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Abstract. A central problem in extremal graph theory is to estimate, for a given graph H, the number

of H-free graphs on a given set of n vertices. In the case when H is not bipartite, Erdős, Frankl, and

Rödl proved that there are 2(1+o(1))ex(n,H) such graphs. In the bipartite case, however, bounds of the

form 2O(ex(n,H)) have been proven only for relatively few special graphs H.

As a first attempt at addressing this problem in full generality, we show that such a bound follows

merely from a rather natural assumption on the growth rate of n 7→ ex(n,H); an analogous statement

remains true when H is a uniform hypergraph. Subsequently, we derive several new results, along with

most previously known estimates, as simple corollaries of our theorem. At the heart of our proof lies a

general supersaturation statement that extends the seminal work of Erdős and Simonovits. The bounds

on the number of H-free hypergraphs are derived from it using the method of hypergraph containers.

1. Introduction

The extremal number of a graph H, denoted by ex(n,H), is the maximum possible number of edges

in a graph G on n vertices which does not contain H as a (not necessarily induced) subgraph. Such

a graph G is referred to as H-free. The study of the asymptotic behavior of ex(n,H) for various H

is a central theme in extremal graph theory and goes back to the pioneering work of Turán [40], who

determined ex(n,H) exactly in the case when H is a complete graph. In fact, Turán’s construction

provides a lower bound on ex(n,H) that depends on the chromatic number of H, denoted by χ(H),

which is the least integer k for which one can partition V (H) into k independent sets (that is, sets

which induce no edges). More precisely, Turán’s construction gives

ex(n,H) >

(
1− 1

χ(H)− 1

)(
n

2

)
for every nonempty graph H. A matching upper bound was proved several years later by Erdős and

Stone [23], giving

ex(n,H) =

(
1− 1

χ(H)− 1

)(
n

2

)
+ o(n2). (1)

Note that (1) determines the asymptotics of ex(n,H) whenever χ(H) > 3, but when χ(H) = 2, that

is, when H is bipartite, it only implies that ex(n,H) = o(n2), whereas Turán’s construction gives the

trivial bound ex(n,H) > 0.

Perhaps unsurprisingly, the bipartite case of Turán’s problem is much more challenging and there are

only a few bipartite graphs H for which even the order of magnitude of ex(n,H) has been determined.

Among the known examples one can find trees, cycles of lengths four, six, and ten, and the complete

bipartite graphs Ks,t when s ∈ {2, 3} or t < (s − 1)!. For a generic bipartite H, there does not even

seem to be a good guess for what ex(n,H) might be. The lower bounds in all the above examples are

established by rather involved algebraic or geometric constructions. The strongest general upper bound

on ex(n,H) is due to Füredi [25] who proved that ex(n,H) = O(n2−1/D) if all but one of the vertices

in one of the color classes of some proper two-coloring of H have degree at most D. This generalizes

the classical result of Kővári, Sós, and Turán [28], who showed that ex(n,Ks,t) = O(n2−1/s) for all s

and t. Treating a more general class of graphs than the one considered in [25], Alon, Krivelevich, and

Sudakov [2] proved that ex(n,H) = O(n2−1/4D) for every D-degenerate bipartite graph H (a graph is
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D-degenerate if every subgraph of it has minimum degree at most D). For a more detailed discussion

and further references we refer the reader to the excellent survey of Füredi and Simonovits [26].

Here we shall be concerned with the closely related problem of enumerating H-free graphs. That

is, we are interested in the asymptotic size of the set Fn(H) consisting of all (labeled) H-free graphs

with vertex set [n] := {1, . . . , n}. Observing that every subgraph of an H-free graph is also H-free

and that every n-vertex H-free graph has at most ex(n,H) edges, one obtains the trivial bounds

2ex(n,H) 6 |Fn(H)| 6
ex(n,H)∑
k=0

((n
2

)
k

)
6

(
e
(
n
2

)
ex(n,H)

)ex(n,H)

. (2)

This counting problem has been widely studied, and when H is not bipartite, bounds much tighter

than (2) are known. It was proved by Erdős, Kleitman, and Rothschild [20] (when H is a complete

graph, but implicitly also for every non-bipartite H) and then by Erdős, Frankl, and Rödl [19] that

|Fn(H)| = 2ex(n,H)+o(n2). (3)

In particular, if χ(H) > 3, then (1), (3), and the lower bound in (2) imply that |Fn(H)| = 2(1+o(1))ex(n,H).

