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Abstract

We prove that for fixed integer D and positive reals α and γ, there exists a constant
C0 such that for all p satisfying p(n) ≥ C0/n, the random graph G(n, p) asymptotically
almost surely contains a copy of every tree with maximum degree at most D and at
most (1− α)n vertices, even after we delete a (1/2− γ)-fraction of the edges incident
to each vertex. The proof uses Szemerédi’s regularity lemma for sparse graphs and a
bipartite variant of the theorem of Friedman and Pippenger on embedding bounded
degree trees into expanding graphs.

1 Introduction

The problem of finding sufficient conditions on a graph to contain large trees has been an
object of intense study for a long time. An old conjecture of Bollobás [5] stated that if γ > 0
and n is sufficiently large, then every n-vertex graph G with δ(G) ≥ (1/2 + γ)n contains
all n-vertex trees with bounded degree. In other words, in order to destroy the property of
containing all spanning bounded degree trees possessed by the complete graph, one needs
to delete at least a (1/2− γ)-fraction of the edges incident to some vertex. This was proved
by Komlós, Sárközy, and Szemerédi [16], and recently improved by Csaba, Levitt, Nagy-
György, and Szemerédi [8], who showed that γn can be replaced with K log n, whenever
K is a sufficiently large constant. Although the study of the problem of existence of large
trees in random graphs has a long history, there is no natural counterpart to the theorem of
Komlós et al. [16] in the random setting.

Looking from the edge deletion perspective, the theorem of Komlós et al. [16] can be
viewed in the much broader context of resilience. Let P be a graph property and let G be
an arbitrary graph from the class P . The resilience of G with respect to the property P
measures how much one has to change G in order to destroy P . Although the notion of

∗Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093,
USA; and Department of Mathematics, University of Illinois, Urbana, IL 61801, USA. E-mail address:
jobal@math.uiuc.edu. This material is based upon work supported by NSF CAREER Grant DMS-0745185
and DMS-0600303, UIUC Campus Research Board Grants 09072 and 08086, and OTKA Grant K76099.
†Department of Mathematics, Western Kentucky University, Bowling Green, KY, 42101, USA. E-mail

address: bela.csaba@wku.edu. Partially supported by OTKA K76099.
‡Department of Mathematics, University of Illinois, Urbana, IL, 61801, USA. E-mail address:

samotij2@illinois.edu.

1



resilience, also called fault tolerance, has been present in the literature for several years (see,
e.g., [1]), only recently it was given a more systematic treatment by Sudakov and Vu [20],
who define it as follows.

Definition 1. Let P be a monotone increasing (decreasing) graph property and let G be an
arbitrary graph.

1. The global resilience of G with respect to P is the minimum number r such that by
deleting (adding) at most r · e(G) edges from (to) G, one can obtain a graph not in P .

2. The local resilience of G with respect to P is the minimum number r such that by
deleting (adding) at most r · degG(v) edges at each vertex v of G, one can obtain a
graph not in P .

Using the resilience terminology, one can restate many classic results in graph theory, such
as the famous theorem of Turán [21] or the theorem of Dirac [11] giving a sufficient condition
for a graph G to contain a Hamiltonian cycle. In this respect, the notion of resilience has
proved very useful and initiated a series of generalizations of classic theorems to the more
general setting of random and pseudo-random graphs, see [6, 10, 13, 17, 20].

When speaking about global resilience, it is worth to mention a very recent breakthrough
result of Conlon and Gowers [7], and, independently, Schacht [19], which resolves a series
of open questions concerning global resilience of random discrete structures with respect to
certain local properties, culminating previous work of a number of authors (for details, we
refer the reader to [19]).

Alon, Krivelevich, and Sudakov [2] proved that for all D and positive α, there exists
a constant C such that the random graph G(n,C/n) a.a.s. (asymptotically almost surely)
contains all trees with maximum degree at most D and (1− α)n vertices. Recently, using a
different argument, Balogh, Csaba, Pei, and Samotij [4] showed that C can be as small as
O
(
d log d+d/α log(1/α)

)
. The main result of this paper generalizes the above theorems – we

prove that a.a.s. the local resilience of the random graph G(n, p) with respect to containing
almost spanning trees with bounded degree is at least a half, even when pn is only a (large)
constant.

Theorem 2. Let α and γ be positive constants, and assume that D ≥ 2. There exists a
constant C0 (depending on α, γ, and D) such that for all p satisfying p(n) ≥ C0/n, the
local resilience of G(n, p) with respect to the property of containing all trees of order at most
(1− α)n and maximum degree at most D is almost surely greater than (1/2− γ).

Since the property of containing almost spanning trees is global, it is more meaningful
to measure the local resilience of graphs with respect to this property. One can remove from
every n-vertex graph G all connected subgraphs of order (1−α)n by deleting at most 2αe·(G)
edges. This changes when we relax the requirement on the size of the tree. Dellamonica
and Kohayakawa [9] provided explicit constructions of graphs that have global resilience with
respect to the property of containing large (linear in the order of the graph) trees of bounded
degree.

Note that the constant (1/2−γ) in the statement of Theorem 2 is best possible, provided
that α < 1/2. Dellamonica, Kohayakawa, Marciniszyn, and Steger [10] proved that for
every positive constant γ, if pn is a large enough constant, one can almost surely find an
approximately even bipartition of the vertex set of the random graph G(n, p) such that each
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vertex v has at most (1/2 + γ) deg(v) neighbors in the other partite set. It follows that
a.a.s. by deleting at most a (1/2 + γ)-fraction of the edges incident to each vertex, one can
turn the random graph G(n, p) into a graph whose largest connected component has about
n/2 vertices, and hence does not contain any tree with (1− α)n vertices.

A simple argument proves that the constant (1/2 − γ) is sharp if D ≥ 3 and α <
(D − 2)/(2D − 2). Recall that one can make an arbitrary graph bipartite by removing at
most half the edges at each vertex. It is easy to check that in the random graph G(n, p),
where pn is a large enough constant, a.a.s. every bipartite graph obtained in such way has
partite sets of approximately even size. Since for all sufficiently large n, there are trees
with n vertices and maximum degree D, whose color classes have sizes differing by a factor
arbitrarily close to D − 1, it follows that a.a.s. after deleting at most half the edges at each
vertex of G(n, p), the remaining graph cannot contain all trees with maximum degree D of
size greater than D/(2D − 2) · n.

Recall that if p(n) ≤ C/n, then there is a positive constant α (depending on C) such
that almost surely the size of the largest connected component of G(n, p) does not exceed
(1 − α)n. Moreover, if D(n) → ∞ as n → ∞, then a.a.s. G(n, p) contains o(n/D) vertices
with degree at least D, and hence it cannot contain all trees with maximum degree D.
Therefore, Theorem 2 is in a sense sharp.

Theorem 2 is a direct consequence of a standard uniformity result for the random graph
(Lemma 4) and the following more general Theorem 3. The definition of (η, p)-uniform
graphs is given at the beginning of Section 2.

Theorem 3. Let α and γ be positive constants, and assume that D ≥ 2. There exist η0

and n0 (both depending on α, γ, and D) such that the following holds. Let G be an n-vertex
(η, p)-uniform graph, with p > 0, η < η0 and n ≥ n0. Let G′ be a subgraph of G such that
degG′(v) ≥ (1/2 + γ) degG(v) for each vertex v. Then G′ contains all trees with at most
(1− α)n vertices and maximum degree at most D.

