm; note

that e(F ) ⩽mn ⩽ n3/2. Since F ⊆ F ∪
{
{1, n−m},{2, n−m}

}
⊆ Fm+1, Lemma 7(iii)

implies that

hm+1 =H(Y12 | Sm+1)⩽H(Y12 | S,Y1,n−m, Y2,n−m)⩽H(Y12 | S) = hm

and, consequently,

(11) H(Y12 | S)−H(Y12 | S,Y1,n−m, Y2,n−m)⩽ (log 2)/
√
n.

By symmetry (every permutation of Jn−mK fixes F ), we may replace the triple of indices
(1,2, n−m) in (11) with any ordered triple (i, j, k) of distinct elements of Jn−mK. Using
the definition of conditional entropy, we may rewrite this upgraded inequality as

E
[
H(Y S

ij )−H(Y S
ij | Y S

ik , Y
S
jk)︸ ︷︷ ︸

λS
ijk

]
⩽ (log 2)/

√
n,
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where E averages over the values of S.
Fix an arbitrary triple {i, j, k} ∈

(JnK
3

)
. If max{i, j, k} > n − r, then at least two out of

the three pairs ij, ik, jk belong to F ; consequently, at least two out the three corresponding
variables Y S

ij , Y S
ik , Y S

jk are trivial (for every evaluation of S), which implies that dSijk = 0 (the
dSijk from the statement of the lemma). Therefore, we may assume that {i, j, k} ∈

(Jn−mK
3

)
.

For brevity, denote A= Y S
ij , B = Y S

ik , and C = Y S
jk, so that

dSijk = dTV
(
(A,B,C),A×B ×C

)
⩽ dTV

(
(A,B,C),A× (B,C)

)
+ dTV

(
A× (B,C),A×B ×C

)
= dTV

(
(A,B,C),A× (B,C)

)︸ ︷︷ ︸
d1

+dTV
(
(B,C),B ×C

)︸ ︷︷ ︸
d2

.

Pinsker’s inequality (Lemma 8) implies that

d1 ⩽
√

1
2

(
H(A)−H(A |B,C)

)
=
√

1
2λ

S
ijk.

Further,

d2 ⩽ dTV
(
(A,B,C), (A,B)×C

)
⩽
√

1
2

(
H(C)−H(C |A,B)

)
=
√

1
2λ

S
jki

(the first inequality is easy to check). We conclude that

E
[
dSijk
]
⩽ E

[√
1
2λ

S
ijk

]
+E

[√
1
2λ

S
jki

]
⩽
√

1
2E[λ

S
ijk] +

√
1
2E[λ

S
ijk]

⩽ 2

√
(log 2)/(2

√
n)⩽ 2n−1/4,

where the second inequality follows from the Cauchy–Schwarz inequality.

Let F be the graph from the statement of Lemma 9 and let S = (Yf )f∈F , as in the claim.
The chain rule for conditional entropies, identity (9) above, and Lemma 7(iv) imply that

H(Y ) =H(S) +H
(
(Ye)e∈Kn\F | S

)
⩽H(S) +

∑
e∈Kn\F

H(Ye | S).

Since S takes at most 2e(F ) different values and e(F )⩽ n3/2, we have, by Lemma 7(i),

(12) H(Y )⩽ n3/2 log 2 +
∑
e∈Kn

H(Ye | S),

where we also used the fact that conditional entropies are nonnegative to extend the range of
the sum from Kn \ F to Kn (in fact, H(Ye | S) = 0 for every e ∈ F ).

Recall that our eventual goal is to compare the entropy of Y to Φn(t), which is defined as
the minimum over certain functions q. Define therefore the S-measurable random function
q :
(JnK

2

)
→ [0,1] by letting, for each e ∈Kn,

qe := E[Ye | S] = P(Y S
e = 1).

Letting h : [0,1]→ [0, log 2] be the function defined by h(x) =−x logx−(1−x) log(1−x),
we may now write

H(Ye | S) = E
[
H(Y S

e )
]
= E[h(qe)].
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Let XS denote the number of triangles in Y conditioned on S, that is,

XS :=
∑

{i,j,k}∈(JnK
3 )

Y S
ij Y

S
ikY

S
jk

and let

X̄S :=
∑

{i,j,k}∈(JnK
3 )

qijqikqjk = E
[
NK3

(
G(n, q)

)]
.

Recall the definition of dSijk from the statement of Lemma 9 and observe that

(13)
∣∣E[Y S

ij Y
S
ikY

S
jk

]
− qijqikqjk

∣∣⩽ dSijk;

indeed, the two terms in the left-hand side are the probabilities of the event that Y S
ij = Y S

ik =

Y S
jk = 1 under the two distributions whose total variation distance is dSijk.

Let

∆=
∑

{i,j,k}∈(JnK
3 )

dSijk

and note that, by Lemma 9,

(14) E[∆]⩽

(
n

3

)
· 2n−1/4 ⩽ n11/4.

Summing (13) over all triples {i, j, k}, we obtain

X̄S ⩽ E
[
XS
]
+∆⩽ t+∆,

since XS ⩽ t with probability one. In particular, the definition of Φn, see (2), implies that∑
e∈Kn

(
log 2− h(eq)

)
⩾Φn(t+∆).

We may conclude that∑
e∈Kn

H(Ye | S) = E

[∑
e∈Kn

h(qe)

]
⩽

(
n

2

)
log 2−E[Φn(t+∆)].

Since Φn is decreasing and nonnegative,

E[Φn(t+∆)]⩾ P(∆⩽ n23/8) ·Φn(t+ n23/8)
(14)
⩾
(
1− n−1/8

)
·Φn(t+ n23/8).

Recalling (10) and (12), this implies that

logP(Xn ⩽ t)⩽−(1− n−1/8) ·Φn(t+ n23/8) + n3/2 ⩽−Φn(t+ n23/8) + 2n15/8,

as Φn(t)⩽
(
n
2

)
log 2 for every t. This finishes the proof of Theorem 1.

4. The Kullback–Leibler divergence. For the proof of Theorem 5, we need the notion
of Kullback–Leibler divergence, or relative entropy. Let P and Q be random variables taking
values in a finite set X and suppose that L (P )≪ L (Q), that is, that the distribution of P is
absolutely continuous with respect to the distribution of Q. Denoting by p and q the densities
of P and Q, respectively, the Kullback–Leibler divergence of P from Q (also known as the
relative entropy), denoted by DKL(P ∥Q), is defined as follows:

DKL(P ∥Q) :=
∑
x∈X

p(x) log
p(x)

q(x)
,
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where we adopt the convention that 0 log 0
q = 0 for all q. The assumption that L (P ) ≪

L (Q), which is a concise way of saying that p(x) = 0 whenever q(x) = 0, guarantees that
DKL(P ∥Q) is well-defined. A fundamental property of the KL-divergence is that it is always
nonnegative; indeed, since logx⩽ x− 1 for all positive x, we have, letting X ′ = {x ∈ X :
p(x)> 0},

DKL(P ∥Q) =−
∑
x∈X ′

p(x) log
q(x)

p(x)
⩾
∑
x∈X ′

(
p(x)− q(x)

)
= 1−

∑
x∈X ′

q(x)⩾ 0.

One easily checks that, when Q is a uniformly chosen random element of X , then

DKL(P ∥Q) = log |X | −H(P ),

where H(P ) is the entropy of P (defined in the previous section). In particular, if P is the
uniformly chosen random element of a nonempty subset A ⊆X , then, by Lemma 7(i),

DKL(P ∥Q) = log |X | − log |A |=− logP(Q ∈ A ).

The following property of the KL-divergence, which generalises this identity, is the starting
point of our approach.

PROPOSITION 10. Suppose that Q is a random variable taking values in a finite set X .
Suppose that A ⊆ X satisfies P(Q ∈ A) ̸= 0 and let QA be the random variable Q condi-
tioned on the event {Q ∈A}. Then

DKL(Q
A ∥Q) =− logP(Q ∈A).

