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Abstract. The collection Mn of all metric spaces on n points
whose diameter is at most 2 can naturally be viewed as a compact

convex subset of R(
n
2), known as the metric polytope. In this paper,

we study the metric polytope for large n and show that it is close

to the cube [1, 2](
n
2) ⊆ Mn in the following two senses. First, the

volume of the polytope is not much larger than that of the cube,
with the following quantitative estimates:

(1/6 + o(1))n3/2 ≤ log Vol(Mn) ≤ O(n3/2).

Second, when sampling a metric space from Mn uniformly at ran-
dom, the minimum distance is at least 1−n−c with high probabil-
ity, for some c > 0. Our proof is based on entropy techniques. We
discuss alternative approaches to estimating the volume of Mn us-
ing exchangeability, Szemerédi’s regularity lemma, the hypergraph
container method, and the Kővári–Sós–Turán theorem.

1. Introduction

For a positive integer n, let JnK := {1, . . . , n} and let
(JnK

2

)
be the set

of all unordered pairs of distinct elements in JnK. A finite metric space

on n ≥ 2 points can be regarded as an array (dij) with {i, j} ∈
(JnK

2

)
,

where dij denotes the distance between the ith and jth points in the

space. Such a metric space may also be regarded as an element of R(
n
2)
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satisfying certain restrictions among its coordinates. Specifically, the
set of all such metric spaces is the cone

Cn := {(dij) ∈ R(
n
2) : dij > 0 and dij ≤ dik + dkj for all i, j, k}.

Our goal in this work is to study a ‘uniformly chosen metric space on
n points’. This is interpreted as a metric space sampled according to
the Lebesgue measure from a suitable bounded subset of Cn. There
are several natural choices for such a bounded subset. In this work, we
focus on the diameter normalisation, that is, we bound the maximal
diameter of the space from above. We thus define the metric polytope

Mn := {(dij) ∈ Cn : dij ≤ 2 for all i, j}.

The specific upper bound on the diameter amounts only to a scaling
factor, with the constant two chosen to simplify some of the later ex-
pressions.

Understanding the structure of a uniformly chosen metric space in
Mn is intimately related to understanding the volume of Mn. By
construction, we have the trivial upper bound

Vol(Mn) ≤ 2(
n
2). (1)

To obtain a lower bound, we make the following observation: Any
triple x, y, z ∈ [1, 2] satisfies the triangle inequality x ≤ y + z and,

consequently, Mn contains the cube [1, 2](
n
2). This yields the lower

bound

Vol(Mn) ≥ 1. (2)

The precise behaviour of the volume Vol(Mn) seems difficult to study.
For instance, while intuitive, we do not know whether Vol(Mn+1) ≥
Vol(Mn) for all n (see also Section 7.1). It is thus interesting to note

that at least the ‘radius’ Vol(Mn)
1/(n2) exhibits some regularity.

Proposition 1.1. The sequence n 7→ Vol(Mn)
1/(n2) is non-increasing.

The proposition is deduced from Shearer’s inequality, see Section 4.1.
It allows to obtain increasingly refined volume estimates for Vol(Mn)
via finite computations. For instance, one may check that Vol(M3) = 4
(see Figure 1) and hence we have the inequality

Vol(Mn) ≤ 4
1
3(

n
2) for all n ≥ 3, (3)

improving upon the trivial upper bound (1). Mascioni [32] calculated
Vol(M4) = 136

15
and used it to deduce a bound on Vol(Mn) that is
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stronger than (3) but weaker than what can be deduced from Proposi-
tion 1.1. The proposition and (2) imply that the limit

lim
n→∞

Vol(Mn)
1/(n2) (4)

exists, which raises the natural question of finding its value.

Our main result is that a uniformly chosen metric space is ‘almost in

[1, 2](
n
2)’, as the following two theorems make precise. Our first theorem

shows that the limiting constant (4) equals one, that is,

Vol(Mn) = 2o(n
2) as n→∞. (5)

In fact, our analysis goes much further and determines the second-order
term in the logarithm of the volume up to a multiplicative constant.1

Theorem 1.2. The following asymptotic estimates hold as n→∞:

exp
(
(1/6− o(1))n3/2

)
≤ Vol(Mn) ≤ exp

(
Cn3/2

)
(6)

for some absolute constant C.

Our second theorem studies the minimum distance in a typical metric
space in Mn. Let d be a uniformly sampled metric space from Mn.
Since

P
(
min
i,j

dij > 1− δ
)
≤ (1 + δ)(

n
2)

Vol(Mn)
,

the lower bound in Theorem 1.2 implies that, for any a < 1
3
,

P
(
min
i,j

dij ≤ 1− a√
n

)
→ 1 as n→∞. (7)

Complementing this fact, we show that, in a typical metric space, the
minimum distance is polynomially close to one.

Theorem 1.3. There exist constants C, c > 0 such that, for all n ≥ 2,
if d is a uniformly sampled metric space from Mn, then

P
(
min
i,j

dij ≤ 1− n−c

)
≤ Cn−c.

It would be interesting to find the typical order of 1−mini,j dij, see
also Section 7.1. Our proof shows that it is at most n−1/30.

1Note that (6) hides the first-order term (2/2)(
n
2), which would become (M/2)(

n
2)

if we chose to normalise the diameter of Mn to be M , instead of 2.
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Figure 1. M3 inside [0, 2]3.

Reader’s guide. The heart of this work is the proof of the upper
bound on the volume of Mn in (6), which relies on entropy techniques;
a conceptual outline of our argument is presented in the next section.
We review the relevant background on differential entropy in Section 2.
The volume estimate itself is then proved in Section 4.3. One of the
main ingredients in the argument is an upper bound on the maximum
entropy of a vector of independent random variables that is almost
supported in a given compact, convex set; this result is derived in
Section 3. Several alternative approaches to proving upper bounds on
the volume of Mn, which lead to results weaker than Theorem 1.2, are
reviewed in Section 6.

Our proof of the lower bound on the volume is a fairly simple appli-
cation of the Local Lemma of Erdős and Lovász [18], see Section 4.2.

The starting point for the proof of Theorem 1.3, given in Section 5,
is an upper bound on the probability that the distance between a fixed
pair of points is shorter than one (Proposition 4.5), which is a by-
product of our proof of the upper bound on the volume of Mn. The
assertion of the theorem is then deduced via elementary, but nontrivial,
combinatorial arguments.

Section 7 contains some further discussion and a selection of open
questions.

A remark on precedence. This paper has been long in writing and
a number of results have appeared in the interim, notably Mubayi and
Terry [34] and Balogh and Wagner [8], who considered the number of
metric spaces with distances in the discrete set {1, . . . ,M}. The meth-
ods of [8] also yielded the upper bound Vol(Mn) ≤ exp(n11/6+o(1)).
(We elaborate on the relation between the discrete and the continu-
ous model in Section 7.2.) These papers have kindly acknowledged
our precedence, but, for fairness, it should be noted that we did not
have the upper bound of Theorem 1.2 then, only a bound of the form
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Vol(Mn) ≤ exp(n2−c); in particular, the volume bound of [8] was
stronger than ours. Several months before we streamlined the entropy
argument underlying the proof of the upper bound in Theorem 1.2 to
yield the estimate Vol(Mn) ≤ exp(Cn3/2), in a joint work with Rob
Morris, we found a more efficient version of the argument of Balogh
and Wagner [8], based on the method of hypergraph containers, that
gives the estimate Vol(Mn) ≤ exp

(
Cn3/2(log n)3

)
; we present a de-

tailed sketch of this argument in Section 6.3.

Further directions and related work. We believe that the general
method of relating entropy and independence that underlies our proof
of Theorem 1.2 will find many further applications. In particular, the
first and the fourth named authors adapted the methods of this work,
and combined them with the arguments underlying the proofs of the
hypergraph container theorems [6, 36], to study lower tails of random
variables that can be expressed as polynomials of independent Bernoulli
random variables [28].

Similar ideas of relating entropy and independence were used by
Tao [38, Lemma 4.3] to develop a probabilistic interpretation of Sze-
merédi’s regularity lemma. Concurrently with the writing of this paper,
Ellis, Friedgut, Kindler, and Yehudayoff [15] used a related approach
to prove stability versions of the Loomis–Whitney inequality and the
more general Uniform Cover inequality. The pigeonhole principle argu-
ment that appears in our proof outline below (see also Lemma 4.3) is
somewhat reminiscent of the Lovász–Szegédy Hilbert space regularity
lemma, see the proof of [31, Lemma 4.1] (we thank Balázs Ráth for
pointing out this connection).

1.1. Proof outline. Suppose that d is a uniformly chosen metric space
from Mn. Conceptually, our argument consists of three steps.

Step I (conditioning). We say that a subset F ⊆
(JnK

2

)
has the con-

ditioned almost independence property if the following holds: Condi-
tioned on all the distances df with f ∈ F , for each triangle {i, j, k}
whose edges lie outside of F , the distances dij, dik, and djk become
close to mutually independent.

The goal of the first step is to find a ‘small’ set F with the above
property. In order to show this, for m ≥ 0, define the set

Fm :=
{
{s, t} ∈

(
JnK
2

)
: max{s, t} > n−m

}
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and examine the conditional entropy

h(Fm) := H
(
d12 | {df : f ∈ Fm}

)
.

Since Fm+1 ⊇ Fm, monotonicity of conditional entropy implies that the
sequence m 7→ h(Fm) is nonincreasing. Moreover, it is not difficult to
bound h(F0) from above and h(F√

n) from below by absolute constants.
Thus, the pigeonhole principle produces an m0 with 0 ≤ m0 ≤

√
n for

which

h(Fm0)− h(Fm0+1) ≤
C√
n

(8)

for some absolute constant C. The set F described above is taken to
be Fm0 . Its cardinality is at most m0n ≤ n3/2. We now argue that
F has the conditioned almost independence property. Since {1, n −
m0}, {2, n −m0} ∈ Fm0+1 \ Fm0 , inequality (8) gives (again using the
monotonicity of conditioned entropy)

h(F )− h
(
F ∪ {{1, n−m0}, {2, n−m0}}

)
≤ C√

n
.

Symmetry considerations show that, in fact, for every ordered triple of
distinct i, j, k ∈ Jn−m0K, we have

H
(
dij | {df : f ∈ F}

)
−H

(
dij | {df : f ∈ F} ∪ {dik, djk}

)
≤ C√

n
. (9)

Inequality (9) is the notion of almost independence that we need. It
may be conveniently restated in terms of the average Kullback–Leibler
divergence between the conditional (on all df with f ∈ F ) joint dis-
tribution of dij, dik, djk and the product of the (conditional) marginal
distributions of dij, dik, and djk:

E
[
DKL ((dij, dik, djk)∥dij × dik × djk)

]
≤ C√

n
. (10)

Step II (subadditivity). Since d is a uniformly sampled metric space
from Mn,

H(d) = log
(
Vol(Mn)

)
.

Using the chain rule for conditional entropy, we may write

H(d) = H({df : f ∈ F})︸ ︷︷ ︸
α

+H({df : f /∈ F} | {df : f ∈ F})︸ ︷︷ ︸
β

. (11)

Since df ∈ [0, 2] for every f ∈ F , we have α ≤ |F | log 2. By considering
an arbitrary Steiner triple system on n−O(1) vertices, one sees that the
complement of F can be partitioned into a family T of edge-disjoint
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triangles and a leftover set of pairs G with |G| ≤ C(|F | + n). Using
subadditivity of entropy,

β ≤ |G| log 2 +
∑

{i,j,k}∈T

H(dij, dik, djk | {df : f ∈ F}). (12)

Step III (entropy-maximising distributions). Combining the above two
steps, we arrive at the problem of bounding H(dij, dik, djk | {df : f ∈
F}), which, by conditioned almost independence, amounts to estimat-
ing the largest entropy of a vector that is supported on M3 and satis-
fies (10). We first observe that (10) implies the following inequality:

E
[
P(dij × dik × djk /∈M3)

]
≤ C√

n
,

see Lemma 2.7. This allows us to bound H(dij, dik, djk | {df : f ∈
F}) by the largest entropy of a vector of (fully) independent random
variables that is almost supported on M3. To this end, we prove a
general statement (Theorem 3.1) showing that the largest entropy of a
vector of independent random variables that is almost supported on a
convex set P cannot be much larger than the logarithm of the volume
of the largest box contained in P. In the case P = M3, the (unique)
largest such box is [1, 2]3 (Lemma 3.4) and, consequently, the entropy
cannot be much larger than zero.

The three steps suffice to show that the volume of Mn is exp(o(n2)),
that is, that the limiting constant in (4) is one. Moreover, the various
error terms are polynomially related and the above argument shows
the quantitative estimate Vol(Mn) ≤ exp(Cn2−c) for an explicit c > 0.
To obtain the sharp exponent 3/2, as in the statement of Theorem 1.2,
several enhancements to the above argument are made. In particular,
the following two bounds are proved:

log(Vol(Mn)) ≤
n−2∑
m=0

|Fm+1 \ Fm| · h(Fm) ≤ n ·
n−2∑
m=0

h(Fm), (13)

h(Fm) ≤ C
(
h(Fm)− h(Fm+1)

)1/3
. (14)

The bound (14) implies that h(Fm) ≤ C ′(m + 1)−1/2, as shown in
Lemma 4.2, which gives the claimed estimate after substituting it
into (13). The estimate (13) improves upon the subadditivity step,
making use of the symmetry inherent in the specific choice of the
sets Fm, see (63). Inequality (14) is obtained using a more careful
analysis in steps one and three above.
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2. Entropy and almost independence

2.1. Differential entropy. We now recall the notion and some prop-
erties of differential entropy, the entropy of continuous random vari-
ables. Readers who are used to the entropy of discrete random vari-
ables (Shannon’s entropy) should keep in mind that in the continuous
case entropies can be either positive or negative, the value 0 plays no
special role.

Given an absolutely continuous probability measure µ on Rk with
density f and a random variable X ∼ µ, the differential entropy (or
simply entropy) of µ (or of X) is defined as

H(µ) := H(X) := −
∫

log(f(x))f(x)dx = −
∫

log (f(x)) dµ(x),

(15)
whenever the above integral is well-defined. As is customary, if ran-
dom variables X1, . . . , Xm have a joint density function, we will write
H(X1, . . . , Xm) for the entropy of the random vector (X1, . . . , Xm).
Throughout the paper, we write log to denote the natural logarithm.

Observe that if X takes values in a compact set K ⊆ Rk, then by
Jensen’s inequality,

H(X) = −
∫
K

log(f(x))f(x)dx =

∫
K∩{f>0}

log

(
1

f(x)

)
f(x)dx

≤ log

(∫
K∩{f>0}

1

f(x)
f(x)dx

)
≤ log(Vol(K)).

(16)

Differential entropy may be negative, e.g., if Vol(K) < 1 above. It
could even happen that H(X) = −∞. However, one easily checks that
if the density f is bounded, then H(X) > −∞. In view of this, for
the sake of simplicity, from now on we focus on probability measures
on Rk that are compactly supported and admit a bounded density. We
denote the family of all such measures by A (Rk). We emphasize that
A (Rk) is closed under projections.

Fact 2.1. If X ∈ Rk1 and Y ∈ Rk2 have a joint distribution in
A (Rk1+k2), then the distribution of X is in A (Rk1).

Keeping in mind the case of equality in Jensen’s inequality and ap-
plying it to (16), let us note the following for future reference.

Lemma 2.2. If the distribution of a random variable X is in A (Rk)
and X takes values in a compact set K, then

−∞ < H(X) ≤ log(Vol(K)).
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The second inequality holds with equality if and only if X is uniform
on K.

Further use is made of the following generalisation of (16) for which
we also provide a quantitative ‘stability’ estimate.

Lemma 2.3. Let K ⊆ Rk be a bounded measurable set and let f : Rk →
[0,∞) be a bounded measurable function. Set p :=

∫
K
f(x)dx. Then

−
∫
K

f(x) log(f(x))dx ≤ p log

(
Vol(K)

p

)
, (17)

where we interpret the right-hand side as 0 if p = 0, and define 0 log 0 =
0 for the left-hand side.