The remainder of this paper is organized as follows. In Section 2, we introduce the
class of (η, p)-uniform graphs and formulate a version of Szemerédi’s regularity lemma for
graphs in that class. Moreover, we define a class of bipartite expanders and give a sufficient
condition on the expansion parameters which guarantees that all such expanders contain all
large bounded degree trees. Graphs from this class, which (as it will turn out in the proof
of Theorem 3, in Section 3) are abundant in the graph G′, will be used for embedding the
bulk of our almost spanning tree. Finally, Section 4 contains a few concluding remarks.

2 Preliminaries and tools

2.1 Uniformity of the random graph

Fix positive constants η and p. We say that an n-vertex graph G is η-uniform with density
p, or simply (η, p)-uniform, if all A,B ⊆ V (G) with A ∩B = ∅ and |A|, |B| ≥ ηn satisfy

(1− η)p|A||B| ≤ eG(A,B) ≤ (1 + η)p|A||B| (1)

and

(1− η)p

(
|A|
2

)
≤ eG(A) ≤ (1 + η)p

(
|A|
2

)
. (2)
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Furthermore, we say thatG is η-upper-uniform with density p, or simply (η, p)-upper-uniform,
if only the second inequalities in (1) and (2) hold for all A and B as above. It is not
surprising that the random graph G(n, p) is almost surely uniform, provided that its density
p is sufficiently large.

Lemma 4. If η > 0 and pn > 8
η4(1−η)

, then a.a.s. the random graph G(n, p) is (η, p)-uniform.

Proof. Let G = G(n, p). The probability that a fixed pair of sets A and B violates the
η-uniformity condition (1) is

P (eG(A,B)− p|A||B| > ηp|A||B|) + P (eG(A,B)− p|A||B| < ηp|A||B|) .

By a standard Chernoff-type estimate (see, e.g., [3]), this is at most

exp

(
−(ηp|A||B|)2

2p|A||B|

)
+ exp

(
−(ηp|A||B|)2

2p|A||B|
+

(ηp|A||B|)3

2(p|A||B|)2

)
≤ 2 exp

(
−η

4(1− η)pn2

2

)
,

where the inequality holds since we assumed that |A|, |B| ≥ ηn. Similarly, the probability
that a fixed set A of size at least ηn violates the η-uniformity condition (2) is at most

exp

(
−

(ηp
(|A|

2

)
)2

2p
(|A|

2

) )+ exp

(
−

(ηp
(|A|

2

)
)2

2p
(|A|

2

) +
(ηp
(|A|

2

)
)3

2(p
(|A|

2

)
)2

)
≤ 2 exp

(
−η

4(1− η)pn2
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)
.

By our assumption on p and the union bound, the probability that G is not η-uniform is at
most 2n · 2n · (2e−4n) + 2n · (2e−n) = o(1).

2.2 Szemerédi’s regularity lemma for sparse graphs

Let G be a graph and let p > 0. For any two disjoint subsets A,B ⊆ V (G), let us define the
p-density of the pair (A,B) in G to be the quantity

dG,p(A,B) :=
eG(A,B)

p|A||B|
.

Now suppose that ε > 0 and A,B are disjoint sets of vertices in G. We say that the pair
(A,B) is (ε, p)-regular if all A′ ⊆ A and B′ ⊆ B with |A′| ≥ ε|A| and |B′| ≥ ε|B| satisfy

|dG,p(A′, B′)− dG,p(A,B)| ≤ ε.

Finally, we say that a partition (V0, . . . , Vk) of V (G) is (ε, p)-regular if |V0| ≤ ε|V (G)|,
|Vi| = |Vj| for all i, j ∈ {1, . . . , k} and at least (1 − ε)

(
k
2

)
pairs (Vi, Vj) with 1 ≤ i < j ≤ k

are (ε, p)-regular. We may now state a version of Szemerédi’s regularity lemma for η-upper-
uniform graphs (see, e.g., [15]).

Lemma 5. For any ε > 0 and k0 ≥ 1, there are positive constants η and K0, with K0 ≥ k0,
such that any η-upper-uniform graph G with density p ∈ (0, 1] and at least k0 vertices admits
an (ε, p)-regular partition (V0, . . . , Vk) with k0 ≤ k ≤ K0.
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2.3 Embedding trees in bipartite graphs

For an arbitrary graph H and a set X ⊆ V (H), let NH(X) denote the set of neighbors
in H of vertices in X. Extending a path-embedding result of Pósa [18], Friedman and
Pippenger [12] proved that all graphs satisfying certain expansion property contain all small
trees with bounded maximum degree.

Theorem 6. Let m and D be positive integers and let H be a non-empty graph. Moreover,
assume that every X ⊆ V (H) with |X| ≤ 2m satisfies |NH(X)| ≥ (D + 1)|X|. Then H
contains every tree with m vertices and maximum degree at most D.

An apparent limitation of Theorem 6 in our setting is that it can be helpful in finding
only relatively small trees. Namely, in a graph of order n, the size of the largest tree whose
existence can be guaranteed by Theorem 6 is only about n/(2D + 2), where D is the maxi-
mum degree of the tree. Building on the ideas developed by Friedman and Pippenger [12],
Haxell [14] managed to overcome this problem. Recently, Balogh, Csaba, Pei, and Samotij [4]
noted that a simplified version of Haxell’s general tree-embedding result suffices for finding
almost spanning trees in graphs from certain families of expanders, such as G(n, p) with
very low edge probability p. Unfortunately, neither the general result of Haxell [14] nor the
simplified statement used in [4] are suitable when the target graph is bipartite – neither of
them allows to embed trees of order greater than the number of vertices in the smaller partite
set. Luckily, a natural and straightforward modification of the argument of Friedman and
Pippenger [12] allows one to prove the following theorem.

Theorem 7. Let D,m1,M1,m2 and M2 be positive integers. Assume that H is a non-empty
bipartite graph with color classes V1 and V2, satisfying the following conditions.

1. For every X ⊆ Vi with 0 < |X| ≤ mi, |NH(X)| ≥ D|X|+ 1 for i ∈ {1, 2}.

2. For every X ⊆ Vi with mi < |X| ≤ 2mi, |NH(X)| ≥ D|X|+M3−i for i ∈ {1, 2}.

Furthermore, let T be a tree with maximum degree at most D and color classes of sizes M1

and M2, respectively, and let v be an arbitrary vertex of T belonging to the first color class.
Then every mapping of v to a vertex in V1 extends to an embedding of T in H.

Note that condition 2 in Theorem 7 implies that |V1| ≥M1+2Dm2 and |V2| ≥M2+2Dm1.
Therefore, in order to use it for embedding almost spanning trees, one must choose m1 and
m2 so that Dm1 � M2 and Dm2 � M1. We would also like to remark that the idea
of having different types of expansion for sets of different sizes, like conditions 1 and 2 in
Theorem 7, was already used by Haxell [14].

Proof of Theorem 7. A tree T will be called (M1,M2, D)-small, or simply small, if ∆(T ) ≤ D
and the two color classes of T , the sets U1, U2 ⊆ V (T ), satisfy |U1| ≤ M1 and |U2| ≤ M2.
Using induction on the size of T , we will prove that H contains all small trees. First, we
need a few definitions. Let f be an embedding of some small tree T into our expanding
graph H. The liability Bf (x) of a vertex x ∈ V (H) with respect to f is defined by

Bf (x) :=

{
D − degT (v), x = f(v) for some v ∈ V (T ),
D, x 6∈ f(V (T )).