PROOF. Let q : X → [0,1] be the probability density function of Q and note that the
probability density function of QA is the function qA : X → [0,1] defined by

qA(x) :=

{
q(x)

P(Q∈A) if x ∈A,

0 otherwise.

It follows that

DKL(Q
A ∥Q) =

∑
x∈X

qA(x) log
qA(x)

q(x)
=
∑
x∈A

q(x)

P(Q ∈A)
log

1

P(Q ∈A)
= log

1

P(Q ∈A)
,

as claimed.

The next property of the KL-divergence is a generalisation of the chain rule for entropies,
identity (9), and Lemma 7(ii). In fact, the equality in (15) below is a special case of an even
more general identity, the chain rule for relative entropies, see [13, Theorem 2.5.3].

PROPOSITION 11. Let Q1 and Q2 be random variables taking values in finite sets X1

and X2, respectively. Suppose that (P1, P2) is an X1 × X2-valued random variable such
that L (Pi)≪ L (Qi) for each i. Let Q1×Q2 denote a random variable whose independent
coordinates have marginals Q1 and Q2, respectively; that is, L (Q1 × Q2) = L (Q1) ×
L (Q2). Then

(15) DKL

(
(P1, P2)∥Q1 ×Q2

)
−DKL(P2 ∥Q2)⩾DKL(P1 ∥Q1),

where equality holds if and only if P1 and P2 are independent.

The proof of the proposition employs the following elementary inequality, whose proof
we include for the sake of completeness.
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LEMMA 12. Suppose that I is a finite set and, for each i ∈ I , let ai and bi be nonnegative
reals such that ai = 0 whenever bi = 0. Then, letting a=

∑
i∈I ai and b=

∑
i∈I bi, we have∑

i∈I
ai log

ai
bi

⩾ a log
a

b
.

Moreover, equality holds above if and only if aib= abi for every i ∈ I .

PROOF. Without loss of generality, we may assume that ai > 0 (and thus bi > 0) for each
i ∈ I . Since the function x 7→ − logx is strictly convex, Jensen’s inequality implies that∑
i∈I

ai log
ai
bi

−a log
a

b
= a ·

∑
i∈I

ai
a
·
(
− log

abi
aib

)
⩾−a · log

(∑
i∈I

ai
a
· abi
aib

)
=−a · log 1 = 0

and the inequality is strict unless abi
aib

=
∑

j∈I
aj
a · abj

ajb
= 1 for every i ∈ I , as claimed.

PROOF OF PROPOSITION 11. Let p : X1 × X2 → [0,1] be the probability density func-
tion of (P1, P2) and, for each i ∈ {1,2}, let qi : Xi → [0,1] be the probability density func-
tion of Qi. Without loss of generality, we may assume that qi(xi) > 0 for every i ∈ {1,2}
and each xi ∈ Xi. The functions p1 : X1 → [0,1] and p2 : X2 → [0,1] defined by

p1(x1) :=
∑

x2∈X2

p(x1, x2) and p2(x2) :=
∑

x1∈X1

p(x1, x2)

are the probability density functions of P1 and P2, respectively. Now, denoting by L the
left-hand side of (15), we have

L=
∑

(x1,x2)∈X1×X2

p(x1, x2) log
p(x1, x2)

q1(x1)q2(x2)
−
∑

x2∈X2

p2(x2) log
p2(x2)

q2(x2)

(∗)
=
∑

x1∈X1

∑
x2∈X2

p(x1, x2) log
p(x1, x2)

q1(x1)p2(x2)

(†)
⩾
∑

x1∈X1

( ∑
x2∈X2

p(x1, x2)

)
log

∑
x2∈X2

p(x1, x2)∑
x2∈X2

q1(x1)p2(x2)

=
∑

x1∈X1

p1(x1) log
p1(x1)

q1(x1)
=DKL(P1 ∥Q1),

where (∗) follows by applying p2(x2) =
∑

x1∈X1
p(x1, x2) to the second sum and (†) follows

by applying Lemma 12 to the inner sum. Finally, the characterisation of equality in Lemma 12
implies that equality holds in (†) if and only if p(x1, x2) = p1(x1)p2(x2) for all x1 ∈ X1 and
x2 ∈ X2.

4.1. Divergence from a vector of i.i.d. Bernoulli variables. Throughout this paper, we
shall be estimating divergences of random variables from vectors of independent Ber(p)
random variables. In view of this, it will be convenient for us to define, for a real p ∈ (0,1),
an integer k ⩾ 1, and a random variable X taking values in {0,1}k, the p-divergence Ip(X)
of X by

(16) Ip(X) :=DKL

(
X ∥Ber(p)k

)
⩾ 0.
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When X is Bernoulli itself, say with parameter q, then Ip(X) is a function of q which we
will denote by ip. Namely,

(17) ip(q) := Ip
(
Ber(q)

)
=DKL

(
Ber(q)∥Ber(p)

)
= q log

q

p
+ (1− q) log

1− q

1− p
.

Denote the first and the second derivatives of ip by i′p and i′′p , respectively. Let us record here,
for future reference, that, for every q ∈ (0,1),

(18) i′p(q) = log
q

p
− log

1− q

1− p
and i′′p(q) =

1

q
+

1

1− q
.

We also define a notion of conditional divergence. Given random variables X and Y that
have a joint distribution and such that X takes values in {0,1}k for some integer k ⩾ 1, we
define the conditional p-divergence of X conditioned on Y

Ip(X | Y ) := E
[
Ip
(
XY
)]

= E
[
DKL

(
XY ∥Ber(p)k

)]
,

where XY denotes the random variable X conditioned on Y , cf. the definition of conditional
entropy.

It is straightforward to verify that, when X takes values in {0,1}k,

I1/2(X) = k log 2−H(X) and I1/2(X | Y ) = k log 2−H(X | Y )

and therefore it should not come at a surprise that the divergence and the conditional diver-
gence defined above satisfy similar inequalities as entropy and conditional entropy, such as
the ones presented in Lemma 7, only in reverse. In particular, Proposition 11 implies that3

(19) Ip(X | Y )⩾ Ip(X)

and equality holds if and only if X and Y are independent, cf. Lemma 7(ii); moreover, if Y
also takes values in {0,1}ℓ for some integer ℓ, then

(20) Ip(X,Y ) = Ip(X | Y ) + Ip(Y )⩾ Ip(X) + Ip(Y ),

where, again, equality holds if and only if X and Y are independent, cf. the chain rule for
entropies (identity (9)). Generalising this further, if Z is another random variable (defined on
the same probability space as X and Y ), then invoking the above inequality with X and Y
replaced by XZ and Y Z and taking the expectation of both sides yields

(21) Ip(X,Y | Z)⩾ Ip(X | Z) + Ip(Y | Z),

cf. Lemma 7(iv). One final property that we shall require is the following fact.

PROPOSITION 13. Suppose that random variables X , Y , and Z have a joint distribution
and that X takes values in {0,1}k for some integer k ⩾ 1. Then, for every p ∈ (0,1),

Ip(X | Y,Z) = E
[
Ip(X

Y | ZY )
]

PROOF. The assertion follows from the definition of conditional p-divergence and the fact
that

L
(
X(Y,Z)

)
= L

(
(XY )Z

Y )
almost surely.

3In order to see this, observe first that Ip(X | Y ) =DKL
(
(X,Y )∥Ber(p)k × Y

)
.
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4.2. Interlude. As an illustration of the subadditivity property of the divergence Ip, we
will give a short proof of optimal tail estimates for the binomial distribution (see [14] for
generalisations).

THEOREM 14. For every positive integer n, every p ∈ (0,1), and all q ∈ [0, p],

P
(
Bin(n,p)⩽ nq

)
⩽ exp

(
− n · ip(q)

)
= exp

(
−n ·DKL

(
Ber(q)∥Ber(p)

))
.

PROOF. Let Y = (Y1, . . . , Yn) be a sequence of i.i.d. Ber(p) random variables, let A
denote the event that Y1 + · · ·+ Yn ⩽ nq, and let Y ′ = (Y ′

1 , . . . , Y
′
n) be Y conditioned on A .