Moreover, if K admits a partition K = K1 ∪ K2 for measurable
K1, K2 and either∫

K1
f(x)dx∫

K
f(x)dx

≤ 1

10
· Vol(K1)

Vol(K)
or

∫
K1
f(x)dx∫

K
f(x)dx

≥ 10 · Vol(K1)

Vol(K)

then

−
∫
K

f(x) log(f(x)) dx ≤ p log

(
Vol(K)

p

)
− p

4
·max

{
Vol(K1)

Vol(K)
,

∫
K1
f(x)dx∫

K
f(x)dx

}
. (18)

Proof. The bound is trivial if p = 0. Otherwise, since g := f/p satisfies

−
∫
K

f(x) log(f(x)) dx = −p
∫
K

g(x) log(g(x)) dx− p log p,

it suffices to prove the results when p = 1, as we now assume.

The estimate (17) follows from the same calculation as in (16).

We proceed to prove (18). Set r :=
∫
K1

f(x)dx∫
K f(x)dx

=
∫
K1
f(x)dx and

q := Vol(K1)
Vol(K)

so that either r ≤ 1
10
q or r ≥ 10q. Invoking (17) twice

yields

−
∫
K

f(x) log(f(x))dx = −
(∫

K1

+

∫
K2

)
f(x) log(f(x))dx

≤ r log

(
Vol(K1)

r

)
+ (1− r) log

(
Vol(K2)

(1− r)

)
,
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which, by the definition of q, is easily seen to be equivalent to:

log(Vol(K)) +

∫
K

f(x) log(f(x))dx

≥ r log

(
r

q

)
+ (1− r) log

(
1− r
1− q

)
.

DefineD(x) := x log(x/q)+(1−x) log((1−x)/(1−q)), so that the right-
hand side above is D(r). (An observant reader will recognise that D(r)
is the Kullback–Leibler divergence between Bernoulli random variables
with success probabilities r and q, respectively.) Note that D(q) = 0
and that

D′(x) = log

(
x

q

)
− log

(
1− x
1− q

)
. (19)

Observe further thatD′(x) is an increasing function of x andD′(q) = 0.
This implies that, in the case where r ≤ q/10,

D(r) ≥ q − r
2
·
(
−D′

(
r + q

2

))
≥ 9q

20
· log

(
20

11

)
≥ q

4

and, in the case where r ≥ 10q,

D(r) ≥ r − q
2
·D′

(
r + q

2

)
≥ 9r

20
· log

(
11

2

)
≥ r

4
. □

2.2. Conditional entropy. For random variables X ∈ Rk1 and Y ∈
Rk2 having a joint density f on Rk1+k2 , the conditional entropy of X
given Y , denoted by H(X | Y ), is the average over Y of the entropy of
the conditional distribution of X given Y . Formally, if we write

g(y) :=

∫
f(x, y) dx and fy(x) :=

f(x, y)

g(y)
, (20)

with fy defined for almost every y with respect to the distribution of Y ,
then

H(X | Y ) :=

∫
H(X{Y=y})g(y) dy = −

∫∫
log (fy(x)) fy(x)dx g(y) dy,

(21)
whenever the above integral is well defined, where X{Y=y} denotes the
random variable X conditioned on the event {Y = y}. Note that,
using Fact (2.1), H(X | Y ) is well defined and finite whenever the joint
distribution of X and Y is in A (Rk1+k2).
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2.3. Kullback–Leibler divergence. Given two absolutely continu-
ous probability measures µ and ν on Rk with densities f and g, re-
spectively, and random variables X ∼ µ and Y ∼ ν, we define the
Kullback–Leibler divergence between µ and ν (or between X and Y )
by

DKL (µ∥ν) := DKL (X∥Y ) :=

∫
log

(
f(x)

g(x)

)
f(x) dx. (22)

Since log y ≥ 1− 1/y for every y > 0, we see that

DKL (µ∥ν) ≥
∫ (

1− g(x)

f(x)

)
f(x) dx = 0. (23)

In particular, the integral in (22) is well defined, possibly as +∞.

We note a simple relation between the entropy of a pair of random
variables and their Kullback–Leibler divergence. Let X and Y be ran-
dom variables taking values in Rk1 and Rk2 , respectively, with a joint
distribution in A (Rk1+k2). A direct calculation shows that

H(X, Y ) = H(X) +H(Y )−DKL ((X, Y )∥X × Y ) , (24)

where we use the notation X × Y to denote a random variable whose
distribution is the product of the marginal distribution of X and the
marginal distribution of Y ; in other words, X × Y is composed of
independent copies of X and Y .

2.4. Properties of entropy. We now recall some standard facts about
entropy.

Lemma 2.4. Suppose X ∈ Rk1, Y ∈ Rk2, Z ∈ Rk3 have a joint
distribution in A (Rk1+k2+k3). Then

(i) H(X, Y ) = H(X | Y ) +H(Y ),
(ii) H(X | Y ) ≤ H(X),
(iii) H(X, Y ) ≤ H(X) +H(Y ),
(iv) H(X | Y, Z) ≤ H(X | Y ).

Proof. Note first that our assumption on the joint distribution of X,
Y , and Z implies that all entropies appearing in the statement of the
lemma are well defined, see Fact 2.1 and Lemma 2.2. To see (i), let f
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be the joint density of X and Y and define g and fy as in (20). Then

H(X, Y ) = −
∫∫

log(f(x, y))f(x, y) dx dy

= −
∫∫

log(fy(x)g(y))fy(x)g(y) dx dy

= −
∫∫

log(fy(x))fy(x) dx g(y) dy −
∫

log(g(y))g(y)

∫
fy(x) dx dy

= H(X | Y ) +H(Y ).

Inequality (iii) is a direct consequence of (23) and (24) whereas (ii)
follows immediately from (i) and (iii). To see (iv), let f be the joint
density of X, Y , and Z, and let

g(y) :=

∫∫
f(x, y, z) dx dz.

It is not hard to see that

H(X | Y, Z) =
∫
H(X{Y=y} | Z{Y=y})g(y)dy

≤
∫
H(X{Y=y})g(y)dy = H(X | Y ),

where the inequality follows from (ii). □

A powerful tool for comparing entropies is the following inequality
originally proved by Shearer (see [10]) for Shannon’s entropy. As the
literature usually deals with the discrete case, we provide a short proof
based on the treatment in [3].

Theorem 2.5 (Shearer’s inequality). Let X1, . . . , Xm be random vari-
ables with a joint density which is bounded and compactly supported.
Let I ⊆ 2JmK be a collection of subsets which r-covers the set JmK,
i.e., has the property that for each i ∈ JmK,

|{I ∈ I : i ∈ I}| = r. (25)

Then

H(X1, . . . , Xm) ≤
1

r

∑
I∈I

H({Xi : i ∈ I}). (26)

(since we did not preclude ∅ ∈ I , let us define that the entropy of an
empty collection of random variables is zero).

Proof. We prove the statement by induction on r. The case r = 1
follows immediately from (iii) in Proposition 2.4. Suppose now that
r > 1. If JmK ∈ I , then we easily obtain (26) invoking the inductive
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assumption with I replaced by the (r−1)-cover I \{JmK}. Otherwise,
assume I1, I2 ∈ I satisfy that both I1 \ I2 and I2 \ I1 are non-empty.
It follows from (iv) in Proposition 2.4 that

H(I1 \ I2 | I2) ≤ H(I1 \ I2 | I1 ∩ I2) (27)

where we denote H(I) as a short for H({Xi : i ∈ I}), and similarly for
conditioned entropies. Consequently, by (i) in Proposition 2.4,

H(I1 ∪ I2) +H(I1 ∩ I2)
(i)
= H(I1 \ I2 | I2) +H(I2) +H(I1 ∩ I2)

(27)

≤ H(I1 \ I2 | I1 ∩ I2) +H(I2) +H(I1 ∩ I2)
(i)
= H(I1) +H(I2)

If we now replace I1 and I2 with I1∪I2 and I1∩I2, then I remains an r-
cover and the sum in the right-hand side of (26) can only decrease. It is
clear that after a finite number of such modifications we will eventually
arrive at the case when JmK ∈ I . □

We remark that, due to the fact that differential entropy may be
negative and unlike the Shannon entropy case (the entropy of discrete
random variables), inequality (26) need not hold when the equals sign
in the r-cover condition (25) is changed to a greater-or-equal sign.

2.5. A triangle inequality for the Kullback–Leibler divergence.
The proof of Theorem 1.2 will require the following simple ‘triangle
inequality’ for Kullback–Leibler divergences.

Lemma 2.6. Suppose that X, Y , and Z are R-valued random variables
with a joint distribution in A (R3). Then

DKL ((X, Y, Z)∥X × Y × Z)
≤ DKL ((X, Y, Z)∥X × (Y, Z)) +DKL ((X, Y, Z)∥(X, Y )× Z) .

Proof. The definition of Kullback–Leibler divergence gives

DKL ((X, Y, Z)∥X × Y × Z)
= DKL ((X, Y, Z)∥X × (Y, Z)) +DKL ((Y, Z)∥Y × Z) .

The second term in the right-hand side may be bounded from above,
using (24) and Lemma 2.4 (iv), as follows:

DKL ((Y, Z)∥Y × Z) = H(Z)−H(Z | Y ) ≤ H(Z)−H(Z | X, Y )

= DKL ((X, Y, Z)∥(X, Y )× Z) . □
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2.6. Relations between entropy and independence. As explained
above, a key step in our proof of Theorem 1.2 is showing that the indi-
vidual distances in a uniformly sampled metric space from Mn become
almost independent random variables after we condition on the values
of some small fraction of all

(
n
2

)
distances. We shall establish this almost

independence property by bounding the entropies of various vectors of
distances in the random metric space. The connection between almost
independence and entropy will be provided by the following lemma,
relating the Kullback–Leibler divergence of two measures with the dif-
ference of their supports. The lemma will be used to bound from above
the error term in the upper bound on entropy given by Theorem 3.1,
see Claim 4.4.

Lemma 2.7. Let µ, ν be probability measures in A (Rk). Then

DKL (µ∥ν) ≥ sup{ν(A) : A ⊆ Rk Borel satisfying µ(A) = 0}. (28)

Proof. Denote by f(x) the density of µ and by g(x) the density of ν.
Let A ⊆ Rk be a Borel subset and suppose that µ(A) = 0. Recalling
that log(y) ≥ 1− 1

y
for all y > 0 we conclude that

DKL (µ∥ν) =
∫

log

(
f(x)

g(x)

)
f(x) dx =

∫
Ac

log

(
f(x)

g(x)

)
f(x) dx

≥
∫
Ac

(
1− g(x)

f(x)

)
f(x) dx = 1− ν(Ac) = ν(A). □

Observe that the quantity in the right-hand side of (28) is a lower
bound on the total variation distance between µ and ν. Therefore, it
seems natural to relate it to the Kullback–Leibler divergence between
µ and ν using Pinsker’s inequality [35], which states that2

DKL (µ∥ν) ≥ 2 (dTV (µ, ν))2 . (29)

This, in fact, was done in our proof of an earlier, weaker version of
Theorem 1.2. While (29) is optimal for certain pairs of µ and ν, in
our setting, the more specialised Lemma 2.7 yields much better depen-
dence between the two quantities involved. Similar considerations are
discussed in [15], which also uses a version of Lemma 2.7 in place of
Pinsker’s inequality.

2Originally, Pinsker proved (29) with the multiplicative constant 2 replaced by
1/(2 log 2). The version stated in (29) was obtained somewhat later by Csiszár [13],
Kemperman [25], and Kullback [29].
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3. Entropy-maximising product distributions

The first part of this section is devoted to deriving an upper bound
on the largest entropy of a vector of independent random variables
that is almost supported in a given compact, convex subset P ⊆ Rd.
It turns out that this largest entropy is close to the logarithm of the
largest volume of a box that is fully contained in P. In a short, second
part of the section, we compute this volume in the specific case that P
is the (closure of the) 3-dimensional metric polytope M3. The results
of this section are a central ingredient in the proof of the volume upper
bound in Theorem 1.2.

3.1. Entropy-maximising product distributions on convex sets.
The following theorem is the main result of this section.

Theorem 3.1. Let M > 0 and let P ⊆ [−M,M ]d, d ≥ 2, be a closed,
convex set with non-empty interior. Let V0 be the maximal volume of
an axis-parallel box fully contained in P, that is,

V0 := max

{
d∏

i=1

(bi − ai) : [a1, b1]× · · · × [ad, bd] ⊆P

}
. (30)

There exists a finite C = C(M,P) such that the following holds. Sup-
pose X1, . . . , Xd are independent random variables with bounded den-
sities supported in [−M,M ]. Then

H(X1, . . . , Xd) =
d∑

i=1

H(Xi) ≤ log(V0) + C · P
(
(X1, . . . , Xd) /∈P

)1/d
.

Let us comment on the assumptions and the conclusion of the the-
orem. First, since we will only use this result for a very specific P
(the closure of the 3-dimensional metric polytope M3), we do not need
the exact dependence of C on P, but let us nonetheless note that C
depends only on d, M , and V0.

The assumption d ≥ 2 is required for the conclusion. Indeed, when
d = 1, there exist examples where the error term has an additional
logarithmic factor (see (38) below for a complementary upper bound).
To see this, consider P = [0, 1] ⊆ [−2, 2] and let X1 be a random
variable that, with probability 1 − ε, is uniform on P and, with
probability ε, is uniform on [1, 2]. Here, P(X1 /∈ P) = ε whereas
H(X1) = (1− ε) log(1/(1− ε)) + ε log(1/ε) ≥ log(V0) + ε log(1/ε).
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Aside from the constant factor C, the dependence of the error term
on P

(
(X1, . . . , Xd) /∈P

)
is optimal. To see this, consider the simplex

P :=
{
(x1, . . . , xd) ∈ [0, d]d : x1 + · · ·+ xd ≤ d

}
⊆ [−d, d]d.

The AM–GM inequality implies that [0, 1]d is the largest box contained
in P and thus log(V0) = 0. Let X1, . . . , Xd be i.i.d. random variables
distributed uniformly on the interval [0, 1 + δ], for some δ ≤ 1/d. On
the one hand, we have

P
(
(X1, . . . , Xd) /∈P

)
≤ P

(
min

i
|Xi| > 1− (d− 1)δ

)
≤ (dδ)d.

On the other hand,

H(X1, . . . , Xd) = d ·H(X1) = d log(1 + δ) ≥ dδ/2.

Thus, H(X1, . . . , Xd) ≥ log(V0) + P
(
(X1, . . . , Xd) /∈P

)1/d
/2.

The first step in our proof of Theorem 3.1 is Lemma 3.2, below. The
lemma supplies an axis-parallel box fully contained in P that supports
most of the distribution of the vector (X1, . . . , Xd). The existence of
such a box already implies an upper bound on H(X1, . . . , Xd) that dif-
fers from the one stated in Theorem 3.1 by an extra logarithmic factor
in the error term (see (38)). The proof of the lemma is short; follow-
ing it, the bulk of the proof of Theorem 3.1 is devoted to removing
this superfluous logarithmic term. (If one substitutes the bound (38)
for Theorem 3.1 in the argument presented in Section 4.3, one ob-
tains the following weaker version of the upper bound in Theorem 1.2:
Vol(Mn) ≤ exp

(
C(n log n)3/2

)
.)

The second step in the proof of Theorem 3.1 is Proposition 3.3, below.
The proposition (combined with Lemma 3.2) may be regarded as a
strengthening of the conclusion of the theorem. The extra information
it provides will be used in our analysis of the minimum distance in a
typical sample from the metric polytope (Theorem 1.3).

We start the proof of Theorem 3.1 with several definitions that we
will use throughout.

Let M > 0 and fix a closed convex set P ⊆ [−M,M ]d with non-
empty interior. At this point the dimension is allowed to be any d ≥ 1
but the restriction d ≥ 2 will be placed in Proposition 3.3. Write V0
for the maximal volume of an axis-parallel box fully contained in P,
defined formally in (30). Our assumptions on P imply that V0 > 0. Let
X1, . . . , Xd be independent random variables with bounded densities
supported in [−M,M ]. Define

ε := P
(
(X1, . . . , Xd) /∈P

)1/d
, (31)
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so that our goal is to show that, for a finite C = C(M,P),

H(X1, . . . , Xd) =
d∑

i=1

H(Xi) ≤ log(V0) + Cε. (32)

We may (and will) assume without loss of generality that ε ≤ 1
6
, as

otherwise the statement follows by taking C = 6(d log(2M)−log(V0)) ≥
0 (as H(Xi) ≤ log(2M) by Lemma 2.2 and V0 ≤ (2M)d).

