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Abstract. Let X be the number of k-term arithmetic progressions contained in the p-biased random

subset of the first N positive integers. We give asymptotically sharp estimates on the logarithmic

upper-tail probability log P(X ⩾ E[X] + t) for all Ω(N−2/k) ⩽ p ≪ 1 and all t ≫
√

Var(X), excluding

only a few boundary cases. In particular, we show that the space of parameters (p, t) is partitioned

into three phenomenologically distinct regions, where the upper-tail probabilities either resemble those

of Gaussian or Poisson random variables, or are naturally described by the probability of appearance

of a small set that contains nearly all of the excess t progressions. We employ a variety of tools

from probability theory, including classical tilting arguments and martingale concentration inequalities.

However, the main technical innovation is a combinatorial result that establishes a stronger version of

‘entropic stability’ for sets with rich arithmetic structure.

1. Introduction

Let k ⩾ 3 and N be positive integers. We write APk for the set of k-term arithmetic progressions

(k-APs for short) in the set JNK := {1, 2, . . . , N}, that is, APk is the collection of k-element subsets of

JNK of the form {a, a+ b, a+2b, . . . , a+ (k− 1)b}, where a and b are positive integers.1 Given p ∈ [0, 1],

we may choose a random subset of JNK by including each number independently with probability p. We

write R for the random set obtained in this way and let X be the number of elements of APk that are

contained in R.

The goal of this work is to calculate the asymptotic behaviour, as N tends to infinity and k is fixed,

of the logarithmic upper-tail probability of X, in the sparse regime (that is, we assume throughout the

paper that p vanishes as N grows). To be more precise, our goal is to compute the asymptotic rate of

logP(X ⩾ E[X] + t) for all (well-behaved) sequences t. For notational convenience, we set µ := E[X]

and σ2 := Var(X).

There are a few cases which are straightforward. First, if µ + t is greater than |APk|, the maximal

number of k-term arithmetic progressions that can possibly be contained in R, then the event {X ⩾ µ+t}

is empty, and the logarithmic upper-tail probability is negative infinity. If µ is bounded, then X is

asymptotically Poisson (see, e.g., [6]), which answers the question when t is also bounded. Furthermore,

a sequence of now-classical works from the 1980s (see, for example, [5, 24]) implies that X satisfies a

Central Limit Theorem; i.e., whenever µ→∞, then (X−µ)/σ converges weakly to a standard Gaussian
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random variable, which answers the question in the case where t/σ is bounded. Unfortunately, when

t/σ →∞, this result only tells us that P(X ⩾ µ+ t) vanishes and cannot be used directly to deduce any

quantitative information on the rate of convergence. For values of p which vanish sufficiently slowly, it

is possible to prove Berry–Esseen-like bounds on the rate of convergence via Stein’s method (see, e.g.,

[23]); when they are available, such bounds can be leveraged to prove Gaussian behaviour if t/σ → ∞

very slowly. Such techniques will not be sufficient to prove Gaussian bounds for a vast majority of the

Gaussian regime that will be discussed in this paper.

The remaining regimes of the upper-tail problem can be divided into three cases: the case where t is

much smaller than µ (but much larger than σ), known as the moderate-deviation regime; the case where t

is commensurate with µ, known as the large-deviation regime; and the case where t is much greater than

µ, which has received comparatively little attention, that we will term the extreme-deviation regime.

Historically, the large-deviation regime has been the most studied one. The main reason for this is

that the upper bounds on the logarithmic upper-tail probability of X that can be proved via classical

concentration inequalities do not match the known lower bounds, even up to constant factors; see [22]

for a survey of such results. A breakthrough was achieved by the work of Chatterjee–Dembo [10], which

established a large-deviation principle for a wide class of non-linear functions of independent random

variables. Their result was later extended and generalised by Eldan [13], Augeri [2], and Austin [3].

Subsequently, Bhattacharya–Ganguly–Shao–Zhao [9] showed that these large-deviation principles apply

in the context of k-APs and solved the associated variational problem to obtain asymptotically tight

estimates for the logarithmic upper-tail probability, for a suboptimal range of the density parameter p.

Around the same time, Warnke [25] developed a sophisticated moment-based approach in order to prove

bounds on the logarithmic upper-tail probability that were correct only up to a multiplicative constant

factor, but held in the entire large-deviation regime. Finally, the three authors [18] determined the

asymptotic logarithmic upper-tail probability in the entire large-deviation regime using a combinatorial

approach paired with a conditioned high-moment calculation.

The moderate-deviation regime has also garnered some recent attention. In particular, the aforemen-

tioned results of both Bhattacharya–Ganguly–Shao–Zhao [9] and Warnke [25] extend to portions of this

regime. As before, the results of [9] determine the exact asymptotics whereas [25] computes only the

order of magnitude. Both results hold under strong assumptions on the density p; moreover, [9] further

requires the deviation t not to be too far from the expectation. The recent work of Griffiths, Koch,

and Secco [17] determines exact asymptotics of the logarithmic upper-tail probability in a substantially

larger, but still incomplete, portion of the moderate-deviation regime (see also [14], where a similar result

is obtained in the setting of k-term arithmetic progressions modulo a prime).

Finally, although the extreme-deviation regime is not explicitly mentioned in most of the above works,

many of the arguments can be extended to cases where t is much larger than µ, except when µ is only

polylogarithmic in N .

1.1. Main results. Our main contribution is to determine the asymptotic rate of the logarithmic upper-

tail probability logP(X ⩾ µ+ t) for all values of p and t, with the exception of a few liminal cases and

the regime p = Θ(1). To state the results, we require a few preliminaries. First, it is straightforward to
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verify that, for some positive C = C(k),

µ = (1 + o(1)) · N2pk

2(k − 1)
and σ2 = (1 + o(1)) · N2pk

2(k − 1)
(1 + CNpk−1). (1)

We also define the function

Po(x) :=

∫ x

0

log(1 + y) dy = (1 + x) log(1 + x)− x,

which naturally appears in the rate function of Poisson random variables. Finally, given a U ⊆ JNK, we

set EU [X] := E[X | U ⊆ R], and, for any t ⩾ 0, we define

Ψ(t) = ΨN,p,k(t) := min {|U | : EU [X] ⩾ µ+ t}, (2)

with the convention that Ψ(t) =∞ if the set being optimised over is empty.

Definition. We say that the sequence (p, t) is in:

• the Gaussian regime if

N−1/(k−1) ≪ p≪ 1, t≫ σ, and
√
t log(1/p)≫ t2/σ2;

• the Poisson regime if

Ω(N−2/k) ⩽ p≪ N−1/(k−1), t≫ σ, and
√
t log(1/p)≫ µ · Po(t/µ);

• the localised regime if either

N−1/(k−1) < p≪ 1 and
√
t log(1/p)≪ t2/σ2,

or

Ω(N−2/k) ⩽ p ⩽ N−1/(k−1) and
√
t log(1/p)≪ µ · Po(t/µ).

The three regimes are depicted in Figure 1, together with a fourth regime where t/σ is bounded and

the Central Limit Theorem applies.

Theorem 1.1. Assume k ⩾ 3 and let X be the number of k-term arithmetic progressions contained in

the random subset of JNK obtained by including each number independently with probability p.

• If (p, t) is in the Gaussian regime, then

− logP(X ⩾ µ+ t) = (1 + o(1)) · t
2

2σ2
.

• If (p, t) is in the Poisson regime, then

− logP(X ⩾ µ+ t) = (1 + o(1)) · µ · Po(t/µ).

• If (p, t) is in the localised regime, then

− logP(X ⩾ µ+ t) = (1 + o(1)) ·Ψ(t) · log(1/p);

moreover, if µ+ t ⩽ |APk|, then Ψ(t) = (1 + o(1)) ·
√

2(k − 1)t.
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Figure 1. Phase diagram for the upper-tail problem for k-term arithmetic progres-

sions, with logarithmic axes. The green region north west of the two oblique dashed lines

represents the localised regime: the darker subregion is the moderate-deviation regime,

the lighter one the extreme-deviation regime, and the boundary between the two is

the large-deviation regime. The triangular blue region (east of the vertical dashed line

segment) represents the Gaussian regime, and the triangular red region (west of the

vertical dashed line segment) represents the Poisson regime. The yellow region south

east of the two oblique solid lines is the region where the Central Limit Theorem holds.

Theorem 1.1 gives no information on what happens on the dashed lines.

Heuristically, one may think of three different strategies to increase the number of k-term arithmetic

progressions by t. First, we may add to the p-biased random set R a small but highly structured subset

that contains the t excess arithmetic progressions: this leads to the localised regime. The other two

strategies are more ‘global’, in the sense that the excess arithmetic progressions are spread out roughly

evenly over JNK. We can do this either by increasing the probability of the events {i ∈ R} in a roughly

uniform fashion (this leads to the Gaussian regime), or by superimposing R and the union of t distinct,

arithmetic progressions chosen uniformly at random (this leads to the Poisson regime). One can provide

a convincing heuristic calculation that associates to each strategy the respective quantitative bound in

Theorem 1.1; indeed, in each case, the rate function is precisely the Kullback–Leibler divergence of the

random set obtained by applying the corresponding strategy from the original random set R. (Having

said that, turning these intuitions into rigorous arguments requires some work.) It is straightforward to

check that the three regimes are the regions where the respective strategy is the ‘cheapest’, in the sense

of leading to the smallest rate function. In light of this, the main contribution of Theorem 1.1 is to show

that, away from the boundary between the regimes, one of these three strategies will always dominate

the upper-tail event, up to lower order corrections.
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Remark. Expanding Po(·) in Taylor series, one can show that, when t≪ µ,

µ · Po(t/µ) = (1 + o(1)) · t
2

2µ
.

Under the additional assumption that Npk−1 ≪ 1, and thus σ2 = (1 + o(1)) · µ, the asymptotic rates

of the Gaussian and the Poisson regimes coincide. Despite this, there are good reasons to consider the

two regimes separately. First, for a narrow range of parameters (when µ is polylogarithmic in N), the

Poisson regimes includes regions where t is commensurate or much larger than µ; when this occurs, the

rate function in the Poisson regime is significantly smaller than t2/(2σ2). Second, the two regimes are

qualitatively very different, since, unlike in the Gaussian regime, the rate function in the Poisson regime

no longer agrees with the naive mean-field prediction, as will be discussed in greater detail below. Last

but not least, the different phenomenology in the two regimes requires vastly different approaches for

bounding the tail probabilities from both above and below.

In the localised regime, Theorem 1.1 reduces the upper-tail question to the solution of a variational

problem encoded by Ψ. Following [18], we consider the family of t-seeds – sets that increase the condi-

tional expectation of X by at least t:

S(t) = SN,p,k(t) := {U ⊆ JNK : EU [X] ⩾ µ+ t}. (3)

As we will show in Section 4, the appearance of a (1 + o(1))t-seed implies the upper-tail event with a

probability that is very high compared to the probability of appearance of the seed itself. Moreover,

by picking a particular t-seed that realises the minimum in (2), one can deduce that the probability of

appearance of a (1 + o(1))t-seed in R is bounded below by p(1+o(1))·Ψ(t). From this, the lower bound of

the localised regime in Theorem 1.1 follows immediately. The heart of the argument of [18] that resolved

the large-deviation regime was showing that, for every fixed δ > 0, the probability that R contains a

δµ-seed U satisfying |U | = O
(
Ψ(δµ) log(1/p)

)
is p(1+o(1))Ψ(δµ), which is the probability of the appearance

of a smallest such seed. The following theorem, which is the main technical innovation of this paper,

shows that the analogous statement about t-seeds remains true not only for all t but also for a much

broader range of sizes of the seeds.

Theorem 1.2. Assume k ⩾ 3 and let p, t,m be such that

t≫ m ·max {1, Npk−1} and t≫ m2pk−2 ·N (k−2)(m/t)1/(k−1)

. (4)

Then

logP
(
U ⊆ R for some U ∈ SN,p,k(t) with |U | ⩽ m

)
⩽ (1− o(1)) ·Ψ(t) · log p.

Remark. We claim that the lower-bound assumptions on t are natural. First, ignoring lower-order

terms, every union of t ⩽ m/k distinct k-APs forms a t-seed of size at most m, and so the probability of

appearance of such a seed is at least P(X ⩾ t). However, since we expect that the planting of a smallest

(t − µ)-seed makes the event {X ⩾ t} significantly more likely, it is plausible (and, up to lower-order

corrections, true) that P(X ⩾ t) ⩾ pΨ(t−µ), which is much larger than the upper bound in the theorem,

at least when t = O(µ). A similar argument applies for all t = O(m), so the assumption that t is much

larger than m is really needed.
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Second, observe that every set U ⊆ JNK with m elements satisfies

EU [X]− E[X] ⩾ ck ·
(
Nmpk−1 +m2pk−2

)
for some constant ck that depends only on k; to see this, consider the k-APs intersecting U in either one

or two elements. In particular, if t ⩽ ckNmp
k−1 or t ⩽ ckm

2pk−2, then every m-element set is a t-seed.

Consequently, at least for m ⩽ Np, the probability that R contains a t-seed with at most m elements is

uniformly bounded from below, contradicting the vanishing upper bound stated by the theorem. Note

that the above argument only justifies a lower bound of the form t ⩾ Cm2pk−2. The extra factor of

N (k−2)(m/t)1/(k−1)

is needed for technical reasons; however, it is irrelevant once t/m≫ (logN)k−1.

One may well find it believable that Theorem 1.2 plays a direct role in the proof of the upper bound for

the localised regime, where, following [18], we use a modified moment argument to show that the upper-

tail event is dominated by the appearance of a ‘small’ seed. It is perhaps more surprising that it also plays

a crucial role in proving the upper bound of the Poisson regime. In that context, it allows us to exclude

certain inconvenient terms that arise when calculating the factorial moments ofX; these terms correspond

to small subsets with rich additive structure. In fact, the estimates of factorial moments of X that play

the central role in our treatment of the Poisson regime extend to a portion of the localised regime. This

proves crucial, as there is a small portion of the localised regime (which we term the very sparse localised

regime) where the aforementioned argument based on estimating classical moments of X fails, but can

be salvaged by factorial moment estimates. (This does not mean, however, that the very sparse localised

regime is phenomenologically distinct from the rest of the localised regime; see Section 4.2 for further

discussion.) In contrast, the upper bound for the Gaussian regime is proved by way of a truncated

martingale concentration argument, generalising a classical inequality of Freedman [15]. The truncation

scheme uses fairly straightforward moment estimates rather than the more powerful Theorem 1.2.

1.2. The naive mean-field approximation. One way to view Theorem 1.1 is in the context of the

naive mean-field approximation. For a pair P and Q of measures on subsets of JNK, with Q absolutely

continuous with respect to P, the Kullback–Leibler divergence of Q from P is defined by

DKL(Q ∥P) := EQ

[
log

(
dQ
dP

(R)

)]
=

∑
R⊆JNK

Q(R = R) log

(
Q(R = R)

P(R = R)

)
, (5)

where EQ is the expectation operator associated with the measure Q. It is known (cf. Section 2) that the

logarithmic probability of any event A can be obtained by optimising the Kullback–Leibler divergence

over all measures that assign A probability one:

− logP(A) = inf
Q≪P,

Q(A)=1

DKL(Q ∥P). (6)

The usefulness of such a formulation is limited by the fact that measures that assign the upper-tail events

probability one may be quite difficult to analyse. The idea of the naive mean-field approximation is to

replace the complicated variational problem in (6) by a simpler one, where the infimum ranges only over

product measures (the assumption Q(A) = 1 must then be relaxed somewhat). Roughly speaking, the

naive mean-field approximation holds if minimising over this smaller set still achieves (6), up to lower
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order corrections. More precisely, we say the naive mean-field approximation holds for a sequence of

events AN , each defined on a measure space (ΩN ,PN ), if

inf
QN≪PN ,

limN→∞ QN (AN )=1
QN is a product measure

DKL(QN ∥PN ) = −(1 + o(1)) · logPN (AN ). (7)

The aforementioned large-deviation principles proved in [2, 10, 13] establish a version of (7) when AN
are tail events for non-linear functions of independent random variables that satisfy certain complexity

and smoothness properties. Bhattacharya–Ganguly–Shao–Zhao [9] showed that the number of arithmetic

progressions in R has the requisite properties when the density p is sufficiently large. Furthermore, the

same work solved the restricted variational problem of (7) in the case AN = {X ⩾ µ + t} for (nearly)

all values of (p, t) with p vanishing and t ≫ σ. Unsurprisingly, this solution matches the results of

Theorem 1.1 in the entire Gaussian and localised regimes; a posteriori, Theorem 1.1 thus establishes

that the naive mean-field approximation is valid in those regimes. In contrast, the naive mean-field

approximation completely fails in the Poisson regime – the left-hand side of (7) is not even of the same

order of magnitude as the right-hand side.

1.3. Related works. The study of large- and moderate-deviation regimes of the upper tail of random

variables that arise from combinatorial settings has flowered in the last decade. Besides the aforemen-

tioned work of Chatterjee–Dembo [10], Eldan [13], Augeri [2], and Austin [3], which are concerned with

rather general non-linear functions of independent random variables, there have been numerous works

that focus on more specific cases. The most-studied family of examples are the random variables XH that

count copies of a given graph H in the binomial random graph Gn,p. Cook–Dembo [11] determined the

asymptotics of the logarithmic upper-tail probability of XH for all H and all p satisfying n−cH ≪ p≪ 1

for some positive cH that depends only on H. More specifically, they established that the naive mean-

field approximation holds for XH in the above range of densities. Later work of Cook–Dembo–Pham [12]

extended these results to a wider range of densities p and generalised them to the case where H is a

uniform hypergraph. The three authors [18] determined the asymptotics of the logarithmic upper-tail

probability of XH for all regular, non-bipartite H for essentially all densities p (also in the non-mean-

field regime); their results were extended to regular, bipartite graphs by Basak–Basu [7]. In the the

moderate-deviation regime, Goldschmidt–Griffths–Scott [16] proved asymptotic upper-tail estimates for

arbitrary subgraphs for a certain restricted range of densities p and deviations t (using the notation of

this paper). Recently, Alvarado–de Oliviera–Griffiths [1] successfully analysed a far greater (but still

sub-optimal) portion of the moderate-deviation regime in the case where H is a triangle.

Finally, there has been some recent progress in the understanding of the typical deviations of the

number of k-APs in random subsets of Z/(NZ), the cyclic group of order N . Berkowitz–Sah–Sawhney [8]

showed that, at least when p is fixed, the standard notion of a local Central Limit Theorem fails for

infinitely many N , in the sense that the probability that the number of k-APs equals a particular integer

deviates significantly from the prediction one would get from the Gaussian limit.

1.4. Organisation. The paper is organised as follows: Section 2 includes an overview of the tilting

argument, a classical method for producing lower bounds for rare events, as well as a proof of the
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martingale concentration inequality used for the upper bound of the Gaussian regime. Section 3 is

dedicated to proving Theorem 1.2. The remaining three sections (Sections 4 to 6) prove Theorem 1.1 for

the localised, Gaussian, and Poisson regimes, respectively; the proof of the key estimate needed for the

very sparse localised regime is postponed to Section 6, as it is uses methods developed for the Poisson

regime. Finally, Appendix A proves a bound on the number of connected hypergraphs with small edge

boundary that plays a key role in the analysis of the Poisson regime (and the very sparse localised

regime), and may be of independent interest.

2. Probabilistic tools

2.1. The tilting argument. The tilting argument is a general method to bound the probability of an

arbitrary event from below by constructing another measure that makes the event likely to occur and

quantifying its ‘distance’ from the original measure. Suppose that P and Q are two measures on subsets

of JNK. If Q ≪ P (that is, if Q is absolutely continuous with respect to P), there is a unique (up to

a set of measure zero) measurable function dQ/dP, called the Radon–Nikodym derivative, such that

Q(A) = E [dQ/dP · 1A] for every event A. In this case, we define the Kullback–Leibler divergence of Q

from P by

DKL(Q ∥P) := EQ

[
log

dQ
dP

(R)

]
=

∑
R⊆JNK

Q(R = R) log

(
Q(R = R)

P(R = R)

)
, (8)

where we use the convention that 0 log 0 = 0. It is routine to verify that the Kullback–Leibler divergence

between any two measures is nonnegative. We will also make use of the following easily verifiable

additivity property of the Kullback–Leibler divergence.