By Proposition 10,

− logP
(
Bin(n,p)⩽ nq

)
=− logP(A ) =DKL(Y

′ ∥Y ) = Ip(Y
′)

(20)
⩾

n∑
k=1

Ip(Y
′
k).

By symmetry, for every k ∈ JnK,

E[Y ′
k] =

1

n

n∑
j=1

E[Y ′
j ]⩽ q.

In particular, since ip is decreasing on [0, p] and q ⩽ p, we have

Ip(Y
′
k) = ip

(
E[Y ′

k]
)
⩾ ip(q),

which concludes the proof of the theorem.

4.3. The key lemma. The following is our key lemma. Its role in the proof of Theorem 5
will be analogous to the role that Pinsker’s inequality (Lemma 8) played in the proof of
Theorem 1.

LEMMA 15. Let Y be a {0,1}-valued random variable and let E1, . . . ,Em be a se-
quence of Z-measurable events, for some random variable Z . Suppose that E[Y | Z]⩽ p′ for
some p′ > 0. Then, letting µ= E[Y ] = P(Y = 1),

(22) Ip(Y | Z)− Ip(Y )⩾
1

2p′

m∑
i=1

(
P(Y = 1 |Ei)− µ

)2P(Ei)−
p′

2

∑
1⩽i<j⩽m

P(Ei ∩Ej).

REMARK. One may verify that the following identity holds for all p ∈ (0,1) and random
variables Y ∈ {0,1} and Z:

(23) Ip(Y | Z)− Ip(Y ) =H(Y )−H(Y | Z).

This sheds some light on why the right-hand side of (22) does not depend on p. (We thank
one of the referees for pointing (23) out to us.) Nevertheless, the form (22) is the one that we
apply below.

Let us first show that Lemma 15 generalises Pinsker’s inequality (Lemma 8) for {0,1}-
valued random variables. More precisely, let Y ∈ {0,1} and Z be two random variables and
let Y × Z be the random variable whose independent coordinates have marginals Y and Z .
Let E1 be the Z-measurable event

{
P(Y = 1 | Z) ⩽ P(Y = 1)

}
and let E2 be the comple-

mentary event. As P(Y = 1 | Z)−P(Y = 1) is nonpositive on E1 (respectively, nonnegative
on E2), we have

dTV

(
(Y,Z), Y ×Z

)
=

2∑
i=1

(−1)i ·
(
P(Y = 1 |Ei)− P(Y = 1)

)
· P(Ei).
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In particular, the Cauchy–Schwarz Inequality gives

dTV

(
(Y,Z), Y ×Z

)2
⩽

(
2∑

i=1

(
P(Y = 1 |Ei)− P(Y = 1)

)2 · P(Ei)

)
·
(
P(E1) + P(E2)

)
.

It thus follows from Lemma 15, invoked with p′ = 1, that

(24) dTV

(
(Y,Z), Y ×Z

)2
⩽ 2 ·

(
Ip(Y | Z)− Ip(Y )

) (23)
= 2 ·

(
H(Y )−H(Y | Z)

)
;

this is precisely Pinsker’s inequality (Lemma 8). In the proof of Theorem 5, we will use
Lemma 15 with p′ = p, which will result in a much stronger bound.

PROOF OF LEMMA 15. Observe first that the case µ = 0 is trivial. Indeed, by (19), the
left-hand side of (22) is always nonnegative and, when µ = 0, each term in the first sum in
the right-hand side of (22) vanishes, as Y = 0 almost surely. We will thus assume that µ > 0.
For the sake of brevity, let g := E[Y | Z], so that

Ip(Y | Z) = E
[
Ip(Y

Z)
]
= E[ip(g)],

where ip is the function defined in (17). Expanding ip into a Taylor series of order two around
µ with Lagrange remainder gives

(25) ip(g) = ip(µ) + i′p(µ) · (g− µ) + i′′p(ξg) ·
(g− µ)2

2

for some ξg with 0< ξg ⩽max{µ, g}. Recall from (17) and (18) that the first term ip(µ) is
Ip
(
Ber(µ)

)
= Ip(Y ) and that i′′p(ξ) =

1
ξ +

1
1−ξ . When we take expectations (over Z) of both

sides of (25), the term i′p(µ) · (g − µ) disappears, as E[g] = E[Y ] = µ, and thus we end up
with

Ip(Y | Z)− Ip(Y ) = E
[(

1

ξg
+

1

1− ξg

)
· (g− µ)2

2

]
.

Since µ, g ⩽ p′, we have

1

ξg
+

1

1− ξg
⩾

1

ξg
⩾min

{
1

µ
,
1

g

}
⩾

1

p′

and we conclude that

(26) Ip(Y | Z)− Ip(Y )⩾
1

2p′
·E
[
(g− µ)2

]
⩾

1

2p′

∫
E1∪···∪Em

(g− µ)2 dP.

It follows from Bonferroni’s inequality (inclusion-exclusion) that∫
E1∪···∪Em

(g− µ)2 dP⩾
m∑
i=1

∫
Ei

(g− µ)2 dP−
∑

1⩽i<j⩽m

∫
Ei∩Ej

(g− µ)2 dP.

Since 0⩽ g,µ⩽ p′, then (g−µ)2 ⩽ (p′)2. Applying the Cauchy–Schwarz Inequality to each
of the terms of the first sum above, we obtain∫

E1∪···∪Em

(g− µ)2 dP⩾
m∑
i=1

(
1

P(Ei)

∫
Ei

g dP− µ

)2

P(Ei)−
∑

1⩽i<j⩽m

∫
Ei∩Ej

(p′)2 dP

=

m∑
i=1

(
P(Y = 1 |Ei)− µ

)2P(Ei)− (p′)2
∑

1⩽i<j⩽m

P(Ei ∩Ej),

which, substituted into (26), yields the desired inequality (22).
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5. Upper bounds for the lower tail. In this section, we prove Theorem 5. Recall that
we are given a hypergraph H on a vertex set V and that R denotes a random subset of V
where every element is included independently with probability p.

5.1. First reductions. Let Y = (Yv)v∈V be the indicator of R conditioned on the lower
tail event e(H [R])⩽ ηpre(H ). Proposition 10 and the definition of Ip give

− logP
(
e(H [R])⩽ ηpre(H )

)
= Ip(Y ),

so from now on Ip(Y ) will be our main focus. It will be convenient to define, for every
W ⊆ V ,

I (W ) :=
∑

v∈V \W

Ip
(
Yv | (Yw)w∈W

)
.

The point of making this definition is that

Ip
(
Y
) (20)
= Ip

(
(Yv)v∈V \W | (Yw)w∈W

)
+ Ip

(
(Yw)w∈W

)
(16)
⩾ Ip

(
(Yv)v∈V \W | (Yw)w∈W

) (21)
⩾

∑
v∈V \W

Ip
(
Yv | (Yw)w∈W

)
=I (W ),

(27)

and thus our goal becomes to find a set W such that I (W )⩾ (1− ε)ΦX(η+ ε)−C .
We will relate I (W ) to the quantity Φ(η + ε) in the following way. First, define the

function f : [0,1]V →R by letting, for each q ∈ [0,1]V ,

f(q) :=
∑
A∈H

dA
∏
v∈A

qv.

In other words, f(q) is the expected number of edges of H induced by a random subset of
V obtained by retaining each v ∈ V independently with probability qv . With this definition

Φ(η+ ε) =min

{∑
v∈V

ip(qv) : q ∈ [0,1]V , f(q)⩽ (η+ ε)pre(H )

}
.

Second, given a W ⊆ V , we define a random function qW : V → [0,1] by letting, for each
v ∈ V ,

qWv :=

{
E [Yv | (Yw)w∈W ] if v /∈W,

p otherwise.

