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Abstract. A 0/1-polytope in Rn is the convex hull of a subset of {0, 1}n. The graph of

a polytope P is the graph whose vertices are the zero-dimensional faces of P and whose edges

are the one-dimensional faces of P . A conjecture of Mihail and Vazirani states that the edge

expansion of the graph of every 0/1-polytope is at least one. We study a random version of

the problem, where the polytope is generated by selecting vertices of {0, 1}n independently at

random with probability p ∈ (0, 1). Improving earlier results, we show that, for any p ∈ (0, 1),

with high probability the edge expansion of the random 0/1-polytope is bounded from below

by an absolute constant.

1. Introduction

A 0/1-polytope in Rn is the convex hull of a subset of {0, 1}n, i.e., a polytope whose vertices

have all coordinates either 0 or 1. These polytopes are the central object of study in polyhedral

combinatorics, due to their connections to linear programming and combinatorial optimization.

Most of these connections arise from the ability to encode combinatorial objects via characteristic

vectors. To be more precise, given a set systemA with a ground set of size n, one can consider the

associated 0/1-polytope, which is the convex hull of the characteristic vectors of all the elements

of A. For many combinatorial objects (e.g., matchings, matroids, order ideals, independent

sets), interesting structural properties can be expressed as geometric properties of the associated

polytopes.

For a polytope P , the graph GP of P is the graph whose vertices are the zero-dimensional

faces of P and whose edges are the one-dimensional faces of P . Several properties of the graph

of 0/1-polytopes have been studied in the past [2, 8, 20–22]. Here we focus on their expansion.

For a graph G with vertex set V , we define the edge expansion of G (also known as the Cheeger

constant of G) by

h(G) := min

{
e(S, V \ S)

|S|
: S ⊆ V and 1 ≤ |S| ≤ |V |

2

}
.

It is well known (see, e.g., [13, 18]) that if G is the graph of a 0/1-polytope whose vertices

have degree bounded by a polynomial in n, then a lower bound on the Cheeger constant of G

translates to an upper bound on the mixing time of a random walk on G. Performing random

walks on the graphs of 0/1-polytopes can be used to uniformly generate random elements in

classes of combinatorial objects. In many cases, this allows us to design randomized algorithms

that approximately count the number of objects; the running time of such algorithms is inversely

proportional to the Cheeger constant of the graph of the underlying 0/1-polytope. For instance,
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this method was used by Jerrum, Sinclair, and Vigoda [12, 14] to design a polynomial-time

approximation algorithm for computing the permanent of a matrix with nonnegative entries.

Inspired by these connections, Mihail and Vazirani [6, 18] made the following conjecture about

the edge expansion of the graph of an arbitrary 0/1-polytope. A proof of this conjecture would

have many important applications to the analysis of randomized algorithms [6,7, 15].

Conjecture 1.1. Every 0/1-polytope P satisfies h(GP ) ≥ 1.

In other words, Conjecture 1.1 states that the Cheeger constant of every 0/1-polytope is at

least as large as that of the hypercube, as it is well known [3,9,10,17] that h(Qn) = 1 for all n, see

Theorem 4.2 below. The conjecture has been verified for a variety of polytopes associated with

combinatorial objects, such as perfect matching polytopes, order ideal polytopes, and matroid

polytopes [15, 19]. In a recent breakthrough, Anari, Liu, Gharam, and Vinzant [1] showed

that the conjecture holds for matroid base polytopes, i.e., any 0/1-polytope associated with a

matroid. Despite this progress, Conjecture 1.1 remains wide open for general 0/1-polytopes.

Another special class of polytopes, and perhaps an interesting intermediate step in this con-

text, is that of random polytopes. Let Qn := {0, 1}n be the n-dimensional hypercube. We

consider the following model of random 0/1-polytopes: Given p ∈ (0, 1), let U be a random

subset of Qn, where each element is selected independently with probability p. We define the

random polytope Pn,p to be the convex hull of U ⊆ {0, 1}n. The problem of estimating the

expansion of Pn,p was introduced by Gillmann [7]. In recent work, Leroux and Rademacher

[16] showed for every p ∈ (0, 1) that, with high probability1, the graph of the polytope Pn,p has

expansion at least 1/(12n). Our main result is an improvement of this bound to a constant.

Theorem 1.2. There exist absolute constants β, η > 0 such that the following holds for suf-

ficiently large n. If p = p(n) ≥ 2−0.99n, then whp the graph G of Pn,p satisfies h(G) ≥ β;

moreover, for every A ⊆ V (G) with |A| ≤ η|V (G)|, we have e(A, V (G) \A) ≥ |A|.

Note that Theorem 1.2 does not apply when the density p is very small. To complement this,

we use a result of Bondarenko and Brodskii [4], which states that for p ≤ 2−5n/6, the polytope

graph is, with high probability, a clique. For the sake of completeness, we include a short proof

of a weaker version of this result.

Proposition 1.3. For any ε > 0, if p = p(n) ≤ cn for c < 7−1/3, then whp the graph G of Pn,p

is complete and thus h(G) ≥ |Pn,p| − 1.

2. Preliminaries

2.1. Proof overview. In this section, we describe our proof strategy for Theorem 1.2. For the

sake of clarity and comparison purposes, we will first briefly describe the approach developed in

[16]. Given d < n, let π : Qn → Qd be the projection onto the first d coordinates. Note that the

projection π naturally partitions Qn into 2d disjoint preimages of size 2k, where k := n−d. This

fact implies that, for sufficiently large k, we have whp that the random polytope P := Pn,p ⊆ Qn

projects in a balanced way onto the full hypercube, i.e., π(P ) = Qd, and the size of each fiber

P ∩ π−1({x}) concentrates around its mean p2k, simultaneously for all x ∈ Qd.