Fact 2.1. If P1, . . . ,PN and Q1, . . . ,QN are probability measures with Qi ≪ Pi for all i ∈ JNK, then

DKL

(
Q1 × · · · ×QN ∥P1 × · · · × PN

)
=

N∑
i=1

DKL(Qi ∥Pi).

It is well known that one can use the notion of Kullback–Leibler divergence to produce a lower bound

for the logarithmic probability of any event A under P by considering a measure Q≪ P with Q(A) = 1.

Proposition 2.2. Let A be an arbitrary event and let P and Q be two measures such that Q(A) = 1

and Q≪ P. Then

logP(A) ⩾ −DKL(Q ∥P).

Proof. Since our assumptions imply that P(A) > 0, we may consider the conditioned measure P∗ :=

P( · | A). Denoting the indicator random variable of A by 1A, we observe that dP∗/dP = 1A/P(A) and

that Q≪ P∗. Since the Kullback–Leibler divergence is always nonnegative,

−DKL(Q ∥P) ⩽ DKL(Q ∥P∗)−DKL(Q ∥P) = EQ

[
− log

dP∗

dP
(R)

]
,

where the final equality follows because, Q-almost surely,

dQ
dP∗ ·

(
dQ
dP

)−1

=

(
dP∗

dP

)−1

.
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Since Q(A) = 1, we find that dP∗/dP = 1/P(A) holds Q-almost surely. Therefore,

EQ

[
− log

dP∗

dP
(R)

]
= logP(A),

which implies the desired inequality. □

In fact, the proof of Proposition 2.2 shows that − logP(A) is precisely equal to the Kullback–Leibler

divergence of P( · | A) from P. This allows us to restate the proposition as:

− logP(A) = inf
Q≪P,

Q(A)=1

DKL(Q ∥P). (9)

As mentioned before, (9) is a theoretically useful tool that is difficult to apply, since the set of measures

that assignA probability one can be rather unwieldy. Below, we will derive two versions of this variational

principle that are more immediately applicable. The first, Corollary 2.3, applies to arbitrary measures

and will be used for lower bounds in the localised regime. The second, Proposition 2.4, applies only

to measures that assign A probability one asymptotically; it will be used in the Gaussian and Poisson

regimes.

Corollary 2.3. For any event A and any measures P and Q such that Q≪ P and Q(A) > 0,

logP(A) ⩾ logQ(A)− EQ

[
log

dQ
dP

(R) | A
]

(10)

Proof. We apply Proposition 2.2 to Q( · | A). Since

dQ( · | A)
dP

=
1

Q(A)
· dQ
dP

holds Q( · | A)-almost surely, writing J in place of log(dQ/dP), we find that

DKL(Q( · | A) ∥P) = − logQ(A) + EQ(·|A)[J(R)] = − logQ(A) + EQ[J(R) | A].

The claim now follows from Proposition 2.2. □

Proposition 2.4. Let PN and QN be two sequences of measures satisfying QN ≪ PN for each N and

suppose that {AN} is a sequence of events such that lim supN→∞ PN (AN ) < 1 and limN→∞ QN (AN ) = 1.

Then

lim inf
N→∞

DKL(QN ∥PN )

− logP(AN )
⩾ 1.

Proof. We first claim that

DKL(QN ∥PN )−QN (AN ) · log QN (AN )

PN (AN )
−QN (AcN ) · log Q(AcN )

P(AcN )
⩾ 0. (11)

Indeed, for every event E with QN (E) > 0 (and thus PN (E) > 0), we have

dQN ( · | E)
dPN ( · | E)

=
dQN
dPN

· PN (E)
QN (E)

and thus the left-hand side of the above inequality can be seen to equal

QN (AN ) ·DKL

(
QN ( · | AN ) ∥PN ( · | AN )

)
+QN (AcN ) ·DKL

(
QN ( · | AcN ) ∥PN ( · | AcN )

)
,

which is clearly nonnegative. Dividing (11) through by − logPN (AN ) and rearranging the terms gives

DKL(QN ∥PN )

− logPN (AN )
⩾ QN (AN )− 1

logPN (AN )
·
(
QN (AN ) · logQN (AN ) +QN (AcN ) · log QN (AcN )

PN (AcN )

)
.
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Finally, our assumptions on the sequences PN (AN ) and QN (AN ) imply that the first summand in the

right-hand side of the above inequality tends to one whereas the second summand tends to zero. The

desired inequality follows by taking the limit inferior of both sides. □

2.2. A martingale concentration inequality. The main tool for establishing the upper bound in the

Gaussian regime is a martingale concentration inequality, which we formulate in the general context of

hypergraphs. Let H be a hypergraph with vertex set JNK and let R denote the p-biased random subset

of JNK. Let X be the number of edges of in H[R], the subhypergraph of H that is induced by R, and

denote the mean and the variance of X by µ and σ2, respectively. If H comprises the k-term arithmetic

progressions in JNK, these notations coincide with the ones used in the rest of paper. Considering the

upper-tail problem for arithmetic progressions in such an abstract setup of hypergraphs is not a new

idea – both [17, 25] follow this route.

Our upper bound for the upper tail of X, which could be of independent interest, is a sum of a

Gaussian-like tail bound and three upper-tail probabilities for various functions of the numbers of edges

that the random set R induces in the link hypergraphs of the vertices of H. For every i ∈ JNK, we let

Li :=
∣∣{e ∈ H : e ∋ i and e \ {i} ⊆ R

}∣∣ (12)

Proposition 2.5. The following holds for all sufficiently small ε > 0. Suppose that H is a hypergraph

with vertex set JNK. Let R be the p-biased random subset of JNK and let L1, . . . , LN be the random

variables defined in (12). Write X := e(H[R]), µ := E[X], and σ2 := Var(X). Then for all t ⩾ εσ, we

have, letting λ := t/σ2,

P(X ⩾ µ+ t) ⩽ exp

(
− (1− ε)t2

2σ2

)
+

8N

ε3
· P

(
N∑
i=1

L2
i >

(
1 +

ε

10

)
· σ

2

p

)

+
8N

ε3
· P
(∣∣∣{i : Li > ε

λ

}∣∣∣ ⩾ ελ2σ2

20p1/2

)
+ P

(
∃i Li >

log(1/p)

2λ

)
.

Proof. Let Yi be the indicator random variable of the event {i ∈ R} and, for every i ∈ {0, . . . , N}, let

Fi be the σ-algebra generated by Y1, . . . , Yi. The starting point for our considerations is the following

identity, which holds for all i ∈ JNK:

E[X | Fi]− E[X | Fi−1] = (Yi − p) · E [Li | Fi−1] . (13)

Instead of working with the Doob martingale
(
E[X | Fi]

)N
i=0

directly, we will consider a related martingale

sequence whose differences are truncated versions of (13). More precisely, for each i ∈ JNK, set

L̂i := min {Li, log(1/p)/(2λ)}

and define a martingale sequence (Mi)
N
i=0 by

M0 := E[X] and Mi −Mi−1 := (Yi − p) · E
[
L̂i | Fi−1

]
for i ∈ JNK.

Since the random variables X and MN coincide on the event that L̂i = Li for all i, we find that

P(X ⩾ µ+ t) ⩽ P(MN −M0 ⩾ t) + P
(
∃i Li >

log(1/p)

2λ

)
. (14)

In the remainder of the proof, we will estimate the first probability on the right-hand side of (14).
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Define the function ϕ : R→ R by

ϕ(0) :=
1

2
and ϕ(x) :=

ex − x− 1

x2
if x ̸= 0

and observe that ϕ is positive and increasing. We also define, for each i ∈ JNK,

Wi := p ·
i∑

j=1

E
[
ϕ(λL̂j) · L̂2

j | Fj−1

]
.

We first show that the upper-tail probability of MN can be bounded from above by the sum of a

Gaussian-like tail bound and the probability that WN exceeds σ2/2 by a macroscopic amount. Our

proof is an adaptation of the argument used by Freedman [15] to prove a variance-dependent version of

the Azuma–Hoeffding inequality; in contrast to [15], we do not assume an almost-sure bound on WN .

Claim 2.6. For any ε > 0,

P(MN −M0 ⩾ t) ⩽ exp

(
− (1− ε)t2

2σ2

)
+ P

(
WN >

(1 + ε)σ2

2

)
.

Proof. We will show that the sequence Z0, . . . , ZN , defined by

Zi := exp
(
λ(Mi −M0)− λ2Wi

)
is a supermartingale. This fact will imply the assertion of the claim. Indeed, for every w ⩾ 0,

P(MN −M0 ⩾ t) = P
(
ZN ⩾ eλt−λ

2WN

)
⩽ P

(
ZN ⩾ eλt−λ

2w
)
+ P (WN > w)

⩽ E[ZN ] · eλ
2w−λt + P (WN > w) ,

using Markov’s inequality. If Zi is in fact a supermartingale, then E[ZN ] ⩽ E[Z0] = 1, and the assertion

of the claim follows by letting w := (1 + ε)σ2/2 in the above inequality (recall that λ = t/σ2).

Since eλx = 1 + λx+ λ2x2 · ϕ(λx), the definition of Mi yields

E
[
exp

(
λ(Mi −Mi−1)

)
| Fi−1

]
= 1 + λ2 · E

[
ϕ
(
λ(Mi −Mi−1)

)
· (Mi −Mi−1)

2 | Fi−1

]
⩽ 1 + λ2 · E

[
ϕ
(
λE
[
L̂i | Fi−1

])
· (Yi − p)2 · E

[
L̂i | Fi−1

]2 | Fi−1

]
= 1 + λ2 · p(1− p) · ϕ

(
λE
[
L̂i | Fi−1

])
· E
[
L̂i | Fi−1

]2
,

where the inequality holds as ϕ is increasing, Yi − p ⩽ 1, and λE
[
L̂i | Fi−1

]
⩾ 0. Applying Jensen’s

inequality to the convex function x 7→ ϕ(λx) · x2 = λ−2 · (eλx − λx− 1) further gives

E
[
exp

(
λ(Mi −Mi−1)

)
| Fi−1

]
⩽ 1 + λ2 · p(1− p) · E

[
ϕ
(
λL̂i

)
· L̂2

i | Fi−1

]
⩽ exp

(
λ2p · E

[
ϕ
(
λL̂i

)
· L̂2

i | Fi−1

])
= exp

(
λ2
(
Wi −Wi−1

))
.

Rearranging the above inequality gives E [Zi | Fi−1] ⩽ Zi−1, as claimed, which completes the proof. □

While the definition of Wi is convenient in the proof Claim 2.6, the sequentially conditioned random

variables appearing in this definition make it difficult to work with this variable directly. Luckily, we

may replace the upper-tail probability of WN by a more facile upper-tail probability while incurring only

a polynomial loss. Define

HN := p ·
N∑
i=1

ϕ(λL̂i) · L̂2
i .
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Claim 2.7. For any w ⩾ 0, we have E
[
HN |WN > w

]
> w.

Proof. We begin by noting that p · ϕ(λL̂i) · L̂2
i is an increasing function of (Y1, . . . , YN ). Let Gw :=

{WN > w} and let Gw be the σ-algebra generated by Gw. Harris’s inequality [19] implies that, on Gw,

p · E
[
ϕ
(
λL̂i

)
· L̂2

i | Fi−1,Gw
]
⩾ p · E

[
ϕ
(
λL̂i

)
· L̂2

i | Fi−1

]
.

In particular, we deduce that

E[1Gw
·HN ] = E

[
1Gw

· p ·
N∑
i=1

E
[
ϕ
(
λL̂i

)
· L̂2

i | Fi−1,Gw
]]

⩾ E

1Gw
· p ·

N∑
j=1

E
[
ϕ
(
λL̂i

)
· L̂2

i | Fi−1

] = E [1Gw
·WN ] > w · P(Gw).

Dividing through by the probability of Gw completes the proof. □

We now note for future reference that, for every i ∈ JNK, since L̂i ⩽ log(1/p)/(2λ) by construction,

ϕ
(
λL̂i

)
· L̂2

i ⩽
eλL̂i

λ2
⩽

1

p1/2λ2
. (15)

Claim 2.8. For all ε > 0 and t ⩾ εσ,

P
(
WN >

(1 + ε)σ2

2

)
<

8N

ε3
· P
(
HN >

(1 + 3ε/4)σ2

2

)
.

Proof. Note that, by (15), we have HN ⩽ N/λ2 almost surely. In particular, this implies that

E
[
HN |WN >

(1 + ε)σ2

2

]
⩽
N

λ2
· P
(
HN >

(1 + 3ε/4)σ2

2
|WN >

(1 + ε)σ2

2

)
+

(1 + 3ε/4)σ2

2
.

On the other hand, by Claim 2.7,

E
[
HN |WN >

(1 + ε)σ2

2

]
>

(1 + ε)σ2

2
.

Combining these two inequalities, multiplying through by the probability that WN exceeds (1 + ε)σ2/2,

and recalling that λ2σ2 = (t/σ)2 ⩾ ε2 gives the assertion of the claim. □

Finally, we partition the upper tail of HN . To this end, observe that when ε is sufficiently small, then

for all i such that L̂i ⩽ ε/λ, we have ϕ(λL̂i) ⩽ ϕ(ε) ⩽ (1 + ε/2)/2 . Using (15) for all remaining i, we

obtain

HN ⩽
(1 + ε/2)

2
· p ·

N∑
i=1

L̂2
i +

p1/2

λ2
·
∣∣∣{i : L̂i > ε

λ

}∣∣∣ .
Since (1 + ε/2)(1 + ε/10) + 2ε/20 ⩽ 1 + 3ε/4 for all sufficiently small ε > 0, we may conclude that

P
(
HN >

(1 + 3ε/4)σ2

2

)
⩽ P

(
N∑
i=1

L̂2
i ⩾

(
1 +

ε

10

)
· σ

2

p

)
+ P

(∣∣∣{i : L̂i > ε

λ

}∣∣∣ ⩾ ελ2σ2

20p1/2

)
.

Combining (14), Claims 2.6 and 2.8, and the above estimate for the upper tail of HN yields

P(X ⩾ µ+ t) ⩽ exp

(
− (1− ε)t2

2σ2

)
+

8N

ε3
· P

(
N∑
i=1

L̂2
i >

(
1 +

ε

10

)
· σ

2

p

)

+
8N

ε3
· P
(∣∣∣{i : L̂i > ε

λ

}∣∣∣ ⩾ ελ2σ2

20p1/2

)
+ P

(
∃i Li >

log(1/p)

2λ

)
.
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Finally, since L̂i ⩽ Li, we may replace the truncated variables in both probabilities above with the

untruncated versions, thereby only increasing the right-hand side. □

3. The probability of small seeds: Proof of Theorem 1.2

In this section, we prove the main technical result of this paper, Theorem 1.2. It will be more

convenient to state and prove an equivalent version of this result, where the function Ψ is replaced by

its combinatorial analogue Ψ∗, which we now define. In order to do so, we first define, for all U ⊆ JNK,

Ak(U) := |{B ∈ APk : B ⊆ U}|.

With this, for all t ⩾ 0, let

Ψ∗(t) = Ψ∗
N,p,k(t) := min {|U | : U ⊆ JNK and Ak(U) ⩾ t}, (16)

cf. (2). As before we set Ψ∗(t) = ∞ when t > |APk|. Since every k-AP contained in a set U ⊆ JNK

contributes 1 − pk to the difference EU [X] − E[X], we have Ψ(t) ⩽ Ψ∗(t/(1 − pk)
)

for all t ⩾ 0.

Furthermore, a straightforward computation shows that Ak(JmK) = (1 + o(1)) · 1
k−1

(
m
2

)
as m → ∞,

which implies that Ψ∗(t) ⩽ (1 + o(1)) ·
√
2(k − 1)t whenever 1 ≪ t ⩽ |APk|. Finally, we will show

that (1 − o(1)) ·
√
2(k − 1)t is a lower bound on Ψ(t). Together, these facts will establish the following

proposition.

Proposition 3.1. Let k ⩾ 3 and assume that max {1, N2p2k−2} ≪ t ⩽ |APk| − µ and p≪ 1. Then

Ψ(t) = (1 + o(1)) ·Ψ∗(t) = (1 + o(1)) ·
√

2(k − 1)t.

We remark that a version of Proposition 3.1 was proved by Bhattacharya–Ganguly–Shao–Zhao [9].

However, their version [9, Theorem 2.2] requires a stronger lower-bound assumption on t, which is in fact

necessary for the continuous relaxation of Ψ which they consider (and which does not always coincide with

the combinatorial notion of Ψ used in this work). Even though our proof of Proposition 3.1 essentially

repeats the argument of [18, Proposition 4.3], we include it here for completeness.

We now state the aforementioned version of Theorem 1.2, with Ψ replaced by Ψ∗.

Proposition 3.2. For every positive ε and every integer k ⩾ 3, there is some C such that the following

holds. Let N ∈ N and p ∈ (0, 1/2), and define Ssmall(t, C) to be the set of all t-seeds U ⊆ JNK such that

t ⩾ C|U | ·max{1, Npk−1} and t ⩾ C|U |2pk−2 ·N (k−2)(|U |/t)1/(k−1)

. (17)

Then, for every t ⩾ 0,

logP
(
U ⊆ R for some U ∈ Ssmall(t, C)

)
⩽ (1− ε) ·Ψ∗((1− ε)t) · log p.

The remainder of this section is organised as follows. In Section 3.1, we prove Proposition 3.1 and

present the short derivation of Theorem 1.2 from Proposition 3.2. The remaining two subsections are

devoted to the proof of Proposition 3.2. The short Section 3.2 presents three auxiliary, technical results

needed for the proof, which is presented in the much more substantial Section 3.3.
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3.1. Proof of Proposition 3.1 and derivation of Theorem 1.2. Given a set U ⊆ JNK and an

integer k ⩾ 3, it will be convenient to denote, for every r ∈ JkK, the number of k-APs that intersect U in

exactly r elements by A(k)
r (U); note that then Ak(U) = A

(k)
k (U). If X denotes the number of k-APs in

the p-biased random subset R ⊆ JNK, linearity of expectation allows us to write

EU [X]− E[X] =

k∑
r=1

A(k)
r (U) · (pk−r − pk). (18)

Since any two numbers lie in at most
(
k
2

)
distinct k-APs (equivalently, the hypergraph APk of k-APs in

JNK satisfies ∆2(APk) ⩽
(
k
2

)
), we may bound

A
(k)
1 (U) ⩽

(
k

2

)
N |U | and A

(k)
2 (U) + · · ·+A

(k)
k (U) ⩽

(
k

2

)(
|U |
2

)
. (19)

Finally, the proof of Proposition 3.1 relies on the following combinatorial result that appears as [9,

Theorem 2.4]. (We note that [9] considers a slightly different variational problem, since that work counts

progressions with positive and negative common difference separately; this leads to a difference of
√
2

between the result quoted below and the one that appears in [9].)

Lemma 3.3. For every U ⊆ JNK with m elements, Ak(U) ⩽ Ak(JmK) = (1+ o(1)) m2

2(k−1) . In particular,

if 1≪ t ⩽ |APk|, then Ψ∗(t) = (1 + o(1))
√
2(k − 1)t.

Proof of Proposition 3.1. We have already mentioned the bound Ψ(t) ⩽ Ψ∗(t/(1−pk)). The assumption

t ⩽ |APk| − µ = |APk|(1− pk) implies that t/(1− pk) ⩽ |APk|, so Lemma 3.3 gives

Ψ(t) ⩽ Ψ∗(t/(1− pk)) = (1 + o(1))
√
2(k − 1)t = (1 + o(1))Ψ∗(t),

where we used p≪ 1. In view of this, it remains to show that Ψ(t) ⩾ (1− o(1)) ·
√

2(k − 1)t as long as

t≫ max{1, N2p2k−2}. Fix ε > 0 and consider an arbitrary set U ⊆ JNK with |U | ⩽ (1− ε)
√
2(k − 1)t.