We define the assets Af (X) of a set X ⊆ V (H) to be the set of neighbors of X that are not
used in the embedding, i.e., Af (X) := NH(X)− f(V (T )). For every set X ⊆ V (H), define
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Af (X) := |Af (X)| and Bf (X) :=
∑

x∈X Bf (x). The quantity Af (X)−Bf (X) will be called
the balance of the set X, denoted Cf (X) .Finally, an embedding f of a small tree T into our
graph H will be called good if it maps U1 into V1 and U2 into V2, and moreover, every set
X ⊆ V1 of size at most 2m1 and every set X ⊆ V2 of size at most 2m2 have non-negative
balance with respect to f .

In order to prove the existence of a good embedding of an arbitrary small tree into our
graph H, it clearly suffices to show that the class of good embeddings satisfies the following
two properties.

Property 1. Every embedding of a single-vertex tree into V1 is good.

Property 2. If T is a small tree and S is its subtree obtained by deleting a leaf and the edge
incident to it, then any good embedding of S in H can be extended to a good embedding of
T in H.

To prove Property 1, suppose that T is a tree consisting of a single vertex. Let f be an
arbitrary embedding of T in V1. We show that f is good. Fix an arbitrary i ∈ {1, 2} and
suppose that X ⊆ Vi and |X| ≤ 2mi. We can easily assume that X 6= ∅, since Cf (∅) = 0.
We have

Af (X) = |NH(X)− f(V (T ))| ≥ |NH(X)| − 1 ≥ D|X|+ 1− 1 = Bf (X).

Thus every set X ⊆ Vi of size at most 2mi has non-negative balance, and so Property 1 is
satisfied.

To prove Property 2, assume that f is a good embedding of a tree S, obtained from a
small tree T by removing a leaf v. Without loss of generality we may assume that v ∈ U2,
as the proof for the case v ∈ U1 is identical. For the sake of brevity, let U ′2 := U2 − {v}.

Claim 8. If for some X ⊆ V1 with |X| ≤ 2m1, Cf (X) = 0, then |X| ≤ m1.

Proof of Claim 8. Assume that some X ⊆ V1 satisfies Cf (X) = 0, but m1 < |X| ≤ 2m1.
Since T is a small tree, |U ′2| = |U2| − 1 ≤M2 − 1, and thus

Af (X) = |NH(X)− f(V (S))| = |NH(X)− f(U ′2)| ≥ |NH(X)| − |f(U ′2)|
≥ D|X|+M2 − (M2 − 1) = D|X|+ 1 ≥ Bf (X) + 1,

where the second equality follows from the fact that NH(X) ⊆ V2 and f maps U1 to V1. This
contradicts the assumption that Af (X) = Bf (X).

Claim 9. If some X, Y ⊆ V1, with |X| ≤ |Y | ≤ 2m1, satisfy Cf (X) = Cf (Y ) = 0, then also
Cf (X ∪ Y ) = 0 and |X ∪ Y | ≤ m1.

Proof of Claim 9. Since Bf is a measure on V (H), clearly

Bf (X ∪ Y ) +Bf (X ∩ Y ) = Bf (X) +Bf (Y ).

Moreover, since Af (X ∪ Y ) = Af (X) ∪ Af (Y ) and Af (X ∩ Y ) ⊆ Af (X) ∩ Af (Y ), we have

Af (X ∪ Y ) + Af (X ∩ Y ) ≤ |Af (X) ∪ Af (Y )|+ |Af (X) ∩ Af (Y )| = Af (X) + Af (Y ).

It follows that Cf (X ∪ Y ) ≤ Cf (X) +Cf (Y )−Cf (X ∩ Y ) = −Cf (X ∩ Y ). Since |X ∩ Y | ≤
|Y | ≤ 2m1 and f is good, Cf (X ∩ Y ) ≥ 0, and hence Cf (X ∪ Y ) ≤ 0. By Claim 8,
|X|, |Y | ≤ m1, and so |X ∪ Y | ≤ 2m1. Hence, also Cf (X ∪ Y ) ≥ 0, and by Claim 8,
|X ∪ Y | ≤ m1.
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Corollary 10. Suppose X1, . . . , Xk ⊆ V1 are sets of size at most 2m1 having zero balance.
Then Cf (X1 ∪ · · · ∪Xk) = 0 and |X1 ∪ · · · ∪Xk| ≤ m1.

Let w be the only neighbor of v in T . Since v ∈ U2, clearly w ∈ U1. Recall that f was a
good embedding of S in H and hence f(w) ∈ V1. Let Y := Af (f(w)) and note that Y ⊆ V2.
We can extend f to an embedding of T by mapping v to any vertex in Y . Suppose that for
no y ∈ Y , the extension fy, defined by

fy(x) =

{
y if x = v,

f(x) if x 6= v,

is good. Since clearly fy maps U1 to V1 and U2 to V2, this means that for every y ∈ Y , there
is an i(y) ∈ {1, 2} and a set Xy ⊆ Vi(y) of size at most 2mi(y) with Cfy(Xy) < 0. Clearly,
for all y ∈ Y , i(y) = 1, since for every X ⊆ V2, Af (X) = Afy(X) and Bfy(X) ≤ Bf (X).
Moreover, for each y ∈ Y , we must have y ∈ Af (Xy), f(w) 6∈ Xy and Cf (Xy) = 0, or
otherwise Cfy(Xy) ≥ 0. Let X∗ :=

⋃
y∈Y Xy. By Corollary 10, Cf (X

∗) = 0 and |X∗| ≤ m1.
Moreover, if we let X ′ := X∗ ∪ {f(w)} ⊆ V1, then

Af (X ′) = Af (X∗) ∪ Af (f(w)) = Af (X∗) ∪ Y = Af (X∗),

since Af (X∗) = ∪y∈YAf (Xy) and for all y ∈ Y , y ∈ Af (Xy). Also, since f(w) 6∈ X∗ and
degS(w) = degT (w)− 1 ≤ D − 1,

Bf (X
′) = Bf (X

∗) +Bf (f(w)) ≥ Bf (X
∗) + 1.

This implies that Cf (X
′) < 0, which is a clear contradiction, since |X ′| ≤ m1 + 1 ≤ 2m1

and f was good. Hence, f can be extended to a good embedding of T , and so Property 2
holds.

Let us now define a class of expanding bipartite graphs that we will use with Theorem 7.

Definition 11. Let b ≥ 2 and let H be a bipartite graph with color classes V1 and V2, where
|V1| ≤ |V2|. Let q be a positive integer with q < |V1|. We will say that H is a bipartite
(q, b)-expander if it possesses the following properties.

1. Every subset X ⊆ Vi of size at most q satisfies |NH(X)| ≥ b|X| for i ∈ {1, 2}.

2. Every subset X ⊆ Vi of size at least q satisfies |NH(X)| ≥ |V3−i| − q for i ∈ {1, 2}.

As an immediate consequence of Theorem 7, we derive the following sufficient condition
on the expansion parameters b and q, which guarantees that all sufficiently large bipartite
(q, b)-expanders contain every almost spanning tree with bounded maximum degree and color
classes of appropriate size.