On the other hand, if H is bipartite, then (3) is very weak and the trivial upper bound in (2) is still the

state-of-the-art bound for a generic graph H (up to a constant multiplicative factor in the exponent),

giving

2ex(n,H) 6 |Fn(H)| 6 2Cex(n,H) logn (4)

for some positive constant C that depends only on H. It is natural to ask whether the log n factor in

the above upper bound can be removed. Indeed, this question was posed by Erdős some thirty five

years ago (see [30]) for all bipartite H that contain a cycle.1 Until very recently, it was even believed

that the stronger bound |Fn(H)| 6 2(1+o(1))ex(n,H) holds, as it does for non-bipartite H, but this was

disproved by Morris and Saxton [34] in the case when H is the cycle of length six. In view of this, the

following seems to be the right question to ask.

Question 1. Suppose that H is a bipartite graph which contains a cycle. Is there a constant C such

that

|Fn(H)| 6 2Cex(n,H)

for all n?

Despite renewed interest in Question 1 in recent years, very little is known. To the best of our

knowledge, it has been answered positively only in the cases when H is the cycle of length four [30],

six [29], or ten [34], the complete bipartite graph Ks,t with s ∈ {2, 3} or t > (s − 1)! (see [8, 9]),

or so-called theta-graphs [15]. In this paper we make a first attempt at addressing Question 1 for a

generic bipartite graph H. Our methods also extend to the setting of uniform hypergraphs, which we

shall discuss at the end of this section. The following is our first main result:

Theorem 2. Let H be an arbitrary graph containing a cycle. Suppose that there are positive constants

α and A such that ex(n,H) 6 Anα for all n. Then there exists a constant C depending only on α, A,

and H such that for all n,

|Fn(H)| 6 2Cn
α
.

Note that Theorem 2 answers Question 1 in the affirmative for every bipartite H such that

ex(n,H) = Θ(nα) for some α. This is the case for each H for which Question 1 has been answered

so far and therefore Theorem 2 reproves all the previously known results listed above. In fact, it is

commonly believed that ex(n,H) = Θ(nα) for all bipartite H, as conjectured by Erdős and Simonovits

(see for example [18]):

1The case when H has no cycles is very different as then ex(n,H) = O(n) while there could be n-vertex H-free graphs

with as many as n! different labelings. In particular, since there are 2Ω(n logn) different labeled n-vertex graphs with

maximum degree one, then |Fn(H)| > 2Ω(ex(n,H)·logn) for every acyclic H with maximum degree at least two. Worse

still, there are 2Ω(n logn) non-isomorphic n-vertex graphs with maximum degree three.
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Conjecture 3. For every nonempty bipartite graph H, there exist a rational number α ∈ [1, 2) and

c > 0 such that
ex(n,H)

nα
→ c.

Observe that if Conjecture 3 is true, then Theorem 2 resolves Question 1 for all H. Actually, the

following weaker version of Conjecture 3 is sufficient. However, a solution to either of these conjectures

is most likely unattainable in the near future.

Conjecture 4. For every nonempty bipartite graph H, there exist α ∈ [1, 2] and c2 > c1 > 0 such

that

c1 6
ex(n,H)

nα
6 c2

On a related note, we would like to mention a recent breakthrough of Bukh and Conlon [14], who

used a random algebraic method, pioneered by Bukh [13], to prove the following ‘inverse’ version

of Conjecture 4: for every rational α ∈ [1, 2), there exists a finite family of graphs L for which

ex(n,L) = Θ(nα) (where ex(n,L) is the maximum possible number of edges in an n-vertex graph that

does not contain any member of the family L).