Using (18) and (19), we find that

EU [X]− E[X] ⩽ Ak(U) +

k−1∑
r=1

A(k)
r (U) · pk−r

⩽ Ak(U) + p ·
(
k

2

)(
|U |
2

)
+

(
k

2

)
N |U |pk−1.

The final two terms on the right-hand side are o(t); this follows from the upper bound on |U | and

the assumption p ≪ 1 (for the second term) or the assumption t ≫ N2p2k−2 (for the third term).

Furthermore, Lemma 3.3 implies that Ak(U) ⩽ (1 − ε)t. Thus, EU [X] − E[X] < t for every set U with

at most (1− ε)
√

2(k − 1)t elements, as desired. □

Derivation of Theorem 1.2 from Proposition 3.2. Note that every t-seed with at most m elements, where

t and m satisfy (4), belongs to Ssmall(t, C) for every fixed C > 0 and all large enough N . It thus suffices

to show that the existence of such a t-seed U implies that the two assumptions of Proposition 3.1 hold,

so that we may replace (1− ε)Ψ∗((1− ε)t) with (1− o(1)) ·Ψ(t). To this end, suppose that U ⊆ JNK is a

t-seed with at most m elements. Then, firstly, we know that µ+ t ⩽ |APk|. Secondly, by (18) and (19),

t ⩽ EU [X]− E[X] ⩽
k∑
r=1

A(k)
r (U) · pk−r ⩽

(
k

2

)
Nm · pk−1 +

(
k

2

)(
m

2

)
.
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In particular, this means that t ⩽ Km
(
Npk−1 +m

)
for some constant K that depends only on k. Since

we have assumed that t≫ mNpk−1, we conclude that t ⩽ 2Km2 and thus t ⩾ (t/m)2/(2K)≫ N2p2k−2.

Finally, thanks to the assumption t≫ m2pk−2N (k−2)(m/t)1/(k−1)

⩾ m2pk−2, we conclude that p≪ 1. □

3.2. Preliminaries for the proof of Proposition 3.2. If U is a finite set and f : P(U) → R is

a function on its power set, then the partial derivative of f with respect to u ∈ U is the function

∂uf : P(U)→ R defined by ∂uf(U ′) := f(U ′ ∪{u})− f(U ′ \ {u}) for every U ′ ⊆ U . The following simple

lemma, which generalises [18, Lemma 3.8], is a key ingredient in the proof of Lemma 3.7 below. For the

readers that are familiar with the general framework of [18], we remark that this lemma will allow us to

extract a core from every seed.

Lemma 3.4. If U is a finite set and f : P(U)→ R is a function, then, for every w ∈ R|U |, there exists

a subset U∗ ⊆ U such that

(i) f(U∗) ⩾ f(U)− ∥w∥1 and

(ii) ∂uf(U
∗) ⩾ w|U∗| for all u ∈ U∗.

Proof. Let U = U0 ⊋ U1 ⊋ · · · ⊋ Uk = U∗ be a chain of maximal length such that f(Ui−1) − f(Ui) <

w|Ui−1| for all 1 ⩽ i ⩽ k. Then U∗ satisfies (ii), since otherwise we could obtain a longer chain by setting

Uk+1 = Uk \ {u} for an element u ∈ Uk with ∂uf(Uk) < w|Uk|. To see that U∗ also satisfies (i), note that

f(U)− f(U∗) =

k∑
i=1

(
f(Ui−1)− f(Ui)

)
⩽

k∑
i=1

w|Ui−1| ⩽ ∥w∥1,

because the cardinalities |U0|, . . . , |Uk−1| are distinct positive integers. □

The second ingredient is a version of Janson’s inequality [20] for the hypergeometric distribution; it

can be derived from the standard version of Janson’s inequality and the fact that the mean of binomial

distribution is also its median, provided that it is an integer (cf. the proof of [4, Lemma 3.1]).

Lemma 3.5. Suppose that (Bα)α∈A is a family of subsets of a t-element set Ω. Let s ∈ {0, . . . , t} and

let

µ :=
∑
α∈A

(s
t

)|Bα|
and ∆ :=

∑
α∼β

(s
t

)|Bα∪Bβ |
,

where the second sum is over all ordered pairs (α, β) ∈ A2 such that α ̸= β and Bα ∩ Bβ ̸= ∅. Let S

be the uniformly chosen random s-element subset of Ω and let Z denote the number of α ∈ A such that

Bα ⊆ S. Then, for every ε ∈ (0, 1],

P
(
Z ⩽ (1− ε)µ

)
⩽ 2 exp

(
−ε

2

2
· µ2

µ+∆

)
.

In the proof of Proposition 3.2, we will encounter the function β : (0, 1]→ R>0 defined by

β(x) :=
1

(2− log x)2
. (20)

The precise details of this definition have no deeper meaning; what we require is essentially a function on

(0, 1] that approaches 0 sufficiently slowly as x → 0 while still having the property that
∫ 1

0
x−1β(x) dx

exists. Some relevant properties of β are collected in the following fact.
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Fact 3.6. The following statements hold:

(i) β is increasing;

(ii) for c > 0, the function x 7→ x−cβ(x) is decreasing on (0, e2−2/c] and increasing on [e2−2/c, e2);

(iii)
∫ 1

0
x−1β(x) dx = 1/2.

Proof. The first item is obvious. A direct computation shows that, for every c > 0,(
x−cβ(x)

)′
=

c log x− 2c+ 2

xc+1 · (2− log x)3
,

which is negative for x ∈ (0, e2−2/c). For the last item, we have∫ 1

0

1

x · (2− log x)2
dx =

[
1

2− log x

]1
0

= 1/2. □

3.3. Proof of Proposition 3.2. As earlier, we write A
(k)
r (U) for the number of k-term arithmetic

progressions in JNK that intersect U at precisely r elements. Throughout the proof, we will suppress the

dependence of this quantity on k for notational convenience.

Definition. A set U∗ ⊆ JNK is called a (t, ε, ξ)-core, for some t, ε, ξ > 0, if

(C1) |U∗| ⩾ Ψ∗((1− ε)t) and

(C2) for some r ∈ {3, . . . , k} and all u ∈ U∗,

∂uAr(U
∗) ⩾

ξ

|U∗|
·max

{
t,

(
t

|U∗|2

) 1
k−2

· max
K⊆U∗

Ar−1(K)

}
.

We note that every interval in JNK of length ⌊
√

2(k − 1)t⌋ is a (t, ε, ξ)-core provided that ξ is smaller

than some ξ0 = ξ0(k) > 0. Indeed, (C1) follows from Proposition 3.1 and (C2) (for r = k) is a

straigthforward calculation (the left-hand side is linear in
√
t whereas the right-hand side is linear in

ξ
√
t).

Our first lemma states that every seed contains a core. This lemma, together with the definition of a

core, lie at the the very heart of the proof of Proposition 3.2.

Lemma 3.7. For every ε ∈ (0, 1), there exist positive δ = δ(ε, k) and C = C(ε, k) such that the following

holds. Let U be a t-seed with m elements, where t ⩾ C ·max {m2pk−2,mNpk−1, 1}. Then U contains a

subset U∗ that is a
(
t, ε, δβ(|U∗|/m)

)
-core, where β is defined as in (20).

Note that δβ(|U∗|/m) = δ/
(
2− log(|U∗|/m)

)2 is not quite a constant – things would be a little simpler

if it were – but it is good enough for the purposes of our next lemma, which bounds the number of cores

of a given size.

Lemma 3.8. For all ε, δ, η ∈ (0, 1/2), there is a positive C = C(δ, ε, η, k) such that the following holds.

Let t and m be positive integers with t ⩾ C ·max {m,mNpk−1,m2pk−2NC(m/t)1/(k−1)}. Denote by C(s)

the set of
(
t, ε, δβ(s/m)

)
-cores of size s. Then

|C(s)| ⩽

(η/p)s if s ⩽ m,

(1/p)ηs if s ⩽ min {m,
√
4kt log(1/p)}.
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Before proving the two lemmas, let us show how they imply the statement of Proposition 3.2. Fix

some ε ∈ (0, 1/2) and let δ = δ(ε, k) be as in Lemma 3.7; we may clearly assume that δ ⩽ ξ0, where ξ0

is the constant introduced below the definition of a core. Let η := ε/2 ⩽ 1/e and let m be such that

t ⩾ C ·max {m,mNpk−1,m2pk−2NC(m/t)1/(k−1)} for a sufficiently large C = C(δ, ε, η, k). Denote by C(s)

the set of
(
t, ε, δβ(s/m)

)
-cores of size s, as in the statement of Lemma 3.8, and let s0 ⩾ Ψ∗((1− ε)t) be

the minimal value of s for which C(s) is nonempty. It is enough to show that

P
(
U ⊆ R for some t-seed U with |U | ⩽ m

)
⩽ p(1−ε)s0 .

By Lemma 3.7 and the union bound, the left-hand side of the above inequality is at most

P
(
U∗ ⊆ R for some (t, ε, δβ(|U∗|/m))-core U∗ with |U∗| ⩽ m

)
⩽

m∑
s=s0

|C(s)| · ps.

Further, by Lemma 3.8,

m∑
s=s0

|C(s)| · ps ⩽

√
4kt log(1/p)∑
s=s0

p(1−η)s +

m∑
s=

√
4kt log(1/p)

ηs ⩽
p(1−ε/2)s0

1− p1−ε/2
+

p
√
4kt

1− 1/e
.

As mentioned above, any interval of length ⌊
√
2(k − 1)t⌋ is a (t, ε, ξ)-core, whenever ξ ⩽ ξ0. In particular,

since δβ(s/m) ⩽ δβ(1) ⩽ ξ0 for all s ⩽ m, we have s0 ⩽
√

2(k − 1)t. Consequently, the right-hand side

above is at most 4p(1−ε/2)s0 ⩽ p(1−ε)s0 , as p ⩽ 1/2 and s0 ⩾ Ψ∗((1−ε)t) ⩾ √t ⩾ √C, by Proposition 3.1.

The remaining part of this section is dedicated to proving Lemmas 3.7 and 3.8.

Proof of Lemma 3.7. Let η = η(ε, k) > 0 be sufficiently small and let C = C(ε, η, k) > 0 be sufficiently

large. Define, for every r ∈ {2, . . . , k}, the function ar : R→ R given by

ar(x) := (1− η)
(
x2

ηt

) k−r
k−2

.

We say that a subset U ′ ⊆ U is r-dense if Ar(U ′) ⩾ ar(|U ′|) · t. Observe that, as long as η < 4/(k2 +4),

no set U ′ ⊆ U can be 2-dense. Indeed, by (19),

A2(U
′) ⩽

(
k

2

)(
|U ′|
2

)
⩽
k2|U ′|2

4
<

(1− η)|U ′|2

η
= a2(|U ′|) · t.

Claim 3.9. The t-seed U is r-dense for some r ⩾ 3.

Proof. By the definition of a t-seed and (18), for every sequence λ ∈ Rk with λ1 + · · ·+ λk ⩽ 1,

k∑
r=1

λrt ⩽ t ⩽ EU [X]− E[X] ⩽
k∑
r=1

Ar(U) · pk−r,

which implies that there is some r ∈ JkK such that Ar(U) · pk−r ⩾ λrt. With this in mind, we define λr

as follows:

λr :=

(1− η)ηk−1 if r = 1,

ar(|U |) · pk−r if r ⩾ 2.

Our assumption t ⩾ C|U |2pk−2 ⩾ η1−k|U |2pk−2 (which holds for all large enough C) implies that

λr ⩽ (1− η)ηk−r for all r ∈ JkK, so indeed

λ1 + · · ·+ λk ⩽ (1− η)
k∑
r=1

ηk−r < (1− η)
∞∑
r=0

ηr = 1.
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Consequently, Ar(U) · pk−r ⩾ λrt for some r ∈ JkK. Note that we may rule out the case r = 1, thanks to

the bound A1(U) ⩽
(
k
2

)
|U |N , see (19), and the assumption that t ⩾ C|U |Npk−1 for a sufficiently large

C = C(ε, η, k). We may therefore conclude that Ar(U) ⩾ ar(|U |) · t, i.e., that U is r-dense, for some

r ∈ {2, . . . , k}; since we have shown above that no subset of U can be 2-dense, we must have r ⩾ 3. □

The claim allows us to define Ũ ⊆ U as a smallest nonempty subset of U that is r-dense for some

r ⩾ 3. In a slight abuse of notation, let r be the smallest index such that Ũ is r-dense. Then the

minimality of Ũ and r implies that no subset of Ũ is (r − 1)-dense.

Now let w ∈ R|Ũ | be defined by wℓ := ηAr(Ũ) · ℓ−1β(ℓ/|Ũ |). Since x−1β(x) is decreasing on (0, 1] and∫ 1

0
x−1β(x) dx ⩽ 1, we have

∥w∥1 = ηAr(Ũ) · 1

|Ũ |

|Ũ |∑
ℓ=1

β(ℓ/|Ũ |)
ℓ/|Ũ |

⩽ ηAr(Ũ)

∫ 1

0

x−1β(x) dx ⩽ ηAr(Ũ).

Therefore, we may apply Lemma 3.4 to obtain a subset U∗ ⊆ Ũ such that

Ar(U
∗) ⩾ Ar(Ũ)− ∥w∥1 ⩾ (1− η) ·Ar(Ũ) ⩾ (1− η) · ar(|Ũ |) · t ⩾ (1− η) · ar(|U∗|) · t, (21)

and, for every u ∈ U∗,

∂uAr(U
∗) ⩾ w|U∗| = ηAr(|Ũ |) ·

β(|U∗|/|Ũ |)
|U∗|

⩾
η · β(|U∗|/|U |)

|U∗|
· ar(|U∗|) · t, (22)

where the last inequality uses Ar(Ũ) ⩾ ar(|Ũ |) · t ⩾ ar(|U∗|) · t and the fact that β is increasing.

Claim 3.10. The set U∗ is a
(
t, ε, η2(1− η)2β(|U∗/|U |)

)
-core.

Proof. We first prove that

Ak(U
∗) ⩾ (1− 2η)t or |U∗| ⩾

√
4kt, (23)

which implies (C1), in the first case by the definition of Ψ∗ (provided that η < ε/2) and in the second

case by Proposition 3.1. Suppose that r ∈ {3, . . . , k} attains (21). First, if r = k, then (21) immediately

gives

Ak(U
∗) ⩾ (1− η) · ak(|U∗|) · t = (1− η)2t ⩾ (1− 2η)t,

as desired. Otherwise, if 3 ⩽ r < k, then (21) gives

Ar(U
∗) ⩾ (1− η) · ar(|U∗|) · t = (1− η)2

(
|U∗|2

ηt

) k−r
k−2

t

which we combine with the bound Ar(U∗) ⩽
(
k
2

)(|U∗|
2

)
⩽ k2|U∗|2, see (19), to obtain

|U∗|2r−4k2k−4 ⩾ (1− η)2k−4ηr−ktr−2.

Since the exponent of η is negative, the required inequality |U∗| ⩾
√
4kt follows for sufficiently small η.

Finally, we prove that (C2) holds with ξ := η2β(|U∗|/|U |). By (22), it is enough to show that

ar(|U∗|) ⩾ η and ar(|U∗|) · t ⩾ η

(
t

|U∗|2

) 1
k−2

· max
K⊆U∗

Ar−1(K).



UPPER TAILS FOR ARITHMETIC PROGRESSIONS REVISITED 19

First, since |U∗|2 ⩾ Ψ∗((1− ε)t)2 ⩾ t, by (C1) and Proposition 3.1, we have

ar(|U∗|) = (1− η)
(
|U∗|2

ηt

) k−r
k−2

⩾ η.

Second, the minimality of Ũ and r implies that every K ⊆ U∗ ⊆ Ũ is not (r − 1)-dense and therefore

Ar−1(K) < ar−1(|K|) · t ⩽ ar−1(|U∗|) · t =
(
|U∗|2

ηt

) 1
k−2

· ar(|U∗|) · t ⩽ 1

η

(
|U∗|2

t

) 1
k−2

· ar(|U∗|) · t.

This completes the proof of the claim. □

The assertion of the lemma now follows with δ := η2(1− η)2. □

Proof of Lemma 3.8. Fix some r ∈ JkK, U ⊆ JNK, and u ∈ JNK. It will be convenient to introduce a

quantity that is closely related to the discrete derivative ∂uAr(U) but has a slightly simpler combinatorial

interpretation. Define Ar(U, u) as the number of k-APs in JNK that intersect U ∪ {u} in exactly r and

U \ {u} in exactly r − 1 elements. We will first show that, for every u ∈ U ,

∂uAr(U) = Ar(U, u)−Ar+1(U, u) ⩽ Ar(U, u) = Ar(U \ {u}, u). (24)

In order to see this, we count the k-APs that intersect both U and U \{u} in exactly r elements. We can

express their number in two ways: first, by Ar(U)−Ar(U, u) and second, by Ar(U \ {u})−Ar+1(U, u).

This implies the first equality in (24); the remainder of (24) is straightforward.

Since we can clearly assume that C(s) ̸= ∅, property (C1) and Proposition 3.1 imply that s ⩾

Ψ∗((1− ε)t) ⩾ √t. For the sake of brevity, we let

ξ := δ · β(s/m). (25)

Suppose that U∗ ∈ C(s). By (C2) and (24), there is some r ⩾ 3 such that

s ·Ar(U∗, u) ⩾ s · ∂uAr(U∗) ⩾ ξ ·max

{
t,

(
t

s2

) 1
k−2

· max
K⊆U∗

Ar−1(K)

}
for all u ∈ U∗. (26)

For every r ⩾ 3, let Cr(s) be the subset of C(s) containing those U∗ that satisfy (26). Since |C(s)| ⩽

|C3(s)|+ · · ·+ |Ck(s)|, it is enough to bound each |Cr(s)| individually.

For the remainder of the proof, fix some r ⩾ 3. We will say that an element u ∈ JNK is rich with

respect to a subset K ⊆ JNK \ {u} if

s ·Ar(K,u) ⩾
ξ

2
·
(
|K|
s

)r−1(
t

s2

) 1
k−2

·Ar−1(K).

Let R(K) denote the set of all elements of JNK \K that are rich with respect to K and observe that

ξ|R(K)|
2

·
(
|K|
s

)r−1(
t

s2

) 1
k−2

·Ar−1(K) ⩽
∑

u∈R(K)

s ·Ar(K,u)

⩽
∑

u∈JNK\K

s ·Ar(K,u) = (k − r + 1) · s ·Ar−1(K).

This implies that, whenever K is nonempty,

|R(K)| ⩽ 2ks

ξ
·
(

s

|K|

)r−1(
s2

t

) 1
k−2

. (27)

It is also easy to see that |R(∅)| = N .
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Let us briefly explain how the notion of rich elements can help us bound the number of cores U∗ ∈ Cr(s).

If we order the elements of U∗ at random as u1, . . . , us, then, on average, a
(
d−1
s

)r−1
-fraction of the

k-APs counted by Ar(U∗, ud) is also counted by Ar({u1, . . . , ud−1}, ud). In particular, (26) suggests that,

in a typical random ordering, ud will be rich with respect to {u1, . . . , ud−1} for most indices d. On the

other hand, due to (27), the fact that ud is rich means that it comes from a somewhat small set that

depends only on {u1, . . . , ud−1}. This translates into an upper bound on the number of ways to choose

the whole set U∗ element-by-element.

We now turn to the implementation of this idea. Given an arbitrary sequence u1, . . . , us of distinct

elements of JNK, define the set of poor indices

P(u1, . . . , us) :=
{
d ∈ JsK : ud is not rich with respect to {u1, . . . , ud−1}

}
.

First, we show that, for an average ordering u1, . . . , us of the elements of a core U∗, the set of poor

indices is small. Second, we give an upper bound on the total number of s-element sequences for which

the poor indices belong to a given set.