Corollary 12. Let D ≥ 2 and let H be a bipartite graph with color classes V1 and V2, where
|V1| ≤ |V2|. Suppose that H is a bipartite (q,D + 1)-expander with 0 < q < |V1|/(2D + 1).
Then H contains all trees with maximum degree at most D and color classes of sizes at most
|V1|−(2D+1)q and |V2|−(2D+1)q respectively. Furthermore, any such tree can be embedded
even if we require that a particular vertex of the tree is mapped to a particular vertex of H,
as long as this mapping respects the color classes.

Proof. It is straightforward to check that H satisfies the assumptions of Theorem 7 with
mi := q and Mi := |Vi| − (2D + 1)q for i ∈ {1, 2}.
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3 Proof of Theorem 3

We start by defining some constants. Let

δ :=
α

16D2
, ε := min

{
α

64D3
,
αγδ

96
,
γ2

36

}
, and η0 := min

{
ε

2
,

1

2K0

}
,

where K0 is given by Lemma 5 with k0 := d1/εe. Let G be an (η, p)-uniform n-vertex graph,
with p > 0, η < η0 and n larger than some constant n0 depending on α, γ, and D.1 We let
our adversary remove edges from G, so that no more than (1/2− γ) degG(v) edges incident
to every vertex v ∈ V (G) are deleted. Denote the leftover graph by G′. Clearly, G′ is
η-upper-uniform with density p. Finally, let T be a tree with at most (1− α)n vertices and
maximum degree at most D; without loss of generality we may also assume that T has at
least n/2 vertices. We will show that T ⊆ G′.

3.1 Proof outline

In Section 3.2, we apply Szemerédi’s regularity lemma to G′, and show that the cluster
graph, whose edges are the regular pairs with density bounded away from zero, contains an
almost spanning subgraph H ′′ with minimum degree slightly larger than |V (H ′′)|/2. Such
large minimum degree guarantees the existence in H ′′ of an almost perfect matching M . The
tree T will be embedded into G′′ – the subgraph of G′ induced by the union of the clusters
in H ′′; moreover, most edges of T will be mapped to edges inside the dense, regular pairs in
G′′ that appear in M .

In Section 3.3, we partition the tree T into a bounded number of small subtrees in such
a way that none of these subtrees is adjacent to more than D3 others and every subtree
contains all the children of its root.

In Section 3.4, the vertex set of G′′ is partitioned into linear-sized subsets, which are then
assigned to subtrees from our partition of T and the edges of T joining those subtrees. Each
subtree S is assigned two subsets of the opposite ends of some edge in M , one for each color
class of S; both subsets are slightly larger than the color class of S they are assigned to.
An edge e joining two subtrees S and S ′ is assigned a small subset (a ‘connecting’ set) of a
cluster that is adjacent (in H ′′) to the two clusters that were assigned to the color classes
of S and S ′ which contain the endpoints of e. In Section 3.5, we trim all these subsets so
that the pair assigned to every subtree is a bipartite expander, and every ‘connecting’ set
has many neighbors in both sets it ‘connects’.

Finally, in Section 3.6, we embed T in G′′ in a top-down fashion. The subtree containing
the root of T is embedded into the pair of sets assigned to it. For every other subtree, its root
is mapped to an appropriate ‘connecting’ set and the remainder of that subtree is embedded
into its pair of sets, which, as we arranged before, induces a bipartite expander in G′′.

Our general embedding strategy is somewhat similar to the one in [16]. First, the au-
thors of [16], split the tree T into a constant number of subtrees; secondly, after applying
Szemerédi’s regularity lemma, they find a perfect matching in the reduced graph; finally,
they embed the bulk of T into the ‘super-edges’ of that perfect matching, in such a way
that they can connect all the pieces. However, embedding large trees into regular pairs with

1Although we do not give a particular value of n0, the existence of such a constant will become clear from
the proof. The lower bound on n0 comes mainly from the fact that we apply Szemerédi’s regularity lemma
to G; additional requirements on the largeness of n0 are discussed in a footnote at the end of Section 3.4.
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vanishing densities is considerably harder than in the constant density case [16], comprising
the major difficulty we have to overcome.

3.2 Preparing G′

Since G′ is (η, p)-upper-uniform and n is large, we may apply Szemerédi’s regularity lemma
(Lemma 5) with ε as above and k0 := d1/εe. Let (V0, . . . , Vk) be the resulting (ε, p)-regular
partition of V (G′), and recall that k ≤ K0 by the definition of K0. Define an auxiliary graph
H ′ on the vertex set {V1, . . . , Vk} as follows. For all i and j with 1 ≤ i < j ≤ k, the pair
{Vi, Vj} will be an edge in H ′ if and only if the p-density of the pair (Vj, Vj) in G′ is at least
γ/6.

Claim 13. The minimum degree in H ′ is at least (1/2 + 2γ/3)k.

Proof. Fix some i ∈ {1, . . . , k} and let V := V (G′). Since G was η-uniform with density p,
|Vi| ≥ n/2k > ηn and 1/k ≤ ε, then

eG(Vi, V − V0 − Vi) ≥ (1− η)p|Vi|(n− |V0| − |Vi|) ≥ (1− η)p|Vi|(n− εn− n/k)

≥ (1− η − ε− 1/k)pn|Vi| ≥ (1− 3ε)pn|Vi|,

and ∑
v∈Vi

degG(v) = eG(Vi, V − Vi) + 2eG(Vi) ≤ (1 + η)p

[
|Vi|(n− |Vi|) + 2

(
|Vi|
2

)]
≤ (1 + η)p|Vi|(n− |Vi|+ |Vi| − 1) ≤ (1 + ε)pn|Vi|.

Since our adversary deleted at most (1/2− γ) degG(v) edges at every vertex v, the number
of edges of G′ that leave the set Vi can be bounded as follows:

eG′(Vi, V − V0 − Vi) ≥ eG(Vi, V − V0 − Vi)− (1/2− γ) ·
∑
v∈Vi

degG(v)

≥ (1/2 + γ − 7ε/2)pn|Vi|.

Recall that i ∈ {1, . . . , k} is fixed. The total number of edges in all pairs (Vi, Vj) with
j ∈ {1, . . . , k}− {i} whose density is smaller than γ/6 is at most γ/6 · pn|Vi|. Moreover, the
η-upper-uniformity of G′ implies that eG′(Vi, Vj) ≤ (1 + η)p|Vi||Vj| ≤ (1 + ε)p(n/k)|Vi| for
all j 6= i. Therefore,

δ(H ′) ≥ (1/2 + 5γ/6− 7ε/2)(1 + ε)−1k ≥ (1/2 + 5γ/6− 5ε)k ≥ (1/2 + 2γ/3)k.

Now, delete from H ′ all edges that correspond to pairs (Vi, Vj) that are not (ε, p)-regular
in G′ and let H ′′ be the subgraph of H ′ induced by the set of vertices whose degree in H ′

after that deletion exceeds (1/2 + γ/2)k.

Claim 14. The graph H ′′ has at least (1− α/8)k vertices and δ(H ′′) ≥ (1/2 + γ/3)k.