There are bipartite graphs H for which the best known upper bound on ex(n,H) is of the form

O(nα), for some explicit α, and is conjectured to be tight. For such graphs, it makes sense to establish

the bound |Fn(H)| 6 2O(nα). Indeed, such results have been proved for even cycles [34], complete

bipartite graphs [8, 9], and theta graphs [15]. All these estimates follow as simple corollaries of

Theorem 2 and the corresponding upper bounds on the extremal numbers [12, 24, 28].

Even if the asymptotic behavior of ex(n,H) is unknown, assuming a sufficiently strong lower bound

on it, in Theorem 5, we are able to prove strong estimates for |Fn(H)| for an infinite sequence of n. A

similar result for the number of k-arithmetic-progression-free subsets of [n] was obtained by Balogh,

Liu, and Sharifzadeh [5]. This result served as an inspiration for our work. Before formally stating

the theorem, we recall the notion of 2-density of a graph H:

m2(H) := max

{
eF − 1

vF − 1
: F ⊆ H, vF > 2

}
.

Theorem 5. Let H be a graph and assume that ex(n,H) > εn2−1/m2(H)+ε for some ε > 0 and all n.

Then there exist a constant C depending only on ε and H and an infinite sequence of n for which

|Fn(H)| 6 2C·ex(n,H).

The assumption on H stated in Theorem 5 is widely believed to hold for every H containing a cycle.

In fact, it is known to hold for quite a few bipartite graphs. For example, it is known that for every `,

ex(n,C2`) > Ω
(
n1+ 2

3`+3

)
= Ω

(
n2−1/m2(C2`)+ε`

)
,

where ε` > 0; see, for example, Terlep and Williford [39] and the references therein (in particular, the

famous papers of Margulis [33] and Lubotzky, Phillips, and Sarnak [32]). To give another example,

consider the case when H is the 3-dimensional hypercube graph Q3. Theorem 5 applies to H because

2− 1/m2(Q3) = 2− 6/11 < 3/2 and ex(n,Q3) > ex(n,C4) = Ω(n3/2). As a third example, note that

ex(n,K4,4) > ex(n,K3,3) = Ω(n5/3) and 5/3 > 2 − 7/15 = 2 − 1/m2(K4,4) and thus Theorem 5 also

applies with H = K4,4. Finally, it follows from the work of Ball and Pepe [3] that K5,5 and K6,6 also

satisfy the assumptions of Theorem 5.

One may consider a natural extension of Question 1 to the setting of uniform hypergraphs, where

ex(n,H) and Fn(H) are defined in the obvious way. However, the problem of enumerating hypergraphs

without a forbidden subhypergraph has only been addressed fairly recently. Generalizing (3), Nagle,

Rödl, and Schacht [37] proved that for each r-uniform hypergraph H,

|Fn(H)| = 2ex(n,H)+o(nr). (5)
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Analogously to the graph case, it is easy to see that an r-uniform hypergraph H that is not r-partite2

satisfies ex(n,H) = Ω(nr). On the other hand, extending the result of Kővári, Sós, and Turán [28]

to hypergraphs, Erdős [17] proved that for every r-partite r-uniform H, there is an ε > 0 such that

ex(n,H) = O(nr−ε). In particular, (5) implies that |Fn(H)| = 2(1+o(1))ex(n,H) for all non-r-partite

r-uniform H, but it gives a very weak bound when H is r-partite. Therefore, the right generalization

of Question 1 to the setting of hypergraphs with uniformity larger than two seems to be the following:

Question 6. Suppose that r > 3 and suppose that H is an r-partite r-uniform hypergraph. Under

what conditions can one expect the existence of a constant C such that

|Fn(H)| 6 2Cex(n,H)

for all n?

As mentioned above, our proof method applies to hypergraphs and both Theorems 2 and 5 extend

to this setting. Before stating them formally, we need the following definition, which generalizes the

notion of 2-density to hypergraphs. The r-density of an r-uniform hypergraph H, denoted by mr(H),

is defined by

mr(H) = max

{
eF − 1

vF − r
: F ⊆ H, vF > r

}
.