For each i ∈ JdK, define the upper and lower ε-quantiles of the dis-
tribution of Xi,

ai := sup{a ∈ R : P(Xi < a) ≤ ε},
bi := inf{b ∈ R : P(Xi > b) ≤ ε},

(33)

so that

P
(
Xi ≤ ai

)
= P

(
Xi ≥ bi

)
= ε. (34)

In particular, the interval [ai, bi] is nonempty by our assumption that
ε ≤ 1

6
. Denote the volume spanned by these intervals by

V := Vol
(
[a1, b1]× · · · × [ad, bd]

)
=

d∏
i=1

(bi − ai). (35)

Finally, writing fi for the density of Xi, let

H(Xi;A) := −
∫
A

fi(x) log(fi(x))dx (36)

be the contribution to the differential entropy of Xi from the measur-
able set A.

Our first lemma shows that the box spanned by the intervals ([ai, bi])
is fully contained in P.

Lemma 3.2. In every dimension d ≥ 1,

[a1, b1]× · · · × [ad, bd] ⊆P. (37)

In particular, V ≤ V0.

Proof. Suppose, to obtain a contradiction, that (37) fails. Hence, as
P is closed, there exists (x1, . . . , xd) /∈ P with ai < xi < bi for
all i. This implies, as P is convex, that there is a choice of signs
(s1, . . . , sd) ∈ {−1, 1}d so that the orthant

O :=
{
(y1, . . . , yd) : si(yi − xi) ≥ 0 for all i ∈ JdK

}
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does not intersect P. In particular,

εd = P
(
(X1, . . . , Xd) /∈P

)
≥ P

(
(X1, . . . , Xd) ∈ O

)
≥

d∏
i=1

min{P(Xi ≤ xi),P(Xi ≥ xi)}

>
d∏

i=1

min{P(Xi ≤ ai),P(Xi ≥ bi)} = εd,

where the strict inequality uses that ai < xi < bi and the definition (33).
This contradiction shows that (37) must in fact hold.

The volume statement is now deduced from the definition of V0. □

We digress from the proof of Theorem 3.1 to note that Lemma 3.2
implies the following version of the theorem, which holds in every di-
mension d ≥ 1 but has an extra logarithmic factor in the error term,

d∑
i=1

H(Xi) ≤ log(V0) + Cε log(2/ε) (38)

with ε as in (31) and C = C(d,M, V0) finite. The case ε >
1
6
is handled

directly as before. For ε ≤ 1
6
, note first that, for some C ′ = C ′(d,M),

d∑
i=1

H(Xi) ≤ (1− 2ε) log(V ) + C ′ε log(2/ε) (39)

Indeed, for each i ∈ JdK, by (34) and Lemma 2.3,

H(Xi) = H(Xi; [−M,M ] \ [ai, bi]) +H(Xi; [ai, bi])

≤ 2ε log

(
2M − (bi − ai)

2ε

)
+ (1− 2ε) log

(
bi − ai
1− 2ε

)
≤ (1− 2ε) log(bi − ai) + 2ε log

(
M

ε

)
+ (1− 2ε) log

(
1

1− 2ε

)
and the bound (39) follows by summing this estimate over all i. To
deduce (38), replace V by V0 using Lemma 3.2 and absorb the factor
2ε log(V0) in the error term.

We return to the proof of Theorem 3.1 and will show the following
key proposition.
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Proposition 3.3. In dimensions d ≥ 2, there exists a finite C =
C(M,P) such that

d∑
i=1

H(Xi) ≤
1

2

(
log(V0) +

d∑
i=1

H(Xi; [ai, bi])

)
+ Cε.

It will be convenient to denote by c and C finite positive constants
which depend only on d, M , and V0. These constants, and their num-
bered versions, may change from line to line.

Let us see how Proposition 3.3 and Lemma 3.2 imply Theorem 3.1.
Combining the proposition with Lemma 2.3, recalling (34), (35), and
our assumption that ε ≤ 1

6
, and applying Lemma 3.2 we have

H(X1, . . . , Xd) ≤
1

2

(
log(V0) + (1− 2ε)

d∑
i=1

log

(
bi − ai
1− 2ε

))
+ Cε

≤ 1

2

(
log(V0) + (1− 2ε) log(V )

)
+ Cε ≤ log(V0) + Cε.

Proof of Proposition 3.3. There are three constants in the proof that
deserve their own letters, β, µ, and K, also depending only on d, M ,
and V0. We will not specify these explicitly, and only point out here
that we first choose β (small), then µ (even smaller), and then K (very
large). In symbols (treating d, M , and V0 as constants),

K−1 ≪ µ≪ β ≪ 1.

Let us introduce the following quantity,

t := sup

{
s > 0 : ∃i max {P(Xi ≤ ai − s),P(Xi ≥ bi + s)} ≥ Kε2

s

}
where we set t = 0 if the above set is empty. As each Xi is supported
on [−M,M ], we have t ≤ 2M . On the other hand, by the definition of
ai and bi, see (34), either t = 0 or t ≥ Kε.

The proposition is obtained by summing the following inequalities:

Mt :=
d∑

i=1

H(Xi; [ai − t, ai] ∪ [bi, bi + t]) +
1

2
H(Xi; [ai, bi])

≤ 1

2
log(V0) + Cε. (40)

and, for each i ∈ JdK,

H(Xi;R \ [ai − t, bi + t]) ≤ Cε. (41)
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We first prove (41). For each k ≥ 1, let λk be the Lebesgue measure of
the set

{x /∈ [ai − t, bi + t] : e−k ≤ fi(x) ≤ e−k+1}

and note that, as −y log y < 0 for y > 1,

H(Xi;R \ [ai − t, bi + t]) ≤
∞∑
k=1

ke−k+1λk.

For every k ≥ 1,

λk ≤ 2εk2 + ek ·
(
P(Xi ≤ ai − t− εk2) + P(Xi ≥ bi + t+ εk2)

)
(∗)
≤ 2εk2 + ek · 2Kε2

t+ εk2
≤
(
2k2 +

2Kek

k2

)
· ε

where (∗) follows from the definition of t. Hence

∞∑
k=1

ke−k+1λk ≤

(
∞∑
k=1

2k3

ek−1
+

∞∑
k=1

2eK

k2

)
· ε ≤ Cε,

which proves (41).

It remains to argue that (40) holds as well. For this we apply
Lemma 2.3 and get for each i (using also log y ≤ y − 1 for y > 0),

H(Xi; [ai, bi]) ≤ (1− 2ε) log

(
bi − ai
1− 2ε

)
≤ (1− 2ε) log(bi − ai) + 2ε

(42)

and, if t > 0,

H(Xi; [ai − t, ai] ∪ [bi, bi + t]) ≤ 2ε log

(
t

ε

)
, (43)

where we used the fact that t ≥ Kε ≥ eε, which implies that the func-
tion δ 7→ δ log(t/δ) is increasing for δ ∈ [0, ε]. We split the remainder
of the argument into two cases, depending on how close V , the volume
of [a1, b1]× · · · × [ad, bd], is to V0.

Case 1. We first assume that

log(V ) ≤ log(V0)− βt. (44)
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In this case, summing (43) and half of (42) over all i gives

Mt ≤
1

2
(1− 2ε)

d∑
i=1

log(bi − ai) + dε+ 2dε log

(
t

ε

)
· 1{t>0}

≤ 1

2
(1− 2ε) (log(V0)− βt) + dε+ 2dε log

(
t

ε

)
· 1{t>0}

≤ 1

2
log(V0) +

(
d+ 2d log

(
t

ε

)
· 1{t>0} −

β

4
· t
ε
− log(V0)

)
· ε.

The claimed estimate (40) now follows as, for every c > 0, the function
y 7→ log(y)− cy is bounded from above.

Case 2. Assume now that (44) does not hold. This means, in particu-
lar, that t > 0 (due to Lemma 3.2). Since our variables are continuous,

max {P(Xi ≤ ai − t),P(Xi ≥ bi + t)} = Kε2

t

for some index i. By permuting and reflecting the coordinates, if nec-
essary, we may assume that

P(X1 ≤ a1 − t) = Kε2/t. (45)

We claim that

[a1 − t, b1]×
d∏

i=2

[ai + µt, bi − µt] ⊈ P. (46)

Indeed, if this were not true, then

log(V0)−log(V ) ≥ log

(
b1 − a1 + t

b1 − a1

)
+

d∑
i=2

log

(
bi − ai − 2µt

bi − ai

)
. (47)

Since (44) does not hold, we have

min
i
(bi − ai) ≥

V

(2M)d−1
≥ e−βt · V0

(2M)d−1
≥ V0

(2M)d
,

where the last inequality holds as t ≤ 2M and β is small. It follows
that the first term in the right-hand side of (47) is at least c1t, for
some positive constant c1 = c1(d,M, V0) (independent of β as long as
β is small), and, if µ is sufficiently small, each of the d− 1 summands
is at least −C1µt, for some positive constant C1 = C1(d,M, V0). In
particular, if β and µ are sufficiently small, then the right-hand side
of (47) is larger than βt, contradicting our assumption.
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Let x be some point demonstrating (46), namely

x ∈

(
[a1 − t, b1]×

d∏
i=2

[ai + µt, bi − µt]

)
\P,

and notice that x1 ∈ [a1 − t, a1), as
∏

i[ai, bi] ⊆ P by Lemma 3.2.
Since P is convex there is a hyperplane separating x from P, that is,
a vector v such that

∀y ∈P ⟨v, x⟩ < ⟨v, y⟩. (48)

First, let us apply (48) to y = (a1, x2, . . . , xd), which we may since
xi ∈ [ai, bi] for all i ≥ 2. We get v1(a1 − x1) > 0, so v1 > 0 and
we may normalise v to assume v1 = 1. Moreover, by permuting the
coordinates, if necessary, we may assume that vi ≥ 0 for i ∈ {2, . . . , j}
and vi < 0 for i ∈ {j + 1, . . . , d}. We may also assume that j ≥ 2, the
complementary case j + 1 = 2 being essentially identical. (Note that
we do use the assumption that d ≥ 2 here.) These assumptions imply
that

(−∞, a1 − t]× (−∞, a2 + µt]×
j∏

i=3

(−∞, ai]×
d∏

i=j+1

[bi,∞)

is disjoint from P. Indeed, if z is an arbitrary point in this orthant,
we have vizi ≤ vixi for each i and hence ⟨v, z⟩ < ⟨v, y⟩ for all y ∈ P.
It follows that

P(X1 ≤ a1 − t) · P(a2 ≤ X2 ≤ a2 + µt)

·
j∏

i=3

P(Xi ≤ ai) ·
d∏

i=j+1

P(Xi ≥ bi) ≤ εd,

and therefore, as P(Xi ≤ ai) = P(Xi ≥ bi) = ε,

P(a2 ≤ X2 ≤ a2 + µt) ≤ ε2

P(X1 ≤ a1 − t)
(45)
=

t

K
.

Thus we have shown some inhomogeneity in the distribution of X2. If
we require K > 10(b2−a2)/µ(1−2ε), then this inhomogeneity is strong
enough to apply (18) in Lemma 2.3, so let us make this requirement.
We get

H(X2; [a2, b2]) ≤ (1− 2ε) log

(
b2 − a2
1− 2ε

)
− 1− 2ε

4
· µt

b2 − a2
≤ (1− 2ε) log(b2 − a2) + 2ε− µ

20M
· t. (49)
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Summing (43) and half of (42) over all i, as in Case 1, but using the
improved estimate (49) in place of (42) when i = 2 yields

Mt ≤
1

2
(1− 2ε) log(V ) + dε+ 2dε log

(
t

ε

)
− µ

40M
· t.

A calculation similar to the one done in Case 1, using that V ≤ V0 by
Lemma 3.2, yields the upper bound (40) on Mt. This completes the
proof of the proposition (and hence also of Theorem 3.1). □

3.2. The largest box in M3. Theorem 3.1 will be applied to the
(closure of the) 3-dimensional metric polytope. To this end, we study
here the largest box contained in M3.

Lemma 3.4. Suppose that P is an axis-parallel box contained in the
closure of the metric polytope M3, that is,

P = [a1, b1]× [a2, b2]× [a3, b3] ⊆M3 ⊆ R(
3
2) ∼= R3.

Then
Vol(P ) ≤ 1 (50)

and equality holds if and only if [ai, bi] = [1, 2] for each i ∈ {1, 2, 3}.
Furthermore, for some absolute constant C,

3∑
i=1

(
|ai − 1|+ |bi − 2|

)
≤ C(1− Vol(P )).

The furthermore clause is not required for our analysis of the volume
of the metric polytope (Theorem 1.2) but will be used in analysing the
typical minimum distance (Theorem 1.3).

The following proof was suggested to us by Shoni Gilboa; it replaced
our previous, less transparent argument.

Proof of Lemma 3.4. Our assumption that P ⊆M3 implies that b1 ≤
a2 + a3 and, similarly, b2 ≤ a1 + a3 and b3 ≤ a1 + a2. Summing these
three inequalities yields

b1 + b2 + b3 ≤ 2(a1 + a2 + a3). (51)

Consequently, by the AM–GM inequality,

Vol(P ) =
3∏

i=1

(bi − ai) ≤

(
3∑

i=1

bi − ai
3

)3

≤
(
b1 + b2 + b3

6

)3

≤ 1, (52)

where the second inequality is precisely (51) and the last inequality
holds by our assumption that P ⊆ M3 ⊆ [0, 2]3, which ensures that
b1, b2, b3 ≤ 2.
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For the second and third assertions of the lemma, suppose that
Vol(P ) ≥ 1− ε for some ε ≥ 0. Inequality (52) implies that

b1 + b2 + b3
2

≥
3∑

i=1

(bi − ai) ≥ 3(1− ε)1/3 ≥ 3(1− ε) (53)

and, consequently, as maxi bi ≤ 2, that mini bi ≥ 2 − 6ε. Moreover,
summing the inequalities a1 + a2 ≥ b3 and a1 + a3 ≥ b2, we obtain

a1 ≥ b2 + b3 − (a1 + a2 + a3) =
3∑

i=1

(bi − ai)− b1 ≥ 1− 3ε,

where the last inequality follows from (53) and the assumption b1 ≤ 2.
By symmetry, mini ai ≥ 1− 3ε. Using again (53), we have

3(1− ε) ≤
3∑

i=1

(bi − ai) ≤ 6− 2min
i
ai − a1,

giving a1 ≤ 1 + 9ε. By symmetry, maxi ai ≤ 1 + 9ε. Hence

3∑
i=1

(
|ai − 1|+ |bi − 2|

)
≤

3∑
i=1

(
9ε+ 6ε

)
= 45ε,

as needed. □

4. Estimating the volume of the metric polytope

In this section, we prove Proposition 1.1 and Theorem 1.2. The
proof of Proposition 1.1 is a short application of Shearer’s inequal-
ity (Theorem 2.5) and is presented in Section 4.1. The lower bound
on the volume of Mn is obtained via the Local Lemma of Erdős and
Lovász [18]; it is presented in Section 4.2. The proof of the upper bound
on the volume, whose outline is given in the introduction, is presented
in Section 4.3.

4.1. Monotonicity. In this section, we prove Proposition 1.1. Recall

that said proposition states that the sequence n 7→ Vol(Mn)
1/(n2) is

non-increasing. We will show that this fact is a simple consequence
of Shearer’s inequality (Theorem 2.5). Alternatively, one can derive
it from a generalisation of the Loomis–Whitney inequality [30] due to
Bollobás and Thomason [9].

Proof of Proposition 1.1. Let n ≥ 2 and let d be a uniformly sampled
metric space in Mn+1. By Lemma 2.2,

H(d) = log (Vol(Mn+1)) . (54)
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For each i ∈ Jn+ 1K, let Ji := Jn+ 1K \ {i} and let Ii be the set of
all unordered pairs of distinct elements in Ji. Observe that, for each
{j, k} ∈

(Jn+1K
2

)
, we have

|{i ∈ Jn+ 1K : {j, k} ∈ Ii}| = n− 1.