Proof. Since H ′ contains at most ε
(
k
2

)
edges corresponding to non-(ε, p)-regular pairs, their

deletion lowers the degree sum of H ′ by no more than εk2. Since δ(H ′) ≥ (1/2 + 2γ/3)k, the
degree of at most (6ε/γ)k vertices will fall below the (1/2+γ/2)k threshold after the deletion.
Recall that ε ≤ min{γ2/36, αγ/96}, and thus H ′′ will have at least (1− α/8)k vertices, and
its minimum degree will satisfy δ(H ′′) ≥ (1/2 + γ/2)k − (6ε/γ)k ≥ (1/2 + γ/3)k.
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Let k′ := |V (H ′′)| and let m′ := bk′/2c. Since δ(H ′′) > k′/2, H ′′ contains a matching of
size m′. Fix any such matching M and denote its edges by {A1, B1}, . . . {Am′ , Bm′}. Finally,
let G′′ denote the subgraph of G′ induced by the union of all vertices of H ′′ (which are
clusters in G′). Let n′ := |V (G′′)| and note that n′ ≥ (1− α/8)(1− ε)n ≥ (1− α/4)n.

3.3 Partitioning the tree

Every partition of the vertex set of a tree into connected subsets gives rise to a natural tree
structure on the set of parts. Namely, we make two parts adjacent if and only if the subtrees
they induce in the original tree are joined by an edge. Let us call this tree the cluster tree
of our partition. The following general lemma will be crucial in the remainder of the proof.

Lemma 15. Let t and D be positive integers with D ≥ 2. Let T be a rooted tree with t
vertices and maximum degree at most D. If β ≥ 1/t, then there exists a partition of V (T )
into at most 4/β rooted subtrees of size at most D2βt each such that the maximum degree of
the corresponding cluster tree does not exceed D3 and all children of the root of each subtree
belong to the same subtree (the subtree containing that root).

The proof of Lemma 15 will make use of the following simple statement, whose proof is
a straightforward modification of the proof of Proposition 4.2 from [2].

Proposition 16. Let s and D be positive integers with D ≥ 2. Let T be a tree with maximum
degree at most D and S be a subset of V (T ) containing at least s + 1 vertices. Then there
exists an edge e ∈ E(T ) such that at least one of the two trees obtained from T by deleting
e contains at least s and at most (D − 1)(s− 1) + 1 vertices from S.

Proof of Lemma 15. We will construct the required partition in three stages. The first stage
will guarantee that the subtrees in our partition are not too large, i.e., they contain no
more than Dβt vertices each. In the second stage we will refine the partition to reduce the
maximum degree in the cluster tree to at most D2. In the third stage we will merge some
subtrees to guarantee that each root has children only in its own subtree, and we will do it
in such a way that neither the upper bound on the sizes of the subtrees nor the maximum
degree of the cluster tree grow more than by a factor of D, and hence in the end they are
bounded by D2βt and D3, respectively.

Stage 1. Start with the trivial partition of V (T ) into a single set. We will keep refining
it until all parts are small enough, making sure that at all times at most one of the parts is
larger than Dβt and at most one of the parts is smaller than βt. Clearly, our initial partition
has that property. Suppose that our partition contains a subtree T ′ with more than Dβt
vertices. Proposition 16 guarantees that T ′ contains an edge that splits it into two trees,
one of which has at least βt and at most (D − 1)(dβte − 1) + 1 ≤ Dβt vertices. We refine
our partition by replacing T ′ with these two trees. Finally, we iterate this procedure until
all parts have at most Dβt vertices and all but at most one has at least βt vertices. Denote
that partition by Π. Clearly, the number of parts is at most 1/β + 1.

Stage 2. Let TΠ be the cluster tree corresponding to the partition Π and let

E(Π) :=
∑
V ∈Π

max{0, degTΠ
(V )−D2}.
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Clearly,

0 ≤ E(Π) ≤
∑
V ∈Π

degTΠ
(V ) = 2(r − 1) ≤ 2/β.

Suppose that the partition Π does not satisfy our maximum degree requirement, i.e., ∆(TΠ) >
D2. Then there must be some V ∈ Π whose degree in TΠ is larger than D2. Let S be the
set of all neighbors of V in T outside of V . Clearly, |S| = degTΠ

(V ). Finally, let T ′ be the
subtree of T induced by V ∪ S. By Proposition 16, T ′ contains an edge e whose deletion
splits T ′ into two trees, one of which contains at least D and at most (D− 1)2 + 1 ≤ D2− 1
vertices from S, see Figure 1. Note that none of the endpoints of e lies in S, or otherwise
the two trees would contain 1 and |S|− 1 vertices from S respectively, and this is impossible
since 1 < D and |S| − 1 > D2 − 1. Hence, e partitions V into two connected subsets V ′ and
V ′′. Let Π′ be the partition obtained from Π by replacing V with V ′ and V ′′. Note that

degTΠ′
(V ′) + degTΠ′

(V ′′) = degTΠ
(V ) + 2,

and by the choice of e, either degTΠ′
(V ′) or degTΠ′

(V ′′) is at least D + 1 and at most D2.
Hence, E(Π′) < E(Π). It follows that by refining our initial partition Π at most 2/β times,
each time increasing the number of parts by one, we will arrive at a partition Π∗ with
E(Π∗) = 0. Clearly, the maximum degree of the cluster tree TΠ∗ is at most D2, and the
number of parts is not greater than 1/β + 1 + 2/β, which is at most 4/β.

Stage 3. Root the cluster tree TΠ∗ at the subset containing the root of the original tree.
Order the subsets in Π∗ in such a way that all descendants (in the cluster tree) of every
subset come later in the ordering (e.g., by performing a breadth-first search on TΠ∗). Now,
iterate the following procedure until the ‘children of the root only in its own tree’ condition
is satisfied. If there is a subtree whose root has children in other subtrees, merge the first
(with respect to our order) such tree with the subtrees containing children of its root and
remove all the merged pieces from the ordered list. Clearly, after the procedure terminates,
the new partition satisfies the required condition. As a consequence of our ’parent-first’
ordering, each tree can be merged only once and hence both the upper bound on the sizes of
the parts and the maximum degree of the cluster tree can increase at most D times. Finally,
the number of parts in the partition can only become smaller.

Recall that the number n′ of vertices in the graph G′′, which is an induced subgraph of
G′, satisfies n′ ≥ (1−α/4)n. Root our tree T at an arbitrary vertex. Since T has fewer than
n′ and more than n/2 vertices, by Lemma 15, where we let β := δ/k′, there is a partition Π
of V (T ) into connected subsets S1, . . . , Sτ such that

τ ≤ 4k′/δ, and max
1≤j≤τ

|Sj| ≤ D2δ · n′/k′, (3)

and the maximum degree of the cluster tree TΠ does not exceed D3. Moreover, assume that
the subtrees Sj are ordered in such a way that all descendants (in the cluster tree) of every
subtree come later in the ordering. Since each Sj induces a connected bipartite subgraph of
T (a subtree of T ), it can be uniquely decomposed into two independent sets Sj,1 and Sj,2
– the color classes in the unique proper 2-coloring of the tree T restricted to Sj. Let S be
the collection of all these color classes, i.e., S := {Sj,l : 1 ≤ j ≤ τ, l ∈ {1, 2}}. Also, let E
be the set of all pairs {Sj,l, Sj′,l′} such that j 6= j′ and in T there is an edge joining Sj,l and
Sj′,l′ . Finally, note that the graph obtained from the graph (S, E) by identifying all pairs
{Sj,1, Sj,2} is the cluster tree TΠ. It follows that |E| = τ − 1. For better visualization, the
reader is encouraged to consult Figure 1.
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V

e

S

Sj

Sj′ Sj′′

Figure 1: On the left, the edge e splits T [V ∪ S] into two trees, partitioning the set S. On
the right, a typical subtree Sj; vertices in color classes 1 and 2 are drawn as white and black
circles, respectively. Note that all children of the root of Sj belong to Sj. Since Sj′ and Sj′′
are below Sj in TΠ, we have j′, j′′ > j. Finally, observe that {Sj,1, Sj′,2}, {Sj,2, Sj′′,1} ∈ E .