Finally, we write

I (W )
(∗)
=

∑
v∈V \W

E[ip(qWv )] = E

[∑
v∈V

ip(q
W
v )

]
(†)
⩾ P

(
f(qW )⩽ (η+ ε)pre(H )

)
·Φ(η+ ε),

(28)

where (∗) follows from the definitions of H , ip, and qW ; and where (†) uses ip ⩾ 0 and
bounds the expectation from below by the probability of the event f(qW )⩽ (η+ ε)pre(H )
times the minimum of the sum

∑
v∈V ip(q

W
v ) on that event. In particular, it suffices to produce

a set W such that

(29) P
(
f(qW )⩽ (η+ ε)pre(H )

)
⩾ 1− ε.
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Conditioning on
(
Yw

)
w∈W for various W ⊆ V will repeat so much that it is better to have

a shorthand for it. Define therefore

(30) EW [·] := E [· | (Yw)w∈W ]

(so that our qW can now be written as qWv = EW [Yv] for v /∈W ). For similar reasons, given
an A⊆ V , define

YA :=
∏
a∈A

Ya.

Since f(Y ) = e(H [R]) ⩽ ηpre(H ) (and, consequently, EW [f(Y )] ⩽ ηpre(H ) almost
surely for every W ⊆ V ), we may obtain lower bounds on the probability in the left-hand
side of (29) by bounding from above the right-hand side of the following inequality:∣∣f(qW )−EW [f(Y )]

∣∣⩽ ∑
A∈H

dA ·
∣∣∣∣∏
a∈A

EW (Ya)−EW [YA]

∣∣∣∣.
In order to do so, we will quantify the difference between

∏
a∈AEW [Ya] and EW [YA] for a

typical A ∈ H . This is related to conditioned almost independence of the variables {Ya}a∈A.
However, we are not studying full independence, but only with respect to the event that all
Yv are 1. To continue our analysis, we need a few preliminaries, which will be the topic of
the next section.

5.2. Preliminaries. At various places we will need the following corollary of Harris’s
inequality:

CLAIM 16. EW [YA]⩽ p|A| for all W ⊆ V and all A⊆ V \W .

PROOF. Fix some possible value y ∈ {0,1}W for (Yw)w∈W . Writing E for the event A⊆
R and recalling that Y is the indicator of R conditioned on the lower tail event e(H [R])⩽
ηpre(H ),

E
[
YA | (Yw)w∈W = y

]
=

P
(
YA = 1, (Yw)w∈W = y

)
P
(
(Yw)w∈W = y

)
=

P
(
E, (Rw)w∈W = y, e(H [R])⩽ ηpre(H )

)
P
(
(Rw)w∈W = y, e(H [R])⩽ ηpre(H )

)
=

P
(
E,e(H [R])⩽ ηpre(H )

∣∣∣ (Rw)w∈W = y
)

P
(
e(H [R])⩽ ηpre(H ) | (Rw)w∈W = y

)
Since the elements of V are included in R independently, conditioning on (Rw)w∈W gives
a product measure on (Rv)v∈V \W . Moreover, under the conditioned measure, the event E is
increasing and the lower tail event e(H [R]) ⩽ ηpre(H ) is decreasing. The claim follows
from Harris’s inequality.

CLAIM 17. For every nonempty, finite set A and every function F : P(A)→R,

F (A)−
∏
a∈A

F ({a}) =
∑
B⊆A
|B|⩾2

∑
b∈B

1(|A|
|B|
)
|B|

·
(
F (B)− F (B \ {b})F ({b})

) ∏
a∈A\B

F ({a}).



LOWER TAILS VIA RELATIVE ENTROPY 21

(As usual, P(A) denotes the power set of A.)

PROOF. The identity holds trivially when |A|= 1 and we may thus assume that |A|⩾ 2.
Observe first that the right-hand side is a linear combination of terms of the form

K∅ :=
∏
a∈A

F ({a}) and KB := F (B) ·
∏

a∈A\B

F ({a}),

where B ⊆ A satisfies |B| ⩾ 2. The term K∅ appears only when |B| = 2 in the outer sum
and it is easy to verify that its coefficient is

−
(
|A|
2

)
· 2 · 1(|A|

2

)
· 2

=−1.

Fix an arbitrary B ⊆A with |B|⩾ 2. On the one hand, the term KB appears with a positive
sign exactly |B| times (once for each b ∈B) and the respective coefficient is

1(|A|
|B|
)
|B|

;

on the other hand, it appears with a negative sign (B is then in fact B \{b}) exactly |A|− |B|
times (once for each b ∈ A \B) and the respective coefficient is (note that |B|⩽ |A| − 1 in
this case)

−1( |A|
|B|+1

)
(|B|+ 1)

In particular, when B ̸=A, then the positive and the negative contributions cancel, as

|B| · 1(|A|
|B|
)
|B|

=
1(|A|
|B|
) = (|A| − |B|) · 1( |A|

|B|+1

)
(|B|+ 1)

,

and it is easy to check that the sum of the coefficients of KA is 1.

5.3. The argument. Fix an arbitrary nonempty A ⊆ V \ W . Applying Claim 17 with
F (B) = EW [YB] yields

EW [YA]−
∏
a∈A

EW [Ya] =
∑
B⊆A
|B|⩾2

∑
b∈B

1(|A|
|B|
)
|B|

·(EW [YB]−EW [YB\{b}]EW [Yb]︸ ︷︷ ︸
DW (B,b)

) ·
∏

a∈A\B

EW [Ya]

(this is the definition of DW ). Consequently, by the triangle inequality,∣∣∣EW [YA]−
∏
a∈A

EW [Ya]
∣∣∣⩽ ∑

B⊆A
|B|⩾2

∑
b∈B

1(|A|
|B|
)
|B|

· |DW (B,b)| ·
∏

a∈A\B

EW [Ya]

(∗)
⩽
∑
B⊆A
|B|⩾2

∑
b∈B

1(|A|
|B|
)
|B|

· |DW (B,b)| · p|A|−|B|,

where (∗) follows from Claim 16. We sum this inequality over all A ∈ H −W =H [V \W ],
take expectation over

(
Yv

)
v∈W , and get (recall that our hypergraph is r-uniform, so |A|= r
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for every A ∈ H )

(31) E

[ ∑
A∈H −W

dA ·
∣∣∣EW [YA]−

∏
a∈A

EW [Ya]
∣∣∣]

⩽ E

[ ∑
A∈H −W

∑
B⊆A
|B|⩾2

∑
b∈B

dA(
r
|B|
)
|B|

· |DW (B,b)| · pr−|B|

]
.

We now wish to apply the Cauchy–Schwarz Inequality to the right-hand side of (31). How-
ever, since the resulting expression would be too long, we first define

(32) E (W ) := E

[ ∑
A∈H −W

∑
B⊆A
|B|⩾2

∑
b∈B

dA ·DW (B,b)2(
r
|B|
)
|B| · p2|B|

]
,

and then Cauchy–Schwarz yields

E

[ ∑
A∈H −W

dA ·
∣∣∣EW [YA]−

∏
a∈A

EW [Ya]
∣∣∣]

⩽

( ∑
A∈H −W

∑
B⊆A
|B|⩾2

∑
b∈B

dAp
2r(

r
|B|
)
|B|

)1/2

· E (W )1/2

= pr
(
(r− 1)e(H −W )

)1/2 · E (W )1/2,

(33)

where we used the identity
∑

B,b
1

( r
|B|)|B|

= r − 1, which holds because enumerating over

all B ⊆ A of a given size and all b ∈ B cancels the denominator perfectly. Let us remark
that most readers might be better off ignoring all these combinatorial factors. We chose to
estimate them carefully in order to optimise the dependency of λ and C (from the statement
of the theorem) on r. However, in most applications r will be an absolute constant.

The essence of our argument is establishing the following dichotomy: Either

(i) E[E (W )] is quite small, or
(ii) I (W ∪W ′)⩾I (W ) +Ω

(
p|V |

)
for some small W ′ ⊆ V \W .