Claim 3.11. Let U∗ ∈ Cr(s) and let u1, . . . , us be a uniformly chosen random ordering of the elements

of U∗. Then

E
[
|P(u1, . . . , us)|

]
⩽ 2s

(
9k3s

ξt

)1/(k−1)

.

Proof. For every integer d ∈ JsK and all u ∈ U∗, define

µd(u) :=

(
d− 1

s− 1

)r−1

·Ar(U∗, u) ⩾
ξ

s
·
(
d− 1

s

)r−1

·max

{
t,

(
t

s2

) 1
k−2

· max
K⊆U∗

Ar−1(K)

}
, (28)

where the inequality follows from (26). Note that d ∈ P(u1, . . . , us) implies

Ar
(
{u1, . . . , ud−1}, ud

)
⩽ µd(ud)/2.

Note also that 1 /∈ P(u1, . . . , us). Consequently,

E
[
|P(u1, . . . , us)|

]
⩽

s∑
d=2

P
(
Ar
(
{u1, . . . , ud−1}, ud

)
⩽ µd(ud)/2

)
. (29)

Fix some d ∈ JsK and note that, conditioned on ud, the set {u1, . . . , ud−1} is a uniformly random

(d− 1)-element subset of U∗ \ {ud}. Thus, we may use Janson’s inequality (Lemma 3.5) to get an upper

bound on the probabilities in the above sum. For u ∈ U∗, let Ju be the multiset defined by

Ju :=
{
B ∩ (U∗ \ {u}) : B ∈ APk, u ∈ B, and |B ∩ U∗| = r

}
,

where the multiplicity of each element is equal to the number of k-APs B containing u giving rise to the

same (r − 1)-element set B ∩ (U∗ \ {u}). Observe that, for every u ∈ U∗, we have |Ju| = Ar(U
∗, u) and

|{J ∈ Ju : J ⊆ K}| ⩽ Ar(K,u) for all K ⊆ U∗ \ {u}. Gearing towards an application of Lemma 3.5,

note first that ∑
J∈Ju

(
d− 1

s− 1

)|J|

= |Ju| ·
(
d− 1

s− 1

)r−1

= µd(u).
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Further, writing J ∼ J ′ to mean that J ̸= J ′ and J ∩ J ′ ̸= ∅ (which also includes the case where J and

J ′ are the same (r − 1)-element subset of two different k-APs),

∆d(u) :=
∑

J,J ′∈Ju

J∼J′

(
d− 1

s− 1

)|J∪J′|

⩽ µd(u) · k3,

where the inequality holds because, for every J ∈ Ju, there are at most k3 progressions of length k that

contain ud and some element of J . Lemma 3.5 implies that

P
(
Ar
(
{u1, . . . , ud−1}, ud

)
⩽ µd(ud)/2 | ud

)
⩽ 2 exp

(
− µd(ud)

2

8
(
µd(ud) + ∆d(ud)

))

⩽ 2 exp

(
−µd(ud)

9k3

)
.

Observe moreover that (28) implies µd(ud) ⩾ ξ
s ·
(
d−1
s

)k−1 · t, so taking expectations of the above

expression allows us to conclude that

P
(
Ar
(
{u1, . . . , ud−1}, ud

)
⩽ µd(ud)/2

)
⩽ 2 · E

[
exp

(
−µd(ud)

9k3

)]
⩽ 2 · exp

(
− (d− 1)k−1ξt

9k3sk

)
.

Substituting this inequality into (29) and using h
∑
d⩾1 f(d · h) ⩽

∫∞
0
f(x) dx for the decreasing

function f(x) = exp(−xk−1) and h =
(

ξt
9k3sk

)1/(k−1)

, we obtain

E[|P(u1, . . . , us)|] ⩽ 2

s−1∑
d=1

exp

(
− ξt

9k3s
· d

k−1

sk−1

)
⩽ 2s

(
9k3s

ξt

)1/(k−1) ∫ ∞

0

exp
(
−xk−1

)
dx.

Finally, since the gamma function is convex on R>0 and Γ(1) = Γ(2) = 1, we have∫ ∞

0

exp(−xk−1) dx =
1

k − 1

∫ ∞

0

y
1

k−1−1e−y dy =
1

k − 1
Γ

(
1

k − 1

)
= Γ

(
k

k − 1

)
⩽ 1,

which completes the proof of the claim. □

To state our second claim, it will be convenient to define, for any P ⊆ JsK,

XP :=
{
(u1, . . . , us) ∈ JNKs : P(u1, . . . , us) ⊆ P

}
.

Claim 3.12. For every P ⊆ JsK,

|XP | ⩽ (2ker)s ·N |P |+1 ·
(
s2

t

) s
k−2

· ξ−s · s!.

Proof. We can choose the elements of every sequence (u1, . . . , us) ∈ XP one-by-one as follows: Suppose

that u1, . . . , ud−1 have already been chosen. If d ∈ P , then we have at most N choices for ud. Otherwise,

if d /∈ P , then ud must be chosen from the set R
(
{u1, . . . , ud−1}

)
of elements that are rich with respect

the set of previously chosen elements. By (27), this set has at most f(d− 1) elements, where

f(x) :=

N if x = 0

2ks
ξ ·

(
s
x

)r−1
(
s2

t

) 1
k−2

otherwise.

Since s ⩾
√
t implies that f(d) ⩾ 1 for all d ∈ JsK,

|XP | ⩽ N |P | ·
∏
d/∈P

f(d− 1) ⩽ N |P |+1 ·
s∏
d=1

f(d) = N |P |+1

(
2ksr

ξ

)s
·
(
s2

t

) s
k−2

·
s∏
d=1

1

dr−1
.
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Using the inequality s! ⩾ (s/e)s, we moreover have

s∏
d=1

1

dr−1
= (s!)1−r ⩽ s! · (e/s)rs,

which implies the claimed bound. □

We now use the two claims to prove Lemma 3.8, where we can assume that s ⩽ m. Let τ :=

4s
(
9k3s/(ξt)

)1/(k−1). Claim 3.11 and Markov’s inequality imply that, for every U∗ ∈ Cr(s), at least s!/2

orderings of the elements of U∗ belong to XP for some P ⊆ JsK with at most τ elements. Therefore,

|Cr(s)| ⩽
2

s!
·
∑
P⊆JsK
|P |⩽τ

|XP | ⩽
2s+1

s!
· max
P⊆JsK
|P |⩽τ

|XP |.

and thus, by Claim 3.12,

|Cr(s)| ⩽ 2s+1 · (2ker)s ·Nτ+1 ·
(
s2

t

) s
k−2

· ξ−s.

Recall the definition of ξ given in (25). Using the fact that x 7→ x/β(x) is increasing on (0, 1], by Fact 3.6,

we have s/β(s/m) ⩽ m/β(1) = m/4 and thus

τ = 4s

(
9k3s

δβ(s/m)t

)1/(k−1)

⩽ 4s

(
9k3m

4δt

)1/(k−1)

.

Moreover, our assumptions imply that τ is sufficiently large, so we can assume that τ + 1 ⩽ 41/(k−1)τ .

Set h := 10k3ek/δ. Using (25) once more, we may write

|Cr(s)|1/s ⩽
8kek

δ
·N4

(
9k3m

δt

)1/(k−1)

·
(
s2

t

) 1
k−2

· 1

β(s/m)

⩽ h ·Nh(m/t)1/(k−1)

·
(
s2

t

) 1
k−2

· 1

β(s/m)
.

(30)

To prove the first assertion of the lemma, it suffices to show that |Cr(s)| ⩽ 1
k (η/p)

s. Since (0, 1] ∋

x 7→ x2/(k−2)/β(x) achieves its maximum at some wk that depends only on k (see Fact 3.6), we have

s2/(k−2)

β(s/m)
⩽ m2/(k−2) ·

w
2/(k−2)
k

β(wk)
.

Using (30) and our assumption t ⩾ Cm2pk−2NC(m/t)1/(k−1)

, we therefore obtain

|Cr(s)|1/s ⩽ h ·Nh(m/t)1/(k−1)

·
(
m2

t

) 1
k−2

·
w

2/(k−2)
k

β(wk)
⩽

η

k1/sp
,

provided that C is sufficiently large.

Finally, for the second assertion of the lemma, assume that s ⩽
√
4kt log(1/p). We then have(

s2

t

) 1
k−2

⩽
(
4k log(1/p)2

) 1
k−2

and, as x 7→ 1/β(x) is decreasing and s2 ⩾ t ⩾ m2pk−2,

1

β(s/m)
⩽

1

β(p(k−2)/2)
=

(
k − 2

2
log(1/p) + 2

)2

.
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To bound Nh(m/t)1/(k−1)

, we distinguish two cases. If p < N−1/(2k−2), then the assumption t ⩾ Cm

implies

Nh(m/t)1/(k−1)

⩽ NhC−1/(k−1)

⩽

(
1

p

)η/2
for all sufficiently large C. On the other hand, if p ⩾ N−1/(2k−2), then we have t ⩾ CNmpk−1 ⩾ mN1/2.

Moreover, the inequalities CNmpk−1 ⩽ t ⩽ s2 ⩽ Nm imply that p ⩽ C− 1
k−1 , so if C is large enough,

then

Nh(m/t)1/(k−1)

⩽ NhN−1/(2k−2)

⩽ 2 ⩽

(
1

p

)η/2
also in this case. Substituting the above inequalities into (30), we obtain

|Cr(s)|1/s ⩽ h ·
(
1

p

)η/2
(4k log(1/p)

2
)

1
k−2 ·

(
k − 2

2
log(1/p) + 2

)2

⩽
1

k1/s
·
(
1

p

)η
provided C is large enough. This completes the proof of the lemma, and with it, Proposition 3.2. □

4. The localised regime

In this section, we prove Theorem 1.1 in the localised regime. We will assume throughout this section

that (p, t) is in the localised regime, that is,

N−1/(k−1) < p≪ 1 and
√
t log(1/p)≪ t2/σ2, or

Ω(N−2/k) ⩽ p ⩽ N−1/(k−1) and
√
t log(1/p)≪ µ · Po(t/µ).

(31)

Since Theorem 1.1 holds vacuously when µ + t > |APk|, we can assume without loss of generality that

t ⩽ |APk| ⩽ N2. Moreover, it is straightforward to show that these assumptions and k ⩾ 3 also imply

that t≫ max {1, N2p2k−2}; indeed, µ · Po(t/µ) ⩽ t2/µ and σ2 = Ω
(
N2pk +N3p2k−1

)
.

We will prove the lower and the upper bounds on the upper-tail probability of X separately. The

proof of the lower bound is a fairly straightforward application of Corollary 2.3. The proof of the upper

bound involves a conditioned moment argument, adapted from [18], that crucially relies on Theorem 1.2

(or rather on its alternate version, Proposition 3.2). To complicate things further, this approach breaks

down in a small sliver of the localised regime, where we have to resort to a much more delicate estimate

of conditioned factorial moments of X.

4.1. Proof of the lower bound in the localised regime. Since t≫ max{1, N2p2k−2} in the entire

localised regime, the following proposition, together with Proposition 3.1, implies the required lower

bound on the tail probability.

Proposition 4.1. Suppose that the sequence (p, t) satisfies (31). Then, for every ε > 0 and integer

k ⩾ 3, and all large enough N ,

logP (X ⩾ µ+ t) ⩾ −(1 + ε) ·Ψ∗((1 + ε)t
)
· log(1/p).

Proof. Fix an ε > 0 and let U ⊆ JNK be a smallest set satisfying Ak(U) ⩾ (1 + ε)t, so that |U | =

Ψ∗((1 + ε)t
)
. Define Q := P(· | U ⊆ R); more explicitly,

Q(R) =

p
|R|−|U |(1− p)N−|R| if U ⊆ R,

0 otherwise.
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We apply Corollary 2.3 to the event {X ⩾ µ+ t}, and conclude that

logP(X ⩾ µ+ t) ⩾ logQ(X ⩾ µ+ t)− EQ

[
log

dQ
dP

(R) | X ⩾ µ+ t

]
.

Since log(dQ/dP) is identically equal to |U | log(1/p) on the support of Q, we have

logP(X ⩾ µ+ t) ⩾ logQ(X ⩾ µ+ t)− |U | log(1/p) = logQ(X ⩾ µ+ t)−Ψ∗((1 + ε)t
)
log(1/p).

As ψ∗((1 + ε)t
)
⩾
√
t, by Proposition 3.1, in order to complete the proof, it suffices to show that

logQ(X ⩾ µ+ t) > −ε ·
√
t log(1/p). (32)

To this end, note that, by (18) and since p→ 0, we have

EQ[X] = EU [X] ⩾ µ+Ak(U) · (1− pk) ⩾ µ+ (1 + ε/2)t

for all N large enough. Since X ⩽ |APk| ⩽ N2 always, we may conclude that

µ+ (1 + ε/2)t ⩽ EQ[X] ⩽ (µ+ t) +N2 ·Q(X ⩾ µ+ t),

which implies that

logQ(X ⩾ µ+ t) ⩾ log

(
εt

2N2

)
⩾ −2 logN.

Finally, we prove that 2 logN ⩽ ε
√
t log(1/p) by distinguishing two cases. If p ⩽ N−1/k, i.e., if log(1/p) ⩾

(logN)/k, this follows from t≫ 1. Otherwise, if p > N−1/k, the assumption that (p, t) is in the localised

regime implies that
√
t log(1/p) ≫

√
t ≫ σ2/3, which easily implies the claim since σ2 = Ω(N2pk) =

Ω(N). □

4.2. Proof of the upper bound in the localised regime. In view of Proposition 3.2, to prove

the upper bound in the localised regime, it suffices to show that the upper-tail event is dominated by

the appearance of a small (1 − ε)t-seed, that is, an element of Ssmall((1 − ε)t, C) for a suitably large

C = C(k, ε), where Ssmall is defined as in the statement of Proposition 3.2.

Proposition 4.2. Suppose that the sequence (p, t) satisfies (31). Then, for all C, ε > 0, every integer

k ⩾ 3, and all sufficiently large N ,

P (X ⩾ µ+ t) ⩽ (1 + ε) · P
(
U ⊆ R for some U ∈ Ssmall

(
(1− ε)t, C

))
.

In order to prove Proposition 4.2, we will bound the probability of the upper-tail event occurring

without the appearance of a small (1− ε)t-seed and then compare that bound with the lower bound on

the upper tail probability that we proved in the previous subsection. The following lemma will provide a

suitable estimate on the probability of the upper-tail event occurring without the appearance of a small

(1 − ε)t-seed in all but a tiny sliver of the localised regime. Even though it is implicitly proved in [18],

we include its proof (an adaptation of the elegant argument from [21]) here for completeness. Given

u,m > 0, let Z(u,m) be the indicator random variable of the event that R does not include a u-seed of

size at most m.

Lemma 4.3. For every u ⩾ 0 and every positive integer m,

E[Xm · Z(u, km)] ⩽ (µ+ u)m.
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Proof. Recall that S(u) denotes the set of all u-seeds. For any S ⊆ JNK, let ZS be the indicator of the

event that R ∩ S does not contain any U ∈ S(u) with |U | ⩽ km as a subset, so that ZJNK = Z(u, km);

note that ZS ⩽ ZS′ if S′ ⊆ S ⊆ JNK. For any B ⊆ JNK, let YB be the indicator of the event that B ⊆ R.

Since we can write X =
∑
B∈APk

YB , it is straightforward to see that, for every nonnegative integer ℓ,

Xℓ · Z =
∑

B1,...,Bℓ∈APk

YB1∪···∪Bℓ
· Z ⩽

∑
B1,...,Bℓ∈APk

YB1∪···∪Bℓ
· ZB1∪···∪Bℓ−1

=:Mℓ.

The required inequality will clearly follow if we show that E[Mℓ] ⩽ (µ + u)ℓ for all ℓ ∈ JmK. We prove

this stronger estimate using induction on ℓ. The base case ℓ = 1 holds vacuously, as M1 = X. Suppose

now that ℓ ⩾ 2 and that E[Mℓ−1] ⩽ (µ+ u)ℓ−1. Fix some B1, . . . , Bℓ−1 ∈ APk, let U := B1 ∪ · · · ∪Bℓ−1,

and let AU denote the event that YU ·ZU = 1. Since |U | ⩽ kℓ ⩽ km, AU holds if and only if U ⊆ R and

U /∈ S(u). Therefore, if AU has nonzero probability, we have E[X | AU ] = E[X | YU = 1] ⩽ µ+ u. This

means that ∑
Bℓ∈APk

E[YU∪Bℓ
· ZU ] = E[YU · ZU ] · E[X | AU ] ⩽ E[YU · ZB1∪···∪Bℓ−2

] · (µ+ u).

Summing this inequality over all B1, . . . , Bℓ−1 ∈ APk yields E[Mℓ] ⩽ E[Mℓ−1] · (µ+ u) ⩽ (µ+ u)ℓ. □

In the following, let mmax(u,C) be the largest m that satisfies

u ⩾ Cm ·max{1, Npk−1} and u ⩾ Cm2pk−2 ·N (k−2)(m/u)1/(k−1)

, (33)

so that a u-seed U belongs to Ssmall(u) precisely when |U | ⩽ mmax(u,C). Moreover, let Zu :=

Z(u,mmax(u,C)) be the indicator random variable for the event that R does not contain a small u-

seed.

As in [18], the above lemma permits us to derive an upper bound on the probability of the upper-

tail event occurring without the appearance of a small (1− ε)t-seed by applying Markov’s inequality to

the variable Xmmax((1−ε)t,C)/k · Z(1−ε)t. However, this bound is only useful when it is smaller than the

available lower bound on the upper-tail. Unfortunately, there is a small portion of the localised regime

where this is not the case. Specifically, this happens when µ≪ t ⩽ O
((

log(1/p)
)2); we shall informally

say that this case falls into the very sparse localised regime. In this regime, instead of bounding the

classical moments of X on the event that R does not contain a small (1−ε)t-seed, we will need to bound

factorial moments of X. More precisely, given an integer r, let Xr := X(X−1) · · · (X−r+1) denote the

r-th falling factorial of X. The following estimate is a special case of the more general Proposition 6.3,

which is proved in Section 6.2.

Corollary 4.4. For every k ⩾ 3, there exists a constant K such that the following holds for all C, ε > 0.

Suppose that Ω(N−2/k) ⩽ p ≪ N−1/(k−1) and that t is a positive integer satisfying t ⩽
(
log(1/p)

)3.
Then, for all large enough N and all u ⩽ t,

E
[
Xt · Zu

]
⩽ µt · exp

(
(u+ εt/2) log(1 +Kt/µ)

)
.

Proof of Proposition 4.2. Fix an ε > 0, let u := (1− ε)t, and define

m :=

⌈
2k · (µ+ t) · log(1/p)

ε
√
t

⌉
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We will first consider the case where km ⩽ mmax(u,C). Let Z := Z(u, km) and note that, as

km ⩽ mmax(u,C), we have Z ⩾ Zu. Since Z is an indicator random variable, Markov’s inequality

and Lemma 4.3 then give

P
(
X ⩾ µ+ t

)
⩽ P

(
X · Z ⩾ µ+ t

)
+ P(Z = 0) ⩽

E[Xm · Z]
(µ+ t)m

+ P(Z = 0) ⩽

(
µ+ u

µ+ t

)m
+ P(Zu = 0).

Since

P(Zu = 0) = P
(
U ⊆ R for some U ∈ Ssmall

(
(1− ε)t, C

))
,

the proposition will follow from (
µ+ u

µ+ t

)m
⩽

ε

1 + ε
· P (X ⩾ µ+ t) .

To this end, observe that, by the definitions of u and m,(
µ+ u

µ+ t

)m
=

(
1− εt

µ+ t

)m
⩽ exp

(
− εtm

µ+ t

)
⩽ exp

(
−2k
√
t · log(1/p)

)
.

The assumptions of Proposition 3.1 hold throughout the localised regime, and so, thanks to Proposi-

tions 3.1 and 4.1, we may conclude that

logP (X ⩾ µ+ t) ⩾ −(1 + ε) ·Ψ∗((1 + ε)t
)
· log(1/p) ⩾ −(1 + 3ε) ·

√
2(k − 1)t · log(1/p).