Since d may be naturally viewed as a random vector of distances,
Shearer’s inequality (Theorem 2.5) implies that

H(d) ≤ 1

n− 1

n+1∑
i=1

H
(
{djk : {j, k} ∈ Ii}

)
. (55)

Finally, observe that for each i ∈ Jn+ 1K, the restriction of d to the
pairs in Ii is a metric space on n points that belongs to Mn. Thus, by
Lemma 2.2,

H
(
{djk : {j, k} ∈ Ii}

)
≤ log(Vol(Mn)) (56)

Putting together (54), (55), and (56), we conclude that

log(Vol(Mn+1)) ≤
n+ 1

n− 1
log(Vol(Mn)).

Since this inequality holds for any n ≥ 2 and (n + 1)/(n − 1) =(
n+1
2

)
/
(
n
2

)
, we conclude that the sequence n 7→ Vol(Mn)

1/(n2) is non-
increasing, as claimed. □

4.2. Lower bound. In this section, we prove the lower bound on
Vol(Mn) from Theorem 1.2. Recall that it was Vol(Mn) ≥ exp((1/6 +
o(1))n3/2). The proof below, which uses the Local Lemma of Erdős
and Lovász [18], is due to Dor Elboim (our original argument, based
on Harris’s inequality [22], gave 1/24 instead of 1/6).

We may and will assume that n is sufficiently large. Let δ = 1/(2
√
n)

and let (dij), {i, j} ∈
(JnK

2

)
, be an array of independent and identically

distributed random variables, each uniform on the interval [1− δ, 2].
Define the event

G := {(dij) ∈Mn}.
Observe that, by definition,

Vol(Mn) ≥ (1 + δ)(
n
2) P(G) =

(
1 +

1

2
√
n

)(n2)
P(G). (57)

We shall derive a lower bound on P(G) from the Local Lemma.

Lemma 4.1 ([3, Lemma 5.1.1]). Let Bv, v ∈ V , be events in an ar-
bitrary probability space. Suppose that there is an integer k such that,
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for each v ∈ V , there is a set Dv ⊆ V \ {v} with at most k ele-
ments such that Bv is mutually independent of all the events Bw with
w ∈ V \ (Dv ∪ {v}). If a real p ∈ [0, 1] satisfies P(Bv) ≤ p(1− p)k for
each v ∈ V , then

P
( ⋂

v∈V

Bc
v

)
≥ (1− p)|V |.

For a triple of distinct indices {i, j, k} ∈
(JnK

3

)
, let Bijk denote the

event that (dij, dik, djk) is not in M3, that is, one of the three triangle
inequalities is violated. Observe that

P(Bijk) = 3P(dij + djk < dik) =
3

1 + δ

∫ 2δ

0

P(dij + djk < 2− x) dx

=
3

(1 + δ)3

∫ 2δ

0

(2δ − x)2

2
dx =

4δ3

(1 + δ)3
.

Since the event Bijk is mutually independent of all events Bi′j′k′ such
that |{i, j, k} ∩ {i′, j′, k′}| ≤ 1, we may invoke Lemma 4.1 to conclude
that, for every p satisfying

4δ3

(1 + δ)3
≤ p(1− p)3(n−3), (58)

we have

P(G) = P

( ⋂
{i,j,k}∈(JnK

3 )
Bc

ijk

)
≥ (1− p)(

n
3). (59)

It is easy to see that if p = an−3/2 for some constant a > 1/2, then (58)
is satisfied for all sufficiently large n. In particular, (57) and (59) imply
that, for each a > 1/2,

Vol(Mn) ≥
(
1 +

1

2
√
n

)(n2) (
1− a

n3/2

)(n3)
= exp

((
1

4
− a

6
+ o(1)

)
n3/2

)
.

Since a was an arbitrary constant greater than 1/2, this yields the lower
bound in (6). □

4.3. Upper bound. In this section, we deduce the upper bound on
Vol(Mn) stated in Theorem 1.2 from the entropy estimate of Theo-
rem 3.1.
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Let n ≥ 3 and let d be a uniformly sampled metric space in Mn,

which we view as a vector in R(
JnK
2 ). By Lemma 2.2,

log(Vol(Mn)) = H(d).

For each m ∈ {0, . . . , n − 1}, let us denote by Fm the set of all pairs

ij ∈
(JnK

2

)
with max{i, j} > n−m, that is,

Fm :=

(
JnK
2

)
\
(

Jn−mK
2

)
(60)

and set, for m ≤ n− 2,

hm := H(d12 | (de)e∈Fm), (61)

where h0 = H(d12). Observe that, by symmetry, hm = H(dij|(de)e∈Fm)

for every ij ∈
(Jn−mK

2

)
. Since d12 ∈ [0, 2], then h0 ≤ log 2, by Lemma 2.2.

Since Fm ⊆ Fm+1 for every m, it follows from Lemma 2.4 (iv) that

hn−2 ≤ · · · ≤ h1 ≤ h0 ≤ log 2. (62)

Additionally, as F0 = ∅ and Fn−1 =
(JnK

2

)
, Lemma 2.4 (i) and (iii) give

H
(
(de)e∈(JnK

2 )

)
=

n−2∑
m=0

H
(
(de)e∈Fm+1\Fm | (df )f∈Fm

)
≤

n−2∑
m=0

∑
e∈Fm+1\Fm

H (de | (df )f∈Fm)

=
n−2∑
m=0

|Fm+1 \ Fm| · hm =
n−2∑
m=0

(n−m− 1) · hm. (63)

In particular, it suffices to prove the following estimate.

Lemma 4.2. There exists a K > 0 such that, for all m ∈ {0, . . . , n−2},

hm ≤
K√
m+ 1

.

Indeed, substituting this bound into (63) gives

log(Vol(Mn)) = H(d) ≤ K
n−1∑
m=1

n−m√
m
≤ Cn3/2

for some absolute constant C > 0, establishing the theorem.

Lemma 4.2 is a fairly simple consequence of the monotonicity of the
sequence (hm) and the following estimate, which lies at the heart of
the matter.
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Lemma 4.3. There exists a C > 0 such that, for all m ∈ {0, . . . , n−3},

hm ≤ C (hm − hm+1)
1/3 .

Proof. Fix an m ∈ {0, . . . , n − 3}. Since {1, n − m}, {2, n − m} ∈
Fm+1 \ Fm, Lemma 2.4 (iv) implies that

hm+1 ≤ H(d12 | (de)e∈Fm , d1,n−m, d2,n−m) ≤ hm.

By symmetry, we may replace n−m in the above inequality with any
element of {3, . . . , n−m}. In particular,

H(d12 | (de)e∈Fm , d13, d23) ≥ hm+1

and thus,

H(d12 | (de)e∈Fm)−H(d12 | (de)e∈Fm , d13, d23) ≤ hm − hm+1. (64)

Condition on all the distances dij with ij ∈ Fm and denote by
(X1, X2, X3) the random vector whose distribution is the conditioned
distribution of (d12, d13, d23), so that

hm = H(d12 | (de)e∈Fm) = E[H(X1)] = E[H(X2)] = E[H(X3)].

We writeX1×X2×X3 to denote the random variable whose distribution
is the product of the marginal distributions of X1, X2, and X3.

Claim 4.4. We have

E
[
P(X1 ×X2 ×X3 /∈M3)

]
≤ 2(hm − hm+1).

Proof of Claim 4.4. By (24), inequality (64) is equivalent to

E
[
DKL ((X1, X2, X3)∥X1 × (X2, X3))

]
≤ hm − hm+1. (65)

By symmetry, inequality (64) continues to hold for any permutation of
(d12, d13, d23) and hence (65) continues to hold for any permutation of
(X1, X2, X3). It thus follows from Lemma 2.6 that

E
[
DKL ((X1, X2, X3)∥X1 ×X2 ×X3)

]
≤ 2(hm − hm+1). (66)

Since (X1, X2, X3) ∈ M3 with probability one, Claim 4.4 now follows
from (66) and Lemma 2.7. □

We may now apply Theorem 3.1 (to the distribution of X1×X2×X3)
to bound the entropies of X1, X2, and X3. Lemma 3.4 states that the
largest volume of an axis-parallel box contained in M3 is one and thus,
by Theorem 3.1,

H(X1) +H(X2) +H(X3) ≤ C · P(X1 ×X2 ×X3 /∈M3)
1/3.
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By Jensen’s inequality (applied to the concave function x 7→ x1/3) and
Claim 4.4,

3hm = E
[
H(X1) +H(X2) +H(X3)

]
≤ C ·

(
2(hm − hm+1)

)1/3
,

as we wanted to prove. □

Proof of Lemma 4.2. Let K be a sufficiently large absolute constant,
to be fixed later. If hm ≤ K√

m+1
for all m then there is nothing to prove.

Otherwise, aiming to obtain a contradiction, define

m0 := min

{
m : 0 ≤ m ≤ n− 2 and hm >

K√
m+ 1

}
.

Taking K ≥ log 2 we necessarily have m0 ≥ 1 by (62). It follows from
Lemma 4.3 and the definition of m0 that

hm0−1 ≤ C (hm0−1 − hm0)
1/3 ≤ C

(
K
√
m0

− K√
m0 + 1

)1/3

.

As 1√
x
− 1√

x+1
≤ 1

2x3/2 for all x > 0, we may continue the above inequality

to obtain

hm0−1 ≤
CK1/3

21/3
√
m0

≤ K√
m0 + 1

if only K is sufficiently large compared with C. Fix K to satisfy this
condition. This contradicts the definition ofm0 as hm0 ≤ hm0−1 by (62).
This finishes the proof of Lemma 4.2, and thus also of Theorem 1.2. □

4.4. The lower tail of a typical distance. The proof of Theo-
rem 1.3, presented in Section 5 below, uses as input an upper bound
on P(d12 < 1) where, as before, (dij) denotes a uniformly chosen met-
ric space in Mn. We record this in the following result, which further
points out a nearly-matching lower bound.

Proposition 4.5. There are absolute constants C, c > 0 such that

c√
n log(n+ 1)

≤ P(d12 < 1) ≤ C√
n
.

We continue to use the notation H(X;A) := −
∫
A
f(x) log(f(x))dx

for a random variable X with bounded and compactly-supported den-
sity f and measurable A.

The lower bound in Proposition 4.5 is a simple consequence of the
volume lower bound in Theorem 1.2. To see this, assume, to reach a
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contradiction, that the lower bound does not hold. Then, by Lemma 2.3
and the fact that log y ≤ y − 1 for all y > 0,

H(d12) = H(d12; [0, 1)) +H(d12; [1, 2])

≤ P(d12 < 1) log

(
1

P(d12 < 1)

)
+ P(d12 ≥ 1) log

(
1

P(d12 ≥ 1)

)
≤ P(d12 < 1) log

(
1

P(d12 < 1)

)
+ 1− P(d12 ≥ 1)

= P(d12 < 1) log

(
e

P(d12 < 1)

)
≤ 2c√

n

for each c > 0 and n sufficiently large. Thus, by the subadditivity of
entropy,

log(Vol(Mn)) ≤
(
n

2

)
H(d12) ≤ cn3/2

for all large n. For small c, this leads to a contradiction with the lower
bound in Theorem 1.2.

We proceed to prove the upper bound in Proposition 4.5. The fol-
lowing lemma, which relies on the entropy bounds of Section 3, is the
main ingredient.

Lemma 4.6. There exist absolute constants C, c > 0 such that the
following holds. Let X1, X2, X3 be independent random variables sup-
ported in [0, 2]3. Then

3∑
i=1

H(Xi) ≤ C P((X1, X2, X3) /∈M3)
1/3 − c

3∑
i=1

P(Xi < 1).

Proof. Set ε := P((X1, X2, X3) /∈M3)
1/3 and use (33) to define (ai), (bi)

for 1 ≤ i ≤ 3. Proposition 3.3 and (50) imply that

3∑
i=1

H(Xi) ≤
1

2

3∑
i=1

H(Xi; [ai, bi]) + Cε (67)

for an absolute C > 0.

We proceed to estimate the right-hand side of (67). First, Lemma 3.2
shows that P := [a1, b1]× [a2, b2]× [a3, b3] is contained in the closure of
M3. Hence, Lemma 3.4 implies that

V := Vol(P ) ≤ 1− c1
3∑

i=1

(
|ai − 1|+ |bi − 2|

)
(68)
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for an absolute 0 < c1 < 1. Second, we shall prove that

H(Xi; [ai, bi]) ≤ (1− 2ε) log(bi − ai) + 2ε

+ c1

(
|ai − 1|+ |bi − 2| − P(Xi < 1)

20

)
+ ε (69)

for each 1 ≤ i ≤ 3. Lastly, plugging this estimate in (67) gives

3∑
i=1

H(Xi) ≤
1− 2ε

2
log(V ) + (C + 9

2
)ε

+
c1
2

3∑
i=1

(
|ai − 1|+ |bi − 2| − P(Xi < 1)

20

)
.

Using log(V ) ≤ V − 1 and (68) gives

1− 2ε

2
log(V ) ≤ 1

2

(
− c1

3∑
i=1

(|ai − 1|+ |bi − 2|)
)
+ 9c1ε,

where we used the inequality |ai − 1|+ |bi − 2| ≤ 3 to bound the error
term. We see that the terms containing

∑
i |ai−1|+ |bi−2| cancel and

we are left with

3∑
i=1

H(Xi) ≤ Cε− c1
40

3∑
i=1

P(Xi < 1),

as needed.

It remains to prove (69). Fix 1 ≤ i ≤ 3. Lemma 2.3 and the
inequality log y ≤ y − 1, valid for all y > 0, give that

H(Xi; [ai, bi]) ≤ (1− 2ε) log

(
bi − ai
1− 2ε

)
≤ (1− 2ε) log(bi − ai) + 2ε.

Thus it suffices to show that the sum of the third and fourth terms
in (69) is non-negative. This is the case if: (i) ai ≥ 1, since c1 < 1 and
the definition of ai implies that P(Xi < ai) = ε (see (34)); (ii) bi ≤ 1;
(iii) bi − ai ≤ 1

2
; or (iv) ai < 1 and P(ai < Xi < 1) ≤ 20(1− ai) since

P(Xi < 1) = P(ai < Xi < 1) + P(Xi < ai) = P(ai < Xi < 1) + ε. (70)

We thus assume that ai < 1, bi > 1, bi − ai > 1
2
and P(ai < Xi < 1) >

20(1− ai). In particular,

P(ai < Xi < 1)

P(ai < Xi < bi)
≥ 10 · 1− ai

bi − ai
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Applying the second clause of Lemma 2.3, with the partition [ai, bi] =
[ai, 1) ∪ [1, bi], then shows that

H(Xi; [ai, bi]) ≤ (1− 2ε) log

(
bi − ai
1− 2ε

)
− P(ai < Xi < 1)

4
.

This implies (69), again using (70) and the fact that c1 < 1. □

Now recall the notation Fm and hm from (60) and (61), respectively.
The following simple lemma is our second ingredient in the proof of the
upper bound in Proposition 4.5.

Lemma 4.7. There exists an absolute constant K > 0 and some 1
3
n ≤

m ≤ 2
3
n for which

hm > − K√
n

and hm − hm+1 ≤
K

n3/2
.

Proof. Recall that m 7→ hm is decreasing (62) and hm ≤ C/
√
m+ 1

for each m, by Lemma 4.2. We first claim that, for some K sufficiently
large,

h⌈2n/3⌉ > −
K√
n
. (71)

Indeed, if it were not the case then from (63) we would get

log(Vol(Mn))
(63)

≤
n−2∑
m=0

(n−m− 1)hm

≤
⌈2n/3⌉−1∑

m=0

C(n−m− 1)√
m+ 1

−
n−2∑

m=⌈2n/3⌉

K(n−m− 1)√
n

≤ Cn3/2 −Kn3/2,

which would contradict the fact that Vol(Mn) ≥ 1, provided that K is
sufficiently large.

Finally, it follows from the pigeonhole principle that for some m with
⌈n/3⌉ ≤ m < ⌈2n/3⌉, we have

hm − hm+1 ≤
h⌈n/3⌉ − h⌈2n/3⌉
⌊n/3⌋

≤
C/
√
n/3 + 1 +K/

√
n

⌊n/3⌋
≤ K

n3/2
. (72)

Moreover, hm ≥ h⌈2n/3⌉ > −K/
√
n, as claimed. □

We now finish the proof of the upper bound in Proposition 4.5.