If (i) holds, then, by (33), we will have that
∣∣EW [YA]−

∏
a∈AEW [Ya]

∣∣ is small (on average),
and a few simple manipulations (done at the end of the proof of Theorem 5, page 28) will
show that our candidate set W satisfies (29). Otherwise, (ii) holds and we replace W with
W ∪W ′; this can happen only O(1) times since

I (W )
(27)
⩽ Ip(Y ) =− logP

(
e(H [R])⩽ ηpre(H )

)
⩽− logP(R= ∅) = |V | · log 1

1− p
⩽ |V | · p

1− p
⩽ |V | · p

1− p0
.

(34)

LEMMA 18. For all positive α, β, and K , there exist λ and V0 such that the following
holds: If |V |⩾ V0 and H satisfies (7) for every s ∈ JrK, then there exists a set W ⊆ V with
at most α|V | elements that satisfies

E (W )⩽ β · e(H ).
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PROOF. Without loss of generality, we may assume that α < 1/2, β < 1, and K > 1. We
first define a few constants:

(35) γ :=
β2

300Kr
, τ := αγ(1− p0), λ :=

τ

2r
, and V0 := 8r2/τ.

A short calculation shows that the definition of V0 guarantees that

(36)
τ · V0/2− r

V0/2− r
⩾

τ

21/r
and

V0/2

V0/2− 1
⩽ 21/(2r).

As explained above, we shall build our set W in several rounds, starting with W being the
empty set. In each round, we will use the following claim, which implements the dichotomy
discussed above.

CLAIM 19. Suppose that W ⊆ V satisfies E (W )> β ·e(H ) and |V \W |⩾ V0/2. Then
there exists a set W ′ ⊆ V \W with at most τ |V | elements such that

(37) I (W ∪W ′)⩾ I (W ) + γp|V |.

PROOF OF CLAIM 19. Let W ′ be a uniformly chosen subset of V \W with density τ ,
that is, with exactly ⌊τ · |V \W |⌋ elements. We will show that, under the assumption that
E (W )> βe(H ) and |V \W |⩾ V0/2, we have

(38) E
[
I (W ∪W ′)

]
⩾ (1− τ) ·I (W ) + 2γp|V |.

Consequently, since

τ ·I (W )
(34)
⩽

τ

1− p0
· p|V | (35)

= αγp|V |< γp|V |,(39)

the desired inequality (37) must hold for some W ′.
We now write

I (W ∪W ′)−I (W ) =
∑

v∈V \(W∪W ′)

Ip(Yv | (Yw)w∈W∪W ′)−
∑

v∈V \W

Ip(Yv | (Yw)w∈W )

=
∑

v∈V \(W∪W ′)

Ip(Yv | (Yw)w∈W∪W ′)− Ip(Yv | (Yw)w∈W )

︸ ︷︷ ︸
I +

W ′

−
∑
v∈W ′

Ip(Yv | (Yw)w∈W )︸ ︷︷ ︸
I −

W ′

.

(40)

By linearity of expectation,

E
[
I −

W ′

]
=

⌊τ · |V \W |⌋
|V \W |

·I (W )⩽ τ ·I (W ),

and thus (38) will follow if we show that

(41) I + := E
[
I +

W ′

]
⩾ 2γp|V |.

In order to bound I + from below, we will apply our main lemma (Lemma 15), condition-
ally on (Yw)w∈W , with Z = (Yw)w∈W ′ and a careful choice of the sequence of Z-measurable
events that we shall now define. To this end, for each v ∈ V \W , let

(42) H (v) :=
{
B ⊆ V \W : |B|⩾ 2, v ∈B, and B ⊆A for some A ∈ H −W

}
and let G (v) be the random subset of H (v) formed by including each B ∈ H (v) satisfy-
ing B \ {v} ⊆W ′ with probability σB , which we will specify later, independently for each
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such B. We note though, already at this stage, that σB are independent of Y . The impatient
may see their definition in (47)–(48).

Let S :=
(
Yw

)
w∈W and, for every v ∈ V \ (W ∪W ′), let Y S

v denote Yv conditioned on S,
that is, the random variable whose (random) distribution is the distribution of Yv conditioned
on S. Define

JS(v) := Ip
(
Y S
v |
(
Y S
w

)
w∈W ′

)
− Ip

(
Y S
v

)
,

The next step is to apply Lemma 15. Recall that we need to supply the lemma with a sequence
of events. The number of events in our application will also be random, but it will depend
only on W ′ and G (v), so let us fix their choice for the time being. For each B ∈ G (v), let
ES

B be the event that Y S
B\{v} = 1; note that ES

B is (Y S
w )w∈W ′ -measurable, as B \ {v} ⊆W ′.

Since E
[
Y S
v | (Y S

w )w∈W ′
]
= EW∪W ′ [Yv] ⩽ p, by Claim 16, we may apply Lemma 15 with

Y = Y S
v , Z = (Y S

w )w∈W ′ , the events ES
B , and p′ = p to get (recall the definition of DW given

at the start of §5.3)

JS(v)⩾
1

2p

∑
B∈G (v)

(
P(Y S

v = 1 |ES
B)−E[Y S

v ]
)2P(ES

B)−
p

2

∑
B,B′∈G (v)

B ̸=B′

P(ES
B ∩ES

B′)

=
1

2p

∑
B∈G (v)

DW (B,v)2

EW [YB\{v}]
− p

2

∑
B,B′∈G (v)

B ̸=B′

EW [YB\{v} · YB′\{v}].

(Note that we used here that W ′ and G (v) are independent of Y .) Since every edge of
G (v) contains v and is disjoint from W , Claim 16 implies that EW [YB\{v}] ⩽ p|B|−1 and
EW [YB\{v} · YB′\{v}] ⩽ p|B∪B′|−1 for all B,B′ ∈ G (v). This observation allows us to sim-
plify our lower bound for JS(v) to

(43) 2 · JS(v)⩾
∑

B∈G (v)

DW (B,v)2

p|B| −
∑

B,B′∈G (v)
B ̸=B′

p|B∪B′| =:G(v)−L(v),

i.e., G(v) is the first sum and L(v) is the second.
We now return to the I + from (41). It is the expectation (over W ′) of the sum I +

W ′ defined
in (40), each of whose summands is the expectation (over S) of JS(v), see Proposition 13.
We wish to exchange the sum and expectation, but since the sum is over v ̸∈W ′ (recall (40))
and this is an event, we need to condition on it. Hence we arrive at

I + (41)
=

∑
v∈V \W

P(v /∈W ′) ·E
[
JS(v) | v /∈W ′].

At this point it will be convenient to switch notation slightly. From now on, we will use E′

and P′ to denote the expectation and the probability over the random choices of the set W ′

and the hypergraphs G (v) for all v ∈ V \W . The notations E and P will be reserved to the
randomness of S. With this notation

I + =
∑

v∈V \W

P′(v /∈W ′) ·E
[
E′[JS(v) | v /∈W ′]]

(43)
⩾

1− τ

2
·E

 ∑
v∈V \W

E′[G(v)−L(v) | v /∈W ′] .(44)

In the remainder of the proof, we shall estimate the right-hand side of (44).
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We start with the estimate of the G terms. We define

G′(v) := E′[G(v) | v /∈W ′]= ∑
B∈H (v)

P′(B ∈ G (v) | v /∈W ′) · DW (B,v)2

p|B| .

For every B ∈ H (v) we have (recall the assumption that |V \W |⩾ V0/2)

P′(B ∈ G (v) | v /∈W ′)= P′(B \ {v} ⊆W ′ | v /∈W ′) · σB

=

|B|−2∏
i=0

⌊τ |V \W |⌋ − i

|V \W | − i− 1
· σB

⩾

(
τ |V \W | − r

|V \W | − r

)|B|−1

· σB

(36)
⩾

τ |B|−1

2
· σB.

We conclude that

(45) G′(v)⩾
1

2τ

∑
B∈H (v)

τ |B| · σB ·DW (B,v)2

p|B| .