1An event A, or rather a sequence (An) of events indexed by the dimension n, happens with high probability (whp
for short) if the probability of An tends to one as n tends to infinity.
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Given a set A ⊆ P , one can classify the fibers of all vertices of Qd into three types: the

subset U ⊆ Qd of those fully occupied by elements of A, the subset M ⊆ Qd of those partially

occupied by elements of A, and the fibers that are disjoint from A. The heart of [16] is a

projection lemma that ensures that either there are many edges in EGP
(A,Ac) coming from the

fibers in M , or there are many edges from U to U c. The latter relies on the fact that the set

U has good expansion in Qd and that π(P ) = Qd. Unfortunately, the resulting bound on the

expansion of GP is inversely proportional to p2k, which is chosen to be Ω(d) in order to ensure

that π(P ) = Qd.

In the proof of Theorem 1.2, to achieve constant edge expansion, we select k := n − d such

that p2k is an absolute constant. This choice introduces several challenges whose overcoming

requires new ideas. First, since the projection R := π(P ) is no longer the full hypercube, the

projection lemma from [16] can no longer be used. To overcome this, we develop a more general

projection lemma (see Lemma 2.7) that allows us to obtain a lower bound on eGP
(A,Ac) in

terms of the edge expansion of the projected polytope R. Second, since p2k is a constant,

one cannot ensure that the projection is balanced, requiring a much more careful analysis of

the typical projection of P (see Section 5.1). Finally, since we cannot rely on the hypercube’s

strong expansion properties, we establish a new edge-isoperimetric inequality tailored for very

dense random 0/1-polytopes (see Theorem 4.1). This last result is perhaps the main technical

contribution of our work.

The paper is organized as follows. In the remainder of Section 2, we introduce the proba-

bilistic and geometric tools used throughout the paper. In particular, Section 2.4 contains the

proof of our version of the projection lemma. The short Section 3 is dedicated to the proof

of Proposition 1.3. In Section 4, we establish an edge-isoperimetric inequality for very dense

polytopes, while Section 5 presents the proof of Theorem 1.2.

2.2. Concentration. We shall use the following well-known estimate for tail probabilities of

binomial random variables (see, e.g., [11, Theorem 2.1]).

Theorem 2.1. For every positive integer n and all p ∈ [0, 1] and all α ≥ 0,

P
(
Bin(n, p) ≥ (1 + α)np

)
≤ exp

(
−np · ((1 + α) log(1 + α)− α)

)
≤ exp

(
− α2np

2(1 + α)

)
.

In particular, for every ℓ ≥ enp,

P
(
Bin(n, p) ≥ ℓ

)
≤ exp

(
−ℓ · log

(
ℓ

enp

))
.

In addition, we shall use the following tail estimate for the distance of the cumulative distri-

bution function of a random variable Y from its empirical counterpart determined by a sequence

of independent copies of Y due to Dvoretzky, Kiefer, and Wolfowitz [5].

Theorem 2.2 (DKW Inequality). Suppose that Y1, . . . , Yn is a sequence of i.i.d. real-valued

random variables and let Dn : R → [0, 1] be the associated empirical distribution function, i.e.,

Dn(y) :=
1

n

n∑
i=1

1Yi≤y.
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Then, for every ε > 0,

P

(
sup
y∈R

∣∣Dn(y)− P(Y1 ≤ y)
∣∣ > ε

)
≤ 2 exp(−2ε2n).

Finally, we will need the following technical estimate that quantifies the fact that the binomial

distribution is tightly concentrated around its mean.

Lemma 2.3. There exists an absolute constant t0 such that the following holds. Suppose that

a positive integer n and p ∈ [0, 1] satisfy t := np ≥ t0 and let T ∼ Bin(n, p). Then, for every

integer m such that P(T ≤ m+ 1) ≥ 3/5, we have E[T · 1T≤m] ≥ 5t/9.

Proof. Let m be an integer satisfying P(T ≤ m+ 1) ≥ 3/5 and observe that

t− E[T · 1T≤m] = E[T · 1T>m] ≤ t ·
(
P(T > m) +

∫ ∞

0
P
(
T ≥ (1 + x)t

)
dx

)
.

Since, for some absolute constant C,

P(T > m) = P(T > m+ 1) + P(T = m+ 1) ≤ 2/5 + C/
√
t

and, by Theorem 2.1,∫ ∞

0
P
(
T ≥ (1 + x)t

)
dx ≤

∫ ∞

0
exp

(
− x2t

2(1 + x)

)
dx ≤ C√

t
,

we may conclude that E[T · 1T≤m] ≥ 5t/9 whenever t ≥ t0 for sufficiently large constant t0. □

2.3. Geometry of polytopes. We now introduce our notation for polytopes and present sev-

eral geometric results that will be useful throughout the paper. We refer the reader to [23, 24]

for a comprehensive introduction to convex polytopes and 0/1-polytopes.

A subset P ⊆ Rn is a polytope if it is the convex hull of a finite subset of points in Rn. We

say that P is a k-dimensional polytope, and write dimP = k, if the affine subspace spanned by

P has dimension k. A subset F ⊆ P is a face of P if there exists a vector c ∈ Rn and a real

number γ ∈ R such that c⊤x ≤ γ for every x ∈ P and

F = {x ∈ P : c⊤x = γ}, (1)

i.e., there exists an affine subspace separating F from P . It is not difficult to check that a face

of P is also a polytope. A face of dimension ℓ is called an ℓ-face. The 0-faces of a polytope P

are called the vertices of P , while its 1-faces are the edges of P . Throughout the paper, we will

often identify a polytope with its set of vertices, since the latter determines the entire polytope.