Let 1
3
n ≤ m ≤ 2

3
n be as in Lemma 4.7. Condition on all the distances

dij with ij ∈ Fm and write (X1, X2, X3) for the conditional versions of
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(d12, d13, d23). The distribution of (X1, X2, X3) is regarded as random
(a function of the variables conditioned upon). Lemma 4.6 shows that

3∑
i=1

H(Xi) ≤ C P(X1 ×X2 ×X3 /∈M3)
1/3 − c

3∑
i=1

P(Xi < 1).

Averaging over the conditioning, using Jensen’s inequality (for the con-
cave function x 7→ x1/3), and applying Claim 4.4, we conclude that

3hm ≤ C (2hm − 2hm+1)
1/3 − 3cP(d12 < 1)

Thus, by Lemma 4.7,

P(d12 < 1) ≤ C ′
√
n

for some absolute constant C ′, finishing the proof.

5. The shortest distance in the metric space

In this section, we prove Theorem 1.3, showing that, with high prob-
ability, the minimum distance in a uniformly chosen metric space from
Mn is only polynomially shorter than one. In order to introduce several
key ideas used in the proof of the theorem, we first sketch an argument
yielding the weaker result that all distances are larger than 2−8. This
result will not need any fine estimates on the volume and it will yield
an exponential bound on the probability of having a short distance.
The first step is the following simple proposition.

Proposition 5.1. For every α ∈ (0, 1/2],

Vol
(
{d ∈Mn : min

i,j
dij ≤ α}

)
≤
(
n

2

)
(2α)n−2 · Vol(Mn−1).

Proof. By symmetry, it suffices to show that the volume of those d ∈
Mn for which dn−1,n ≤ α is at most (2α)n−2 ·Vol(Mn−1). Assume that
dn−1,n ≤ α and note that, for each i ∈ Jn− 2K, the distance din must
belong to the interval [di,n−1−α, di,n−1+α]. In other words, the volume
of the possible values for (din)

n−2
i=1 , given all the other distances, is at

most (2α)n−2. This gives the desired estimate. □

Suppose that d is sampled uniformly from Mn. We could already
conclude that P(minij dij ≤ α) is exponentially small in n, for every
constant α < 1/2, if we knew that Vol(Mn−1) ≤ eo(n) · Vol(Mn). Such
an estimate does indeed hold, as will be shown in Proposition 5.3. Since
the proof of Proposition 5.3 is rather involved (even though it is quite
natural to conjecture that n 7→ Vol(Mn) is increasing, see Section 7.1)
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and it crucially relies on the volume estimate provided by Theorem 1.2,
let us sketch here a self-contained argument showing that

Vol(Mn) ≥ 2−6n · Vol(Mn−1), (73)

which is enough to deduce that, for some constants c, C > 0,

P(min
i,j

dij ≤ 2−8) ≤ Ce−cn. (74)

Sketch of a proof of (73). Define

F (d) := min
A⊆JnK

∏
i∈A

(
2 min
j∈JnK\{i}

dij

)
(so that F (d) = 1 if dij ≥ 1/2 for all {i, j}). We claim that, for all
sufficiently large n and all F ∈ (0, 1),

Vol
(
{d ∈Mn : F (d) ≤ F}

)
≤ F n/10 · 2(

n
2). (75)

Since a stronger estimate will be proved in Lemma 5.6, we only sketch
the main idea here. The proof of (75) is similar in spirit to the cal-
culation done in the proof of Proposition 5.1. It relies on the key
observation that, if dij is small, the n − 2 pairs of distances (dik, djk)
are constrained to a strip in [0, 2]2 of width 2dij. In particular, if F (d)
is small, then this significantly constrains all distances. For details, we
refer the reader to the proof of Lemma 5.6.

Examine the set

M 1
n := {d ∈Mn : F (d) > 2−5n}.

It follows from (75) that

Vol(Mn \M 1
n ) ≤

1

2
≤ 1

2
Vol(Mn),

so that Vol(M 1
n ) ≥ 1

2
Vol(Mn). We claim that the volume of possible

extensions of any fixed d ∈M 1
n to a metric space in Mn+1 is reasonably

large. Indeed, denote I(ρ) := [3/2 − ρ/2, 3/2 + ρ/2] and extend d to

[0, 2](
Jn+1K

2 ) by requiring that, for all i ∈ JnK,

di,n+1 ∈ I
(
min

{
min

j∈JnK\{i}
dij, 1

})
It is straightforward to check that one obtains a metric space, and
further, that the volume of the extension is at least F (d)/2n. (A version
of this argument is presented in the proof of Proposition 5.3.) Hence,

Vol(Mn+1) ≥ 2−6n · Vol(M 1
n ) ≥ 2−6n−1 · Vol(Mn). □
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Let us point out here that, regardless of other losses in the argument
above, using Proposition 5.1 or examining the quantity F gives abso-
lutely no information about distances between 1

2
and 1; for these, more

involved analysis is required.

5.1. Proof of Theorem 1.3. Giving up optimising various estimates
in favour of simplifying the presentation (and because we believe that
further ideas would be needed to obtain the optimal value of c), we
shall prove the theorem with

c = 1/30.

The starting point of our proof is Proposition 4.5, which states that
there exists a constant C such that, when d is a uniformly sampled
metric space from Mn,

P(dij < 1) ≤ Cn−1/2 for every {i, j} ∈
(

JnK
2

)
. (76)

This allows us to conclude that a typical metric space sampled from Mn

has relatively few distances shorter than one. More precisely, letting

Gn :=
{
d ∈Mn : dij < 1 for at most n5/3 pairs {i, j}

}
,

we have

Vol(Gn) >
(
1− Cn−1/6

)
Vol(Mn). (77)

To see (77), let d be a uniformly sampled metric space in Mn and let X
be the number of pairs {i, j} such that dij < 1. By Markov’s inequality
and (76), we have

P(X > n5/3) <
E[X]

n5/3
≤ Cn−1/6,

as needed. In particular, we may restrict our attention to spaces in Gn.
Define

Bn := {d ∈ Gn : min
i,j

dij < 1− n−c}.

Our argument will comprise two independent parts. First, we will show
that the volume of Bn is extremely small when compared to the volume
of Mn−2.

Proposition 5.2. For all sufficiently large n, we have

Vol(Bn) ≤ exp

(
−n

1−2c

5

)
· Vol(Mn−2).
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This bound would yield the desired result if we knew that Vol(Mn−2)
is not much larger than Vol(Mn). It seems plausible that, in fact,

Vol(Mn) ≥ Vol(Mn−2) (78)

holds for all n. However, we have been unable to establish this, see
Section 7. We should point out that the volume estimates of Theo-
rem 1.2 imply that (78) holds for an infinite sequence of n and thus
Proposition 5.2 is sufficient to yield the assertion of Theorem 1.3 for
that sequence. In order to establish the theorem for all sufficiently
large n, we shall prove the following weaker bound, which still suffices
for our purposes.

Proposition 5.3. For all sufficiently large n, we have

Vol(Mn+1) ≥ exp
(
−n1−3c log(n)

)
· Vol(Mn).

We postpone the proofs of Propositions 5.2 and 5.3 to the next two
sections and finish the current section with a short derivation of The-
orem 1.3.

Proof of Theorem 1.3. Recalling the definitions of Gn and Bn, we have

P(min
i,j

dij < 1− n−c) ≤ Vol(Mn \ Gn)

Vol(Mn)
+

Vol(Bn)

Vol(Mn)
.

Estimate (77) states that the first term in the right-hand side is at
most Cn−1/6 whereas Propositions 5.2 and 5.3 give

Vol(Bn)

Vol(Mn)
≤ exp

(
−n

1−2c

5

)
· Vol(Mn−2)

Vol(Mn)

≤ exp

(
−n

1−2c

5
+ 2n1−3c log(n)

)
≤ exp

(
−n

1−2c

6

)
,

provided that n is sufficiently large. □

5.2. Bounding the volume of spaces with a short distance. In
this section, we prove Proposition 5.2. We shall split the set Bn into
two parts, depending on whether or not there is a point i ∈ JnK at
distance significantly shorter than one from many other points, and
use different arguments to estimate the volume of each of these parts.
More precisely, for a metric space d ∈ Mn and an i ∈ JnK, we define
the set of close neighbours of i by

Si(d) :=

{
j ∈ JnK \ {i} : dij < 1− n−2c

4

}
and let m := ⌊n1−3c⌋.
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Our first lemma uses Theorem 1.2 to provide a very strong upper
bound on the volume of all spaces d ∈ Gn (and not only d ∈ Bn) for
which |Si(d)| > m for some i ∈ JnK.

Lemma 5.4. For all sufficiently large n, we have

Vol
(
{d ∈ Gn : max

i
|Si(d)| > m}

)
≤ exp

(
−n

2−8c

16

)
.

Our second lemma bounds the volume of those d ∈ Bn for which
|Si(d)| ≤ m for all i ∈ JnK in terms of the volume of Mn−2.

Lemma 5.5. For all sufficiently large n, we have

Vol
(
{d ∈ Bn : max

i
|Si(d)| ≤ m}

)
≤ exp

(
−n

1−2c

4

)
· Vol(Mn−2).

Proof of Proposition 5.2. Using the estimates of the two lemmas, we
may conclude that, for all sufficiently large n,

Vol(Bn) ≤ exp

(
−n

1−2c

4

)
· Vol(Mn−2) + exp

(
−n

2−8c

16

)
≤ exp

(
−n

1−2c

5

)
· Vol(Mn−2),

as c < 1/6 and Vol(Mn−2) ≥ 1. □

Proof of Lemma 5.4. For i ∈ JnK, S ⊆ JnK with |S| = m, and T ⊆
(JnK

2

)
with |T | = ⌊n5/3⌋, we let

G i,S,T
n :=

{
d ∈ Gn : Si(d) ⊇ S and djk ≥ 1 if {j, k} /∈ T

}
.

Note that if d ∈ G i,S,T
n and {j, k} ∈

(
S
2

)
, then necessarily djk ≤ 2(1 −

n−2c/4), as follows from the triangle inequality djk ≤ dij + dik. Thus,
G i,S,T
n is contained in the product set{

(djk){j,k}∈(S2)
∈
(
1− n−2c

4

)
·M|S|

}
×

∏
{j,k}∈T\(S2)

{djk ≤ 2}
∏

{j,k}∈(JnK
2 )\(T∪(S2))

{1 ≤ djk ≤ 2}.

It follows that

Vol(G i,S,T
n ) ≤

(
1− n−2c

4

)(|S|
2 )

Vol(M|S|) · 2|T | · 1.
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≈ n−c

W

Figure 2. W inside [1− n−2c/4, 2]2.

Estimating Vol(M|S|) using Theorem 1.2 gives

Vol(G i,S,T
n ) ≤ exp

(
−n

−2c

4

(
m

2

)
+ C1m

3/2 + n5/3

)
≤ exp

(
−n

2−8c

10

)
,

where we have used that m = ⌊n1−3c⌋, that c is sufficiently small (so
that 2 − 8c > 5/3) and that n is sufficiently large. Summing over all
possible choices for i, S, and T yields

Vol
(
{d ∈ Gn : max

i
|Si(d)| > m}

)
≤ n

(
n

m

)(
n2

⌊n5/3⌋

)
exp

(
−n

2−8c

10

)
≤ exp

(
(m+ 1) log(n) + n5/3 log(n2)− n2−8c

10

)
≤ exp

(
−n

2−8c

16

)
,

where we again used the assumption that 2− 8c > 5/3. □

Proof of Lemma 5.5. For S ⊆ JnK with |S| = 2m, we let

BS
n :=

{
d ∈ Gn : S1(d) ∪ S2(d) ⊆ S and d12 < 1− n−c

}
and note that, by symmetry,

Vol
(
{d ∈ Bn : max

i
|Si(d)| ≤ m}

)
≤
(
n

2

) ∑
S⊆JnK,|S|=2m

Vol(BS
n ). (79)

The crucial observation is that if d12 < 1 − n−c, then, for any j ̸∈ S,
we have (d1j, d2j) ∈ W , where

W :=

{
(a, b) : 1− n−2c

4
≤ a, b ≤ 2, |a− b| ≤ 1− n−c

}
.

Since

Vol(W ) =

(
1 +

n−2c

4

)2

−
(
n−2c

4
+ n−c

)2

≤ 1− n−2c

2
,
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bounding the volume of (dij : i ∈ {1, 2}, j ∈ S) crudely by 22|S|, we get

Vol(BS
n ) ≤ 22|S| · Vol(W )n−2−|S| · Vol(Mn−2)

≤ 16m · exp
(
−1

3
n1−2c

)
· Vol(Mn−2),

provided that n is sufficiently large. Substituting this bound into (79)
gives the result, since(

n

2

)(
n

2m

)
≤ exp

(
(2m+ 2) log(n)

)
≤ 16−m · exp

(
n1−2c

12

)
. □

5.3. Comparing volumes of metric polytopes. This section is de-
voted to the proof of Proposition 5.3. We show that a large portion
of the spaces in Mn admit a significant volume of extensions to spaces
in Mn+1. To this end, we study certain typical properties of metric
spaces in Gn. The first step is establishing that, in a typical space in
Gn, there are not too many vertices that are incident to a distance that
is significantly shorter than 1

2
. Define, for a set A ⊆ JnK and a space

d ∈Mn,

FA(d) :=
∏
i∈A

(
2 min
j∈JnK\{i}

dij

)
. (80)

(In particular, F∅(d) = 1.)

Lemma 5.6. If n is sufficiently large, then for any F ∈ (0, 1), we have

Vol
(
{d ∈ Gn : min

A⊆JnK
FA(d) ≤ F}

)
≤ F n/10 · exp

(
n5/3 log(n)

)
.

Proof. For a metric space d ∈Mn and a set B ⊊ JnK, define

F ∗
B(d) :=

∏
i∈B

(
2 min
j∈JnK\B

dij

)
.

The difference between FB and F ∗
B is that, in the definition of FB, the

index j minimising dij is chosen arbitrarily while, in the definition of
F ∗
B, it is chosen from outside of B. For each i ∈ B, let jBi (d) denote

an (arbitrary) such index, that is, jBi (d) is an arbitrary j ∈ JnK \B for

which dij = mink∈JnK\B dik. We shall shorthand ji(d) := j
{i}
i (d).

Suppose that d ∈ Gn and that FA(d) ≤ F for some A ⊆ JnK. We
first show that there exists a subset B ⊆ A such that

|B| ≤ n

2
and F ∗

B(d) ≤ F 1/4. (81)
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To see this, let R be a uniformly chosen random subset of JnK with
⌊n/2⌋ elements, let

B = {i ∈ A ∩R : ji(d) /∈ R},

and note that

E
[
log
(
F ∗
B(d)

)]
=
∑
i∈A

P(i ∈ B) · log
(
2di,ji(d)

)
= p · log

(
FA(d)

)
,

where

p =
⌊n/2⌋⌈n/2⌉
n(n− 1)

≥ 1

4
.

Since FA(d) ≤ F ≤ 1, there exists a choice of R for which the set B
satisfies F ∗

B(d) ≤ FA(d)
1/4 ≤ F 1/4.

For a set B ⊆ JnK with at most n/2 elements, a function J : JnK →
JnK, and a set T ⊆

(JnK
2

)
with |T | = ⌊n5/3⌋, define

G B,T,J
n :=

{
d ∈Mn : F ∗

B(d) ≤ F 1/4, jBi (d) = J(i) for all i ∈ B,

and dij ≥ 1 if {i, j} /∈ T
}
.

We may construct each space in G B,T,J
n as follows. We first choose all

the distances dij with {i, j} ∈
(JnK\B

2

)
∪
(
B
2

)
and the |B| distances di,J(i)

with i ∈ B. Since dij ∈ [1, 2] when ij /∈ T and dij ∈ [0, 2] otherwise,
the volume of all such choices is at most 2|T |. Now, for every i ∈ B
and k /∈ B∪{J(i)}, the distance dik must satisfy |dik−dJ(i),k| ≤ di,J(i).
As a result, given all the other distances, the volume of the set of valid
choices for all such dik is not more than∏

i∈B

∏
k/∈B∪{J(i)}

2di,J(i) = F ∗
B(d)

n−|B|−1 ≤ F (n−|B|−1)/4.