Summing (45) over all v ∈ V \W yields (recall the definitions of the hypergraphs H (v) and
of degH −W given in (42) and (5) respectively)

(46)
∑

v∈V \W

G′(v)⩾
1

2τ

∑
A∈H −W

∑
B⊆A
|B|⩾2

∑
v∈B

dA
degH −W B

· τ
|B| · σB ·DW (B,v)2

p|B| ,

cf. the definition of E (W ) given in (32). This is a good moment to finally define the proba-
bilities σB . We let

(47) σB := µ ·
degH −W B(
r
|B|
)
|B|(τp)|B| ,

where

(48) µ :=
βτp|V |

16K(r− 1)e(H )
.

Note that σB ⩽ 1 as

degH −W B ⩽∆|B|(H )
(7)
⩽K · (λp)|B|−1 · e(H )

|V |
(35)
⩽ K · (τp)|B|−1 · e(H )

|V |
(48)
⩽

(τp)|B|

µ
.

Substituting (47) into (46) yields precisely

(49) E
[ ∑
v∈V \W

G′(v)

]
⩾

µ

2τ

∑
A∈H −W

∑
B⊆A
|B|⩾2

∑
v∈B

dA ·E[DW (B,v)2](
r
|B|
)
|B|p2|B|

(32)
=

µ

2τ
· E (W ).

This concludes our estimate of the G terms.
The estimate of the L terms in (44) is similar, but somewhat more involved. We define

L′(v) := E′[L(v) | v /∈W ′]= ∑
B,B′∈H (v)

B ̸=B′

P′(B,B′ ∈ G (v) | v /∈W ′) · p|B∪B′|.
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Thus, we need a second moment estimate for the sum of indicators of B ∈ G (v) over all
B ∈ H (v). Note first that, for each B ̸=B′,

P′(B,B′ ∈ G (v) | v /∈W ′)= P′((B ∪B′) \ {v} ⊆W ′ | v /∈W ′) · σBσB′

=

|B∪B′|−2∏
i=0

⌊τ |V \W |⌋ − i

|V \W | − i− 1
· σBσB′

⩽

(
τ |V \W |

|V \W | − 1

)|B∪B′|−1

· σBσB′
(36)
⩽ 2τ |B∪B′|−1 · σBσB′ .

Hence

(50) L′(v)⩽
2

τ

∑
B,B′∈H (v)

B ̸=B′

(τp)|B∪B′| · σBσB′ .

Summing (50) over all v ∈ V \W gives (again, using the definitions of H (v) and degH −W )∑
v∈V \W

L′(v)⩽
2

τ

∑
A,A′∈H −W

∑
B⊆A,B′⊆A′

|B|,|B′|⩾2
B ̸=B′

∑
v∈B∩B′

dA
degH −W B

· dA′

degH −W B′ (τp)
|B∪B′|σBσ

′
B

(47)
=

2µ2

τ 2p
·

∑
A,A′∈H −W

∑
B⊆A,B′⊆A′

|B|,|B′|⩾2
B ̸=B′

|B ∩B′| · dAdA′(
r
|B|
)
|B|
(

r
|B′|
)
|B′|(τp)|B∩B′|−1

︸ ︷︷ ︸
(∗)

,

where we used the identity |B∪B′|+ |B∩B′|= |B|+ |B′| for the powers of τp. Rearranging
gives

(∗) =
∑

A∈H −W

dA
∑
B⊆A
|B|⩾2

1(
r
|B|
)
|B|

r−1∑
s=1

s

(τp)s−1

∑
C⊆B
|C|=s

∑
A′∈H −W

C⊆A′

dA′

∑
B′⊆A′

|B|′⩾2
B′ ̸=B

B∩B′=C

1(
r

|B′|
)
|B′|

︸ ︷︷ ︸
SB,s

.

Now, for every A′ ∈ H −W , every s⩾ 1, and every C ⊆A′ with |C|= s,∑
C⊆B′⊆A′

1(
r

|B′|
)
|B′|

=

r∑
b′=s

(
r−s
b′−s

)(
r
b′

)
b′

=

r∑
b′=s

(
b′

s

)(
r
s

)
b′
=

r∑
b′=s

(
b′−1
s−1

)(
r
s

)
s

=
1

s
⩽ 1.

Hence, for every B with at most r elements and every s⩾ 1,

SB,s ⩽
∑
C⊆B
|C|=s

∑
A′∈H −W

C⊆A′

dA′ ⩽

(
|B|
s

)
·∆s(H ) =

|B|
s

(
|B| − 1

s− 1

)
·∆s(H )

(7)
⩽

|B|
s

(
|B| − 1

s− 1

)
· (λp)s−1 ·K · e(H )

|V |
⩽

|B|
s

· (rλp)s−1 ·K · e(H )

|V |
.
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Consequently,

(∗)⩽
∑

A∈H −W

dA
∑
B⊆A
|B|⩾2

1(
r
|B|
) r−1∑

s=1

(
rλ

τ

)s−1

·K · e(H )

|V |

= e(H −W ) · (r− 1) ·
r−1∑
s=1

(
rλ

τ

)s−1

·K · e(H )

|V |
.

Since rλ= τ/2, we conclude that∑
v∈V \W

L′(v)⩽
2µ2

τ 2p
· (r− 1) · 2K · e(H )2

|V |
(48)
=

µ

τ
· βe(H )

4
.(51)

Combining this with the estimate (49) gives

I +
(44)
⩾

1− τ

2
·E

 ∑
v∈V \W

G′(v)−L′(v)

 (49,51)
⩾

(1− τ)

2
· µ
τ
·
(

E (W )

2
− βe(H )

4

)
(†)
>

(1− τ)

2
· µ
τ
· βe(H )

4

(48)
=

(1− τ)β2

128K(r− 1)
· p|V |

(35)
⩾ 2γp|V |,

where (†) follows from our assumption that E (W )> βe(H ). The claim thus follows from
the discussion before (41).

PROOF OF LEMMA 18, CONTINUED. Suppose that the assertion of the lemma is not true,
that is, E (W ) > β · e(H ) for every W ⊆ V with at most α|V | elements. We will con-
struct a sequence W0, . . . ,Wj of subsets of V , where j = ⌊α/τ⌋ + 1, such that, for each
i ∈ {0, . . . , j},

(i) |Wi|⩽ i · τ |V | and
(ii) I (Wi)⩾ i · γp|V |.

If such a sequence existed, we would have

I (Wj)⩾ j · γp|V |> (α/τ) · γp|V | (35)
= |V | · p

1− p0
,

which contradicts (34).
We start by letting W0 = ∅. Suppose that 0 ⩽ i ⩽ j − 1 and that Wi has already been

defined so that (i) and (ii) hold. Since

|Wi|⩽ i · τ |V |⩽ ⌊α/τ⌋ · τ |V |⩽ α|V |,

we have E (Wi)> β · e(H ) by the contradictory assumption. We note also that |V \Wi|⩾
(1−α)|V |⩾ |V |/2⩾ V0/2. In particular, Claim 19, invoked with W =Wi, supplies a W ′ ⊆
V \Wi with at most τ |V | elements that satisfies (37). We let Wi+1 =Wi ∪W ′ and note that

|Wi+1|= |Wi|+ |W ′|
(i)
⩽ i · τ |V |+ τ |V |= (i+ 1) · τ |V |

and

I (Wi+1) = I (Wi ∪W ′)
(37)
⩾ I (Wi) + γp|V |

(ii)
⩾ (i+ 1) · γp|V |,

so (i) and (ii) continue to hold with i replaced by i + 1. This completes the proof of the
existence of the sequence of W0, . . . ,Wj , which yields the desired contradiction.
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PROOF OF THEOREM 5. Let λ and V0 be the constants supplied by Lemma 18 invoked
with

α :=
ε

2K
and β :=

ε4

4r
.

(We note here that λ⩾ 2−15K−2r−4ε9(1− p0) and V0 = 4r/λ.) We first handle the uninter-
esting case |V |< V0. Considering, in the definition of Φ(η), the function q : V → [0,1] that
assigns zero to all elements of V shows that

Φ(η+ ε)⩽Φ(0)⩽ |V | · ip(0) =−|V | · log(1− p)⩽−V0 · log(1− p0).

In particular, setting C := −V0 · log(1− p0) makes the assertion of the theorem hold vacu-
ously.