3.4 Planning out the embedding

Recall that M is a maximum matching in the cluster graph H ′′, and V (M) = {A1, B1, . . . ,
Am′ , Bm′}. Our plan is to embed (most of) the tree T into regular pairs forming M . We will
do it piece-by-piece, according to the partition Π. Before we start the actual embedding, we
need to lay out a plan in order to make sure that we will never run out of vacant vertices or
edges. We start by assigning to each edge in the matching a collection of subtrees of T that
we plan to embed in the (ε, p)-regular pair in G′′ that is represented by this edge.

Lemma 17. There is an assignment ϕ : S → V (M) with the following two properties.

1. For each j, there is an i such that the sets Sj,1 and Sj,2 are assigned to two different
clusters in the pair {Ai, Bi}.

2. Let X ∈ V (M) and let S(X) be the family of sets that ϕ assigns to X. Define the
usage U(X) of the cluster X by

U(X) :=
∑

S∈S(X)

(
|S|+ 4D3ε · n

′

k′

)
.

Then U(X) ≤ (1− α/4) · n′
k′

for all X ∈ V (M).

Proof. We can easily construct such a map ϕ using the following greedy procedure. Start
with an empty map ϕ0. Assume that 1 ≤ j ≤ τ and we have already defined ϕj−1. For a
cluster X ∈ V (M), define the usage of X at step j − 1 as

Uj−1(X) :=
∑

S∈Sj−1(X)

(
|S|+ 4D3ε · n

′

k′

)
,

where Sj−1(X) is the family of sets from S that ϕj−1 assigns to X. We claim that there
exists an i ∈ {1, . . . ,m′} such that

max{Uj−1(Ai), Uj−1(Bi)} ≤ (1− α/4− 4D3ε−D2δ) · n
′

k′
. (4)
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We postpone the verification of this claim till the end of the proof of Lemma 17. Let i(j) to
be the smallest i satisfying (4). Let ϕj be an extension of ϕj−1 that maps the pair {Sj,1, Sj,2}
to {Ai(j), Bi(j)} in such a way that the smaller of the sets Sj,1, Sj,2 is mapped to the cluster
with larger usage Uj−1 (we break ties arbitrarily). Finally, put ϕ = ϕτ .

Note that the way we construct ϕ guarantees that condition 1 is satisfied. Moreover,
since by (3), for all j and l, we have |Sj,l| ≤ |Sj| ≤ D2δ · n′/k′, it follows that Uj(X) −
Uj−1(X) ≤ (D2δ + 4D3ε) · n′/k′ for every X ∈ {Ai(j), Bi(j)} (and clearly Uj(X) = Uj−1(X)
if X 6∈ {Ai(j), Bi(j)}), and hence the choice of i(j) at each step guarantees that ϕ will satisfy
condition 2 as well. The only thing we still have to check is that for all j, the index i(j) is
well-defined, i.e., inequality (4) is satisfied for some i.

Observe that our strategy of balancing the usage of each pair {Ai, Bi} guarantees that
for all i and j,∣∣Uj(Ai)− Uj(Bi)

∣∣ ≤ max
j′≤j

∣∣|Sj′,1| − |Sj′,2|∣∣ ≤ max
j′≤j
|Sj′ | ≤ D2δ · n

′

k′
.

Hence, if for some j, inequality (4) is not satisfied for all i, then

Uj(X) ≥ (1− α/4− 4D3ε− 2D2δ) · n
′

k′

for all X ∈ V (M). Recall that m′ = bk′/2c. It follows that∑
j′≤j

|Sj′| =
∑

X∈V (M)

(
Uj(X)− 4D3ε · n

′

k′

)
≥ (1− α/4− 8D3ε− 2D2δ) · 2m′

k′
· n′

≥ (1− α/4− 8D3ε− 2D2δ − 1/k′) · n′ ≥ (1− α/2) · n′ ≥ (1− 3α/4) · n.

This would be a clear contradiction, since (1− α) · n ≥ |V (T )| =
∑

j |Sj|.

Let ϕ be a map satisfying both conditions in Lemma 17. Our next step will be planning
out connections between all the subtrees in our partition Π, whose locations in the graph G′

have already been determined by ϕ.

Lemma 18. There is an assignment ψ : E → V (H ′′) with the following two properties.

1. For all e ∈ E, the following holds. Suppose that e = {Sj,l, Sj′,l′}, where j < j′. Then
ψ(e) is a common neighbor in H ′′ of the clusters ϕ(Sj,l) and ϕ(Sj′,3−l′).

2. Every cluster is assigned to at most 6/(γδ) edges in E, i.e., |ψ−1(X)| ≤ 6/(γδ) for all
X ∈ V (H ′′).

Proof. We construct such a map greedily, starting from the empty map and extending it
one-by-one to the whole set E . Let e = {Sj,l, Sj′,l′} ∈ E , where j < j′. Since δ(H ′′) ≥
(1/2+γ/3)k ≥ (1/2+γ/3)k′, the clusters ϕ(Sj,l) and ϕ(Sj′,3−l′) have at least 2γk′/3 common
neighbors. One of them has been used fewer than |E|/(2γk′/3) ≤ τ/(2γk′/3) ≤ 6/(γδ) times,
where the second inequality follows from (3). We let ψ(e) be an arbitrary cluster with that
property.

Now that we have laid out a general plan for the embedding, it is time to assign to each
Sj,l a particular subset of V (G′′), where we will map Sj,l. We start by choosing in each cluster
X ∈ V (H ′′) an arbitrary subset C(X) of size α/8 · n′/k′. Let eX be the number of edges in
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E that are assigned to X. We partition C(X) into eX subsets of equal sizes and label those
subsets with elements of ψ−1(X) such that each e ∈ ψ−1(X) gets its own set ψ′(e) of size at
least α/(4eX) · n′/k′, which is at least αγδ/48 · n′/k′.

Next, fix a cluster X ∈ V (M). For each S ∈ S(X), we choose a subset ϕ′(S) of X−C(X)
with size |S| + 4D3ε · n′/k′ such that all these sets are disjoint. By the choice of ϕ, which
satisfies condition 2 in Lemma 17, this is possible. We do this for all clusters in V (M)2.

Finally, note that for all j, ϕ′(Sj,1) and ϕ′(Sj,2) are subsets of opposite clusters in an
(ε, p)-regular pair in G′′ with p-density at least γ/6 and for each e = {Sj,l, Sj′,l′}, where
j < j′, also {ϕ′(Sj,l), ψ′(e)} and {ϕ′(Sj′,3−l′), ψ′(e)} are pairs of subsets of opposite classes in
an (ε, p)-regular pair in G′′, whose p-density is at least γ/6.

3.5 Cleaning up G′′

Recall that we have ordered the subtrees in our partition in such a way that all descendants
of a tree S in the cluster tree come later in the ordering, i.e., if Sj′ is a descendant of Sj,
then j′ > j. Our goal in the cleaning-up stage is the following.