Given a polytope P , we define its graph GP as the graph whose vertices are the 0-faces

(vertices) of P , and whose edges are the 1-faces (edges) of P . The following result is standard

and can be found in [23].

Proposition 2.4 ([23]). The following holds for every polytope P :

(i) The graph GP is connected.

(ii) If F ⊆ P is a face of P , then GF = GP [F ], i.e., the vertices/edges of F are exactly the

vertices/edges of P contained in F .

We will also use the following geometric observation, whose proof can be found in [16].
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Proposition 2.5 ([16, Proposition 6]). If P ⊆ Rn is a d-dimensional polytope, then for any

vertex v ∈ P , the set of edges incident to v is not contained in any (d − 1)-dimensional affine

subspace.

Recall that Qn is the n-dimensional hypercube with vertex set {0, 1}n. In this paper, we will

often be interested in analyzing the edges of a polytope P ⊆ Qn. It is not hard to check that

GQn [P ] ⊆ GP , i.e., an edge of the hypercube Qn whose both endpoints are vertices of P is also

an edge of P . However, unlike in Proposition 2.4 (ii), there may be new edges in GP that were

not previously in GQn . We conclude this section by giving a sufficient condition for the existence

of such new edges.

Proposition 2.6. Given integers 1 ≤ k ≤ n, let P ⊆ Qn be a polytope, let F ⊆ Qn be a k-face

of Qn, and let x, y ∈ P ∩ F be two vertices at Euclidean distance
√
k. If there is a (k − 1)-face

F ′ ⊆ F such that P ∩ F ′ = {x}, then {x, y} ∈ GP .

Proof. Suppose without loss of generality that x is the zero vector and y = (y1, . . . , yn), where

yi = 1 for 1 ≤ i ≤ k and yi = 0 for k + 1 ≤ i ≤ n, and that the (k − 1)-face F ′ is described by

F ′ =
{
(z1, . . . , zn) : zi = 0 for k ≤ i ≤ n

}
.

Let c = (c1, . . . , cn) be the vector given by ci := 1 if 1 ≤ i ≤ k − 1, ck := −(k − 1), and

ci := −n for k + 1 ≤ i ≤ n. One can easily check that cTx = cT y = 0 and that cT z < 0 for all

z ∈ Qn \ (F ′ ∪{y}) ⊇ P \ {x, y}. In other words, {z : cT z = 0} is a hyperplane separating {x, y}
from the rest of the polytope and thus {x, y} is an edge of P . □

x

y
y

x

Figure 1. An example of Proposition 2.6 for 2-faces and 3-faces. The vertices
in red are the vertices in P . The face F ′ is the face containing x and all black
vertices.

2.4. Projection lemma. We devote this subsection to proving our projection lemma. Before

stating the lemma, we introduce some notation. Let d < n be integers. Consider the map

π : Qn → Qd projecting the points of Qn onto the first d coordinates. For a 0/1-polytope

P ⊆ Qn, let R := π(P ) be the projection of P on Qd. Furthermore, for every x ∈ Qd, let

Px := π−1({x}) ∩ P be the fiber of x in P . Given a set A ⊆ P , write Ac := P \A and define

B := π(A) = {x ∈ Qd : Px ∩A ̸= ∅},

U = Uπ(A) := {x ∈ Qd : Px ⊆ A},

M = Mπ(A) := {x ∈ Qd : Px ∩A ̸= ∅ and Px ∩Ac ̸= ∅}.

(2)

In other words, the set B is the projection of A in R, the set U is the subset of vertices of

R where all the elements projected from P are in A, and M is the subset of vertices of R that
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contain elements projected from both A and Ac. Note that M = B \ U . We are now able to

state the lemma.

Lemma 2.7. Let A ⊆ P , and let R, B, and M be the sets defined above. We have

eGP
(A,Ac) ≥ max

{
|M |, eGR

(B,Bc)
}
.

We remark that Lemma 2.7 is similar to the projection lemma in [16]. However, because R is

not necessarily the hypercube Qd, our statement is slightly more technical. We start with the

following geometric observation about projections.

Claim 2.8. If F ⊆ R is a face of R, then the set π−1(F ) ∩ P is a face of P .

Proof. Since F is a face of R, by definition, there exists a vector c ∈ Rd and γ ∈ R such that

cTx ≤ γ for every x ∈ R, with equality holding if and only if x ∈ F . Let c̃ := (c, 0⃗) ∈ Rn, where

0⃗ is the zero vector in Rn−d and let z ∈ P be arbitrary. We have c̃T z = cTπ(z) ≤ γ and equality

holds if and only if π(z) ∈ F , that is, if and only if z ∈ π−1(F ). This implies that π−1(F ) ∩ P

is a face of P . □

Proof of Lemma 2.7. We prove the lemma by showing the two estimates separately. To see the

first inequality, note that Claim 2.8 implies that Px is a face of P for every x ∈ R. Further,

Proposition 2.4 asserts that GPx = GP [Px], and thus GPx ⊆ GP . As for every x ∈ M , the face

Px contains vertices from both A and Ac, the connectedness of GPx , asserted by Proposition 2.4,

implies that GPx , and thus also GP , must contain an edge between A and Ac. Finally, since the

graphs GPx , with x ∈ R, are pairwise disjoint, we conclude that eGP
(A,Ac) ≥ |M |.

For the second inequality, we will show that, for every edge {x, y} ∈ GR with x ∈ B and

y ∈ Bc, there is a corresponding edge {x′, y′} ∈ GP with x′ ∈ Px ∩ A and y′ ∈ Py ∩ Ac. By

Claim 2.8, the set Pxy := π−1({x, y}) ∩ P is a face of P and GPxy ⊆ GP , by Proposition 2.4.