The hypergraph analog to Theorem 2 is the following:

Theorem 7. Let H be an r-uniform hypergraph and let α and A be positive constants. Suppose that

α > r − 1/mr(H) and that ex(n,H) 6 Anα for all n. Then there exists a constant C depending only

on α, A, and H such that for all n,

|Fn(H)| 6 2Cn
α
.

The idea of investigating Question 6 was suggested in a recent work of Mubyai and Wang [36].

They conjectured that Question 6 has an affirmative answer in the case when H is C
(r)
k , the r-uniform

expansion3 of Ck, the (2-uniform) cycle of length k. Improving upon the result from [27, 36], Balogh,

Narayanan, and Skokan [7] have recently solved the conjecture of Wang and Mubayi. As immediate

corollaries from Theorem 7 we reprove this result along with two related estimates for expansions of

paths and complete bipartite graphs. For further reading about Turán problems for graph expansions,

we refer the reader to a recent survey of Mubayi and Verstraëte [35] and the references therein. Here

is a summary of our results:

Corollary 8. Suppose that H is any one of the following:

(1) P
(r)
k for some k, r > 3, or

(2) C
(r)
k for some k, r > 3, or

(3) K
(3)
s,t for some s, t > 3 with t > (s− 1)!.

Then, there exists a constant C depending only on H such that for all n,

|Fn(H)| 6 2C·ex(n,H).

We conclude with the following analog of Theorem 5 in the hypergraph setting.

Theorem 9. Let H be an r-uniform hypergraph and assume that ex(n,H) > εnr−1/mr(H)+ε for some

ε > 0 and all n. Then there exist a constant C depending only on ε and H and an infinite sequence

of n for which

|Fn(H)| 6 2C·ex(n,H).

2An r-uniform hypergraph H is r-partite if its vertex set admits a partition into r parts such that every edge of H

contains one vertex from each of the parts.
3Given a graph G and an integer r > 3, we define the r-uniform expansion of G to be the hypergraph G(r) with edge

set {e ∪ Se : e ∈ E(G)}, where {Se}e∈E(G) are pairwise disjoint (r − 2)-element sets disjoint from V (G).
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All of our theorems are obtained as (more or less) simple corollaries of the more general but some-

what technical Theorem 13, which is stated (and proved) in Section 4.

The rest of the paper is organized as follows: First, in Section 2 we give a short discussion of our

proof method, including some comments about previous work. Then, in Section 3, we present the main

tool to be used in our proofs, Lemma 12, which is a version of a similar lemma from [34] and is based

on the method of hypergraph containers developed in [6, 38]. Next, in Section 4, we introduce our

main technical theorem, Theorem 13, a ‘balanced supersaturation’ result that complements Lemma 12.

Next, in Sections 5 and 9, we prove Theorems 2 and 7 and Theorems 5 and 9, respectively. Finally,

in Section 7, we close this paper with some concluding remarks and a discussion of future research

directions.

2. Discussion

As we have mentioned in the introduction, enumeration problems in the context of forbidden (hy-

per)graphs have been successfully addressed for non-bipartite graphs [4, 19, 20] and non-r-partite

r-uniform hypergraphs [37]. A main difficulty in extending the results of [4, 19, 20] to the bipartite

case is that the proofs in [4, 19] are based on Szemerédi’s regularity lemma. Even though there are

now sparse versions of the regularity lemma, it is unlikely that the regularity approach could be used

for counting graphs without a bipartite subgraph. The proof method of [20] is different, but it hinges

on the fact that for non-bipartite H, the number of edges in most graphs in Fn(H) is n2−o(1); this

is no longer true when H is bipartite. In the case of r-uniform hypergraphs (r > 3), the situation is

even more complicated, as a hypergraph regularity lemma which is sufficiently strong to address the

enumeration problem was proved only relatively recently and is quite involved.