Goal. Construct functions ϕ′′ : S → P(V (G′′)) and ψ′′ : E → P(V (G′′)) with the following
properties.

1. For all S ∈ S, ϕ′′(S) ⊆ ϕ′(S) and |ϕ′′(S)| ≥ |S|+ (2D + 1)ε · n′/k′.

2. For all j, the graph (ϕ′′(Sj,1), ϕ′′(Sj,2)) is a bipartite (ε · n′/k′, 2D + 2)-expander.

3. For all e ∈ E , the following holds. Suppose that e = {Sj1,l1 , Sj2,l2}, where j1 < j2.
Then:

(a) ψ′′(e) ⊆ ψ′(e) and |ψ′′(e)| ≥ ε · n′/k′,
(b) each vertex in ϕ′′(Sj1,l1) has a neighbor in ψ′′(e),

(c) each vertex in ψ′′(e) has at least D + 1 neighbors in ϕ′′(Sj2,3−l2).

In the process of achieving our goal, we will extensively use the following two technical
lemmas.

Lemma 19. Let (A,B) be an (ε, p)-regular pair, whose p-density is larger than ε. Suppose
that |A| = |B| = n′/k′, and A′ ⊆ A and B′ ⊆ B are sets of size at least (4D + 6)ε · n′/k′.
Then there are subsets A′′ ⊆ A′ and B′′ ⊆ B′ satisfying the following two conditions.

1. |A′ − A′′| ≤ ε · n′/k′ and |B′ −B′′| ≤ ε · n′/k′.

2. The subgraph (A′′, B′′) is a bipartite (ε · n′/k′, 2D + 2)-expander.

Proof. We will greedily construct such subsets A′′ and B′′. Before we start, we would like
to remark that all neighborhoods are computed in the subgraph (A′, B′), and not the graph
(A,B) itself. First, let X := ∅ and Y := ∅. We will iterate the following procedure. If there
is a set X ′ ⊆ A′ − X, with |X ′| ≤ ε · n′/k′, such that |N(X ′) − Y | < (2D + 2)|X ′|, then

2For the sake of clarity of the presentation we tacitly assumed that the numbers α/(4eX) · n′/k′ and
4D3ε · n′/k′ were integers. This is clearly not true in general, but since we assume that n′ is large, we can
utilize the remaining α/8 · n′/k′ unused vertices in each cluster to account for all rounding errors, as the
number of sets ϕ′(S) and ψ′(e) is independent of n.
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set X := X ∪ X ′. Similarly, if there is a set Y ′ ⊆ B′ − Y , with |Y ′| ≤ ε · n′/k′ such that
|N(Y ′)−X| < (2D + 2)|Y ′|, then set Y := Y ∪ Y ′.

First we show that at all times |X| ≤ ε · n′/k′ and |N(X) − Y | ≤ (2D + 2)|X|, and
similarly, |Y | ≤ ε · n′/k′ and |N(Y ) − X| ≤ (2D + 2)|Y |. Certainly, this is true at the
beginning of the procedure, since then |X| = |Y | = |N(X)−Y | = |N(Y )−X| = 0. Suppose
that all four inequalities hold at the beginning of some iteration. Assume that the procedure
finds an X ′ ⊆ A′ −X with |X ′| ≤ ε · n′/k′ and |N(X ′)− Y | < (2D + 2)|X ′|. Then

|N(X ∪X ′)− Y | = |(N(X)− Y ) ∪ (N(X ′)− Y )| ≤ |N(X)− Y |+ |N(X ′)− Y |
≤ (2D + 2)|X|+ (2D + 2)|X ′| = (2D + 2)|X ∪X ′|.

Note that in (A,B) there are no edges between X ∪ X ′ and B′ − N(X ∪ X ′). Also, since
|X ∪X ′| = |X|+ |X ′| ≤ 2ε · n′/k′, then

|B′ −N(X ∪X ′)| ≥ |B′| − |N(X ∪X ′)− Y | − |Y | ≥ |B′| − (4D + 5)ε · n′/k′ ≥ ε · n′/k′.

Since (A,B) was (ε, p)-regular with p-density larger than ε, and |A| = |B| = n′/k′, it must
be that |X ∪X ′| < ε · n′/k′. A symmetric argument proves the other two inequalities.

Now, put A′′ := A′ − X and B′′ := B′ − Y . We have already proved that condition 1
holds for this choice of A′′ and B′′. As for the other condition, the definition of X and Y
guarantees that all small subsets of A′′ and B′′ expand at least 2D + 2 times. It suffices
to prove that also large sets expand well enough. Suppose that there is an X ′ ⊆ A′′ with
|X ′| ≥ ε · n′/k′ such that |N(X ′) ∩ B′′| < |B′′| − ε · n′/k′. There are no edges in (A,B)
between the sets X ′ and B′′ − N(X ′), but this is impossible, since (A,B) is (ε, p)-regular
with p density larger than ε, and both sets are larger than ε · n′/k′.

Lemma 20. Let b ≥ 1 and let (A,B) be an (ε, p)-regular pair, whose p-density is larger than
ε. Suppose that |A| = |B| = n′/k′, and A′ ⊆ A and B′ ⊆ B are sets of size at least 2ε · n′/k′
and bε ·n′/k′ respectively. Then there is a subset A′′ ⊆ A′ such that |A′−A′′| ≤ ε ·n′/k′ and
every vertex in A′′ has at least b neighbors in B′.

Proof. Let X ⊆ A′ be the set of all vertices in A that have fewer than b neighbors in B and
put A′′ = A′−X. If |X| ≤ ε ·n′/k′, then there is nothing left to prove. Otherwise, let X ′ be
an arbitrary subset of X of size ε · n′/k′. Clearly, there are no edges in (A,B) between X ′

and B′ −N(X ′). This is impossible, since (A,B) is (ε, p)-regular with p-density larger than
ε, |X ′| ≥ ε · n′/k′ and by the definition of X, we have |B′ − N(X ′)| ≥ |B′| − (b − 1)|X ′| ≥
ε · n′/k′.

An immediate consequence of Lemma 20 is the following Corollary.

Corollary 21. Let d ≥ 1 and let (A,B1), . . . , (A,Bd) be (not necessarily distinct) (ε, p)-
regular pairs in G′′. Suppose that |A| = |B1| = . . . = |Bd| = n′/k′, A′ ⊆ A is a set of size at
least (d + 1)ε · n′/k′ and B′i ⊆ Bi are sets of size at least ε · n′/k′ for each i ∈ {1, . . . , d} .
Then there is a subset A′′ ⊆ A′ such that |A′−A′′| ≤ dε · n′/k′ and every vertex in A′′ has a
neighbor in each B′i.

We start cleaning up by setting ϕ′′ := ϕ′ and ψ′′ := ψ′. Next, we will iteratively, starting
with j := t and each time reducing j by one, keep fixing the two functions by making sure
that after we have finished step j, the requirements 1, 2 and 3b are met as long as they involve
only sets Sj′,l′ with j′ ≥ j and l′ ∈ {1, 2} (i.e., j1 ≥ j in 3), and the requirements 3a and 3c
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are met as long as they involve sets {Sj1,l1 , Sj2,l2} with max{j1, j2} ≥ j. If we manage to do
that, after completing the final step (j = 1) our goal will be reached.