Moreover, Pxy = Px ∪Py and dimPx,dimPy < dimPxy. Hence, by Proposition 2.5, each vertex

of Py has at least one neighbor in Px in the graph GPxy . Since Px ∩ A ̸= ∅ and Py ⊆ Ac,

we may let x′ ∈ Px ∩ A be arbitrary and y′ be one of its neighbors in Py. Finally, since

the bipartite graphs GP [Px, Py], with x, y ∈ R, are pairwise disjoint, we may conclude that

eGP
(A,Ac) ≥ eGR

(B,Bc). □

3. The sparse case

We now turn our attention to the proof of Proposition 1.3. First, we remind the reader of the

following natural representation of set systems as polytopes: To each set A ⊆ [n], we associate

the characteristic vertex 1A ∈ Qn given by

1A(i) =

1, if i ∈ A

0, if i /∈ A.

More generally, given a set system Ω ⊆ 2[n], we define the characteristic polytope of Ω by

PΩ := {1A : A ∈ Ω}. The main ingredient of the proof of Proposition 1.3 is the following

observation.

Lemma 3.1. If Ω ⊆ 2[n] is a set system with the property that C ⊈ A ∪ B for all distinct

A,B,C ∈ Ω, then the graph GPΩ
of the polytope PΩ is complete.
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Proof. Suppose that Ω is a set system satisfying the hypothesis of the lemma. Since the state-

ment trivially holds if |Ω| ≤ 1, we may assume that Ω has at least two elements. Let A,B ∈ Ω

be any two distinct elements and let c := −1(A∪B)c . The definition of c yields c⊤1A = c⊤1B = 0

while cT1C < 0 for every C ∈ Ω \ {A,B}, as our hypothesis implies that C ∩ (A ∪ B)c ̸= ∅.
In other words, the hyperplane {x : cTx = 0} separates {1A,1B} from the remainder of PΩ.

This means that 1A and 1B form an edge of PΩ. Since A and B were chosen arbitrarily, GPΩ
is

complete. □

The proof of Proposition 1.3 now follows from a first-moment argument.

Proof of Proposition 1.3. Let Ω ⊆ 2[n] be a random set system obtained by selecting every set

A ∈ 2[n] independently with probability p; clearly, PΩ ∼ Pn,p. In view of Lemma 3.1, we

just need to prove that, with high probability, the random set system Ω has the property that

C ⊈ A ∪B for all distinct A,B,C ∈ Ω.

To this end, define

T := {(A,B,C) ∈ (2[n])3 : C ⊆ A ∪B}

and note that |T | = 7n as (A,B,C) ∈ T if and only if
(
1A(i),1B(i),1C(i)

)
̸= (0, 0, 1) for all

i ∈ [n]. Hence, the expected number of triples in T ∩ Ω3 satisfies

E
(
|T ∩ Ω3|

)
= p3|T | = p37n = o(1),

by our assumption on p. By Markov’s inequality, the set system Ω has no triple (A,B,C) ∈ T ,

that is, Ω satisfies the hypothesis of Lemma 3.1, with high probability. □

4. The very dense case

The main goal of this section is to prove that very dense random 0/1-polytopes typically have

graphs with constant edge expansion. More precisely, we will show the following statement.

Theorem 4.1. Suppose that t ≥ 4 and R ∼ Pd,q for some q ≥ 1 − e−t. Then, with high

probability, for every B ⊆ R with |B| ≤ 3/4 · 2d, we have

eGR
(B,Bc) ≥ |B|

8
log2

(
2d

|B|

)
.

The proof will use the fact that the dense random polytope R is still very close to Qd, and

therefore partially inherits its edge expansion properties. The edge-isoperimetric inequality for

the hypercube was proved by Harper [9] and later reproved by several authors [3, 10,17].

Theorem 4.2 ([9]). For all d ≥ 1 and all C ⊆ Qd, we have

eQd(C,Cc) ≥ |C| log2
(

2d

|C|

)
.

Note that Theorem 4.1 can be seen as an edge-isoperimetric inequality for very dense random

subpolytopes of Qd, where we relax the condition of being a hypercube at the cost of obtaining

a worse constant.

4.1. Pseudorandom properties of R. We start by defining pseudorandom properties of the

polytope R that are sufficient to guarantee good edge expansion. Throughout the rest of the

section, we will write N := 2d. Moreover, for a vertex x ∈ Qd and a subset C ⊆ Qd, we will

denote by degQd(x,C) := |NQd(x) ∩ C| the number of neighbors x has in C.
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Definition 4.3. Given a 0/1-polytope R ⊆ Qd and a real number ε > 0, we say that R is ε-good

if R satisfies the following properties:

(R1) For every vertex x ∈ R, we have degQd(x,R) > (1− ε)d.

(R2) For every set C ⊆ Qd of size |C| ≥ N/20, we have |C ∩R| ≥ N/40.

Our first observation is that basic properties of the binomial distribution give that whp a very

dense random polytope R is ε-good.

Proposition 4.4. Let t ≥ 4, and let R ⊆ Qd be a random polytope whose vertices are chosen

independently with probability q ≥ 1− e−t. Then, with high probability, the polytope R is (2/t)-

good.