We thus get

Vol(G B,T,J
n ) ≤ 2|T | · F (n−|B|−1)/4 ≤ 2n

5/3

F n/10,

for n sufficiently large. Summing over all possible choices for B, T , and
J , we have

Vol
(
{d ∈ G : min

A⊆JnK
FA(d) ≤ F}

)
≤ 2nnn

(
n2

⌊n5/3⌋

)
· 2n5/3

F n/10

≤ F n/10 · exp
(
n5/3 log(n)

)
,

as claimed. □
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The second step in the proof of Proposition 5.3 is showing that, in
a typical metric space in Gn, distances significantly shorter than one
do not form large matchings. To this end, for a constant ρ > 0 and
d ∈Mn, we define

T ρ(d) :=

{
{i, j} ∈

(
JnK
2

)
: dij < 1− n−ρ

}
. (82)

Lemma 5.7. If µ and ρ are positive constants satisfying

µ+ 2ρ <
1

3
, (83)

then, for all sufficiently large n,

Vol
(
{d ∈ Gn : T ρ(d) contains a matching of size at least n1−µ}

)
≤ exp

(
−n

2−2ρ−µ

4

)
.

Proof. Let µ and ρ be positive constants satisfying (83). For disjoint

M,T ⊆
(JnK

2

)
such that M is a matching with |M | = ⌈n1−µ⌉ and |T | =

⌊n5/3⌋, let

G M,T
n := {d ∈Mn : T ρ(d) ⊇M and dij ≥ 1 if {i, j} /∈ T} .

Denote by V (M) the set of 2|M | endpoints of edges of M and let  LM,T

be the set of all triangles that contain an edge ofM and two edges that
are not in T and whose common endpoint is not in V (M), that is,

 LM,T :=

{
({i, j}, k) ∈M × JnK : {i, k}, {j, k} ̸∈ T, k ̸∈ V (M)

}
.

Observe that every edge in T can ‘prevent’ no more than one triangle
from belonging to  LM,T , since M is a matching and since k is not
allowed to be in V (M). Hence,

| LM,T | ≥ |M |(n− 2|M |)− |T | ≥ n2−µ

2
, (84)

as 2− µ > 5/3, by (83), and n is sufficiently large.

As in the proof of Lemma 5.5, the crucial observation is that, if
({i, j}, k) ∈  LM,T , then (dik, djk) ∈ W ′, where

W ′ :=
{
(a, b) : 1 ≤ a, b ≤ 2, |a− b| ≤ 1− n−ρ

}
.

Consequently, G M,T
n is contained in the following product set:∏

{i,j}∈T

{dij ≤ 2}
∏

({i,j},k)∈ LM,T

{(dik, djk) ∈ W ′}
∏

remaining {i,j}

{1 ≤ dij ≤ 2}.
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Since
Vol(W ′) = 1− n−2ρ,

we conclude, using (84), that

Vol(G M,T
n ) ≤ 2|T | · Vol(W ′)| L

M,T | ≤ 2n
5/3 ·

(
1− n−2ρ

) 1
2
n2−µ

≤ exp
(
−n2−µ−2ρ/3

)
,

where in the last inequality we used (83). Summing over all possible
choices for M and T , we have

Vol
(
{d ∈ Gn : T ρ(d) contains a matching of size at least n1−µ}

)
≤
(

n2

⌈n1−µ⌉

)(
n2

⌊n5/3⌋

)
exp

(
−n2−µ−2ρ/3

)
,

from which the lemma follows, again using (83). □

The two lemmas enable us to compare the volumes of Mn and Mn+1.

Proof of Proposition 5.3. Recall the definition of T ρ(d) from (82) and
the definition of FA(d) from (80). Recall also that c = 1/30 and let

φ := 6c, ρ := 3c, and µ := 3c. (85)

Define

M 1
n :=

{
d ∈Mn : min

A⊆JnK
FA(d) > exp(−n1−φ)

}
,

M 2
n :=

{
T ρ(d) contains no matching of size at least n1−µ

}
and let

M ∗
n := Gn ∩M 1

n ∩M 2
n .

Since 2 − φ > 5/3 and µ + 2ρ = 9c < 1/3, we may use estimate (77),
Lemma 5.6, Lemma 5.7, and the estimate Vol(Mn) ≥ 1 to conclude
that, for sufficiently large n,

Vol(M ∗
n ) ≥

1

2
Vol(Mn). (86)

For d ∈Mn define

Q(d) :=

{
i ∈ JnK : min

j∈JnK\{i}
dij <

1

2
− n−ρ

2

}
and let

V (d) := {the vertices of a largest matching in T ρ(d)} ,
where, if there are several largest matchings, we let V (d) to be the
vertex set of an arbitrary one of them. For the sake of brevity, from
now on we shall write Q and V in place of Q(d) and V (d).



WHAT DOES A TYPICAL METRIC SPACE LOOK LIKE? 43

Let d ∈M ∗
n . We aim to define a set of metric spaces in Mn+1 which

extend d. More precisely, we shall find a voluminous family of metric
spaces d′ ∈Mn+1 which satisfy

d′ij = dij, {i, j} ∈
(

JnK
2

)
. (87)

To this end, define, for δ > 0,

I(δ) :=

[
3

2
− δ

2
,
3

2
+
δ

2

]
and the following quantities

δ1(i) :=

{
n−ρ, if i ∈ V ,
1, otherwise,

δ2(i) :=

{
minj ̸=i dij, if i ∈ Q,
1, otherwise.

Claim 5.8. Every d′ ∈ [0, 2](
Jn+1K

2 ) satisfying (87) and having

d′i,n+1 ∈ I
(
min

{
δ1(i), δ2(i), 1− 2n−ρ

})
belongs to Mn+1.

Proof. Since d is a metric space, by (87), it suffices to verify the trian-

gle inequality for triangles {i, j, n + 1} with {i, j} ∈
(JnK

2

)
. Note that

d′i,n+1, d
′
j,n+1 ≥ 1 whereas d′ij = dij ≤ 2, so that we only need to verify

that

|d′i,n+1 − d′j,n+1| ≤ dij. (88)

We consider three cases, according to the value of dij.

• If dij <
1
2
− 1

2
n−ρ, then i, j ∈ Q and

|d′i,n+1 − d′j,n+1| ≤
1

2

(
min
k ̸=i

dik +min
k ̸=j

djk

)
≤ dij.

• If 1
2
− 1

2
n−ρ ≤ dij < 1− nρ, then at least one of i and j is in V ,

as {i, j} ∈ T ρ(d) and V is the vertex set of a largest matching
in T ρ(d), and

|d′i,n+1 − d′j,n+1| ≤
1

2

(
n−ρ + (1− 2n−ρ)

)
=

1

2
− 1

2
n−ρ ≤ dij.

• Finally, if dij ≥ 1− n−ρ, then

|d′i,n+1 − d′j,n+1| ≤
1

2

(
(1− 2n−ρ) + (1− 2n−ρ)

)
≤ dij.

The proof of the claim is now complete. □
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Claim 5.8 implies a lower bound on the ratio of the volumes of Mn+1

and M ∗
n . More precisely, for each d ∈M ∗

n , the volume of extensions of
d to a d′ ∈Mn+1 is at least

n∏
i=1

min{δ1(i), δ2(i), 1− 2n−ρ} ≥
(
n−ρ
)|V | ·

∏
i∈Q

min
j ̸=i

dij · (1− 2n−ρ)n.

By the definition of FQ(d), see (80),∏
i∈Q

min
j ̸=i

dij = 2−|Q| · FQ(d),

while the definition of Q ensures that

FQ(d) ≤
(
1− n−ρ

)|Q| ≤ exp
(
− |Q| · n−ρ

)
≤
(
2−|Q|)n−ρ

.

Since the fact that d ∈M 1
n gives FQ(d) > exp(−n1−φ), we deduce that

2−|Q| · FQ(d) ≥ FQ(d)
nρ+1 > exp

(
−2n1−φ+ρ

)
.

Finally, as d ∈M 2
n , we have |V | ≤ 2n1−µ and we conclude that

Vol(Mn+1) ≥
(
n−ρ
)2n1−µ

· exp
(
− 2n1−φ+ρ

)
·
(
1− 2n−ρ

)n · Vol(M ∗
n )

≥ exp
(
−n1−3c log(n)

)
· Vol(Mn),

where the last inequality follows from (85), (86), and our assumption
that n is sufficiently large. □

6. Other approaches to estimating the volume

A coloured graph on vertex set V with palette C is simply a function

in C(
V
2). Recall that a hereditary property is a family of coloured graphs

that is closed under taking subgraphs and isomorphisms. Questions
about the asymptotic growth rate of the volume and the distribution
of the edge lengths for a random point in the metric polytope can
be viewed as instances of the following very general class of problems:
Describe the distribution of a ‘uniformly sampled’ coloured graph (more
generally, coloured hypergraph) on n vertices, conditioned to satisfy a
given hereditary property P, when n is large. The relevance to our
setting is the following: We let V = JnK and consider the collection of
functions d :

(
V
2

)
→ (0, 2] satisfying the hereditary property:

dik ≤ dij + djk for all i, j, k ∈ V .
A few related approaches have been used to study problems from this
class: exchangeable families of random variables, Szemerédi’s regularity
lemma, graph limits, and the method of hypergraph containers. We
refer to the survey paper [4] and references within for a discussion of the
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Method Upper bound on logVol(Mn)

Main result (Theorem 1.2) O(n3/2)
Exchangeability o(n2)
Szemerédi regularity lemma o(n2)
Hypergraph container method O

(
n3/2(log n)3

)
Kővári–Sós–Turán O

(n2(log logn)2

logn

)
Table 1. The upper bounds on the volume of the metric
polytope provided by our main result and by the alter-
native approaches presented in Section 6.

connection between exchangeability, the regularity lemma, and graph
limits; for an introduction to the method of hypergraph containers, the
reader is referred to the survey paper [7]. In this section, we discuss the
problem of estimating the volume of the metric polytope using some of
these approaches. These approaches may also be used to obtain some
structural information on typical samples from the metric polytope.

6.1. Limiting model and exchangeability. The purpose of this sec-
tion is to give a ‘soft’ proof of a qualitative version of our main result
on the volume. Precisely, we shall show that

log Vol(Mn) = o(n2), (89)

as in (5). The presented proof relies on exchangeability.

To motivate the proof method, let us start by recalling de Finetti’s
theorem [14]. It states that the distribution of an exchangeable se-
quence of random variables is a mixture of distributions of i.i.d. se-
quences of random variables. Here, we recall that: (i) a sequence
(Xn) of random variables is called exchangeable if, for every finitely-
supported permutation σ, the sequence (Xσ(n)) has the same joint dis-
tribution as the sequence (Xn); (ii) the distribution of a sequence is a
mixture of distributions of i.i.d. random variables if it can be sampled
by first randomly sampling a distribution D and then sampling the
variables of the sequence independently from the distribution D.

De Finetti’s theorem implies the following conditional independence
property: If (Xn) is exchangeable, then, for each n0, after conditioning
on {Xn : n > n0} the random variables X1, . . . , Xn0 become indepen-
dent and identically distributed. Indeed, the conditioning determines
which distribution D is used in the underlying i.i.d. sequence and in-
dependence follows.
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As metric spaces (dij) are indexed by unordered pairs {i, j}, their
relevant context is not that of exchangeable sequences but rather that
of exchangeable arrays. An exchangeable array is a two-dimensional
array of random variables (Xij), with the index set being all unordered
pairs of distinct positive integers, such that, for each finitely-supported
permutation σ, the array (Xσ(i)σ(j)) has the same distribution as the ar-
ray (Xij). (The names weak exchangeability and partial exchangeability
are also used for notions of this type. Higher-dimensional versions and
variants where different permutations are applied to the coordinates
have also been discussed in the literature.) A representation theorem
similar to, but more complicated than, de Finetti’s theorem exists for
exchangeable arrays; see [1, 23, 24] and especially [2, Theorem 14.21].
It again implies a conditional independence property, stated as follows.

Lemma 6.1. Let (Xij) be an exchangeable array. For each integer
n0 ≥ 1, conditioned on {Xij : max{i, j} > n0} the random variables
{Xij : i, j ≤ n0} become independent.

We note that, unlike de Finneti’s theorem, the random variables
{Xij : i, j ≤ n0} are not necessarily identically distributed after the
conditioning. For completeness, we provide a short proof.

Proof of Lemma 6.1. The proof is by induction on n0. If n0 ∈ {1, 2},
then the assertion of the lemma is vacuously true (as the set {Xij :
i, j ≤ n0} is either empty or contains only one variable). Suppose then
that n0 ≥ 3 and that the result has already been established for n0−1.

Write FN
n and Fn for the sigma algebras generated by the collections

{Xij : n ≤ max{i, j} ≤ N} and {Xij : max{i, j} ≥ n}, respectively.
Let A ⊆ R(

Jn0−1K
2 ) be a Borel set. Levy’s upward theorem (a conse-

quence of the martingale convergence theorem) shows that

P
(
(Xij)i,j≤n0−1 ∈ A | FN

n0

)
→ P

(
(Xij)i,j≤n0−1 ∈ A | Fn0

)
, (90)

P
(
(Xij)i,j≤n0−1 ∈ A | FN+1

n0+1

)
→ P

(
(Xij)i,j≤n0−1 ∈ A | Fn0+1

)
,

as N → ∞, almost surely. In addition, the fact that (Xij) is an ex-
changeable array implies that, for each N ≥ n0 + 1,

P
(
(Xij)i,j≤n0−1 ∈ A | FN

n0

) d
=P
(
(Xij)i,j≤n0−1 ∈ A | FN+1

n0+1

)
.

Consequently,

P
(
(Xij)i,j≤n0−1 ∈ A | Fn0

) d
=P
(
(Xij)i,j≤n0−1 ∈ A | Fn0+1

)
,

which implies that, in fact,

P
(
(Xij)i,j≤n0−1 ∈ A | Fn0

)
= P

(
(Xij)i,j≤n0−1 ∈ A | Fn0+1

)
(91)
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almost surely. To see the last conclusion, observe that if X is a random
variable with finite second moment and G1 ⊆ G2 are sigma algebras,
then

E
[
E[X | G2]

2
]
= E

[
E[X | G1]

2
]
+ E

[
(E[X | G2]− E[X | G1])

2
]
.

Thus, if E[X | G1]
d
=E[X | G2], then E[X | G1] = E[X | G2] almost

surely.

As (91) holds for arbitrary Borel A, we conclude (recalling the def-
inition of Fn) that, conditioned on Fn0+1, the collection of random
variables {Xij : i, j ≤ n0 − 1} is independent of the collection {Xij :
max{i, j} = n0}. Together with the induction hypothesis this implies
that, conditioned on Fn0+1, the random variables {Xij : i, j ≤ n0 − 1}
become independent. These facts together with another use of the
exchangeability property imply the lemma. □

We proceed to discuss the metric polytope, aiming to prove (89).
It is convenient to pass to a discrete problem, to avoid questions on
the existence of densities and convergence issues. Specifically, given
integers M and n, define the discrete metric polytope MM

n by

MM
n :=

{
(dij) ∈ {1, . . . ,M}(

JnK
2 ) : dij ≤ dik + dkj for all i, j, k

}
,

see also Section 7.2. We shall prove that, for each fixed even M ,

lim sup
n→∞

log(|MM
n |)(

n
2

) ≤ log

(
M + 2

2

)
. (92)

As Vol(Mn) ≤
(

2
M

)(n2) |MM
n | for all n,M , see (106) in Section 7.2

below, (92) will imply (89).

Fix an even M . To apply Lemma 6.1, embed MM
n into JMK(

N
2)

by setting all distances involving points i > n to zero. Denote by
µM
n the uniform distribution on MM

n , viewed as a distribution on the

space JMK(
N
2) via this embedding. As the set of probability measures

on this space is compact with respect to convergence in distribution,
there exists a subsequence nm on which the limit superior in (92) is
realized and such that µM

nm
converges in distribution. Denote the limit

measure by µM
∞ and note that it is necessarily supported on the infinite-

dimensional discrete metric polytope

MM
∞ :=

{
(dij) ∈ {1, . . . ,M}(

N
2) : dij ≤ dik + dkj for all i, j, k

}
.