A nowadays standard way of tackling enumeration problems of this type is by using the method

of hypergraph containers. This method was introduced by Balogh, Morris, and Samotij [6] and,

independently, by Saxton and Thomason [38]. In particular, it can be used to reprove (5) for all

r-uniform H in a simple way. The container method essentially reduces the problem of establishing

upper bounds on |Fn(H)| to proving the following statement: If an n-vertex graph contains ‘slightly

more’ than ex(n,H) edges, then it has ‘many’ copies of H (such property is known as supersaturation)

that are moreover ‘well-distributed’.

Keeping this in mind, it seems hopeless to provide a general solution to the counting problem, as

it seems crucial to know the order of magnitude of ex(n,H) in order to establish a sufficiently strong

supersaturation result. However, Balogh, Liu, and Sharifzadeh [5] have recently managed to settle a

question that has a similar flavor without knowing the corresponding extremal function. Specifically,

they showed that for infinitely many n, there are 2Θ(Γk(n)) many subsets of [n] that do not contain an

arithmetic progression of length k; here Γk(n) is the largest cardinality of a subset of [n] without a

k-term arithmetic progression. We have found this result very surprising, as the asymptotic behavior

of Γk(n) is unknown. It motivated us to investigate whether similar estimates can be obtained for the

problem of counting H-free graphs. A fact that was crucially used in [5] is that every pair of integers

is contained in a constant number of k-term arithmetic progressions. This is not the case with copies

of a fixed graph H in a large complete graph (and pairs of edges of this complete graph) and this was

one of the main challenges that we had to overcome.

The main contribution of this work is a general supersaturation theorem for r-uniform r-partite

hypergraphs, Theorem 13 below. Roughly speaking, it states the following. Suppose that ex(n,H) =

O(nα) for some α such that the expected number of copies of (the densest subgraph of) the forbidden

hypergraph H in the random hypergraph with n vertices and nα edges is of larger order of magnitude

than nα. Then every n-vertex hypergraph with at least nα edges contains ‘many’ copies of H which

are ‘well-distributed’. Although the number of copies of H that we can guarantee is still very far from

the value conjectured by Erdős and Simonovits [22], the lower bound we prove for this quantity is

sufficiently strong to allow us to derive a strong upper bound on Fn(H) using the container method.
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This was in fact already observed by Morris and Saxton [34], who formulated the following conjecture

and showed that it implies a positive answer to Question 1. For an r-uniform hypergraph H and

1 6 ` 6 r, let ∆`(H) be the maximum number of hyperedges of H that contain a given set of `

vertices.

Conjecture 10 ([34, Conjecture 1.6]). Given a bipartite graph H, there exist constants C > 0, ε > 0,

and k0 ∈ N such that the following holds. Let k > k0 and suppose that G is a graph on n vertices with

k · ex(n,H) edges. Then there exists a (non-empty) collection H of copies of H in G, satisfying

∆`(H) 6
C · e(H)

k(1+ε)(`−1)
for all 1 6 ` 6 eH .

Although we have not succeeded in resolving Conjecture 10, our Theorem 13 shows that the ‘bal-

anced supersaturation’ property asserted by it holds for every graph H for which Conjecture 4 (or the

stronger Conjecture 3) is true.

3. A container lemma

Let H be an r-uniform hypergraph and let H denote the eH -uniform hypergraph whose vertex set

is the edge set of the complete r-uniform n-vertex hypergraph K
(r)
n and whose hyperedges are (the

edge sets of) all copies of H in K
(r)
n . Note that the edge set of every H-free hypergraph on n vertices

corresponds to an independent set in H and vice versa. Therefore, any upper bound on the number

of independent sets in H yields an upper bound on the number of H-free hypergraphs.

In order to obtain the desired bound on the number of independent sets, we will use a version of

the container lemma due to Balogh, Morris, and Samotij [6, Proposition 3.1]. Roughly speaking, the

lemma states that if the edges of a uniform hypergraph H are ‘well-distributed’, then the following

holds. There is a ‘relatively small’ collection C of subsets of V (H) (referred to as containers), each of

which induces ‘not too many’ hyperedges, such that every independent set of H is a subset of at least

one container. Here is the formal statement:

Proposition 11 (Container lemma [6, Proposition 3.1]). Let H be a k-uniform hypergraph and let

K be a constant. There exists a constant δ depending only on k and K such that the following holds.