Finally, since t≫ 1 in the entire localised regime, we obtain

P (X ⩾ µ+ t) ⩾
1 + ε

ε
· exp

(
−2k
√
t · log(1/p)

)
⩾

1 + ε

ε
·
(
µ+ u

µ+ t

)m
for all large enough N . This gives the assertion of the proposition in the case where km ⩽ mmax(u,C).

The following claim states that this inequality holds unless µ≪ t = O
((

log(1/p)
)2).

Claim 4.5. We have km ⩽ mmax(u,C) unless µ≪ t ⩽ C ′( log(1/p))2 for some constant C ′ = C ′(k,C).

Proof. Observe first that the inequality km ⩽ mmax(u,C) is equivalent to

u ⩾ Ckm ·max{1, Npk−1} and u ⩾ Ck2m2pk−2 ·N (k−2)(km/u)1/(k−1)

. (34)

Observe further that, if C is sufficiently large, then the first inequality in (34) implies that

N (k−2)(km/u)1/(k−1)

⩽ N (k−2)(Cmax{1,Npk−1})−1/(k−1)

⩽ p−1/4

for all sufficiently large N , where the last inequality can be verified by considering separately the cases

Npk−1 ⩽ Nδ and Npk−1 > Nδ for some small enough δ > 0. In particular (34) follows from

u ⩾ Ckm ·max{1, Npk−1} and u ⩾ Ck2m2pk−9/4. (35)

Further, by the definition of m,

u

m
⩾

t

2m
⩾

ε

6k log(1/p)
· t

3/2

µ+ t
and

u

m2
⩾

t

2m2
⩾

(
ε

3k log(1/p)
· t

µ+ t

)2

and, using also p(4k−9)/8 log(1/p)≪ p(k−2)/3 for k ⩾ 3, it is thus enough to show that

t3/2

µ+ t
⩾ C ′ max{1, Npk−1} log(1/p) and

t

µ+ t
⩾ p(k−2)/3 (36)

for some C ′ = C ′(C, k, ε), unless µ≪ t ⩽ 2C ′( log(1/p))2.
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Assume first that Npk−1 > 1 and thus σ2 = Θ(N3p2k−1) and
√
t log(1/p)≪ t2/σ2, by the definition

of the localised regime. In particular, we may assume that, for every K > 0 and all sufficiently large N ,

we have t ⩾ tK , where

tK :=
(
Kσ2 log(1/p)

)2/3
= Θ

(
K2/3N2p(4k−2)/3 log(1/p)2/3

)
≪ µ;

the last inequality holds as k ⩾ 3 and p≪ 1. Since the function (0,∞) ∋ x 7→ x3/2

µ+x is increasing, we have

t3/2

µ+ t
⩾

t
3/2
K

µ+ tK
⩾
Kσ2 log(1/p)

2µ
⩾ KckNp

k−1 log(1/p),

for some ck > 0. Choosing K appropriately, we thus obtain the first inequality in (36). Since the function

(0,∞) ∈ x 7→ x
µ+x is also increasing,

t

µ+ t
⩾

tK
µ+ tK

⩾

(
Kσ2 log(1/p)

)2/3
2µ

⩾
K2/3σ4/3

2µ
⩾ K2/3c′k ·

N2p(4k−2)/3

N2pk
⩾ p(k−2)/3,

for some c′k > 0, giving the second inequality in (36).

Assume now that Npk−1 ⩽ 1 and thus
√
t log(1/p) ≪ µ · Po(t/µ). If t = O(µ), then the estimate

µ · Po(t/µ) ⩽ t2/µ immediately implies the first inequality in (36); further, since the same estimate

implies that t3/2 ≫ µ, we obtain, using Npk−1 ⩽ 1, that

t

µ+ t
⩾

t

O(µ)
≫ µ−1/3 ⩾

(
N2pk

)−1/3
⩾ p(k−2)/3,

which gives the second inequality in (36). We may therefore assume that t≫ µ. In this case,

t3/2

µ+ t
⩾

√
t

2
and

t

µ+ t
⩾

1

2
⩾ p(k−2)/3.

In particular, both inequalities in (36) hold unless µ≪ t ⩽
(
2C ′ log(1/p)

)2. □

Assume now that µ ≪ t ⩽
(
log(1/p)

)3. Since X ⩾ µ + t implies Xt ⩾ (µ+ t)
t, and since Zu is an

indicator random variable, we have

P(X ⩾ µ+ t) ⩽ P
(
Xt · Zu ⩾ (µ+ t)

t)
+ P(Zu = 0).

Since Xt ·Zu ⩾ 0, as X is integer-valued, we may apply Markov’s inequality and Corollary 4.4 to conclude

that

P
(
Xt · Zu ⩾ (µ+ t)

t) ⩽ E[Xt · Zu]
(µ+ t)

t ⩽
µt

(µ+ t)
t · exp

(
(u+ εt/2) log(1 +Kt/µ)

)
.

Further,

log
µt

(µ+ t)
t ⩽ −

∫ t

0

log
µ+ x

µ
dx = −µ ·

∫ t/µ

0

log(1 + y) dy = −µ · Po
(
t

µ

)
,

whereas the assumption t≫ µ gives

t log

(
1 +

Kt

µ

)
= (1 + o(1)) ·

(
(µ+ t) log

(
1 +

t

µ

)
− t
)

= (1 + o(1)) · µ · Po
(
t

µ

)
.

Consequently,

P(X ⩾ µ+ t) ⩽ exp
(
− εµ/4 · Po(t/µ)

)
+ P(Zu = 0).

Finally, since µ · Po(t/µ)≫
√
t log(1/p) in the localised regime,

exp
(
− εµ/4 · Po(t/µ)

)
⩽ exp

(
−2k
√
t · log(1/p)

)
⩽

ε

1 + ε
· P (X ⩾ µ+ t) ,
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which implies the assertion of the proposition. □

5. The Gaussian regime

In this section, we prove Theorem 1.1 in the Gaussian regime, i.e., for all sequences (p, t) satisfying

Npk−1 ≫ 1, t≫ σ, and
√
t log(1/p)≫ t2/σ2.

The lower and the upper bounds on the upper-tail probability of X will be proved separately. In

Section 5.1, we prove the lower bound by applying Proposition 2.4 to a product measure Q that is a

small perturbation of the p-biased product measure P. In Section 5.2, we prove the matching upper

bound by applying our martingale concentration inequality (Proposition 2.5) to the hypergraph APk

and bounding the three error terms using combinatorial arguments.

Throughout the section, it will be convenient to work with an expression that closely approximates

the variance of X and involves only the numbers of k-APs that contain a given i ∈ JNK. For any i ∈ JNK,

denote by A1(i) the number of k-term arithmetic progressions that contain i (recalling the notation

A
(k)
r (U) used in Section 3, we can see that this definition corresponds to A(k)

1 ({i})). Define

V :=
∑
i∈JNK

A1(i)
2 · p2k−1.

Lemma 5.1. For every ε > 0, there exists a C such that, whevener CN−1/(k−1) ⩽ p ⩽ 1/C,

(1− ε) · V ⩽ Var(X) ⩽ (1 + ε) · V.

Proof. Since

Var(X)− V =
∑

B,B′∈APk

(
p|B∪B′| − p2k − |B ∩B′| · p2k−1

)
,

we have

|Var(X)− V| ⩽
∣∣{(B,B′) ∈ AP2

k : |B ∩B′| = 1
}∣∣ · p2k + ∣∣{(B,B′) ∈ AP2

k : |B ∩B′| ⩾ 2
}∣∣ · pk.

It is easy to see that the first term in the right-hand side is at most p · V. Moreover, as every pair of

elements of JNK is contained in at most
(
k
2

)
arithmetic progressions of length k, the second term is at

most |APk| ·
(
k
2

)2 · pk. Finally, since |APk| = Θ(N2) and V = Θ(N3p2k−1), the assertion of the lemma

now follows from the assumptions on p provided that C is sufficiently large as a function of ε. □

5.1. Proof of the lower bound in the Gaussian regime. We call a measure Q supported on subsets

of JNK a p-bounded product measure if it is a product measure with Q(i ∈ R) ∈ [p, 2p] for every i ∈ JNK.

We first show that the variance of X under an arbitrary p-bounded product measure is not much larger

than the variance σ2 taken with respect to the p-biased product measure P:

Lemma 5.2. Assume that p ⩽ 1/2 and that Q is a p-bounded product measure. Then, for all sufficiently

large N ,

VarQ(X) ⩽ 22k · σ2.
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Proof. On the one hand,

VarQ(X) =
∑

B,B′∈APk

B∩B′ ̸=∅

(
Q(B ∪B′ ⊆ R)−Q(B ⊆ R) ·Q(B′ ⊆ R)

)

⩽
∑

B,B′∈APk

B∩B′ ̸=∅

2|B∪B′| · P(B ∪B′ ⊆ R) ⩽ 22k−1 ·
∑

B,B′∈APk

B∩B′ ̸=∅

P(B ∪B′ ⊆ R).

On the other hand,

σ2 = Var(X) =
∑

B,B′∈APk

B∩B′ ̸=∅

(
P(B ∪B′ ⊆ R)− P(B ⊆ R) · P(B′ ⊆ R)

)
⩾

1

2

∑
B,B′∈APk

B∩B′ ̸=∅

P(B ∪B′ ⊆ R),

where the inequality follows from p ⩽ 1/2. □

We restate the lower bound of Theorem 1.1 in the Gaussian regime in a non-asymptotic form and

prove it by applying Proposition 2.4 to a well-chosen p-bounded product measure. Note that we state

and prove the lower bound on the upper-tail probability of X in a larger region of the parameter space

that includes also a part of the localised regime (where this Gaussian-like lower estimate is no longer

optimal).

Proposition 5.3. For every ε > 0 and integer k ⩾ 3, there exists C > 0 such that the following holds.

If

C ·N−1/(k−1) ⩽ p ⩽ 1/C and C · σ ⩽ t ⩽ µ/C,

then

logP (X ⩾ µ+ t) ⩾ −(1 + ε) · t
2

2σ2
.

Proof. For each i ∈ JNK, set

qi :=
(1 + ε)tpk

V
·A1(i)

and let Q be the product measure given by Q(i ∈ R) = p + qi for all i. Since A1(i) ⩽ kN for all i and

σ2 = Θ(µ ·Npk−1), Lemma 5.1 implies that

max
i∈JNK

qi
p

⩽
(1 + ε)ktNpk−1

V
⩽

(1 + ε)2ktNpk−1

σ2
⩽

(1 + ε)2kµ ·Npk−1

Cσ2
⩽
ck
C

for some ck that depends only on k; in particular, Q is p-bounded, provided that C is large. Crucially,

EQ[X]− µ =
∑

B∈APk

(
Q(B ⊆ R)− P(B ⊆ R)

)
=

∑
B∈APk

(∏
i∈B

(p+ qi)− pk
)

⩾
∑

B∈APk

∑
i∈B

qip
k−1 =

∑
i∈JNK

A1(i)qip
k−1 =

(1 + ε)t

V
·
∑
i∈JNK

A1(i)
2p2k−1 = (1 + ε)t

and consequently, by Chebyshev’s inequality and Lemma 5.2,

Q(X < µ+ t) ⩽ Q(X < EQ[X]− εt) ⩽ VarQ(X)

ε2t2
⩽

22kσ2

ε2t2
⩽

22k

ε2C2
.

In particular, if C is sufficiently large as a function of ε, Proposition 2.4 implies that

P(X ⩾ µ+ t) ⩾ −(1 + ε) ·DKL(Q ∥P).
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Since both P and Q are products of Bernoulli distributions, Fact 2.1 implies that

DKL(Q ∥P) =
N∑
i=1

DKL

(
Ber(p+ qi) ∥Ber(p)

)
=

N∑
i=1

jp(p+ qi),

where jp(x) := x log(x/p)+(1−x) log((1−x)/(1−p)). It is straightforward to verify that jp(p) = j′p(p) = 0

and that j′′p (x) = 1/x(1 − x). Finally, by expanding jp in Taylor series with Lagrange remainder and

using the assumption p ⩽ 1/C, we can conclude that, whenever C is sufficiently large as a function of ε,

DKL(Q ∥P) =
∑
i∈JNK

jp(p+ qi) ⩽
∑
i∈JNK

q2i
2p(1− p)

=
(1 + ε)2t2

2(1− p)V
⩽ (1 + ε)4 · t

2

2σ2
,

completing the proof. □

5.2. Proof of the upper bound in the Gaussian regime. Define, for every i ∈ JNK,

B′k(i) :=
{
B \ {i} : B ∈ APk and i ∈ B

}
,

and let Li := |{B ∈ B′k(i) : B ⊆ R}|; in other words, B′k(i) is the link of i in the hypergraph APk, cf. the

definition of Li given in (12). We will prove the claimed Gaussian-like upper bound for the upper tail

of X by applying Proposition 2.5 and showing that, for all sequences (p, t) in the Gaussian regime, the

three error terms involving upper-tail estimates on the respective functionals of Li are dominated by the

Gaussian term. In particular, it suffices to establish the following three estimates:

Proposition 5.4. For all ε > 0 and k ⩾ 3, there exists C such that the following holds. If

C ·N−1/(k−1) ⩽ p ⩽ 1/C and C · σ ⩽ t ⩽
(σ2 log(1/p))2/3

C
,

then

P
(
∃i Li >

σ2 log(1/p)

2t

)
< exp

(
− t

2

σ2

)
, (37)

P
(∣∣∣∣{i : Li > σ2

t

}∣∣∣∣ ⩾ εt2

σ2p1/2

)
< N−1 · exp

(
− t

2

σ2

)
, (38)

P

(
N∑
i=1

L2
i > (1 + ε) · σ

2

p

)
< N−1 · exp

(
− t

2

σ2

)
. (39)

Since the asymptotic inequality
√
t log(1/p) ≫ t2/σ2 clearly implies that t ⩽

(
σ2 log(1/p)

)2/3
/C for

all C and all sufficiently large N , Propositions 2.5 and 5.4 yield the claimed Gaussian-like upper bound

on the upper-tail probability of X in the entire Gaussian regime.

The remainder of this section is dedicated to proving the three estimates of Proposition 5.4, sequen-

tially. We will prove (37) (resp. (38)) by showing that the corresponding upper-tail events imply the

appearance of a large collection of pairwise-disjoint elements of B′k(i) (resp. ‘nearly’ pairwise-disjoint

elements of
⋃
{B′k(i) : Li > σ2/t}) in R and then bounding the probability of the latter event using a

straightforward first-moment calculation. The proof of (39) will be another adaptation of the elegant

argument from [21], which played a key role in our proof of the upper bound in the localised regime.

We begin with a helpful combinatorial fact that will help us find large collections of pairwise-disjoint

elements of B′k(i).
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Fact 5.5. For each i ∈ JNK, every collection B ⊆ B′k(i) contains a subcollection D ⊆ B with |D| ⩾ |B|/k3

whose elements are pairwise disjoint.

Proof. Since any two numbers are contained in at most
(
k
2

)
k-APs, it follows that every B ∈ B′

k(i)

intersects at most (k − 1)
(
k
2

)
⩽ k3 sets from B′k(i), including B itself. In particular, given an arbitrary

collection B ⊆ B′k(i), we may construct a family D ⊆ B of pairwise-disjoint sets greedily by adding sets

B ∈ B one by one, each time removing the (at most k3) sets that intersect B from B. The resulting

collection D satisfies |D| ⩾ |B|/k3. □

Let us also note that the assumptions of Proposition 5.4 imply that

σ2

t
=

(σ2 log(1/p))2/3 · σ2/3

t · (log(1/p))2/3
⩾

Cσ2/3

(log(1/p))2/3
⩾

√
CNp2k/3−1/3

(log(1/p))2/3
⩾
√
CNpk−1 · p−1/4, (40)

whenever C is chosen to be sufficiently large as a function of k.

Proof of (37) in Proposition 5.4. Set u := σ2 log(1/p)/(2t). By Fact 5.5, the inequality Li ⩾ u implies

that there is a collection D ⊆ B′
k(i) of pairwise-disjoint subsets of R with cardinality at least b := ⌈u/k3⌉.

Let Zi denote the number of such collections, so that

P(Li ⩾ u) ⩽ P(Zi = 1) ⩽ E[Zi].

Since |B′k(i)| ⩽ kN and the union of all sets in each collection counted by Zi has (k − 1)b elements,

E[Zi] ⩽
(
kN

b

)
· p(k−1)b ⩽

(
ekNpk−1

b

)b
⩽

(
ek4Npk−1

u

)u/k3
⩽ pu/(4k

3),

where the penultimate inequality holds because b ⩾ u/k3 ⩾ kNpk−1 and, when a > 0, the function

x 7→ (ea/x)x is decreasing on [a,∞) and the ultimate inequality holds when C is sufficiently large as a

function of k, by (40). By the union bound over all i ∈ JNK,

P
(
∃i Li ⩾

σ2 log(1/p)

2t

)
⩽ Npu/(4k

3) ⩽ N · exp
(
−Cσ2(log(1/p))2

4k3t

)
⩽ exp

(
−Cσ2(log(1/p))2

5k3t

)
,

where the last inequality holds as σ2/t ⩾ N1/(4k−4) by (40) and our lower-bound assumption on p.

Finally, the upper-bound assumption on t implies that

σ2(log(1/p))2/t ⩾
√
t log(1/p) ⩾

t2

σ2
,

which results in the claimed bound. □

Proof of (38) in Proposition 5.4. Set

u :=
σ2

t
and I := {i ∈ JNK : Li > u}.

We first claim that, when |I| > (m − 1)2 · u for some positive integer m, then there exist distinct

i1, . . . , im ∈ JNK and collections D1 ⊆ B′k(i1), . . . ,Dm ⊆ B′k(im), each comprising b := ⌈u/(4k3)⌉ pairwise-

disjoint subsets of R, such that, for every j ∈ JmK, letting

D<j :=
⋃
j′<j

⋃
Dj′ ,

either

(i) each D ∈ Dj is disjoint from D<j or
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(ii) each D ∈ Dj intersects D<j in exactly one element.

To see this, suppose that 1 ⩽ j ⩽ m and that sequences i1, . . . , ij−1 and D1, . . . ,Dj−1 with the above

properties have already been defined. Let D<j be the set defined above and define the sets

X :=
{
B \ {i} : i ∈ B ∈ APk such that |B ∩D<j | ⩾ 2

}
and

IX :=
{
i ∈ I : |B′k(i) ∩ X | ⩾ u/2

}
.

The key observation is that, for every i ∈ I \ IX , the family B′k(i) contains at least u/2 subsets of R

that intersect D<j in at most one element; in particular, either at least u/4 of them are disjoint from

D<j or at least u/4 of them intersect it in exactly one element. Consequently, Fact 5.5 allows us to find

a suitable Dj for each ij ∈ I \ IX . Thus, it suffices to show that I \ IX is not empty. To this end, note

that |X | ⩽
(|D<j |

2

)
·
(
k
2

)
· k ⩽ (m− 1)2b2k3 and that |X | ⩾ |IX | · u/6, as each B ⊆ JNK belongs to B′k(i)

for at most three different i ∈ JNK (at most two different i ∈ JNK if k ⩾ 4). Thus,

|IX | ⩽ 6(m− 1)2b2k3

u
⩽ (m− 1)2 · u < |I|.

Now, define

m :=

⌈√
εt3/2

σ2p1/4

⌉
and let Z denote the number of pairs of sequences (i1, . . . , im) and (D1, . . . ,Dm) as above, so that

P
(∣∣∣∣{i : Li > σ2

t

}∣∣∣∣ ⩾ εt2

σ2p1/2

)
⩽ P

(
|I| > (m− 1)2 · u

)
⩽ P(Z ⩾ 1) ⩽ E[Z].