We may thus assume that |V |⩾ V0, so that Lemma 18 supplies a set W ⊆ V with at most
ε/(2K) · |V | elements such that E (W )⩽ ε4/(4r) ·e(H ). Let qW : V → [0,1] be the random
function defined in the proof outline, that is, qWv := EW [Yv] for v ∈ V \W and qWv := p for
v ∈W . We have

E

[ ∑
A∈H −W

dA ·
∣∣∣EW [YA]−

∏
a∈A

qWa

∣∣∣] (33)
⩽ pr

(
re(H )

)1/2 · E (W )1/2 ⩽
ε2

2
· pre(H ).

In particular, it follows from Markov’s inequality that, with probability at least 1− ε,∑
A∈H −W

dA
∏
a∈A

qWa ⩽
∑

A∈H −W

dA ·EW [YA] +
ε

2
· pre(H ).

However, the definition of Y implies that, deterministically,∑
A∈H −W

dAYA ⩽
∑
A∈H

dAYA = e(H [R])⩽ ηpre(H )

and thus, with probability at least 1− ε,∑
A∈H −W

dA
∏
a∈A

qWa ⩽ (η+ ε/2) · pre(H ).

The definition of qW and Claim 16 guarantee that qWv ⩽ p for every v ∈ V and, therefore,∑
A∈H \(H −W )

dA
∏
a∈A

qWa ⩽ pr ·
(
e(H )− e(H −W )

)
⩽ pr · |W | ·∆1(H )

(7)
⩽ pr · ε|V |

2K
·K · e(H )

v(H )
=

ε

2
· pre(H ).

Summarising, with probability at least 1− ε, we have

f(qW ) =
∑
A∈H

dA
∏
a∈A

qWa ⩽ (η+ ε) · pre(H ).

Hence, we may conclude that

Ip(Y )
(27)
⩾ I (W )

(28)
⩾ P

(
f(qW )⩽ (η+ ε)pre(H )

)
·Φ(η+ ε)⩾ (1− ε) ·Φ(η+ ε),

as needed.
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6. Lower bounds for the lower tail. In this section, we prove Theorem 6. We will need
the following technical lemma.

LEMMA 20. For every p0 < 1, there exists a constant K such that the following holds.
Suppose that 0< p⩽ p0 and 0⩽ q ⩽ p, let Y ∼Ber(q), and let

X := Y log
q

p
+ (1− Y ) log

1− q

1− p
.

Then,

Var(X)⩽KE[X] =Kip(q).

PROOF. This is nothing but a calculus exercise, but let us do it in details anyway. Observe
first that the case q = 0 is trivial. Indeed, ip is nonnegative and Var(X) = 0 when q = 0. We
will thus assume that q > 0. A direct computation shows that

Var(X) = q(1− q)

(
log

q

p
− log

1− q

1− p

)2
(18)
= q(1− q)

(
i′p(q)

)2
⩽ q ·

(
i′p(q)

)2
.

Since ip(p) = i′p(p) = 0, expanding both ip(q) and i′p(q) in Taylor series around p with La-
grange remainder gives q1, q2 ∈ (q, p) such that

ip(q) =
(q− p)2

2
·
(

1

q1
+

1

1− q1

)
⩾

(q− p)2

2p
,(52)

i′p(q) = (q− p) ·
(

1

q2
+

1

1− q2

)
.

Suppose first that q ⩾ p/2. Our assumption that p⩽ p0 implies that

1

q2
+

1

1− q2
⩽

1

q
+

1

1− p
⩽

2

p
+

1

1− p0
⩽

(
2 +

p0
1− p0

)
· 1
p
=

2− p0
1− p0

· 1
p

and, consequently,

Var(X)⩽ q ·
(
i′p(q)

)2
⩽

(
2− p0
1− p0

)2

· q · (q− p)2

p2
⩽

(
2− p0
1− p0

)2

· 2ip(q).

If, on the other hand, q < p/2, then, using the inequality (a− b)2 ⩽ 2a2 + 2b2, we get

Var(X)

p
⩽

q

p

(
log

q

p
− log

1− q

1− p

)2

⩽
2q

p

(
log

q

p

)2

+
2q

p

(
log

1− q

1− p

)2

⩽ sup
x∈(0,1/2)

2x(logx)2 +

(
log

1

1− p

)2

⩽
8

e2
+

(
log

1

1− p0

)2

,

whereas, since ip is decreasing in the interval [0, p],

ip(q)

p
⩾

ip(p/2)

p
⩾

(p/2)2

2p2
=

1

8
.

PROOF OF THEOREM 6. We may assume without loss of generality that ε < 1. Let
q : V → [0,1] be the minimiser in the definition of Φ

(
(1 − ε)η

)
and let Y ′ = (Y ′

v)v∈V be
a sequence of independent Bernoulli random variables with E[Y ′

v ] = qv for each v ∈ V , so
that

E[f(Y ′)]⩽ (1− ε)ηE[f(Y )] and
∑
v∈V

ip(qv) = Φ
(
(1− ε)η

)
.
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We claim that qv ⩽ p for every v ∈ V . Indeed, otherwise ip(qv)> 0 = ip(p) and changing qv
to p can only decrease E[f(Y ′)]. Let Y ⊆ {0,1}V be arbitrary and note that

P
(
Y ′ ∈ Y

)
=
∑
y∈Y

P(Y ′ = y)

P(Y = y)
· P(Y = y) =

∑
y∈Y

∏
v:yv=1

qv
p

∏
v:yv=0

1− qv
1− p

· P(Y = y)

⩽max

{
exp

( ∑
v:yv=1

log
qv
p
+
∑

v:yv=0

log
1− qv
1− p

)
: y ∈ Y

}
· P(Y ∈ Y ).

In view of this, define, for each y ∈ {0,1}V ,

J(y) :=
∑

v:yv=1

log
qv
p
+
∑

v:yv=0

log
1− qv
1− p

,

so that the above inequality may be rewritten as

(53) P(Y ′ ∈ Y )⩽max
y∈Y

exp
(
J(y)

)
· P(Y ∈ Y ).

Now, let K be the constant given by Lemma 20, let C ′ :=K/(2ε2), and define

Y1 :=
{
y ∈ {0,1}V : f(y)⩽ ηE[f(Y )]

}
,

Y2 :=
{
y ∈ {0,1}V : J(y)⩽ (1 + ε)Φ

(
(1− ε)η

)
+C ′} ,(54)

It is immediate from these definitions that

P
(
X ⩽ ηE[X]

)
= P(Y ∈ Y1)⩾ P(Y ∈ Y1 ∩Y2)

(53)
⩾ P(Y ′ ∈ Y1 ∩Y2) · exp

(
−max

y∈Y2

J(y)

)
(54)
⩾ P(Y ′ ∈ Y1 ∩Y2) · exp

(
−(1 + ε)Φ

(
(1− ε)η

)
−C ′) .

We will show that P(Y ′ ∈ Y1∩Y2)⩾ ε/2, which will yield the assertion of the theorem with
C :=C ′ + log(2/ε).

Since f is nonnegative, Markov’s inequality gives

P
(
f(Y ′)> ηE[f(Y )]

)
⩽ 1− ε

and thus

P(Y ′ ∈ Y1) = P
(
f(Y ′)⩽ ηE[f(Y )]

)
⩾ ε;

in particular, it is enough to show that P(Y ′ /∈ Y2)⩽ ε/2. To this end, examine J(Y ′). It is
a sum of independent variables (Xv)v∈V , where each Xv is distributed exactly like the X of
Lemma 20, only with q replaced by qv . In particular,

E[J(Y ′)] =
∑
v∈V

E[Xv] =
∑
v∈V

ip(qv) = Φ
(
(1− ε)η

)
and

Var(J(Y ′)) =
∑
v∈V

Var(Xv)⩽K
∑
v∈V

E[Xv] =KE[J(Y ′)].