Write d∞ = (d∞ij ) for a sample from µM
∞ . Note that d∞ is an ex-

changeable array, inheriting its exchangeability properties from the
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measures (µM
n ). As before, we write FN

n and Fn for the sigma al-
gebras generated by the collections {d∞ij : n ≤ max{i, j} ≤ N} and
{d∞ij : max{i, j} ≥ n}, respectively. Lemma 6.1 shows that, con-
ditioned on F4, the random variables (d∞12, d

∞
13, d

∞
23) become indepen-

dent. Thus the support of their (conditional) joint distribution is in
some axis-parallel discrete box fully contained in MM

3 . An analogue
of Lemma 3.4 (with an analogous proof) shows that such a box has

cardinality at most
(
M+2
2

)3
. In particular,

HS(d
∞
12, d

∞
13, d

∞
23 | F4) ≤ 3 log

(
M + 2

2

)
, (93)

where HS denotes Shannon’s entropy. Recalling our use of Levy’s up-
ward theorem in (90), and noting that (d∞12, d

∞
13, d

∞
23) is supported on a

finite set, we see that the conditional distribution of these random vari-
ables given FN

4 converges as N →∞ to their conditional distribution
given F4, almost surely. In particular (again, by the finite support),

lim
N→∞

HS(d
∞
12, d

∞
13, d

∞
23 | FN

4 ) = HS(d
∞
12, d

∞
13, d

∞
23 | F4). (94)

Let ε > 0. Combining (93) and (94) shows that, for some N0,

HS(d
∞
12, d

∞
13, d

∞
23 | F

N0
4 ) ≤ 3 log

(
M + 2

2

)
+ ε.

Let dn = (dnij) be a sample from µM
n . Similar to the above, the fact

that µM
nm
→ µM

∞ and {dnij : i, j ≤ N0} is finitely-supported implies that

HS

(
dnm
12 , d

nm
13 , d

nm
23 |
{
dnm
ij : 4 ≤ max{i, j} ≤ N0

})
≤ 3 log

(
M + 2

2

)
+2ε

for all large m. By symmetry and monotonicity of conditional entropy,
we conclude that, for all large m and all distinct i, j, k ∈ {1, . . . , nm −
N0 + 4},

HS

(
dnm
ij , d

nm
ik , d

nm
jk |

{
dnm
ij : nm −N0 + 4 ≤ max{i, j} ≤ nm

})
≤ 3 log

(
M + 2

2

)
+ 2ε.

We may now apply the subadditivity argument from the proof outline,
Section 1.1, to obtain that, for all large m,

log(|MM
nm
|) ≤ C log(M)N0nm +

(
log

(
M + 2

2

)
+

2

3
ε

)
·
(
nm

2

)
for an absolute constant C. Finally, recalling that the limit superior
in (92) is realized along nm, and noting that ε is arbitrary and N0 is a
function only of ε and µM

∞ , we conclude that (92) holds.
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6.2. The Szemerédi regularity lemma approach. In this section,
we show how a fairly standard application of (a multi-coloured version
of) Szemerédi’s regularity lemma gives an alternative proof of (5). The
argument presented here may be seen as an adaptation of the classical
argument of Erdős, Frankl, and Rödl [16] proving that the number of

H-free graphs with n vertices is 2ex(n,H)+o(n2), where ex(n,H) denotes
the maximum number of edges in an H-free graph with n vertices. This
approach was independently pursued by Mubayi and Terry [34].

Recall that a bipartite graph G with parts V1 and V2 is ε-regular if,
for every W1 ⊆ V1 with |W1| ≥ ε|V1| and W2 ⊆ V2 with |W2| ≥ ε|V2|,
we have ∣∣∣∣eG(W1,W2)

|W1||W2|
− eG(V1, V2)

|V1||V2|

∣∣∣∣ ≤ ε,

where eG(W1,W2) is the number of edges connecting a vertex of W1

to a vertex of W2. An equipartition of a set V is a partition of V into
V1, . . . , Vk such that

∣∣|Vi|− |Vj|∣∣ ≤ 1 for all i and j. The celebrated reg-
ularity lemma of Szemerédi [37] states that, for every positive ε, there
exists a constant R such that the vertex set of every graph G admits an
equipartition into at most R parts with the property that the bipartite
subgraphs of G induced by all but at most an ε-proportion of all pairs
of parts are ε-regular. We shall be needing the following straightfor-
ward generalisation of this statement to edge-coloured graphs. For the
remainder of this section, given a positive integer M , we shall refer to
a colouring of all pairs of elements of a set V with elements of JMK as
an M-graph with vertex set V . Moreover, given an M -graph G and a
c ∈ JMK, we shall denote by G(c) the graph whose edges are all pairs
of vertices to which G assigns the colour c. The following straightfor-
ward generalisation of Szemerédi’s regularity lemma to M -graphs was
formulated in [5]. It may be easily deduced from the standard proof of
the regularity lemma.

Theorem 6.2 ([5]). For every ε > 0, M , and r0, there exists an integer
R with the following property. The vertex set of an arbitrary M-graph
G admits an equipartition {V1, . . . , Vr}, where r0 ≤ r ≤ R, such that,

for all but at most ε
(
r
2

)
pairs {i, j} ∈

(JrK
2

)
, the bipartite subgraph of

G(c) induced by Vi and Vj is ε-regular for every c ∈ JMK.

For the sake of brevity, we shall refer to partitions satisfying the
assertion of the theorem as ε-regular partitions. As in most standard
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applications of the regularity lemma, we shall use the following straight-
forward property of ε-regular graphs, the embedding lemma for trian-
gles. For a more general version of the embedding lemma, we refer the
reader to the classical survey of Komlós and Simonovits [26].

Proposition 6.3. Let ε ∈ (0, 1/2), suppose that V1, V2, and V3 are
pairwise disjoint sets, and let G be a graph with vertex set V1∪V2∪V3.
If, for each pair {i, j} ∈

(J3K
2

)
, the bipartite subgraph of G induced by Vi

and Vj is ε-regular and satisfies eG(Vi, Vj) ≥ 2ε|Vi||Vj|, then G contains
a triangle.

As in the previous section, given integers M and n, we define

MM
n :=

{
(dij) ∈ {1, . . . ,M}(

JnK
2 ) : dij ≤ dik + dkj for all i, j, k

}
,

see also Section 7.2 below. We shall prove that

|MM
n | ≤M δn2 ·

(
M + 2

2

)(n2)
(95)

for each fixed even M and δ > 0, provided that n is sufficiently large.
We remark here that Mubayi and Terry [34] independently used a sim-
ilar approach, combined with a delicate stability analysis, to prove the

much more accurate estimate |MM
n | = (1 + e−Ω(n))

(
M+2
2

)(n2) for each

fixed even M . As Vol(Mn) ≤
(

2
M

)(n2) |MM
n |, see (106) in Section 7.2

below, (95) will imply that Vol(Mn) = 2o(n
2).

As proofs of both (95) and the improved estimate of [34] rely on the
regularity lemma, the rate of convergence implicit in the o(n2) term
in the exponent is very slow. Possibly, one could use weaker forms of
the regularity lemma to improve this rate of convergence. We do not
pursue this direction here, but only mention that one such regularity
lemma, guaranteeing a regular partition whose number of parts is only
exponential in ε−2, was obtained by Frieze and Kannan [19, 20], see
also [11, Section 1.4]. (In our context, a multi-coloured version of such
a regularity lemma would most likely have been required.)

Fix an even integer M and δ ∈ (0, 1/2) and let ε = δ
10M log(1/δ)

and

r0 = 2/δ. Choose an arbitrary G ∈MM
n , which may be viewed as an

M -graph with vertex set JnK, and apply Theorem 6.2 to G to obtain
an ε-regular partition {V1, . . . , Vr} of JnK with r0 ≤ r ≤ R for some

constant R = R(M, δ). For every pair {i, j} ∈
(JrK

2

)
, define

Dij =
{
c ∈ JMK : eG(c)(Vi, Vj) ≥ 2ε|Vi||Vj|

}
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and observe that all but at most a 2Mε-proportion of pairs in Vi×Vj are
coloured with an element of Dij. Call a triple {i, j, k} ∈

(JrK
3

)
regular if

the bipartite subgraphs of G(1), . . . , G(M) induced by (Vi, Vj), (Vi, Vk),
and (Vj, Vk) are all ε-regular. It follows from Proposition 6.3 that, for
every regular triple {i, j, k}, we must have Dij × Dik × Djk ⊆ MM

3 .
Indeed, otherwise G would contain a triple of distances that do not
satisfy the triangle inequality. A discrete analogue of Lemma 3.4 (with
an analogous proof) shows that Dij×Dik×Djk has cardinality at most(
M+2
2

)3
. As {V1, . . . , Vr} is an ε-regular partition of G, all but at most

3ε
(
r
3

)
triples {i, j, k} ∈

(JrK
3

)
are regular. Consequently,

∏
{i,j}∈(JrK

2 )

|Dij| =

( ∏
{i,j,k}∈(JrK

3 )
|Dij||Dik||Djk|

) 1
r−2

≤

((
M + 2

2

)3(1−3ε)(r3)
M9ε(r3)

) 1
r−2

≤
(
M + 2

21−3ε

)(r2)
. (96)

Since G was arbitrary, the above analysis shows that one may con-
struct each element of MM

n as follows. First, choose r, the equiparti-
tion {V1, . . . , Vr}, and the sets Dij ⊆ JMK; the number of choices for all
three combined is 2O(n) (with implicit constant depending on M and

δ). Next, for each {i, j} ∈
(JrK

2

)
, choose a set Xij ⊆ Vi × Vj of at most

2Mε|Vi||Vj| pairs whose colour will not belong to Dij; there are at most(
(n2)

⌊2Mε(n2)⌋

)
≤ exp

(
Mε log(e/(2Mε))n2

)
ways to do it. Finally, choose

colours for all
(
n
2

)
pairs in such a way that each pair in Vi × Vj \Xij is

assigned a colour from Dij; the number of ways one can do this is∏
i,j

|Dij||Vi×Vj\Xij | ·M(n2)−
∑

i,j |Vi×Vj\Xij |. (97)

Recalling that |Vi × Vj| ≥ ⌊n/r⌋2 and |Xij| ≤ 2Mε|Vi||Vj| for each

{i, j} ∈
(JrK

2

)
, inequality (96) implies that (97) is at most(
M + 2

21−3ε

)(r2)·(1−2Mε)⌊n/r⌋2

·M(n2)−(
r
2)·(1−2Mε)⌊n/r⌋2 . (98)

Finally, as
(
n
2

)
−
(
r
2

)
⌊n/r⌋2 ≤ 1

r

(
n
2

)
+ r(n − 1) and r0 ≤ r ≤ R, a

straightforward calculation shows that (98) is at most(
M + 2

2

)(n2)
2

(
1
r0

+2Mε+3ε+ 2R
n

)
(n2).
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This yields the claimed upper bound on |MM
n | stated in (95), provided

that n is sufficiently large, by our choice of ε = ε(M, δ) and r0 = r0(δ).

6.3. The hypergraph container method. In this section, which is
based on joint work with Rob Morris, we shall show how the method
of hypergraph containers can be used to derive a volume estimate of
the form

Vol(Mn) ≤ exp
(
Cn3/2(log n)3

)
, (99)

which falls just a little short of the upper bound established in The-
orem 1.2 using entropy methods. We point out that the arguments
presented here are inspired by the (earlier) work of Balogh and Wag-
ner [8], who were the first to use the container method for enumerating
finite metric spaces and obtained the bound Vol(Mn) ≤ exp(n11/6+o(1)).

The hypergraph container theorems, proved simultaneously, but sep-
arately, in [6] and [36], state that the family of independent sets of any
uniform hypergraph whose edges are sufficiently evenly distributed can
be covered by a small family of containers, subsets of vertices of the
hypergraph that themselves are nearly independent. The wide applica-
bility of this abstract statement stems from the fact that many discrete
structures may be naturally represented as independent sets of some
auxiliary hypergraph; in particular, this is the case with the metric
spaces in MM

n . The particular version of the hypergraph container
theorem stated below was proved in [33]; see also [7] for a survey.

Suppose that H is a k-uniform hypergraph, i.e. each (hyper)edge
has exactly k vertices. We write V (H ) to denote the vertex set of
H and we identify H with its (hyper)edge set; we denote by v(H )
and e(H ) the numbers of vertices and edges of H , respectively. A
set I ⊆ V (H ) is called independent if it contains no edges of H . We
moreover define, for every ℓ ∈ {1, . . . , k},

∆ℓ(H ) = max

{
|{S ∈H : T ⊆ S}| : T ∈

(
V (H )

ℓ

)}
.

In other words, ∆ℓ(H ) is the maximum number of edges of H that a
single ℓ-element set of vertices can be contained in.

We say that a family C of subsets of V (H ) is a family of containers
for (the independent sets of) H if every independent set is contained
in some B ∈ C . Every hypergraph H admits two trivial families of
containers: the one-element family {V (H )} and the family of all (max-
imal) independent sets of H . The following proposition guarantees the
existence of a family of containers that interpolates between these two
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extremes: it is much smaller than the family of all independent sets
but each of the containers is significantly smaller than V (H ).

Proposition 6.4. Let H be a non-empty k-uniform hypergraph. Sup-
pose that positive integers b and r satisfy

∆ℓ(H ) ≤
(

b

v(H )

)ℓ−1
e(H )

r

for every ℓ ∈ {1, . . . , k}. Then there exists a collection C of at most
exp

(
kb log(v(H ))

)
subsets of V (H ) such that:

(i) every independent set of H is contained in some B ∈ C ;
(ii) |B| ≤ v(H )− 2−k(k+1) · r for every B ∈ C .

In a typical application of the proposition, such as the one presented
in this section, one takes r to be close to v(H ) while b = v(H )α for
some α ∈ (0, 1).

Call a triple (a, b, c) of numbers non-metric if some permutation of
(a, b, c) does not satisfy the triangle inequality, that is, if a + b < c,
a + c < b, or b + c < a. Given positive integers n and M , define the
hypergraph H M

n of non-metric triangles as follows. The vertex set of

H M
n is

(JnK
2

)
× JMK and its edges are all triples {(ei, di)}3i=1 such that

• {e1, e2, e3} is the set of edges of some triangle in the complete
graph on JnK,
• (d1, d2, d3) is a non-metric triple.

It is not hard to see that the elements of MM
n are in a one-to-one

correspondence with independent subsets of H M
n that contain exactly

one element of the set {e} × JMK for each e ∈
(JnK

2

)
.

Now, given a set A ⊆
(JnK

2

)
× JMK, define, for each e ∈

(JnK
2

)
,

Ae := {d ∈ JMK : (e, d) ∈ A}.

Viewing A as a representation of the product set
∏

eAe, we define its
volume by

Vol(A) :=
∏

e∈(JnK
2 )

|Ae|,

which is precisely the number of sets I ⊆ A that contain exactly one
element of the set {e} × JMK for each e ∈

(JnK
2

)
.

The following supersaturation statement for H M
n is the key ingredi-

ent in our application of the container method to the setting of discrete
metric spaces.
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Proposition 6.5. Let n and M be positive integers, with M even and
n ≥ 3. Suppose that A ⊆

(JnK
2

)
× JMK satisfies

Vol(A) ≥
(
(1 + ε)M

2

)(n2)
for some ε ≥ 16/M . Then there exist an m ∈ JMK and a set A′ ⊆ A
with |A′| ≤ mn2 such that

• e(H M
n [A′]) ≥ εm2M

(
n
3

)
/(32 log2M),

• ∆1(H M
n [A′]) ≤ 4nm2,

• ∆2(H M
n [A′]) ≤ 2m,

where H [B] denotes the subhypergraph of H induced by the subset B,
that is, the hypergraph whose vertex set is B and whose edges are all
edges of H that are fully contained in B.

The basic building block in the proof of Proposition 6.5 is the fol-
lowing elementary lemma, which one can prove combining the ideas in
the proofs of Lemmas 3.2 and 3.4.

Lemma 6.6. Let M and m be positive integers, with M ≥ 16 even,
and suppose that A,B,C ⊆ JMK. Let A′ ⊆ A comprise the m largest
and the m smallest elements of A and define B′ and C ′ analogously. If
|A| · |B| · |C| ≥ (M/2 + 2m)3, then the set A′ × B′ × C ′ contains m3

non-metric triples.