Proof. Since the degree of every vertex x ∈ Qd in the random set R follows the binomial

distribution Bin(d, q), we have

P
(
degQd(x,R) ≤ (1− 2/t)d

)
≤
(

d

2d/t

)
(1− q)2d/t ≤

(
et

2

)2d/t

e−2d ≤ e−d,

where we used our assumptions that 1 − q ≤ e−t and t ≥ 4. By the union bound, R violates

(R1) with probability at most Ne−d = o(1). Further, since whp

|Rc| ≤ (1− q + o(1)) ·N ≤ (e−t + o(1)) ·N ≤ N/40,

for every C ⊆ Qd with |C| ≥ N/20, we have |C ∩R| ≥ |C| − |Rc| ≥ N/20, proving (R2). □

4.2. Deterministic Lemma. In this subsection, we present the main technical result of the

paper. Given an ε-good polytope R ⊆ Qd and a set B ⊆ R, our goal is to find a good lower

bound on eGR
(B,Bc). Before stating the lemma precisely, we define the following subsets of

vertices in Qd:

S := S(B, ε) = {x ∈ Qd \B : degQd(x,B) ≤ (1− 2ε)d},

L := L(B, ε) = {x ∈ Qd \B : degQd(x,B) > (1− 2ε)d}, (3)

X := X(B, ε) = {x ∈ Qd \ (B ∪ L) : degQd(x, L) > 0}.

That is, S is the set of vertices with small degree into B, L is the set of vertices with large

degree into B, and X is the set of vertices not in B that have a neighbor in L (note that S and

X are not necessarily disjoint). Moreover, note that the values of S, L, and X depend only on

the set B and the hypercube Qd, but not on the polytope R. Our main deterministic lemma is

stated as follows.

Lemma 4.5. Let ε ∈ (0, 1/4), and suppose that R ⊆ Qd is ε-good. Then, for any B ⊆ R,

eGR
(B,Bc) ≥ max

{
eQd(B,S)

2
,
eQd(L,X)

4

}
,

provided that d is sufficiently large (as a function of ε only).

Proof. We start by noticing that every vertex x /∈ B ∪ L has many Qd-neighbors in R \B.

Claim 4.6. If x /∈ B ∪ L, then degQd(x,R \B) ≥ εd.

Proof. Since R is ε-good and x /∈ B ∪ L, we have

degQd(x,R \B) ≥ degQd(x,R)− degQd(x,B) ≥ (1− ε)d− (1− 2ε)d = εd,
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as desired. □

We now prove each inequality in the statement separately.

Claim 4.7. eGR
(B,Bc) ≥ eQd(B,S)/2.

Proof. In order to prove the asserted inequality, it suffices to construct a map Ψ1 : EQd(B,S) →
EGR

(B,Bc) satisfying |Ψ−1
1 (e)| ≤ 2 for all e. First, for each s ∈ S, let ϕ(s) ∈ R ∩ Bc be an

arbitrary vertex such that {s, ϕ(s)} ∈ E(Qd); the existence of such a vertex is guaranteed by

Claim 4.6. Now, fix some b ∈ B and s ∈ S that are adjacent in Qd (Figure 2). Since ϕ(s) /∈ B,

we have ϕ(s) ̸= b and, consequently, distQd(b, ϕ(s)) = 2. Let F2 be the unique 2-face of Qd

containing the vertices {b, s, ϕ(s)}. There are two possibilities:

b ∈ R ∩B

s ∈ Bc ϕ(s) ∈ R ∩Bc

Figure 2. The 2-face F2 containing {b, s, ϕ(s)}.

(i) s ∈ R: The edge {b, s} is an edge of GR from B to Bc. We set Ψ1({b, s}) := {b, s}.
(ii) s /∈ R: Proposition 2.6 with k = 2, F = F2, and F ′ = {b, s} yields that {b, ϕ(s)} ∈

E(GR). We set Ψ1({b, s}) := {b, ϕ(s)}.
Let {u, v} be an edge in the image of Ψ1. To show that |Ψ−1

1 ({u, v})| ≤ 2, we consider

two cases. If distQd(u, v) = 1, then Ψ−1
1 ({u, v}) = {{u, v}}. Otherwise, if distQd(u, v) = 2,

we have {u, v} = {b, ϕ(s)} for some s ∈ S that is a common neighbor of both u and v; thus

|Ψ−1
1 (u, v)| ≤ 2. This concludes the proof. □

The proof of the second inequality is similar but slightly more technical.

Claim 4.8. eGR
(B,Bc) ≥ eQd(L,X)/4.

Proof. Let C be the family of ordered 2-faces (y1, y2, y3, y4) of Q
d that satisfy:

(a) {y1, y2}, {y2, y3}, {y3, y4}, and {y1, y4} are edges of Qd and

(b) y1 ∈ B, y2 ∈ L, and y3 ∈ X

and observe that

|C| =
∑

y2y3∈E(Qd)
y2∈L,y3∈X

degQd(y2, B) ≥ eQd(L,X) · (1− 2ε)d ≥ d

2
· eQd(L,X), (4)

where we used that degQd(y2, B) ≥ (1− 2ε)d for y2 ∈ L, see (3). In order to prove the asserted

inequality, it thus suffices to construct a map Ψ2 : C → EGR
(B,Bc) with |Ψ−1

2 (e)| ≤ 2d for all e.

To this end, for each face C = (y1, y2, y3, y4) ∈ C, let ϕ(C) ∈ Bc ∩ R be a vertex such that

{y3, ϕ(C)} ∈ E(Qd) and ϕ(C) /∈ {y2, y4} (Figure 3; the existence of such a vertex is guaranteed

by Claim 4.6, as X ⊆ (B ∪L)c, provided that d is sufficiently large as a function of ε. Note that

distQd(y1, ϕ(C)) = 3, and let C̃ be the unique 3-face of Qd that contains both C and ϕ(C).

There are several possibilities:
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ϕ(C)

y3

y1 y4

y2

Figure 3. The 3-face C̃ containing C = {y1, y2, y3, y4} and ϕ(C).