Suppose that for some p ∈ (0, 1) and all ` ∈ {1, . . . , k},

∆`(H) 6 K · p`−1 · e(H)

v(H)
. (6)

Then, there exists a family C ⊆ P(V (H)) of containers with the following properties:

(i) |C| 6
( v(H)
6kpv(H)

)
6
(
e
kp

)kpv(H)
,

(ii) |G| 6 (1− δ) · v(H) for each G ∈ C,

(iii) each independent set of H is contained in some G ∈ C.

Clearly, the smaller the p we choose, the stronger the upper bound on the number of containers.

On the other hand, as we decrease p, it becomes more difficult to satisfy the ‘density’ condition (6).

To illustrate how the container lemma can be applied in our setting, let us assume that we have

an upper bound of O(M) on the largest size of a container and that (6) is fulfilled with p satisfying

p log 1
p = O(M/v(H)). Then, we immediately obtain

|Fn(H)| 6 |C| · 2O(M) = 2O(M).

Since one does not obtain strong bounds on the largest size of a container after one application of

Proposition 11, it is natural to iterate it. Specifically, given a candidate G for a final container, we can

either decide to keep it (if G is small enough for our purposes) or invoke Proposition 11 to the induced

subhypergraph H[G] to break G down further. In order for this recursive process not to produce too

many containers, we must prove that H[G] fulfills (6) with a ‘relatively small’ p. Unfortunately, since
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we do not know anything about the structure of G, such a statement might be very hard, or even

impossible to prove.

In order to overcome this difficulty, we employ the following simple, yet powerful strategy that

was first used in this context by Morris and Saxton [34]. Given any subhypergraph HG ⊆ H[G],

every independent set in H[G] is also independent in HG. Hence, any upper bound on the number

of independent sets in HG is also an upper bound on the number of independent sets in H[G]. It

thus follows that even if H[G] does not fulfill (6), we might hope to find a suitable subhypergraph

HG ⊆ H[G] which does satisfy this condition, enabling us to continue the iteration.

With this strategy in mind, we are first going to show how the existence of such HG for every G

implies the desired upper bound on the number of independent sets. A similar statement appears

in [34], but since we consider hypergraphs here as well (as opposed to [34]), for the convenience of the

reader and in order to keep this paper self-contained, we include a full proof.

Lemma 12. Let H be a nonempty r-uniform hypergraph and let H be the eH-uniform hypergraph

comprising (the edge sets of) all copies of H in K
(r)
n . Let K be a constant and let γ = 1

1−δ , where

δ := δ(eH ,K) is defined in Proposition 11. Suppose that for a given n ∈ N, there exist M and t0 such

that the following holds: for all integers t > t0 and all G ⊆ V (H) satisfying

γtM < |G| 6 γt+1M,

there exists a subhypergraph HG ⊆ H[G] for which

∆`(HG) 6 K ·
(
bt
|G|

)`−1

· e(HG)

|G|
(7)

where bt = M
(t+1)3 , for all ` ∈ {1, . . . , eH}. Then there is a constant C depending only on K, t0, and

eH such that |Fn(H)| 6 2C·M .

Proof. We are going to prove the claimed upper bound on |Fn(H)| by constructing a collection of

2O(M) containers for independent sets in H, each of size O(M). We start with the trivial container

V (H) which we break down into smaller containers by repeatedly applying Proposition 11 to the

subhypergraphs HG from the assumption of the lemma. Formally, we shall construct a rooted tree T
whose vertices are subsets of V (H), that is, subgraphs of K

(r)
n , with the following properties:

(T1) The root of T is V (H).

(T2) If G is a non-leaf vertex of T , then every independent set of H[G] is an independent set of

H[G′] for some child G′ of G in T .

(T3) Every leaf of T is a subset of V (H) with at most γt0M elements.