Proof of Proposition 6.5. As Vol(A) ≤M(n2), we may assume that ε ≤
1 and hence M ≥ 16. Let T be the family of edge sets of all triangles
in the complete graph with vertex set JnK. Since each edge (of the
complete graph) belongs to exactly n− 2 triangles,∏

e1e2e3∈T

(|Ae1||Ae2||Ae3|)
1/3 = Vol(A)

n−2
3 ≥

(
(1 + ε)M

2

)(n3)
. (100)

We partition the family T as follows. Set smax = ⌊log2M⌋ − 2 and,
for each s ∈ {0, . . . , smax}, define

Ts :=

{
e1e2e3 ∈ T : (|Ae1||Ae2||Ae3 |)

1/3 ∈
[
M

2
+ 2s+1,

M

2
+ 2s+2

)}
;

moreover, let T∗ := T \
⋃smax

s=0 Ts. Observe that T∗ contains only e1e2e3
with |Ae1||Ae2 ||Ae3| < (M

2
+ 2)3, as 2smax+2 > M/2, and thus∏

e1e2e3

(|Ae1||Ae2||Ae3|)
1/3 ≤

(
M

2
+ 2

)|T∗|

·
smax∏
s=0

(
M

2
+ 2s+2

)|Ts|

. (101)
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We claim that there is an s ∈ {0, . . . , smax} satisfying

|Ts| ≥
εM

2s+5 log2M

(
n

3

)
.

Indeed, if this were not true, then (101) would contradict (100), as
16/M ≤ ε ≤ 1 and smax + 1 ≤ log2M (we omit the straightforward
calculation).

Finally, let m = 2s and let A′ be the set of all pairs (e, d) ∈ A such
that d is among the m largest or the m smallest elements of Ae. This
definition guarantees that |A′| ≤ 2m

(
n
2

)
≤ mn2, that ∆1(H M

n [A′]) ≤
(2m)2n, and that ∆2(H M

n [A′]) ≤ 2m. For each e1e2e3 ∈ Ts, we may
invoke Lemma 6.6 with (A,B,C)← (Ae1 , Ae2 , Ae3) to deduce that the
set A′

e1
×A′

e2
×A′

e3
contains at leastm3 non-metric triples. In particular,

e(H M
n [A′]) ≥ |Ts| ·m3 ≥ εMm2

32 log2M

(
n

3

)
,

which concludes the proof of the proposition. □

Fix a large integer n and let M = 2⌊n
2
⌋. Suppose that A ⊆

(JnK
2

)
×

JMK satisfies Vol(A) =
(

(1+ε)M
2

)(n2)
for some 16/M ≤ ε ≤ 1 and let

m and A′ be as in Proposition 6.5. It is straightforward to verify
that the (3-uniform) hypergraph H M

n [A′] satisfies the assumption of
Proposition 6.4 with

b :=
⌈
n3/2

⌉
and r :=

⌊
εM
(
n
3

)
128n log2M

⌋
≥ εMn2

210 log2M
.

The proposition supplies a family C ′ of at most exp
(
3n3/2 log(n2M)

)
containers for independent sets of H M

n [A′], each of cardinality at most

|A′| − εMn2

222 log2 M
. Therefore, the collection

C := C (A) := {(A \ A′) ∪B′ : B′ ∈ C ′}
is a family of containers for independent sets of H M

n [A], with the same
cardinality as C , that satisfies, for every B ∈ C ,

Vol(B) ≤
(
M − 1

M

) εMn2

222 log2 M

· Vol(A) =
(
(1 + ε′)M

2

)(n2)
,

for some ε′ ≤
(
1− 1

222 log2 M

)
ε.

We build a family C of containers for the independent sets of MM
n

recursively as follows. We start with the trivial family containing only
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the set
(JnK

2

)
× JMK. As long as our family contains some set A with

Vol(A) >

(
(1 + ε0)M

2

)(n2)
,

where ε0 := 1/
√
n ≥ 16/M , we replace A with the elements of the

family C (A) defined above. We claim that the depth of the recursion is
bounded by t := C log2(M) log(n), for some large constant C. Indeed,
if a set B reached the t-th level of the recursion, then

Vol(B) ≤
(
(1 + εt)M

2

)(n2)
,

where

εt = max

{(
1− 1

222 log2M

)t

,
16

M

}
≤ ε0,

a contradiction. It follows that

|C | ≤ exp
(
3n3/2 log(n2M) · t

)
≤ exp

(
Cn3/2(log n)3

)
.

Since each space in MM
n corresponds to an independent set of H M

n

and is thus described by one of the containers, we obtain

|MM
n | ≤

∑
B∈C

Vol(B) ≤ exp
(
Cn3/2(log n)3 + n3/2

)
·
(
M

2

)(n2)
.

Finally, this translates to the following upper bound on the volume:

Vol(Mn) ≤
(

2

M

)(n2)
· |MM

n | ≤ exp
(
Cn3/2(log n)3

)
,

see (106) in Section 7.2 below.

6.4. The Kővári–Sós–Turán approach. In this section, we shall
show yet another approach to the volume estimate. The estimate it
gives is

Vol(Mn) ≤ exp

(
Cn2(log log n)2

log n

)
, (102)

better than what we obtained using the exchangeability or the regular-
ity lemma approaches, but not as good as what is proved by the entropy
or the hypergraph container methods. Our argument bears similarities
to the classical work of Erdős, Kleitman, and Rotschild [17], which es-
timates the number of graphs that do not contain a clique of a given
size.
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Given a positive integer t, we shall write Kt,t for the complete bi-
partite graph with t vertices on each side. The Turán number for Kt,t,
denoted ex(n,Kt,t), is the largest number of edges in an n-vertex graph
that does not contain Kt,t as a (not necessarily induced) subgraph.
The following well-known upper bound on ex(n,Kt,t) was obtained by
Kővári, Sós, and Turán [27], see also [21, Section 3].

Theorem 6.7 (Kővári–Sós–Turán [27]). For every t ≥ 2,

ex(n,Kt,t) ≤
1

2

(
(t− 1)1/tn2−1/t + (t− 1)n

)
.

Fix integers n and t ≥ 2 and a real δ ∈ (0, 1). For a d ∈Mn, let

T (d) :=

{
{i, j} ∈

(
JnK
2

)
: dij < 1− δ

}
and partition Mn into M t,δ

n and M t,δ
n , where

M t,δ
n := {d ∈Mn : T (d) ⊉ Kt,t} and M t,δ

n := Mn \M t,δ
n .

Since |T (d)| ≤ ex(n,Kt,t) for every d ∈M t,δ
n , we have

Vol(M t,δ
n ) ≤

( (
n
2

)
ex(n,Kt,t)

)
· 2ex(n,Kt,t) · (1 + δ)(

n
2)−ex(n,Kt,t)

≤ exp
(
3ex(n,Kt,t) log n+ δn2

)
.

It follows from Theorem 6.7 and simple calculus that, if n ≥ t2 ≥ 4,

Vol(M t,δ
n ) ≤ exp

(
5n2−1/t log n+ δn2

)
. (103)

We now derive an upper bound on the volume of M t,δ
n .

Lemma 6.8. If t ≥ 6, n ≥ 4t2, and δ ≥ 3 log(4t)/t, then

Vol(M t,δ
n ) ≤ e−n · Vol(Mn−2t).

Proof. Suppose that d ∈M t,δ
n . By definition, we may find two disjoint

t-element sets I, J ⊆ JnK such that dij < 1 − δ for every pair (i, j) ∈
I × J . Fix any such pair (I, J) and suppose that k ∈ JnK \ (I ∪ J). Let

aI = min
i∈I

dik, bI = max
i∈I

dik, aJ = min
j∈J

djk, bJ = max
j∈J

djk.

Since all distances between I and J are shorter than 1−δ, both bJ−aI
and bI − aJ must be smaller than 1− δ and, consequently,

(bI − aI)(bJ − aJ) ≤
(
(bI − aI) + (bJ − aJ)

2

)2

< (1− δ)2.
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In other words, all distances between k and I and between k and J fall
into intervals AI and AJ , respectively, where |AI | · |AJ | < (1− δ)2. In
particular, if W denotes the set of all 2t-dimensional vectors (d′ik)i∈I∪J
which may be used to complete (de)e∈(I∪J

2 ) to a metric space on I ∪J ∪
{k}, then

Vol(W ) ≤ t4 · 24 · (1− δ)2t−4,

as there are at most t4 choices for the i, i′ ∈ I and j, j′ ∈ J for which
aI = dik, bI = di′k, aJ = djk, and bJ = dj′k. By our assumption on t
and δ,

Vol(W ) ≤
(
2te−δ(t−2)/2

)4 ≤ (2te−δt/3
)4 ≤ 2−4.

We may now bound the volume of M t,δ
n as follows. First, the number

of choices for I and J is at most
(
n
t

)2
and the volume of the distances

between pairs in I ∪ J does not exceed 2(
2t
2 ). Next, bounding the

volume of (dik)i∈I∪J,k/∈I∪J as above and the volume of (dij)i,j /∈I∪J by
Vol(Mn−2t), we obtain

Vol(M t,δ
n ) ≤

(
n

t

)2

· 2(
2t
2 ) · Vol(W )n−2t · Vol(Mn−2t)

≤ n2t · 22t2 · 2−4n+8t · Vol(Mn−2t),

which, with our assumption on n and t, implies the claimed bound. □

One may now derive (102) by induction on n using Lemma 6.8 and
the upper bound on Vol(M t,δ

n ) given by (103). In the inductive step,
one may take t = log n/(2 log log n) and δ = 3 log(4t)/t, say. We leave
the details to the reader.

7. Discussion and open questions

7.1. Further questions. As we remarked, we were not able to decide
whether Vol(Mn) is increasing in n. If one could prove that this is
indeed the case, this would greatly simplify our proof of Theorem 1.3 on
the shortest distance in the metric space sampled uniformly from Mn.

Suppose that d is a metric space sampled uniformly from Mn. A key
ingredient in our proof of Theorem 1.3 is the upper bound on P(d12 <
1) established in Proposition 4.5. It would be interesting to obtain
additional information about the distribution of d12. In particular, is it
true that P(d12 < 1) = Θ(n−1/2)? We believe that this is the case and
our belief seems to be supported by the lower bound of Proposition 4.5.
Going even further and writing fn for the density of the random variable
d12, one may ask whether the function [0,∞) ∋ t 7→ fn(1 − t√

n
) has
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a limit as n → ∞? It would also be very interesting to estimate the
probability P(d12 < 1− t√

n
) for t≫ 1. Propositions 5.1 and 5.3 imply

that P(d12 < α) is exponentially small in n for every fixed α < 1/2,
see also (74), but we are not ready to make any conjectures about the
range t ≤

√
n/2.

Do the empirical measures of individual distances (and tuples of dis-
tances) satisfy a large deviation principle? If so, what is the rate func-
tion? Is it possible to recover our result about the minimum distance
from such a large deviation estimate?

7.2. Relation with the discrete problem. One may naturally con-
sider a discrete analogue of the problem we study in this paper, where
we require the distances between every pair of points to be integers.
More specifically, given integers M ≥ 1 and n ≥ 2, one may consider
the space MM

n defined by

MM
n :=

{
(dij) ∈ {1, . . . ,M}(

JnK
2 ) : dij ≤ dik + dkj for all i, j, k

}
,

which is closely related to the metric polytope Mn. Indeed, for every n,
Mn is naturally obtained as a limit of

(
2
M

)
MM

n asM tends to infinity.
We proceed to discuss some of the quantitative aspects of this relation.

As with the continuous problem, observing that the cube{⌈
M

2

⌉
,

⌈
M

2

⌉
+ 1, . . . ,M

}(n2)
(104)

is fully contained in MM
n , one gets the following simple lower bound

on the cardinality of MM
n :

|MM
n | ≥

⌈
M + 1

2

⌉(n2)
. (105)

In fact, one may obtain bounds on |MM
n | from bounds on Vol(Mn)

and vice-versa. In one direction, consider the map φ : (0, 2](
n
2) →

{1, . . . ,M}(
n
2) defined by

φ(d)ij =

⌈
Mdij
2

⌉
.

Observe that φ maps Mn to MM
n (as ⌈x⌉ + ⌈y⌉ ≥ ⌈z⌉ whenever x +

y ≥ z) and that Vol(φ−1(d′)) =
(

2
M

)(n2) for any d′ ∈ {1, . . . ,M}(
n
2).

Consequently,

Vol(Mn) ≤
(

2

M

)(n2)
|MM

n |.



60 KOZMA, MEYEROVITCH, PELED AND SAMOTIJ

In the other direction, consider the map ψ from MM
n to the power set

of (0, 2](
n
2) defined by

ψ(d) =
∏
i,j

(
2

M + 2
(dij + 1) ,

2

M + 2
(dij + 2)

]
.

Observe that ψ maps each d ∈ MM
n to a cube that is fully contained

in Mn (as x+ y ≥ z implies that (x+∆x) + (y +∆y) ≥ (z +∆z) for
all ∆x,∆y,∆z ∈ (1, 2]) so that cubes corresponding to different d are
disjoint. It follows that

|MM
n |
(

2

M + 2

)(n2)
≤ Vol(Mn).

Putting these bounds together yields(
M

2

)(n2)
Vol(Mn) ≤ |MM

n | ≤
(
M

2
+ 1

)(n2)
Vol(Mn). (106)

Concurrently with the writing of this paper, Mubayi and Terry [34]
studied the discrete problem in the regime where M is fixed and n
tends to infinity, proving that

|MM
n | =


(
1 + e−Ω(n)

) (
M
2
+ 1
)(n2) if M is even,(

M+1
2

)(n2)+o(n2)
if M is odd

(107)

(with additional structural information in the odd M case).

The above bound reveals that for even M , the structure of a uni-
formly chosen space from MM

n is very rigid: the probability that even
a single distance lies outside the discrete interval {M/2, . . . ,M} is ex-
ponentially small. This strong rigidity property stems from the as-
sumption that M is fixed and does not hold in the continuous setting.
Indeed, the bound (7) shows that the minimum distance is smaller than
1 − c√

n
in typical samples from Mn. Handling such microscopic fluc-

tuations contributes to the difficulty in controlling the volume of Mn

and understanding the structure of typical samples from it.

7.3. Metric preserving maps. A map ϕ : [0,∞) → [0,∞) is metric
preserving if ϕ(d) =

(
ϕ(dij)

)
is a metric on some set whenever d =

(dij) is, e.g., the ceiling operation from the previous subsection. There
are many interesting examples of such maps, see [12]. Every metric
preserving map ϕ such that supx∈[0,2] ϕ(x) ≤ 2 induces a self-map of
the metric polytope. We wonder how metric preserving maps can be
utilized to further study the structure of the metric polytope.
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7.4. Other models for random metric spaces. In this paper we
investigated a certain model of a ‘random metric space’, which in some
sense is natural. The conclusion of our results is that on a large scale
this model essentially reduces to the ‘trivial’ model where all distances
are in the interval [1, 2], and the triangle inequality is trivially satisfied.
It would be interesting to find other models for a ‘random metric space’,
which are ‘natural’ on the one hand, and ‘interesting’ on the other hand,
in the sense that they reveal new phenomena about metric spaces.
In [39] Vershik considered one natural candidate for a random metric
space, and proved that it is essentially the Urysohn universal metric
space. As remarked within the paper, ‘An obvious drawback of our
construction is that it is not invariant with respect to the numbering
of points’.
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[31] L. Lovász and B. Szegedy. Szemerédi’s lemma for the analyst. Geom. Funct.
Anal., 17(1):252–270, 2007.

[32] V. Mascioni. On the probability that finite spaces with random distances are
metric spaces. Discrete Math., 300(1-3):129–138, 2005.

[33] R. Morris, W. Samotij, and D. Saxton. An asymmetric container lemma and
the structure of graphs with no induced 4-cycle. arXiv:1806.03706.

[34] D. Mubayi and C. Terry. Discrete metric spaces: structure, enumeration, and
0-1 laws. The Journal of Symbolic Logic, 84(4):1293–1325, 2019.

[35] M. S. Pinsker. Information and information stability of random variables and
processes. Translated and edited by Amiel Feinstein. Holden-Day, Inc., San
Francisco, Calif.-London-Amsterdam, 1964.

[36] D. Saxton and A. Thomason. Hypergraph containers. Invent. Math.,
201(3):925–992, 2015.
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