(i) y2 ∈ R: The edge {y1, y2} belongs to EGR
(B,Bc). We set Ψ2(C) := {y1, y2}.

(ii) y2 /∈ R, y3 ∈ R: Proposition 2.6 with k = 2, F = C, and F ′ = {y1, y2} yields that

{y1, y3} ∈ E(GR). We set Ψ2(C) := {y1, y3}.
(iii) y2, y3 /∈ R, y4 ∈ R ∩Bc: The edge {y1, y4} belongs to EGR

(B,Bc). We set Ψ2(C) :=

{y1, y4}.
(iv) y2, y3 /∈ R, y4 ∈ R ∩B: Let F be the unique 2-face containing both y4 and ϕ(C). Propo-

sition 2.6 with k = 2, F defined above, and F ′ = {y3, y4} yields that {y4, ϕ(C)} ∈ E(GR).

We set Ψ2(C) := {y4, ϕ(C)}.
(v) y2, y3, y4 /∈ R: Proposition 2.6 with k = 3, F = C̃, and F ′ = C yields that {y1, ϕ(C)} ∈

E(GR). We set Ψ2(C) := {y1, ϕ(C)}.
Let {u, v} be an edge in the image of Ψ2. To show that |Ψ−1

2 ({u, v})| ≤ 2d, as in the previous

proof, we consider several cases, depending on the distance between u and v.

If distQd(u, v) = 1, then either {u, v} = {y1, y2} or {u, v} = {y1, y4}. In each of the two

subcases, there are at most d − 1 choices for y3 (which then determines the remaining of C).

Thus, |Ψ−1
2 ({u, v})| ≤ 2(d− 1).

If distQd(u, v) = 2, then either {u, v} = {y1, y3} or {u, v} = {y4, ϕ(C)}. In the first subcase,

there are at most two ways to choose the ordered face C (since there is only one 2-face containing

{y1, y3}). In the latter subcase, there are two choices for the vertex y3 (the common neighbors of

y4 and ϕ(C)) and, for each of those, at most d−2 choices for y2, which then uniquely determines

C. Thus, |Ψ−1
2 ({u, v})| ≤ 2 + 2(d− 2) ≤ 2d.

Finally, if distQd(u, v) = 3, we have {u, v} = {y1, ϕ(C)}. There is a unique 3-face C̃ that

contains both u and v and two choices to decide which of those two vertices is y1. Finally, there

are 6 further choices for an ordered face C that contains y1. This implies that |Ψ−1
2 ({u, v})| ≤

12 ≤ 2d. □

The proof of the lemma now follows by combining the last two claims. □

4.3. Proof of Theorem 4.1. We are now able to prove the main theorem of this section. Note

that the next theorem, combined with Proposition 4.4, implies Theorem 4.1.

Theorem 4.9. Let ε ∈ (0, 1/4), let d ≥ 10, and suppose that R ⊆ Qd is ε-good. Then, for every

B ⊆ R with |B| ≤ 3N/4,

eGR
(B,Bc) ≥ |B|

8
log2

(
N

|B|

)
.

Proof. Fix some B ⊆ R with |B| ≤ 3N/4 and let S, L, and X be the sets defined as in (3). We

consider two cases, depending on the size of L.
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Case 1: |L| ≥ N/20.

Since R is ε-good, by property (R2), we have that |L ∩ R| ≥ N/40. Since GQd [C ∩ R] ⊆
GR[C ∩R] for every C ⊆ Qd, we obtain that

eGR
(B,Bc) ≥ eQd(B,L ∩R) ≥ |L ∩R| · (1− 2ε)d ≥ dN

80
≥ N

8
≥ |B|

8
log2

(
N

|B|

)
,

where we used that degQd(y,B) ≥ (1− 2ε)d for every y ∈ L as well as the assumption on d.

Case 2: |L| < N/20.

B

S

L

X

D
Dc

Figure 4. The sets B, D, L, S and X and the edges from eGd
Q
(D,Dc) in red.

Let D := B ∪ L, and note that eQd(D,Dc) = eQd(B,S) + eQd(L,X) (Figure 4). Lemma 4.5

and the edge-isoperimetric inequality for Qd (Theorem 4.2) imply that

eGR
(B,Bc) ≥ max

{
eQd(B,S)

2
,
eQd(L,X)

4

}
≥

eQd(D,Dc)

6
≥ |D|

6
log2

(
N

|D|

)
. (5)

Finally, define the function f : [0, N ] → [0,∞) by f(x) := x log2(N/x) and note that f is concave

and positive. Therefore, the function f(x + a)/f(x) is decreasing for a > 0. Since |B| ≤ 3N/4

and |B| ≤ |D| ≤ |B|+ |L| ≤ |B|+N/20, we have

f(|D|) = f(|D|)
f(|B|)

· f(|B|) ≥ f(3N/4 + |D| − |B|)
f(3N/4)

· f(|B|) ≥ 4f(|B|)
5

.

Using (5), we may finally conclude that

eGR
(B,Bc) ≥ f(|D|)

6
≥ f(|B|)

8
=

|B|
8

log2

(
N

|B|

)
,

as desired. □
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5. The general case

In this section, we prove Theorem 1.2. As previously discussed in the proof overview, our

approach is to project the random polytope P onto its first d coordinates, where d is chosen

such that p2n−d is a sufficiently large constant. The projected polytope R will have good edge

expansion by Theorem 4.1. This, together with the projection lemma (Lemma 2.7), will yield

our desired bounds. We now proceed to the details.