In order to estimate the expectation of Z, for any J ⊆ JmK, let ZJ denote the expected number of such

pairs of sequences for which (ii) above holds for j ∈ J and (i) above holds for j /∈ J . There are at

most Nm choices for (i1, . . . , im) and at most
(
kN
b

)
further choices for each Dj , as each Dj is a b-element

subset of the set B′k(ij), which has size at most kN . If j ∈ J , however, the number of choices for Dj
after D1, . . . ,Dj−1 have already been chosen is at most(

|D<j |+ b− 1

b

)
·
(
k

2

)b
⩽

(
mkb

b

)
· k2b ⩽

(
emk3

)b
.

Therefore,

E[ZJ ] ⩽ Nm ·
((

kN

b

)
· p(k−1)b

)m−|J|

·
((
emk3

)b · p(k−2)b
)|J|

⩽ Nm ·
(
ekNpk−1

b

)(m−|J|)b

·
(
emk3pk−2

)|J|b
= Nm ·

(
ekNpk−1

b

)mb
·
(
mk2b

Np

)|J|b

.

Since

mk2b ⩽ mu =
mσ2

t
⩽

√
t

p1/4
⩽
σ2/3

(
log(1/p)

)1/3
p1/4

⩽ Np · p(2k−4)/3−1/4
(
log(1/p)

)1/3
⩽ Np,
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we may conclude that

E[Z] =
∑

J⊆JmK

E[ZJ ] ⩽ (2N)m ·
(
ekNpk−1

b

)mb
⩽ (2N)m ·

(
4ek4Npk−1

u

)mu/(4k3)
⩽ (2N)m · pmu/(16k

3),

where the last inequality follows from (40) and the penultimate inequality holds because b ⩾ u/(4k3)

and, when a > 0, the function x 7→ (ea/x)x is decreasing on [a,∞).

We conclude that

P
(∣∣∣∣{i : Li > σ2

t

}∣∣∣∣ ⩾ εt2

σ2p1/2

)
⩽ N−m ·

(
(2N2)1/u · p1/(16k

3)
)mu

⩽ N−m · exp(−mu),

where the final inequality follows since u ⩾ N1/(4k−4), again by (40) and our lower-bound assumption

on p. Finally, since m ⩾ 1, (38) follows as

mu ⩾

√
εt

2p1/4
⩾
√
t log(1/p) ⩾ t2/σ2. □

The following key lemma will allow us to deduce the claimed upper bound on the upper-tail probability

of L2
1 + · · ·+L2

N . As we remarked above, its proof is another adaptation of the elegant argument of [21].

Lemma 5.6. Let β > 0 and k ⩾ 3, and assume that Npk−1 > 1. Then there exists an α > 0 depending

only on β and k such that, for every nonnegative integer ℓ ⩽ αNp(2k−2)/3, letting V := L2
1 + · · · + L2

N ,

we have

E[V ℓ] ⩽ (1 + β)ℓ · E[V ]ℓ.

Proof. We prove the claimed estimate by induction on ℓ. The inequality holds vacuously when ℓ ⩽ 1, so

we may assume that ℓ ⩾ 2. Define the multiset2

Vk :=

N⋃
i=1

{
B ∪B′ : B,B′ ∈ B′k(i)

}
=
{
(B ∪B′) \ {i} : B,B′ ∈ APk, i ∈ B ∩B′}

so that V counts (with multiplicities) sets in Vk that are contained in R. We have

E[V ℓ] =
∑

P1,...,Pℓ∈Vk

P
(
P1 ∪ · · · ∪ Pℓ ⊆ R

)
=

∑
P1,...,Pℓ−1∈Vk

P
(
P1 ∪ · · · ∪ Pℓ−1 ⊆ R

)
·
∑
Pℓ∈Vk

P
(
Pℓ ⊆ R | P1 ∪ · · · ∪ Pℓ−1 ⊆ R

)
.

Note that the first sum above equals E[V ℓ−1] and the second sum is EP1∪···∪Pℓ−1
[V ]. As each P ∈ Vk

has at most 2k − 2 elements, we may use our inductive assumption to conclude that

E[V ℓ] ⩽ (1 + β)ℓ−1 · E[V ]ℓ−1 ·max
{
EU [V ] : |U | ⩽ 2kℓ

}
.

In particular, it suffices to show that the maximum above is at most (1 + β) · E[V ], provided that

ℓ ⩽ αNp(2k−2)/3 for some small α = α(β, k).

Claim 5.7. There is a constant C depending only on k such that, for every U ⊆ JNK,

EU [V ]− E[V ] ⩽ C ·
(
|U |3 + |U |2Npk−1 + |U |N2p2k−3

)
.

2The map
⋃N

i=1

(
B′
k(i)

)2 ∋ (B,B′) 7→ B ∪B′ ∈ Vk is generally not injective. For example, ({1, 2, 3} ∪ {3, 4, 5}) \ {3} =

({1, 3, 5} ∪ {2, 3, 4}) \ {3}.
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Proof. Observe that

EU [V ]− E[V ] =
∑
P∈Vk

(
p|P\U | − p|P |) ⩽ ∑

P∈Vk
P∩U ̸=∅

p|P\U |.

For every s ⩾ 0, let vs(U) denote the number of P ∈ Vk with |P \ U | = s. Since every pair of elements

of JNK lies in at most
(
k
2

)
arithmetic progressions of length k, one can check that, for some constant C

that depends only on k,

vs(U) ⩽



C|U |3 if s ⩽ k − 3,

C|U |3 + C|U |N if s ⩽ k − 2,

C|U |2N if s ⩽ 2k − 4,

C|U |N2 if s ⩽ 2k − 3.

(The odd term C|U |N corresponds to ‘degenerate’ P of the form (B ∪ B) \ {i}, where B ∈ APk and

i ∈ B, that intersect U in exactly one element.) We may thus conclude that

EU [V ]− E[V ] ⩽
2k−3∑
s=0

vs(U) · ps ⩽ kC|U |3 + C|U |Npk−2 + kC|U |2Npk−1 + C|U |N2p2k−3.

The claim follows, since Npk−2 ⩽ N2p2k−3. □

Finally, the claim implies that, for every U ⊆ JNK with |U | ⩽ 2kαNp(2k−2)/3,

EU [V ]− E[V ] ⩽ (2k)3α ·N3p2k−2 · C ·
(
1 + p(k−1)/3 + p(2k−5)/3

)
⩽ β · E[V ],

where the last inequality holds for all sufficiently small α, as E[V ] ⩾ ckN
3p2k−2 for some positive ck that

depends only on k. □

Proof of (39) in Proposition 5.4. Observe first that, for every i ∈ JNK,

E[L2
i ] =

∑
B,B′∈B′

k(i)

p|B∪B′| ⩽ A1(i)
2 · p2k−2 +

∑
B,B′∈B′

k(i)

B∩B′ ̸=∅

pk−1

⩽ A1(i)
2 · p2k−2 +A1(i) · (k − 1)

(
k

2

)
pk−1 ⩽ A1(i)

2 · p2k−2 ·
(
1 +

k4

Npk−1

)
,

where the finaly inequality hods as A1(i) ⩾ N/k for every i. Since Npk−1 ⩾ C, summing the above

estimate over all i ∈ JNK, and recalling the definition of V, we obtain

E[V ] =

N∑
i=1

E[L2
i ] ⩽

(1 + η) · V
p

for every constant η > 0 and all sufficiently large values of C. By Lemma 5.1, we may conclude that

σ2/p ⩾ (1 − 2η)E[V ]. Let ℓ := ⌊αNp(2k−2)/3⌋. Let β > 0 be such that 1 + β = (1 + ε/2)1/2. Then by

Lemma 5.6 and Markov’s inequality,

P
(
V > (1 + ε) · σ

2

p

)
⩽ P (V > (1 + ε/2) · E[V ]) ⩽

E[V ℓ]
(1 + ε/2)ℓ · E[V ]ℓ

⩽

(
1

1 + ε/2

)αNp(2k−2)/3/2

.

Finally, as p ⩾ CN−1/(k−1), we have

Np(2k−2)/3 ⩾ CN1/3 ⩾ C logN
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and, as σ2 log(1/p) ⩾ (Ct)3/2 and p ⩽ 1/C,

Np(2k−2)/3 ⩾ (σ2/p)1/3 ⩾ (σ2 log(1/p))4/3/σ2 ⩾ Ct2/σ2.

From these, the claim follows. □

6. The Poisson regime

In this section, we prove Theorem 1.1 in the Poisson regime, i.e., for all sequences (p, t) satisfying

Ω(N−2/k) ⩽ p≪ N−1/(k−1), t≫ σ, and
√
t log(1/p)≫ µ · Po(t/µ);

Note that these assumptions ensure that σ = (1+o(1))Npk/2 is bounded away from zero, so, in particular,

we have t≫ 1.

As usual, the lower and the upper bounds on the upper-tail probability of X will be proved separately.

In Section 6.1, we prove the lower bound by applying Proposition 2.4 to a probability measure induced

by the union of the random set R and (approximately) t random k-APs. In Section 6.2, we prove the

matching upper bound by showing that the t-th factorial moment of X, restricted to the event that R

does not contain a small εt-seed, is approximately µt, the t-th factorial moment of a genuine Poisson

random variable with mean µ.

We recall the definition of the Poisson rate function Po := [0,∞)→ [0,∞):

Po(x) :=

∫ x

0

log(1 + y) dy = (1 + x) log(1 + x)− x. (41)

One property of Po that we will use several times throughout this section is that

x log(1 + x) ⩽ 2Po(x), (42)

which follows easily from the defintion of Po and the inequality log(1 + y) ⩾ (y/x) · log(1 + x), which is

valid for all y ∈ [0, x].

6.1. Proof of the lower bound in the Poisson regime. In this section, we will prove the lower

bound for the Poisson regime:

Proposition 6.1. Suppose that the sequence (p, t) satisfies

Ω(N−2/k) ⩽ p≪ N−1/(k−1), t≫ σ, and
√
t log(1/p)≫ µ · Po(t/µ).

Then, for any ε > 0 and N large enough

logP(X > µ+ t) > −(1 + ε) · µ · Po(t/µ).

We prove this proposition by applying the tilting argument to a measure P̂ which is not close to any

product measure. Instead, the random set R will be the union of JNKp and approximately t random

k-term arithmetic progressions. To be more precise, for any positive integer u, let AP
u
k be the set

containing all sequences of u distinct elements of APk. We define Pu to be the measure corresponding to

an independent sample from JNKp and a uniformly chosen element from AP
u
k ; that is, for any S ⊆ JNK

and (A1, . . . ,Au) ∈ AP
u
k ,

Pu(S, (A1, . . . ,Au)) =
p|S|(1− p)N−|S|

|AP
u
k |

.
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We now let P̂u be the marginal of Pu onto the union S ∪A1 ∪ · · · ∪Au. A straightforward computation

shows that, for any R ⊆ JNK,

P̂u(R = R) =
∑

(A1,...,Au)∈AP
u
k

A1∪···∪Au⊆R

1

|AP
u
k |
· p|R\(A1∪···∪Au)| · (1− p)N−|R|. (43)

As before, our argument has two parts. First, we will show that the upper-tail event {X ⩾ µ+ t} is

very likely to occur under the measure P̂u, for an appropriately chosen u ≈ t, and thus the logarithmic

upper-tail probability can be bounded from below by −(1 + o(1)) · DKL(P̂u ∥P). Second, we will show

that DKL(P̂u ∥P) is close to µ · Po(t/µ), which will be a fairly simple consequence of the fact that

Êu[X] ⩽ µ+ t+ o(t), where Êu is the expectation operator associated with P̂u.

Lemma 6.2. For every ε > 0 and k ⩾ 3, there exists C > 0 such that the following holds for all

p ∈ (N−2/k/C,N−1/(k−1)/C) and all t ∈ (Ck
√
µ,N1−1/(k−1)/C). Letting

u := ⌈t+ C
√
µ⌉ , (44)

we have

P̂u(X ⩾ µ+ t) ⩾ 1− ε and Êu[X] ⩽ µ+ (1 + ε)u.

Proof. Let Z count the progressions among A1, . . . ,Au that are contained in S and let Y count the

progressions contained in S ∪A1 ∪ · · · ∪Au that are neither fully contained in S nor belong to the set

{A1, . . . ,Au}. It is straightforward to see that

Ak(S) + u− Z ⩽ X ⩽ Ak(S) + u+ Y. (45)

Recall that, under P̂, the random set R is the union of S and the Ai. The first inequality in (45) and

the union bound yield

P̂u(X ⩽ µ+ t) ⩽ Pu(Ak(S) + u− Z ⩽ µ+ t) ⩽ Pu
(
Ak(S) ⩽ µ− (u− t)/2

)
+ Pu

(
Z ⩾ (u− t)/2

)
.

Since the marginal of S under Pu is P, the variance of Ak(S) under Pu is equal to σ2, the variance of X

under P. Thus, we may use Chebyshev’s inequality to conclude that

Pu
(
Ak(S) ⩽ µ− (t− u)/2

)
⩽

4σ2

(t− u)2
⩽

8µ

C2µ
,

where the final bound follows from the estimate σ2 ⩽ (1 + ε)µ, which, in turn, is a consequence of our

bounds on p. Meanwhile, since Eu[Z] = upk, where Eu is the expectation operator associated with Pu,

a straightforward application of Markov’s inequality yields

Pu(Z ⩾ (u− t)/2) ⩽ 2Eu[Z]
C
√
µ

⩽
2upk

C
√
N2pk/(2k)

⩽
8ktpk/2

CN
⩽

8k

C
,

where we use the inequalities u ⩽ 2t ⩽ N , which follow from the definition of u and the assumption on

t. Choosing C large enough yields the first assertion of the lemma.

In light of the second inequality in (45) and the fact that Eu[Ak(S)] = E[X] = µ, the second assertion

of the lemma follows from the inequality Eu[Y ] ⩽ εu, which we will establish in the remainder of the

proof. To this end, note that Y can be written as a sum, over all B ∈ APk, of the indicators of the

event EB that B ⊆ S ∪A1 ∪ · · · ∪Au, but B is neither fully contained in S nor is it equal to any of the
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Ai. Since |APk| ⩽
(
N
2

)
, it will be sufficient to prove that Pu(EB) ⩽ εu/N2 for every B ∈ APk. For the

remainder of the proof, we will fix an arbitrary progression B ∈ APk and write E in place of EB .

For each j ∈ JuK, let Bj and Dj be the events that B ∩Aj ̸= ∅ and |B ∩Aj | ⩾ 2, respectively. The

crucial observation is that, in order for E to occur, at least one of the following must occur:

• Dj occurs for some j and either B ∩ S ̸= ∅ or Bℓ occurs for some ℓ ̸= j; or

• there is an r ∈ {1, . . . , k} such that |B ∩ S| = k − r and Bj occurs for r distinct indices j.

We shall denote the first event by F and the second by T . As the above observation implies that

Pu(E) ⩽ Pu(F) + Pu(T ), it sufficies to bound the probabilities of these two events.

Recall that |APk| = (1 + o(1)) · N2/(2(k − 1)) and that there are at most kN progressions in APk

that contain any given element of JNK and at most
(
k
2

)
such progressions that contain any given pair of

elements of JNK. As |B∩S| follows a binomial distribution Bin(k, p) and is independent of all the events

{Bj}j and {Dj}j , we find that

Pu(F) ⩽
u∑
j=1

Pu
(
Dj ∩ {B ∩ S ̸= ∅}

)
+
∑

j,ℓ∈JuK
j ̸=ℓ

Pu
(
Dj ∩ Bℓ

)

⩽ u ·
(
k
2

)2
|APk|

· kp+ u2 ·
(
k
2

)2 · k2N
|APk|(|APk| − 1)

⩽
k6up

N2
+

2k8u2

N3
,

provided that C is sufficiently large (and thus N is sufficiently large). The inequalities u ⩽ 2t ⩽ 2N/C

and p < 1/C for a large constant C imply that Pu(F) ⩽ εu
2N2 . Similarly,

Pu(T ) ⩽
k∑
r=1

Pu(|B ∩ S| = k − r) · Pu(Bj occurs for r distinct j ∈ JuK)

⩽
k∑
r=1

(kp)k−r
(
u

r

)
(k2N)

r

|APk|r
⩽ (kp)k ·

k∑
r=1

(
2k2u

Np

)r
.

In order to bound the right-hand side of the above inequality, we consider two cases. If 2k2u ⩽ Np, then

Pu(T ) ⩽ pk · kk+1 · 2k
2u

Np
= 2kk+3Npk−1 · u

N2
⩽

εu

2N2
,

by our assumption that p ⩽ N−1/(k−1)/C. Otherwise, if 2k2u > Np, then

Pu(T ) ⩽ pk · kk+1 ·
(
2k2u

Np

)k
=

2kk3k+1uk−1

Nk−2
· u
N2

⩽
εu

2N2
,

by our assumption that u ⩽ 2t ⩽ 2N1−1/(k−1)/C. □

Proof of Proposition 6.1. By Proposition 2.4 and Lemma 6.2, it is sufficient to show that, for every fixed

ε > 0,

DKL(P̂u ∥P) ⩽ (1 + 5ε)µ · Po(u/µ) and Po(u/µ) ⩽ (1 + ε) · Po(t/µ), (46)

where u is the integer defined in (44). To this end, recall (43) and note that, for every R ⊆ JNK,

P̂u(R = R)

P(R = R)
=

1

|AP
u
k |

∑
(A1,...,Au)∈AP

u
k

A1∪···∪Au⊆R

p−|A1∪···∪Au| ⩽
Ak(R)

u

|AP
u
k | · pku

. (47)
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Consequently,

DKL(P̂u ∥P) =
∑

R⊆JNK

P̂u(R = R) log
P̂u(R = R)

P(R = R)
⩽ Êu[logXu]− log

(
|AP

u
k | · p

ku
)
.

A straightforward calculation shows that

|AP
u
k | · p

ku = µu · |APk|u

|APk|u
⩾ µu ·

(
1− u

|APk|

)u
.

Since |APk| ≫ µ, we can conclude that

− log
(
|AP

u
k | · p

ku
)
⩽ −u logµ+

ε

2
u log

(
1 +

u

µ

)
⩽ −u logµ+ εµ · Po

(
u

µ

)
,

where the last inequality holds by (42).

Further, since the function [u,∞) ∋ x 7→ log xu is concave, Jensen’s inequality and Lemma 6.2 imply

that

Êu[logXu] ⩽ log (Êu[X])
u
⩽ log (µ+ (1 + ε)u)

u
=

u∑
i=1

log(µ+ εu+ i)

⩽
∫ µ+u

µ

log(x+ εu+ 1) dx =

∫ µ+u

µ

log x dx+

∫ µ+u

µ

log

(
1 +

εu+ 1

x

)
dx.

It follows from (41) that µ · Po(u/µ) =
∫ µ+u
µ

log x dx− u logµ; so we conclude that

DKL(P̂u ∥P) ⩽ (1 + ε)µ · Po
(
u

µ

)
+

∫ µ+u

µ

log

(
1 +

εu+ 1

x

)
dx. (48)

Further, as log(1 + y) ⩽ y for every y > −1 and u ⩾ t ⩾ 1/ε,∫ µ+u

µ

log

(
1 +

εu+ 1

x

)
dx ⩽

∫ µ+u

µ

2εu

x
dx = 2εu · log

(
1 +

u

µ

)
⩽ 4εµ · Po

(
u

µ

)
,

where the last inequality is again (42). Substituting this estimate into (48) yields the first inequality

in (46). Finally,

Po

(
u

µ

)
− Po

(
t

µ

)
=

∫ u/µ

t/µ

log(1 + x) dx ⩽
u− t
µ
· log

(
1 +

u

µ

)
⩽ 2

(
1− t

u

)
· Po

(
u

µ

)
,

where the last inequality follows from (42). Our assumption that t≫ σ = Ω(
√
µ) implies that t/u→ 1,

giving the second inequality in (46) and completing the proof. □

6.2. Proof of the upper bound in the Poisson regime. In this section, we prove an upper bound

on the upper-tail probability in the Poisson regime. Our starting point here is the realisation that it

would be enough to establish the following estimate for all ε > 0:

E[Xt] ⩽ µt · exp
(
εt log(1 + t/µ)

)
. (49)

Indeed, if (49) were true, then a simple application of Markov’s inequality would yield

P(X ⩾ µ+ t) = P(Xt ⩾ (µ+ t)
t
) ⩽

E[Xt]

(µ+ t)
t ⩽

µt

(µ+ t)
t · exp

(
εt log(1 + t/µ)

)
,

which gives the desired estimate, as t log(1 + t/µ) ⩽ 2µ · Po(t/µ), see (42), whereas

log

(
µt

(µ+ t)
t

)
⩽ −

∫ t

0

log

(
µ+ x

µ

)
dx = −µ ·

∫ t/µ

0

log(1 + y) dy = −µ · Po
(
t

µ

)
.
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Unfortunately, the estimate (49) is not correct in the entirety of the Poisson regime. To remedy this,

we will define a family of indicator random variables {Zu}u∈R such that, for all sequences (p, t) falling

into the Poisson regime, we have

E[Xt · Zu] ⩽ µt · exp
(
(u+ εt) log(1 +Kt/µ)

)
and

P(Zu = 0) ⩽ exp
(
−(1− ε)Ψ∗((1− ε)u) log(1/p)) ,

where K = K(k) is some constant and Ψ∗ was defined in (16).