Therefore, writing µ := E[J(Y ′)], Chebyshev’s inequality gives

P(Y ′ /∈ Y2) = P
(
J(Y ′)> (1 + ε)µ+C ′)⩽ Var(J(Y ′))

(εµ+C ′)2
⩽

Kµ

(εµ+C ′)2

⩽max
x⩾0

Kx

(εx+C ′)2
=max

y>0

K

(εy+C ′/y)2
=

K

4C ′ε
=

ε

2
,

as desired.
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7. Applications. In this section, we derive Theorems 2, 3, and 4 from our main tech-
nical result, Theorem 5, and the general lower-bound estimate for lower tail probabilities,
Theorem 6. In order to do so, we just need to represent the number of copies of a given
(hyper)graph H in subgraphs of the complete (hyper)graph (resp. the number of arithmetic
progressions of a given length in subsets of positive integers) as the number of edges in some
auxiliary hypergraph H and verify that H satisfies the assumptions of Theorem 5 when
p≫ n−1/mr(H). This is pretty straightforward, but we present the full details for the reader’s
convenience.

The following easy lemma, which states that ΦH
p , defined in (6) above the statement of

Theorem 5, satisfies ΦH
p (η) = Θ

(
v(H )p

)
for every uniform hypergraph H whose max-

imum degree is comparable to its average degree, will be used to absorb the additive con-
stant C from the assertions of Theorems 5 and 6 into the main term.

LEMMA 21. Suppose that H is an r-uniform hypergraph that satisfies

∆1(H )⩽K · e(H )

v(H )

for some K . Then, for all positive reals p and ε,

ΦH
p (1− ε)⩾

ε2

2K2
· |V |p.

PROOF. Let q : V → [0,1] be a function achieving the minimum in the definition of ΦH
p .

As in the proof of Theorem 6, we may assume that qv ⩽ p for every v ∈ V . From this it is
easy to conclude that

(55) p|A| −
∏
v∈A

qv ⩽
∑
v∈A

(p− qv)p
|A|−1

for every A⊆ V . We may thus conclude that

εpre(H )
(⋆)

⩽ pre(H )−E[e(H [R(q)])] =
∑
A∈H

dA ·

(
p|A| −

∏
v∈A

qv

)
(55)
⩽
∑
A∈H

dA ·
∑
v∈A

(p− qv)p
r−1 =

∑
v∈V

(p− qv)p
r−1 · degH v

⩽∆1(H ) ·
∑
v∈V

(p− qv)p
r−1 = pr−1∆1(H ) ·

(
p|V | −

∑
v∈V

qv

)
,

where (⋆) follows because q is the minimiser of Φ(1− ε). Consequently,

(56) q̄ :=
1

|V |
∑
v∈V

qv ⩽ p ·
(
1− εe(H )

|V | ·∆1(H )

)
⩽ p ·

(
1− ε

K

)
.

Since the function ip is convex and ip(q) ⩾
(q−p)2

2p when q ⩽ p, see (52), we may conclude
that

ΦH
p (1− ε) =

∑
v∈V

ip(qv)⩾ |V | · ip(q̄)⩾ |V | · (q̄− p)2

2p

(56)
⩾

ε2

2K2
· |V |p,

as claimed.
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PROOF OF THEOREMS 2 AND 3. Theorem 2 is merely the special case k = 2 in Theo-
rem 3, so we focus on Theorem 3. Suppose that H is a nonempty k-uniform hypergraph and
let H be the eH -uniform hypergraph with vertex set V :=

(JnK
k

)
whose hyperedges are the

edge sets of all vH !
|Aut(H)| ·

(
n
vH

)
copies of H in the complete eH -uniform hypergraph on JnK

(we take dA = 1 for all A). By symmetry,

∆1(H ) =
eH · e(H )

v(H )
.

Suppose now that B ⊆ V has at least two elements and nonzero degree in H . Then B must
be the edge set of some copy of a subhypergraph F ⊆H , with eF = |B|⩾ 2 and vF = |

⋃
B|,

in the complete k-uniform hypergraph on JnK. Since mk(H)⩾ eF−1
vF−k (recall the definition of

mk given in (4)), we have

degH B ⩽ vvFH · nvH−vF = vvFH · n−(vF−k) · nvH−k

⩽ vvFH · n− eF −1

mk(H) · nvH−k = vvFH ·
(
n

−1
mk(H)

)|B|−1

· nvH−k.

Since B was arbitrary, we may conclude that

(57) ∆s(H )⩽ vvHH ·
(
n
− 1

mk(H)

)s−1

· nvH−k

for every s⩾ 2.
Let λ be the constant given by Theorem 5 invoked with the p0 from Theorem 3, K = eH

and εThm 5 = ε/2 and let C be the larger of the constants given by Theorems 5 and 6, also
with εThm 6 = ε/2. Lastly, let L= L(ε,λ,C,H) be a sufficiently large constant and suppose
that Ln−1/mk(H) ⩽ p⩽ p0.

By choosing L large, we guarantee that n is large as well and, consequently,

e(H )

v(H )
⩾

(
n
vH

)(
n
k

) ⩾
nvH−k

vvHH
.

Together with (57), this estimate implies that, for every s⩾ 2,

∆s(H )⩽ v2vHH ·
( p
L

)s−1
· e(H )

v(H )
⩽ (λp)s−1 · e(H )

v(H )
,

where in the second inequality we used that L is sufficiently large. By Theorems 5 and 6, for
every η ∈ [0,1],

(1− ε/2) ·ΦH
n,p(η+ ε/2)−C ⩽− logP

(
X ⩽ ηE[X]

)
⩽ (1+ ε/2) ·ΦH

n,p

(
(1− ε/2)η

)
+C.

Finally, we show that we may absorb the additive constant C on both sides of the above
inequality. To this end, we first invoke Lemma 21 to get the following inequality:

(58) ΦH
n,p(1− ε/2)⩾

ε2

8e2H
·
(
n

k

)
p⩾

Lε2

16e2Hk!
⩾

2C

ε
,

where we used the assumptions that p⩾ Ln−1/mk(H) ⩾ Ln−k and that L is sufficiently large.
To derive the claimed the upper bound on − logP(X ⩽ ηE[X]), note that, since η ⩽ 1 and
the function η 7→Φn,p(η) is decreasing, we have

C
(58)
⩽ (ε/2) ·ΦH

n,p

(
(1− ε/2)η

)
and ΦH

n,p

(
(1− ε/2)η

)
⩽ΦH

n,p

(
(1− ε)η

)
.
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To derive the claimed lower bound, we may assume that η+ ε⩽ 1, since otherwise ΦH
n,p(η+

ε) = 0. Therefore,

C
(58)
⩽ (ε/2) ·ΦH

n,p(η+ ε/2) and ΦH
n,p(η+ ε/2)⩽ΦH

n,p(η+ ε).

This completes the proof of Theorems 2 and 3.

PROOF OF THEOREM 4. Let k be a positive integer and let H be the k-uniform hyper-
graph with vertex set V := JnK whose hyperedges are the k-term arithmetic progressions in
JnK, that is,

H :=
{
{x,x+ d, . . . , x+ (k− 1)d} : x,d ∈ JnK, x+ (k− 1)d⩽ n

}
.

Since every number in JnK belongs to at most kn many k-term arithmetic progressions and
every pair of numbers belongs to at most

(
k
2

)
such progressions, we have

∆1(H ) = kn and ∆k(H )⩽ · · ·⩽∆2(H )⩽

(
k

2

)
.

Moreover, since JnK contains at least ckn2 many k-term progressions, for some constant
ck > 0, provided that n⩾ k, we conclude that e(H )⩾ ckn

2 and hence

∆s(H )⩽K ·
(
n− 1

k−1

)s−1
· e(H )

v(H )
∀s ∈ {1, . . . , k}

for some constant K that depends only on k. Therefore, when Ln−1/(k−1) ⩽ p ⩽ p0 for a
sufficiently large constant L, we may apply Theorems 5 and 6 to derive (with a little help
from Lemma 21) the claimed estimate on − logP(X ⩽ ηE[X]) for every η ∈ [0,1], as in the
previous proof. We leave the details to the reader.
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