5.1. Random Properties of the Projection. Let P ∼ Pn,p and let d be the unique integer

such that

max{8, t0} ≤ t := p2n−d < 2max{8, t0}, (6)

where t0 is the constant from the assertion of Lemma 2.3. Note that our assumption that

p ≥ 2−0.99n implies that

n/200 ≤ d < n (7)

for sufficiently large n. As usual, let π : Qn → Qd denote the projection onto the first d coordi-

nates, let

N := 2d,

and let R := π(P ) be the projected polytope. For each nonnegative integer ℓ, let Xℓ denote the

set of all x ∈ Qd whose fiber has size ℓ and let ξℓ be the probability that a given vertex of Qd

belongs to Xℓ, i.e.,

Xℓ := {x ∈ Qd : |Px| = ℓ} and ξℓ := P
(
Bin(2n−d, p) = ℓ

)
. (8)

Further, for every L ≥ 0, denote

X≤L :=
⋃
ℓ≤L

Xℓ and ξ≤L :=
∑
ℓ≤L

ξℓ.

We now describe the random properties necessary for the proof.

Proposition 5.1. With high probability, P has the following properties:

(P1) |P | = (1 + o(1)) · p2n = (1 + o(1)) · t2d;
(P2) For every L ≥ 0,

∣∣|X≤L| − ξ≤L ·N
∣∣ ≤ N2/3.

(P3) |Xℓ| ≤ N · (2et/ℓ)ℓ for every ℓ ≥ 2et;

(P4) R = π(P ) is (2/t)-good;

Proof. To see (P1), note that, by our assumption on p, we have E[|P |] = p2n ≥ 20.01n and that

Var(|P |) = p(1− p)2n ≤ p2n. Therefore, by Chebyshev’s inequality, for every δ > 0,

P
(∣∣|P | − p2n

∣∣ > δp2n
)
≤ 1

δ2p2n
.

To see that the remaining three properties hold whp, observe first that the random variables

{|Px|}x∈Qd are independent and follow the binomial distribution Bin(2n−d, p). In view of this,

property (P2) is an immediate consequence of Theorem 2.2.

To see (P3), observe that ξℓ ≤ (et/ℓ)ℓ for all ℓ ≥ 2et, by Theorem 2.1. If ℓ ≤ d
5 log d , say, it

follows from (P2) that with high probability

|Xℓ| ≤ N · ξℓ + 2N2/3 ≤ N ·

((
et

ℓ

)ℓ

+ 21−d/3

)
≤ N ·

(
2et

ℓ

)ℓ

.



ON THE EDGE EXPANSION OF RANDOM POLYTOPES 13

Otherwise, if ℓ > d
5 log d , then we may simply use Markov’s inequality to deduce that

P

(
|Xℓ| ≥ N ·

(
2et

ℓ

)ℓ
)

≤ E[|Xℓ|]
N · (2et/ℓ)ℓ

=
N · ξℓ

N · (2et/ℓ)ℓ
≤ 2−ℓ.

and apply the union bound over all ℓ > d
5 log d to conclude that |Xℓ| ≤ N · (2et/ℓ)ℓ with high

probability.

Finally, to see (P4), note that x ∈ R if and only if |Px| > 0 and thus R is a (1− ξ0)-random

subset of Qd. Since ξ0 = (1−p)2
n−d ≤ e−p2n−d ≤ e−t, we may invoke Proposition 4.4 to conclude

that R is (2/t)-good with high probability. □

5.2. Proof of Theorem 1.2. In this subsection, we present the proof of Theorem 1.2. Let P ,

R, d, t, and π be defined as in Section 5.1 and assume that P has properties (P1)–(P4) from

Proposition 5.1. Fix some set A ⊆ P and and let B, U , and M be defined as in (2), i.e.,

B := π(A) = {x ∈ Qd : Px ∩A ̸= ∅},

U = Uπ(A) := {x ∈ Qd : Px ⊆ A},

M = Mπ(A) := {x ∈ Qd : Px ∩A ̸= ∅ and Px ∩Ac ̸= ∅}.

If t were a sufficiently large function of n, concentration inequalities would guarantee that

whp all fibers have sizes close to t. In particular, this would imply that |A| ≤ (1 + o(1))t|B|
and that |U | ≤ (1 + o(1))|A|/t ≤ (1/2 + o(1))N . However, our t is a constant independent of n,

so we cannot draw such conclusions easily. Nevertheless, one can still obtain a slightly weaker

upper bound on |U | and a relatively good lower bound on the ratio |B|/|A|.

Claim 5.2. If |A| ≤ |P |/2, then |U | ≤ 3N/5.

Proof. Suppose that |U | > 3N/5 and observe that

|A| ≥
∑
x∈U

|Px| =
∑
ℓ≥1

ℓ · |Xℓ ∩ U | ≥
m∑
ℓ=1

ℓ · |Xℓ|,

where m is the largest integer such that |X≤m| ≤ 3N/5. Let T ∼ Bin(2n−d, p). Property (P2)

and the maximality of m imply that

P(T ≤ m) = ξ≤m ≤ 3/5 + o(1) and P(T ≤ m+ 1) = ξ≤m+1 ≥ 3/5− o(1),

so in particular m ≤ 3t, as P(T > 3t) ≤ 1/3. Finally, by Lemma 2.3 and (6),

m∑
ℓ=1

ℓ · |Xℓ| ≥
m∑
ℓ=1

ℓ · ξℓ ·N − o(mN) = E[T · 1T≤m] ·N − o(tN) ≥ 5Nt/9− o(tN),

which implies that |A| > |P |/2. □

Claim 5.3. For every A ⊆ P and B = π(A) such that |B| ≤ 3N/4, we have

|A| ≤ |B| · Ct log(N/|B|)
log (Ct log (N/|B|))

,

where Ct is a constant depending only on t.