We now set u := εt. Then Ψ∗((1 − ε)u) ⩾
√
(1− ε)u holds by Proposition 3.1; the assumptions of

that proposition apply since we assume t ≫ σ = Ω(Npk/2) ⩾ max {1, N2p2k−2}. Therefore, for some

positive c = c(ε),

P(X ⩾ µ+ t) ⩽ P(X · Zεt ⩾ µ+ t) + P(Zεt = 0)

⩽
E[Xt · Zεt]
(µ+ t)

t + exp
(
−Ψ∗(εt/2) log(1/p)

)
⩽

µt

(µ+ t)
t · exp

(
2εt log(1 +Kt/µ)

)
+ exp

(
−c
√
t log(1/p)

)
⩽ exp

(
− µ · Po(t/µ) + 2Kεt log(1 + t/µ)

)
+ exp

(
−c
√
t log(1/p)

)
.

which gives the desired bound as t log(1 + t/µ) ⩽ 2µ · Po(t/µ), by (42), and
√
t log(1/p) ≫ µ · Po(t/µ)

across the Poisson regime.

We now define Zu = Zu(C) to be the indicator of the event that R does not contain any set in

Ssmall(u,C), where Ssmall is defined as in the statement of Proposition 3.2. The estimate

P(Zu = 0) ⩽ exp
(
−(1− ε)Ψ∗((1− ε)u) log(1/p))

is then immediate from Proposition 3.2, provided C is chosen to be sufficiently large.

It remains to prove the following proposition, which is the main business of this section.

Proposition 6.3. For every k ⩾ 3, there exists a constant K such that the following holds for all C, ε > 0.

If Ω(N−2/k) ⩽ p ≪ N−1/(k−1) and t is a positive integer satisfying t ⩽
(
µ log(1/p)

)2/3
+
(
log(1/p)

)3,
then, for all sufficiently large N and all u ⩽ t,

E[Xt · Zu(C)] ⩽ µt · exp
(
(u+ εt) log(1 +Kt/µ)

)
.

We remark that the upper-bound assumption on t in the proposition indeed holds in the entire Poisson

regime, due to our assumption
√
t log(1/p)≫ µPo(t/µ). To see this, it helps to distinguish between the

cases t ⩽ µ/2 and t > µ/2. In the first case, the inequality log(1 + x) ⩾ x − x2/2 rather easily implies

that Po(t/µ) ⩾ t2/4µ2, and so our assumption results in t≪ (µ log(1/p))2/3. In the second case, we can

use (42) to get µPo(t/µ) ⩾ 1
2 t(1 + log(t/µ)) > t/100 and similarly obtain t≪ (log(1/p))2.

We now continue with the proof of Proposition 6.3. Since Xt is a sum of indicators of the events

{A1 ∪ · · · ∪At ⊆ R} over all ordered sequences (A1, . . . , At) of t arithmetic progressions of length k, and
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such an event precludes the event {Zu = 1} when the union A1 ∪ · · · ∪At contains a set from Ssmall(u),

we have

E[Xt · Zu] ⩽
∑

(A1,...,At)∈AP
t
k

P(A1∪···∪At)∩Ssmall(u)=∅

P
(
A1 ∪ · · · ∪At ⊆ R

)
. (50)

In order to estimate the right-hand side of (50), we will analyse the overlap structure of progressions

in each sequence in AP
t
k. It is convenient to introduce the notation

ψ(U) := EU [X]− E[X] =

k∑
r=1

A(k)
r (U) · (pk−r − pk),

where, as before, A(k)
r (U) is the number of k-APs in JNK that intersect U in precisely r elements. The

following superadditivity property will turn out to be useful.

Lemma 6.4. Suppose that U1, . . . , Uj are pairwise disjoint subsets of JNK. Then

ψ(U1 ∪ · · · ∪ Uj) ⩾ ψ(U1) + · · ·+ ψ(Uj).

Proof. It is enough to prove the claim for two disjoint sets U1 and U2. To this end, consider the conditional

expectation Y1 := E[Ak(R ∪ U1) − Ak(R) | R \ U1] and note that Y1 is an increasing random variable

on a product probability space with coordinates JNK \ U1. So E[Y1] ⩽ EU2
[Y1] by Harris’ inequality. To

complete the proof, observe that E[Y1] = EU1 [X]− E[X] = ψ(U1) and EU2 [Y1] = EU1∪U2 [X]− EU2 [X] =

ψ(U1 ∪ U2)− ψ(U2). □

Definition. A cluster is a set C ⊆ APk that is connected when viewed as a hypergraph. We say that a

cluster is:

• small if

|C| ⩽ 2
(
log(1/p)

)3 and |C| ⩽ ε log(1/p)

log log(1/p)
· |
⋃

C|;

• L-bounded, for a given positive real L, if

ψ
(⋃

C
)
⩽
Lµ|C|
Kt

,

where K > 0 is a sufficiently large constant depending only on k.

• heavy if it is neither small nor 1-bounded.

For a sequence A = (A1, . . . , At) ∈ AP
t
k, we will denote by B(A) the collection of all heavy maximal3

clusters in {A1, . . . , At} and let U(A) :=
⋃⋃

B(A) be the union of all progressions that belong to some

(heavy, maximal) cluster in B(A). The maximality ensures that the family {
⋃

C}C∈B(A) is a partition

of U(A) for every A ∈ AP
t
k, so Lemma 6.4 implies the following.

Corollary 6.5. For every A ∈ AP
t
k, we have

ψ(U(A)) ⩾
∑

C∈B(A)

ψ(
⋃

C).

Our next lemma establishes a key property of heavy maximal clusters.

3With respect to the subset relation. Such maximal clusters correspond to connnected components of the hypergraph

spanned by A1, . . . , At.
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Lemma 6.6. For every A ∈ AP
t
k, we have U(A) ∈ Ssmall(ψ(U(A))).

Proof. For brevity, let us write U := U(A) and B := B(A). We can assume without loss of generality

that U and B are nonempty. Observe that U is a ψ(U)-seed by definition, so it only remains to show

that it also satisfies the size constraint from the definition of Ssmall(ψ(U)), namely,

ψ(U) ⩾ C|U | ·max{1, Npk−1, |U |pk−2 ·N (k−2)(|U |/ψ(U))1/(k−1)

}.

Due to our assumptionNpk−1 ≪ 1, which also implies the inequalityN (k−2)(|U |/ψ(U))1/(k−1)

⩽ N (k−2)C−1/(k−1)

⩽

p−1/4 when |U | ⩽ Ψ(U)/C for a large enough C, it is in fact enough to show that

ψ(U) ⩾ C|U | ·max {1, |U |pk−9/4}.

Since U is the union of at most t progressions, we have |U | ⩽ kt ⩽ k ·
(
µ log(1/p)

)2/3
+k ·

(
log(1/p)

)3.
Further,

µ2/3 ⩽ (N2pk)2/3 =
(
Npk−1

)4/3 · p(4−2k)/3 ⩽ p(4−2k)/3 ⩽ p7/3−k,

where the penultimate inequality follows from our assumption that Npk−1 ⩽ 1. Since p vanishes, we

may conclude that |U |pk−9/4 ⩽ 1 for all sufficiently large N , and therefore it only remains to show that

ψ(U) ⩾ C|U |.

To this end, note first that Corollary 6.5 implies that

ψ(U)

|U |
⩾

∑
C∈B ψ(

⋃
C)∑

C∈B |
⋃
C|

⩾ min
C∈B

ψ(
⋃

C)

|
⋃

C|
.

Let C ∈ B be a cluster that realises this minimum. Suppose first that |C| ⩽ 2
(
log(1/p)

)3. Since C is

heavy, we must have |C|/|
⋃
C| > ε log(1/p)

log log(1/p) . Moreover, every progression in C contributes 1 − pk to

ψ(
⋃
C), so we may conclude that

ψ(
⋃
C)

|
⋃
C|

⩾
|C| · (1− pk)
|
⋃
C|

⩾
ε log(1/p)

log log(1/p)
· (1− pk) ⩾ C

for all large enough N . Suppose now that |C| > 2
(
log(1/p)

)3. In this case, we have

2 log(1/p)3 < |C| ⩽ t ⩽
(
µ log(1/p)

)2/3
+
(
log(1/p)

)3
,

which also implies that µ/t ⩾
√
t/(3 log(1/p)) ⩾

√
log(1/p)/3. Finally, since |

⋃
C| ⩽ k|C| and C is heavy,

and thus not 1-bounded, we have

ψ(
⋃
C)

|
⋃
C|

⩾
ψ(
⋃

C)

k|C|
⩾

µ

Kkt
⩾

√
log(1/p)√
3Kk

⩾ C

for all N large enough. □

In view of Lemma 6.6, we may conclude from (50) that

E[Xt · Zu] ⩽
∑

A=(A1,...,At)∈AP
t
k

ψ(U(A))<u

P
(
A1 ∪ · · · ∪At ⊆ R

)
. (51)

Indeed, if A1 ∪ · · · ∪ At does not contain any subset in Ssmall(u), then, in particular, U(A) /∈ Ssmall(u).

Thus, either U(A) is not a u-seed at all (but as it is a ψ(U(A))-seed automatically, we then must have u >

ψ(U(A))) or it is a u-seed that is too large to be a member of Ssmall(u): since U(A) ∈ Ssmall(ψ(U(A)))

by the lemma, this implies u > ψ(U(A)) as well.
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In order to estimate the right-hand side of (51), we will first partition the set of all sequences

(A1, . . . , At) ∈ AP
t
k according to simple statistics of the maximal clusters in {A1, . . . , At}. To do so, note

first that it follows from Lemma 3.3 that |
⋃

C| ⩾ |C|1/2 for every cluster C. In particular, any cluster C

satisfying

|C| ⩽
(
ε log(1/p)

log log(1/p)

)2

=: s0

is automatically small (and thus cannot be heavy). Additionally, set ξ := 1+ ε/15, and define the weight

of a heavy cluster C to be the smallest integer ℓ such that C is ξℓ-bounded; note that the weight of a

heavy cluster is necessarily positive, as heavy clusters are not 1-bounded.

Definition. Let L denote the family of all triples of integer sequences (c1, . . . , ct), (b1, . . . , bt), and

(ℓs,j : s ∈ JtK, j ∈ JbsK) satisfying:

(i) 0 ⩽ bs ⩽ cs and bs = 0 when s ⩽ s0;

(ii) ℓs,1 ⩾ · · · ⩾ ℓs,bs ⩾ 1 for all s and 1 ⩽ j ⩽ bs; and

(iii) c1 + 2c2 + · · ·+ tct = t.

Given a triple (c,b, l) ∈ L, denote by C(c,b, l) the family of all sequences (A1, . . . , At) ∈ AP
t
k such that

{A1, . . . , At} has, for every s ∈ JtK, exactly cs maximal clusters containing s progressions, out of which

bs are heavy clusters with weights ℓs,1, . . . , ℓs,bs .

The following two key lemmas, whose proofs we postpone to the end of the section, will be used to

bound from above the contribution of sequences from each collection C(c,b, l) to the right-hand side

of (51). For every s ⩾ 1 and real L, let Ds denote the collection of all s-elements clusters that are small

and let Ds,L denote the collection of s-element clusters that are not small, but L-bounded.

Lemma 6.7. For every s ⩾ 2, we have

Ds :=
∑
C∈Ds

P
(⋃

C ⊆ R
)
⩽
µs

ts
· εt log(1 + t/µ)

4s+1
.

Lemma 6.8. For every s ⩾ 2 and L ⩾ 1, we have

Ds,L :=
∑

C∈Ds,L

P
(⋃

C ⊆ R
)
⩽
µs

ts
· Ls · εt log(1 + t/µ)

4s+1
.

Corollary 6.9. For every (c,b, l) ∈ L, we have

Σ(c,b, l) :=
∑

(A1,...,At)∈C(c,b,l)

P
(
A1 ∪ · · · ∪At ⊆ R

)
⩽ µt ·

∏
s⩾2

 1

cs!

(
εt log(1 + t/µ)

2s

)cs
·
bs∏
j=1

(
ξℓs,j

)s .

Proof. Fix an arbitrary sequence (A1, . . . , At) ∈ C(c,b, l) and let C1, . . . ,Cj be the maximal clusters in

{A1, . . . , At}. Since the sets
⋃
C1, . . . ,

⋃
Cj partition A1 ∪ · · · ∪At, we have

P
(
A1 ∪ · · · ∪At ⊆ R

)
=

j∏
i=1

P
(⋃

Ci ⊆ R
)
.

Further, for every collection {C1, . . . ,Cj} of distinct clusters satisfying |C1| + · · · + |Cj | = t, there are

exactly t! sequences (A1, . . . , At) ∈ AP
t
k with these clusters. Since non-heavy clusters of s progressions
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belong to the set Ds ∪ Ds,1 and heavy clusters with weight ℓ belong to the set Ds,ξℓ , we have

Σ(c,b, l) ⩽
1

c1!

( ∑
A∈APk

P(A ⊆ R)

)c1
·
∏
s⩾2

(Ds +Ds,1

)cs−bs
(cs − bs)!

·
bs∏
j=1

Ds,ξℓs,j

 · t!
⩽ µc1 ·

∏
s⩾2

(Ds +Ds,1

)cs−bs · cbss
cs!

·
bs∏
j=1

Ds,ξℓs,j

 · tt−c1 .
By Lemmas 6.7 and 6.8, we have

Ds +Ds,1 ⩽
µs

ts
· εt log(1 + t/µ)

4s

and

Ds,ξℓs,j ⩽
µs

ts
· ξsℓs,j · εt log(1 + t/µ)

4s
.

Using the fact that t− c1 =
∑
s⩾2 scs, we may conclude that

Σ(c,b, l) ⩽ µt ·
∏
s⩾2

cbss
cs!
·
(
εt log(1 + t/µ)

4s

)cs
·
bs∏
j=1

(
ξℓs,j

)s .

Finally, bs = 0 unless s ⩾ s0 ≫ log t. Since also bs ⩽ cs ⩽ t, it follows that cbss ⩽ tcs ⩽ 2scs for all s,

which gives the desired inequality. □

The following lemma supplies a lower bound on ψ(U(A)), valid for all A ∈ C(c,b, l), that features

the (logarithm of the) expression appearing in the upper bound on Σ(c,b, l) given in Corollary 6.9.

Lemma 6.10. If A ∈ C(c,b, l) for some (c,b, l) ∈ L, then

ψ(U(A)) ⩾
1

ξ2 log(1 +Kt/µ)
·

t∑
s=2

bs∑
j=1

sℓs,j log ξ.

Proof. Fix some (c,b, l) ∈ L and let A be an arbitrary sequence in C(c,b, l). Since a heavy cluster with

weight ℓ is not ξℓ−1-bounded, Corollary 6.5 gives (writing ℓ(C) for the weight of a cluster C)

ψ(U(A)) ⩾
∑

C∈B(A)

ψ(
⋃

C) ⩾
∑

C∈B(A)

ξℓ(C)−1µ|C|
Kt

=

t∑
s=2

bs∑
j=1

ξℓs,j−1µs

Kt
.

Since the weight ℓ(C) of every heavy cluster C is positive and satisfies

|C| · (1− pk) ⩽ ψ(
⋃

C) ⩽
ξℓ(C)µ|C|
Kt

,

the asserted inequality will follow once we show that

ρ := max

{
Ktℓ log ξ

ξℓ−1µ
: ℓ ⩾ 1 and

ξℓµ

Kt
⩾ 1− pk

}
⩽ ξ2 log(1 +Kt/µ).

Since the function ℓ 7→ Ktℓ log ξ
ξℓ−1µ

is decreasing for ℓ ⩾ log ξ, we have ρ ⩽ Kt(log ξ)2/(ξlog ξ−1µ). Since we

can assume without loss of generality that ε is rather small, and ξ ⩽ 1+ε, this implies, say, ρ ⩽ Kt/(2µ).

In particular, if Kt/µ ⩽ 2, then ρ ⩽ log(1 +Kt/µ). On the other hand, if Kt/µ > 2, then the smallest

real solution ℓ0 to the constraint ξℓµ/(Kt) ⩾ 1− pk satisfies ℓ0 = log(Kt(1− pk)/µ)/(log ξ) ⩾ 1 ⩾ log ξ

and therefore the maximum in the definition of ρ is achieved at ℓ = ⌈ℓ0⌉. Thus,

ρ ⩽
ξ log(Kt(1− pk)/µ)

1− pk
⩽ ξ2 log(1 +Kt/µ). □
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The upshot of Lemma 6.10 is that each sequence A that appears in the right-hand side of (51) belongs

to the family C(c,b, l) for some triple (c,b, l) from the set

Lu :=

(c,b, l) :
∑
s⩾2

bs∑
j=1

sℓs,j log ξ ⩽ ξ2u log(1 +Kt/µ)

 .

Therefore, by Corollary 6.9,

E[Xt · Zu]
µt

⩽
∑

(c,b,l)∈Lu

Σ(c,b, l)

µt

⩽
∑

(c,b,l)∈Lu

∏
s⩾2

(
1

cs!

(
εt log(1 + t/µ)

2s

)cs)
︸ ︷︷ ︸

E

· exp
(
ξ2u log(1 +Kt/µ)

)
,

where

E ⩽
∏
s⩾2

( ∞∑
c=0

1

c!

(
εt log(1 + t/µ)

2s

)c)
·max

c
|{(b, l) : (c,b, l) ∈ Lu}|

= exp

(
εt log(1 + t/µ)

2

)
·max

c
|{(b, l) : (c,b, l) ∈ Lu}|.

Finally, we bound the number of pairs (b, l) such that (c,b, l) ∈ Lu for a given sequence c. To this

end, let π denote the (number-theoretic) partition function, for which we will only need the very crude

bound π(n) ⩽ en. Note first that, for a given L = (L1, . . . , Lt), the number of pairs (b, l) such that

ℓs,1 + · · · + ℓs,bs = Ls for every s is at most
∏
s π(Ls) ⩽ exp (

∑
s Ls). Second, if (c,b, l) ∈ Lu for some

such pair, then

∑
s⩾1

Ls =
∑
s⩾1

bs∑
j=1

ℓs,j =
∑
s>s0

bs∑
j=1

ℓs,j ⩽
1

s0

∑
s>s0

bs∑
j=1

sℓs,j ⩽
ξ2u log(1 +Kt/µ)

s0 log ξ
≪ t log(1 +Kt/µ)

log t
,

where the last inequality follows from the assumption that u ⩽ t and the fact that s0 ≫ log(1/p) ⩾

Ω(logN) ⩾ Ω(log t). In particular, each Ls is at most t, and it follows that the number S of admissible

sequences L satisfies

S ⩽ t
εt log(1+Kt/µ)

8 log t = exp

(
εt log(1 +Kt/µ)

8

)
.

Consequently E ⩽ exp
(
(2ε/3) · t log(1 +Kt/µ)

)
. Since ξ2 ⩽ 1 + ε/6, we may finally conclude that

E[Xt · Zu] ⩽ µt · exp
(
(u+ εt) log(1 +Kt/µ)

)
.