Assume that we are at a step j and our functions ϕ′′ and ψ′′ satisfy all requirements
involving only sets Sj′,l′ with j′ > j and requirements 3a and 3c, where j2 > j. Let D(Sj,1)
and D(Sj,2) be the families of the color classes of all the children (in the cluster tree TΠ) of Sj
that are adjacent to the color classes Sj,1 and Sj,2, respectively. In other words, Sj′,l′ ∈ D(Sj,l)
if and only if Sj′ is a child of Sj in the cluster tree TΠ, and the edge connecting Sj and Sj′
in T has endpoints in the sets Sj,l and Sj′,l′ . For each l ∈ {1, 2}, the following is true. Fix a
set Sj′,l′ ∈ D(Sj,l) and let e = {Sj,l, Sj′,l′}. Since Sj′,l′ is a descendant of Sj,l in the cluster
tree, we have j′ > j, and therefore |ψ′′(e)| ≥ ε · n′/k′. Since |D(Sj,l)| ≤ ∆(TΠ) ≤ D3, and
|ϕ′(Sj,l)| ≥ |Sj,l|+ 4D3ε ·n′/k′, by Corollary 21, there is a subset A′l ⊆ ϕ′(Sj,l) of size at least
|Sj,l| + 3D3ε · n′/k′ such that every vertex in A′l has a neighbor in every ψ′′({Sj,l, S}), for
each S ∈ D(Sj,l).

By Lemma 19, there are subsets A′′1 ⊆ A′1 and A′′2 ⊆ A′2 of sizes at least |Sj,1| + 2D3ε ·
n′/k′ ≥ |Sj,1| + (2D + 1)ε · n′/k′ and |Sj,2| + 2D3ε · n′/k′ ≥ |Sj,2| + (2D + 1)ε · n′/k′,
respectively, such that the induced graph (A′′1, A

′′
2) is a bipartite (ε ·n′/k′, 2D+ 2)-expander.

We put ϕ′′(Sj,l) := A′′l for both l.
Finally, let l be such that the set Sj,l contains the root of the tree T [Sj]. If j 6= 1,

then Sj,l has a unique parent S ∈ S. Let e := {S, Sj,l}. Clearly, e belongs to E . Since
|ψ′(e)| ≥ αγδ/48 · n′/k′ ≥ 2ε · n′/k′, by Lemma 20 there is a subset A′′ ⊆ ψ′(e) of size at
least ε · n′/k′ such that every vertex in A′′ has at least D + 1 neighbors in ϕ′′(Sj,l). We put
ψ′′(e) := A′′. If j = 1, then Sj is the root of TΠ, and there is nothing to do.

3.6 Embedding T into G′′

Finally, we are ready to embed our tree T into G′′. We will do the actual embedding in
a top-down fashion, starting with S1 and extending our embedding to all other Sj one-by-
one. For each j, the subtree T [Sj] will be embedded into the bipartite expanding graph
(ϕ′′(Sj,1), ϕ′′(Sj,2)) with the small exception that, unless j = 1, the root of the tree will
be embedded into the appropriate ‘connecting’ set ψ′′(e), where e ∈ E represents the edge
between T [Sj] and its parent in the cluster tree TΠ.

We start by embedding the first subtree, S1, into the bipartite graph H1 induced on the
pair (ϕ′′(S1,1), ϕ′′(S1,2)). Since |ϕ′′(S1,l)| ≥ |S1,l|+ 2D3ε · n′/k′ for each l ∈ {1, 2}, and H1 is
a bipartite (ε ·n′/k′, D+ 1)-expander, Corollary 12 guarantees that this is possible. Suppose
we have already embedded S1, . . . , Sj−1 into T in such a way that for every j′ < j and
l′ ∈ {1, 2}, all vertices in Sj′,l′ , except the root of T [Sj′ ], are mapped into the set ϕ′′(Sj′,l′).
Let l ∈ {1, 2} be such that the root of T [Sj], call it rj, is in Sj,l. Let pj be the parent of rj
in the tree T and let j′ and l′ be such that pj ∈ Sj′,l′ . Finally, let e := {Sj′,l′ , Sj,l}. The way
we defined ϕ′′ and ψ′′ guarantees that the image of pj, which by the definition of Π cannot
be the root of its tree and hence has not been mapped to a vertex in one of the ’connecting’
sets ψ′′(e), is in ϕ′′(Sj′,l′) and has a neighbor x in the set ψ′′(e), and x has at least D + 1
neighbors in ϕ′′(Sj,3−l).

Claim 22. The graph Hj induced on the pair (ϕ′′(Sj,l) ∪ {x}, ϕ′′(Sj,3−l)) is a bipartite (ε ·
n′/k′ + 1, D + 1)-expander.

Proof. For the sake of brevity, let A := ϕ′′(Sj,l) ∪ {x}, B := ϕ′′(Sj,3−l) and q := ε · n′/k′.
Recall that the graph (A − {x}, B) is a bipartite (q, 2D + 2)-expander. It is easy to check
that Hj satisfies all conditions from Definition 11.
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ϕ′′(Sj′,l′)

pj

ψ′′(e)

rj

ϕ′′(Sj,l)

ϕ′′(Sj,3−l)

Figure 2: Embedding the subtree Sj into G′′

For example, let X ⊆ A be a set of size at most q+ 1. If x 6∈ X, then |NHj
(X)| ≥ (2D+

2) min{|X|, q} ≥ (D + 1)|X|. If x ∈ X but X 6= {x}, then |NHj
(X)| ≥ |NHj

(X − {x})| ≥
(2D + 2)(|X| − 1) ≥ (D + 1)|X|. Finally, if X = {x}, then |NHj

(X)| ≥ (D + 1)|X| by the
choice of x.

A similar straightforward case analysis shows that the other conditions from Definition 11
are also satisfied. We omit the details.

Since |ϕ′′(Sj,l) ∪ {x}| ≥ |Sj,l| + 2D3ε · n′/k′ and |ϕ′′(Sj,3−l)| ≥ |Sj,3−l| + 2D3ε · n′/k′,
Corollary 12 says that we can embed T [Sj] in Hj in such a way that rj is mapped to x.
Note that necessarily Sj,l−{rj} is mapped to ϕ′′(Sj,l) and Sj,3−l is mapped to ϕ′′(Sj,3−l), see
Figure 3.6. This completes the proof.

4 Concluding remarks

We would like to mention that our proof of Theorem 3 can be slightly adjusted to yield the
following result, which was originally proved by Dellamonica, Kohayakawa, Marciniszyn and
Steger [10].

Theorem 23. Let α and γ be positive constants. There exist η0 and n0 (depending on α
and γ) with the following property. Let G be an n-vertex (p, η)-uniform graph, with p > 0,
η < η0 and n ≥ n0. The local resilience of G with respect to having circumference greater
than (1− α)n is at least 1/2− γ.

In order to prove Theorem 23, one can just follow the proof of Theorem 3 with T being a
path of length (1− α/2)n, rooted at one of the endpoints. The only difference is that when
we partition T and assign the subpaths of T , the sets Sj,l in our proof, to the cluster pairs
forming our fixed matching M , we make sure that the first and the last subpaths are long
enough, e.g., both have δ ·n′/k′ vertices, and get assigned to the same cluster pair. After we
have embedded T into the graph G′, since the first and the last segments of T were mapped
to a dense regular pair of clusters in G′, we easily find an edge between them, which will
close a cycle of length greater than (1− α)n.
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