Proof. Let L := ⌈4et⌉ and let f : [L,∞) → R be the function defined by f(x) := (x/(4et))x.

One can check that f is strictly increasing and convex and therefore f−1 : [f(L),∞) → [L,∞)
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is well-defined and concave. Define, for each positive integer ℓ,

bℓ := |{x ∈ B : |Px| = ℓ}|,

and observe that, writing ℓ ∨ L for max{ℓ, L},

|A| =
∑
x∈B

|π−1({x}) ∩A| ≤
∑
x∈B

|Px| =
∑
ℓ≥1

bℓ · ℓ ≤
∑
ℓ≥1

bℓ · (ℓ ∨ L)

=
∑
ℓ≥1

bℓ · f−1(f(ℓ ∨ L)) ≤ |B| · f−1

∑
ℓ≥1

bℓ
|B|

· f(ℓ ∨ L)

 ,

where the last inequality follows from concavity of f−1 and the fact that b1 + b2 + · · · = |B|.
Since bℓ ≤ |Xℓ| ≤ 2−ℓ ·N/f(ℓ) for all ℓ ≥ L, by item (P3) in Proposition 5.1, we have∑

ℓ≥1

bℓ · f(ℓ ∨ L) ≤ |B| · f(L) +N ·
∑
ℓ>L

2−ℓ = |B| · f(L) + 2−L ·N.

We may thus conclude that

|A| ≤ |B| · f−1

(
f(L) + 2−L · N

|B|

)
.

It thus suffices to argue that there is a constant C such that, for all x ≥ 4/3,

f−1
(
f(L) + 2−L · x

)
≤ C log x

log(C log x)
. (9)

Indeed, when C is large, we have 4et log(C log x) ≤ (C log x)1/2 for all x ≥ 4/3, and thus

f

(
C log x

log(C log x)

)
≥ (C log x)

1
2
· C log x
log(C log x) = xC/2 ≥ f(L) + 2−L · x,

which implies (9), as f is strictly increasing. □

We are now able to complete the proof of Theorem 1.2. Let Ct be the constant from Claim 5.3.

We consider two cases:

Case 1: |M | ≥ N/20

By Lemma 2.7 and Proposition 5.1 (P1),

eGP
(A,Ac) ≥ |M | ≥ N

20
=

(1 + o(1))|P |
20t

≥ |A|
11t

.

Case 2: |M | < N/20

Since B is the union of U and M and |U | ≤ 3N/5, by Claim 5.2, we have |B| ≤ 3N/5+N/20 ≤
3N/4. We may thus use Lemma 2.7 and Theorem 4.9 to conclude that

eGP
(A,Ac) ≥ eGR

(B,Bc) ≥ |B|
8

log2

(
N

|B|

)
≥ |A|

8Ct
log

(
Ct log

(
N

|B|

))
≥ |A|

8Ct
, (10)

where the second to last inequality follows from Claim 5.3. This concludes the first part of

Theorem 1.2.

To check the second part of the theorem, choose η > 0 sufficiently small so that

η ≤ 1

3t
and log

(
Ct log

(
1

2ηt

))
≥ 8Ct,
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and suppose that A ⊆ P satisfies |A| ≤ η|P |. By Proposition 5.1 (P1), it holds that

|B| ≤ |A| ≤ η · 2tN ≤ 3N/4.

We may thus use Lemma 2.7 and Theorem 4.9 to conclude, as in (10), that

eGP
(A,Ac) ≥ |A|

8Ct
log

(
Ct log

(
N

|B|

))
≥ |A|

8Ct
log

(
Ct log

(
1

2ηt

))
≥ |A|. (11)

6. Remarks

In this paper, we studied the edge expansion of graphs arising from random 0/1-polytopes. We

showed that, with high probability, the edge expansion is bounded below by a positive constant.

This result aligns with a broader perspective related to the Mihail–Vazirani conjecture, which

asserts that every 0/1-polytope has edge expansion at least 1 — a bound that is tight, as

witnessed by the n-dimensional Boolean hypercube.

Our findings suggest that the edge expansion of random 0/1-polytopes may be significantly

better. Indeed, our analysis in the last part of the proof (see (11)) shows the following stronger

statement: For every K > 0, there exists η := η(K) > 0 such that, with high probability, if

|A| ≤ η|P |, then A has edge expansion at least K. We believe that as long as the parameter p is

bounded away from 1, the edge expansion of the graph of Pn,p is not just bounded from below

by 1, but actually becomes larger — and possibly tends to infinity as n → ∞.

As a concrete first step in this direction, we propose the following question:

Question 6.1. Is it true that for p = o(1) and p2n → ∞, with high probability, h(GP ) → ∞ as

n → ∞?

We remark that Proposition 1.3 answers the question affirmatively for p < cn with c < 7−1/3.

For other values of p, a possible heuristic goes as follows. Suppose p < n−C for some sufficiently

large constant C > 0, and d is chosen so that p < c,n−d for c < 7−1/3. Then an application of

Proposition 1.3 shows that, with high probability, the graphs of most fibers Px are complete for

x ∈ Qd. Moreover, one can check that Pxy is typically complete for most pairs {x, y} ∈ GQd .

These observations suggest that, in this regime, the polytope becomes significantly more well

structured, and perhaps this could lead to an affirmative answer to the question. We also make

the following conjecture:

Conjecture 6.2. There exists a constant c > 1 such that for all p ≤ 0.999 with p2n → ∞, with

high probability, h(GP ) ≥ c.

Further exploration of this question may not only shed light on the probabilistic behavior of

polytope graphs, but could also offer new insights into the general Mihail–Vazirani conjecture

by contrasting worst-case and average-case behaviors.
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