6.2.1. Counting clusters. Both Lemmas 6.7 and 6.8 will be derived from a more general upper bound on

the number of clusters C expressed in terms of the number of k-term arithmetic progressions that
⋃
C

is allowed to intersect. More precisely, for a vector a = (a1, . . . , ak), let let Cm,s(a) denote the set of all

clusters C with |C| = s, |
⋃
C| = m, and

A⩾i

(⋃
C
)
⩽ ai for each i ∈ JkK,

where we use the notation A⩾i(U) := A
(k)
i (U) + · · ·+A

(k)
k (U).
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Proposition 6.11. The following holds for every k ⩾ 3, s ⩾ 2, p ∈ [0, 1], x ⩾ 0, and vector a ∈ Rk.

Letting M := maxi∈JkK ai · pk−i, we have

∑
m⩾k+x

|Cm,s(a)| · pm ⩽ µ ·
(
e2k2M

s

)s−1

·
(
p · max

i∈Jk−1K

( ai
M

)1/(k−i))x
⩽ µ ·

(
e2k2M

s

)s−1

.

We postpone the proof of this proposition, showing first how to derive Lemmas 6.7 and 6.8.

Derivation of Lemma 6.7 from Proposition 6.11. We can assume that s ⩽ 2(log(1/p))3, as this is the

maximum number of k-APs in a small cluster. We let a ∈ Nk be the vector defined by

a1 := k2sN and ai := k4s2 for i ⩾ 2.

Since a union of s progressions contains at most ks elements and

|A⩾1(U)| ⩽ |U |kN and |A⩾i(U)| ⩽ |U |2k2 for i ⩾ 2,

every s-element cluster C belongs to
⋃
m Cm,s(a). Gearing up for an application of Proposition 6.11, we

calculate

M := max
i∈JkK

ai · pk−i = max
{
k2sNpk−1, k4s2

}
= k4s2,

where we used the assumption Npk−1 ≪ 1, and

max
i∈Jk−1K

( ai
M

)1/(k−i)
= max

{(
N

k2s

)1/(k−1)

, 1

}
=

(
N

k2s

)1/(k−1)

,

as s ⩽ 2
(
log(1/p)

)3
⩽ N/k2. Let ms denote the smallest cardinality of

⋃
C for an s-element cluster C

that is small and observe that

ms ⩾ max

{
k + 1,

log log(1/p)

ε log(1/p)
· s
}
, (52)

by s ⩾ 2 and the definition of a small cluster. We may now deduce from Proposition 6.11 that

Ds ⩽
∑
m⩾ms

|Cm,s(a)| · pm ⩽ µ · (k6e2s)s−1 ·
(
Npk−1

k2s

)ms−k
k−1

⩽
(µ
t

)s
· t

4s+1
· 16

(
4k6e2ts

µ

)s−1

·
(
Npk−1

)ms/k
2

︸ ︷︷ ︸
T

.

Therefore, it suffices to show that T ⩽ ε log(1 + t/µ).

Assume first that s ⩽ µ/(4e3k6t). Since the function s 7→ (4k6e2ts/µ)s−1 is decreasing on the interval[
2, µ/(4e3k6t)

]
, and since Npk−1 ≪ 1 and ms ⩾ k + 1, we have

T ⩽
64k6e2t

µ
·
(
Npk−1

)ms/k
2

⩽
t

µ
· (Npk−1)1/k.

Now, if t ⩽ µ, then the claimed inequality follows from the inequality t/µ ⩽ 2 log(1 + t/µ). Otherwise,

if t ⩾ µ, then the assumption that t ⩽
(
µ log(1/p)

)2/3
+
(
log(1/p)

)3 implies that µ ⩽
(
2 log(1/p)

)3
and thus Npk−1 = O

(√
µpk−2

)
= O

(
p1/3

)
. Since t/µ ⩽ O

(
(log(1/p))3

)
also follows from the same

assumption on t (as µ ⩾ Ω(1)), we may conclude that T ≪ 1, whereas log(1 + t/µ) ⩾ log 2.
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Finally, assume that µ/(4e3k6t) < s ⩽ 2
(
log(1/p)

)3. In this case, our assumption t ⩽
(
µ log(1/p)

)2/3
+(

log(1/p)
)3 implies that µ = O

((
log(1/p)

)11), and thus Npk−1 = O(
√
µpk−2) ⩽ p1/3. Since also

t/µ ⩽ O
(
(log(1/p))3

)
, we obtain

T ⩽
(
O
(
(log(1/p))6

))s−1 · pms/(3k
2) ⩽ exp

(
7s log log(1/p)−ms/(3k

2) · log(1/p)
)
.

Recalling from (52) that s log log(1/p) ⩽ ms

(
ε log(1/p)

)
, where we can assume without loss of generality

that ε is somewhat small, we may conclude that

T ⩽ pms/(4k
2) ⩽ p1/(4k) ≪ 1

2µ
⩽ log(1 + 1/µ) ⩽ log(1 + t/µ),

as desired. □

Derivation of Lemma 6.8 from Proposition 6.11. Let a ∈ Nk be the vector defined by

ai :=
Lµs

Kpk−i(1− p)t
.

Since every s-element cluster C that is L-bounded satisfies

A⩾i(
⋃

C) · (pk−i − pk) ⩽ ψ(
⋃

C) ⩽
Lµs

Kt
⩽ ai · (pk−i − pk)

for all i ∈ JkK, it belongs to
⋃
m Cm,s(a). We may thus deduce from Proposition 6.11 that

Ds,L ⩽
∑
m

|Cm,s(a)| · pm ⩽ µ ·
(

e2k2Lµ

K(1− p)t

)s−1

=
µs

ts
·
(

e2k2L

K(1− p)

)s−1

· t ⩽ µs

ts
· Ls · e

−s · t
4s+1

,

when K is chosen to be sufficiently large as a function of k, as we assume L ⩾ 1.

Since s ⩾
(
ε log(1/p)/ log log(1/p)

)2 ≫ log(1/p) for every s-cluster that is not small, and asNpk−1 ⩽ 1

implies N2p2k ≪ 1, we have

e−s ⩽ pk ≪ 1

2µ
⩽ log(1 + 1/µ) ⩽ log(1 + t/µ),

which implies the desired inequality. □

We finally move to proving Proposition 6.11. To do this, we will need to establish an upper bound on

Cm,s(a) for all integers m and s and all vectors a. Since there is nothing special here about the family

(hypergraph) APk of arithmetic progressions that underlies the notion of a cluster, we will prove a more

abstract statement that provides an analogous bound for the number of connected subhypegraphs with

a given edge boundary, which could be of independent interest. The proof of this theorem can be found

in Appendix A.

Let H be a hypergraph. Given a subset W ⊆ V (H) and a positive integer i, we denote ∂(i)H (W ) :=

{e ∈ H : |e ∩ W | = i}. Further, for a vector a = (a1, . . . , ak) ∈ Rk, we define Cm,s(a;H) to be the

set of connected subhypergraphs H′ ⊆ H with m vertices and s edges that satisfy |∂(i)H (V (H′))|+ · · ·+

|∂(k)H (V (H′))| ⩽ ai for all i ∈ JkK, so that Cm,s(a) = Cm,s(a; APk).

Theorem 6.12. Suppose that H is a k-uniform hypergaph. For all m, s ∈ N and a = (a1, . . . , ak) ∈ Rk,

|Cm,s(a;H)| ⩽ e(H) ·
∑

s1,...,sk⩾0∑
i(k−i)si=m−k∑

i si=s−1

k∏
i=1

(
ai
si

)
.
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Proof of Proposition 6.11. We work in the hypergraph APk of k-APs in JNK. Since every cluster of

arithmetic progressions naturally corresponds to a connected subhypergraph of APk and since ∂(i)APk
(U) =

Ai(U) for every U ⊆ JNK, one can see that Theorem 6.12 implies

|Cm,s(a)| ⩽ |Cm,s(a; APk)| ⩽ |APk| ·
∑

s1,...,sk⩾0∑
i(k−i)si=m−k∑

i si=s−1

k∏
i=1

(
ai
si

)
.

Fix some x ⩾ 0. Letting

S := {(s1, . . . , sk) ∈ Zk⩾0 : s1 + · · ·+ sk = s− 1 and
k∑
i=1

(k − i)si ⩾ x},

we then have ∑
m⩾k+x

|Cm,s(a)| · pm ⩽ |APk| · pk ·
∑

(s1,...,sk)∈S

k∏
i=1

(
ai
si

)
· p(k−i)si

⩽ µ ·
∑

(s1,...,sk)∈S

k∏
i=1

(
eaip

k−i

si

)si
where the convention 00 = 1 is to be used when si = 0. Note that, for every (s1, . . . , sk) ∈ S,

k∏
i=1

(
1

si

)si
=

(
k

s− 1

)s−1

· exp

(
−

k∑
i=1

si log

(
si

(s− 1)/k

))
⩽

(
k

s− 1

)s−1

,

since the sum in the expression above is s − 1 times the (nonnegative) Kullback–Leibler divergence of

the random variable taking the value i ∈ JkK with probability si/(s−1) from the uniform element of JkK.

This yields the bound

∑
m⩾k+x

|Cm,s(a)| · pm ⩽ µ ·
(

ek

s− 1

)s−1

·
∑

(s1,...,sk)∈S

k∏
i=1

(
aip

k−i)si .
By the definition of M , we have aipk−i ⩽M for every i ∈ JkK; so for every (s1, . . . , sk) ∈ S, we have

k∏
i=1

(
aip

k−i)si ⩽Ms−1 ·
k−1∏
i=1

(
aip

k−i

M

)si
⩽Ms−1 ·

k−1∏
i=1

(
max

j∈Jk−1K

(
ajp

k−j

M

)1/(k−j))(k−i)si

.

Since the quantity in the iterated product is at most 1, we have∑
m⩾k+x

|Cm,s(a)| · pm ⩽ µ ·
(
ekM

s− 1

)s−1

·
(
p · max

j∈Jk−1K

( aj
M

)1/(k−j))x
· |S|.

The claimed bound now follows after we observe that |S| ⩽
(
s−1+k−1
s−1

)
⩽ (ek)s−1. □
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Appendix A. Proof of the hypergraph cluster lemma

In this appendix, we prove Theorem 6.12, the bound for the number of connected subhypergraphs

with a given edge boundary, which we used to control factorial moments of the number of k-term

arithmetic progressions in the Poisson and the localised regimes. We restate the theorem here for

reader’s convenience. Recall that given a set W of vertices of a hypergraph H and a positive integer i,

we denote ∂(i)H (W ) := {e ∈ H : |e ∩W | = i}. Further, for a vector a = (a1, . . . , ak) ∈ Rk, we defined

Cm,s(a;H) to be the set of connected subhypergraphs H′ ⊆ H with m vertices and s edges that satisfy

|∂(i)H (V (H′))|+ · · ·+ |∂(k)H (V (H′))| ⩽ ai for all i ∈ JkK.

Theorem 6.12. Suppose that H is a k-uniform hypergaph. For all m, s ∈ N and a = (a1, . . . , ak) ∈ Rk,

|Cm,s(a;H)| ⩽ e(H) ·
∑

s1,...,sk⩾0∑
i(k−i)si=m−k∑

i si=s−1

k∏
i=1

(
ai
si

)
.

Proof. We prove the claim by exhibiting an injective map from Cn,m(a;H) into a set of combinatorial

objects that are easier to count. To this end, let I(a) := {(i, j) : 1 ⩽ i ⩽ k and 1 ⩽ j ⩽ ai} and let

Tm,s(a) be the collection of all subsets T ⊆ I(a) such that

|T | = s− 1 and
∑

(i,j)∈T

(k − i) = m− k. (53)

It may help to think of I(a) as representing a grid or tableau consisting of k rows of respective lengths

a1, . . . , ak and of an element of Tm,s(a) as a certain way of marking some s− 1 cells of the tableau.

Further below, we will argue that there exists an injective map

emb : Cm,s(a;H)→ E(H)× Tm,s(a),

which clearly implies that

|Cm,s(a;H)| ⩽ e(H) · |Tm,s(a)|. (54)

From this, we may complete the proof by counting as follows. First, note that, for every T ∈ Tm,s(a),

the ‘row counts’ s1, . . . , sk defined by si := |{(i′, j) ∈ T : i′ = i}| satisfy
∑
i(k − i)si = m − k and∑

i si = s− 1. If T ∈ Tm,s(a), then T is fully specified by giving (s1, . . . , sk) and then choosing, for each

row 1 ⩽ i ⩽ k, the si values j ∈ JaiK such that (i, j) ∈ T . This gives the bound

|Tm,s(a)| ⩽
∑

s1,...,sk⩾0∑
i(k−i)si=m−k∑

i si=s−1

k∏
i=1

(
ai
si

)
,

which, together with (54), gives the assertion of the theorem.

Algorithm 1 takes an element H′ ∈ Cn,m(a;H) as input and returns a pair (e, T ) consisting of an edge

e ∈ E(H) and a subset T ⊆ I(a). We will argue that one can define emb as the function computed by

the algorithm. This requires showing the following:

(i) each step in the algorithm is well-defined and can indeed be carried out as described;

(ii) the pair (e, T ) computed by the algorithm belongs to E(H)× Tm,s(a);

(iii) the map H′ 7→ (e, T ) is injective.
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Algorithm 1: The algorithm defining emb
Data: A hypergraph H′ ∈ Cm,s(a;H), where H is a k-uniform hypergraph

Result: A pair (e, T ) consisting of an edge e ∈ H and a subset T ⊆ I(a)

1 fix a total ordering ⪯ on the edges of H;

2 for i ∈ JkK do

3 σ
(i)
1 ← the empty sequence (of edges of H);

4 end

5 e1 ← the ⪯-smallest edge of H′;

6 T1 ← ∅ ⊆ I(a);

7 for ℓ = 2, . . . , s do

8 for i ∈ JkK do

9 σ
(i)
ℓ ← σ

(i)
ℓ−1 ∥ (x1, . . . , xr), where ∥ denotes concatenation of finite sequences and

x1, . . . , xr are the elements of ∂(i)H (e1 ∪ · · · ∪ eℓ−1) \ σ(i)
ℓ−1 ordered according to ⪯;

10 end

11 (i, j)← the lexicographically largest (i, j) ∈ I(a) such that (σ
(i)
ℓ )j ∈ E(H′) \ {e1, . . . , eℓ−1};

12 eℓ ← (σ
(i)
ℓ )j ;

13 Tℓ ← Tℓ−1 ∪ {(i, j)};

14 end

15 return (e1, Tm)

A first glance at the definition of the algorithm reveals that, in addition to computing (e, T ), the

algorithm defines sequences (e1, . . . , es), (T1, . . . , Ts), and (σ
(i)
1 , . . . , σ

(i)
s ) for every i ∈ JkK. At this point,

we can already convince ourselves, using straightforward induction, that each eℓ is a distinct edge of H′,

each Tℓ is a subset of I(a), and each σ
(i)
ℓ is a finite sequence of distinct edges of H (however, one and

the same edge might belong to two different sequences σ(i)
ℓ and σ(i′)

ℓ ).

As far as the well-definedness of the algorithm is concerned, the only critical step is on line 11 of the

algorithm, where we need to show that at least one (i, j) ∈ I(a) with (σ
(i)
ℓ )j ∈ E(H′) \ {e1, . . . , eℓ−1}

exists. Since H′ is connected and ℓ ⩽ s = e(H′), there exists at least one edge in E(H′) \ {e1, . . . , eℓ−1}

that intersects e1 ∪ · · · ∪ eℓ−1, in i ∈ JkK vertices. Since σ(i)
ℓ contains all edges in ∂(i)H (e1 ∪ · · · ∪ eℓ−1) by

definition, there thus exists some j such that (σ
(i)
ℓ )j ∈ H′ \ {e1, . . . , eℓ−1}. It now suffices to show that

any such (i, j) belongs to I(a). To this end, observe that every edge in σ
(i)
ℓ belongs to ∂(i)H (e1 ∪ · · · ∪

eℓ−1) ∪ · · · ∪ ∂(k)H (e1 ∪ · · · ∪ eℓ−1), since at some (possibly earlier) iteration it must have intersected the

union of a prefix of (e1, . . . , eℓ−1) in i vertices. The assumption H′ ∈ Cm,s(a;H) then implies that σ(i)
ℓ

has length at most ai; so we have (i, j) ∈ I(a). Therefore, a pair (i, j) as on line 11 of Algorithm 1 really

exists, which shows that the algorithm is well-defined.
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We now show that the pair (e, T ) computed by Algorithm 1 belongs to E(H) × Tm,s(a). For this, it

is sufficient to show that for every 1 ⩽ ℓ ⩽ m, we have

|Tℓ| = ℓ− 1 and
∑

(i,j)∈Tℓ

(k − i) = |e1 ∪ · · · ∪ eℓ| − k.

Indeed, both statements are easily seen to hold for ℓ = 1. Using induction on ℓ, the first statement now

follows from the definition of Tℓ on line 13 and the fact that (σ
(i)
ℓ )j = eℓ /∈ {e1, . . . , eℓ−1}, which implies

that a different pair (i, j) is added on each iteration (since the sequences σ(i)
1 , . . . , σ

(i)
ℓ are each a prefix

of the next). For the second statement, we observe that the maximality of i on line 11, together with

the fact that σ(i)
ℓ contains all edges intersecting e1 ∪ · · · ∪ eℓ−1 in exactly i vertices, implies that the

edge eℓ intersects e1 ∪ · · · ∪ eℓ−1 in exactly i vertices. Thus, adding eℓ to the list of edges adds precisely

k − i =
∑

(i,j)∈Tℓ
(k − i)−

∑
(i,j)∈Tℓ−1

(k − i) new vertices to their union.

Finally, we show that the function computed by the algorithm is injective. To this end, suppose that

Algorithm 1 was run on two different hypegraphs H′, Ĥ′ ∈ Cm,s(a;H) and defined:

• sequences (eℓ)ℓ, (Tℓ)ℓ, and (σ
(i)
ℓ )ℓ for every i ∈ JkK while run on H′;

• sequences (êℓ)ℓ, (T̂ℓ)ℓ, and (σ̂
(i)
ℓ )ℓ for every i ∈ JkK while run on Ĥ′.

Since e1, . . . , es and ê1, . . . , ês are orderings of all edges of H′ and Ĥ′, respectively, they must differ

in at least one coordinate; let ℓ be the smallest such coordinate. If ℓ = 1, then e1 ̸= ê1 and the

two outputs are clearly different. We will thus assume that ℓ > 1. By the minimality of ℓ, we have

(e1, . . . , eℓ−1) = (ê1, . . . , êℓ−1). Observe that this implies that (T1, . . . , Tℓ−1) = (T̂1, . . . , T̂ℓ−1) and that

(σ
(i)
1 , . . . , σ

(i)
ℓ ) = (σ̂

(i)
1 , . . . , σ̂

(i)
ℓ ) for every i ∈ JkK.

Let (i, j) and (̂i, ĵ) be the pairs chosen in line 11 of the ℓ-th iteration of the main for loop during

the two respective executions of the algorithm. Since (σ
(i)
ℓ )j = eℓ ̸= êℓ = (σ̂

(̂i)
ℓ )ĵ = (σ

(̂i)
ℓ )ĵ , it must

be that (i, j) ̸= (̂i, ĵ); without loss of generality, we may assume that (i, j) is lexicographically larger.

This means that eℓ = (σ
(i)
ℓ )j = (σ̂

(i)
ℓ )j /∈ E(Ĥ′) \ {ê1, . . . , êℓ−1}, by maximality of (̂i, ĵ). Finally, since

(σ̂
(i)
ℓ′ )j = (σ̂

(i)
ℓ )j for every ℓ′ ⩾ ℓ, we may conclude that (i, j) cannot be added to T̂ℓ′ for any ℓ′ ⩾ ℓ. In

particular, as (i, j) /∈ Tℓ−1 = T̂ℓ−1, we conclude that (i, j) ∈ Ts \ T̂s. This completes the proof. □
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