The existence of such a tree T clearly implies that

|Fn(H)| 6 #leaves of T · 2γt0M . (8)

We construct T greedily by starting from a tree comprising just the root V (H) and repeatedly ‘split-

ting’ every leaf vertex that corresponds to a subset of V (H) with more than γt0M elements. Suppose

that G is such a subset and let t > t0 be the unique integer such that

γtM < |G| 6 γt+1M. (9)

By our assumption, there is a subhypergraph HG ⊆ H[G] that satisfies condition (7). Observe that

if we let p = bt
|G| , then we obtain precisely (6). Therefore, we can apply Proposition 11 to HG and

obtain a family CG of subsets of G such that

(i) |CG| 6
(
e|G|
eHbt

)eHbt
6
(
eγt+1M
eHbt

)eHbt
,

(ii) |G′| 6 (1− δ) · |G| 6 γtM for every G′ ∈ CG,

and such that (T2) holds for G, as every independent set in H[G] is still independent in HG. Note

that (ii) implies that as G ranges over the vertices of any path from the root to a leaf of T , the
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sequence of t satisfying (9) is strictly decreasing. Moreover, t 6 T , where T is the smallest integer

satisfying γTM > v(H). It follows that

#leaves of T 6
T∏
t=t0

(
eγt+1M

eHbt

)eHbt
6

T∏
t=t0

(
eγt+1(t+ 1)3

eH

) eHM

(t+1)3

6
T∏
t=t0

(
At+1

) eHM
(t+1)3

6 exp

(
eHM · logA ·

∞∑
t=1

1

t2

)
6 2(C−γt0 )M ,

(10)

where A and C are constants depending only on γ, eH , and t0. The assertion of the lemma now follows

from (8) and (10). �

4. Supersaturation

In this section we establish our supersaturation statement for copies of a fixed hypergraph H. We

shall be able to prove, for every n-vertex hypergraph G, the existence of an HG as in the discussion

before Lemma 12 using only a relatively mild and natural assumption on the growth rate of ex(s,H)

for all s below some given n. As in the argument of [34], we build HG by adding suitable copies of

H in G one by one. The following technical statement is the main contribution of our work. The key

idea in its proof, a double counting argument based on averaging over induced subhypergraphs of G,

can be traced back to the seminal work of Erdős and Simonovits [21].

Theorem 13. Let H be an r-uniform hypergraph, let γ > 1, and let α > r − 1/mr(H). Suppose that

M is such that for every s ∈ {1, . . . , n},

ex(s,H) 6M ·
( s
n

)α
.

Then there exists a constant t0 depending only on α, γ, and H such that the following holds. If G is

an n-vertex r-uniform hypergraph with

γtM < e(G) 6 γt+1M

for some integer t > t0, then there is a collection HG of copies of H in G for which, letting bt = M
(t+1)3 ,

∆`(HG) 6 22eH+3 ·
(

bt
e(G)

)`−1

· e(HG)

e(G)
(11)

for every ` ∈ {1, . . . , eH}. In particular, Lemma 12 implies the existence of a constant C depending

only on α and H such that |Fn(H)| 6 2C·M .

Proof. Let H denote the hypergraph with vertex set E(G) comprising all copies of H in G. We shall

construct an HG ⊆ H from an initially empty hypergraph by adding to it copies of H one by one, in

a sequence of N steps (N to be chosen shortly). We shall do it in such a way that after N steps, the

obtained hypergraph HG will have exactly N edges and will satisfy (11).

Let m = e(G). Since we will add each copy of H to HG only once, we will have ∆eH (HG) = 1 and

thus, isolating e(HG) in (11) with ` = eH , the number of edges that we have to add to HG satisfies

N >

(
m

bt

)eH−1

· 2−2eH−3 ·m.

In particular, choosing

N :=

(
γt+1M

bt

)eH−1

·m =
(
(t+ 1)3 · γt+1

)eH−1 ·m,

we will guarantee that (11) holds for ` = eH .

We now make the above discussion precise. We shall construct a sequence (Hi)Ni=0 of subhypergraphs

of H such that Hi ⊆ Hi+1 and e(Hi) = i for each i and let HG = HN . We let H0 be the empty

hypergraph. Suppose that we have already defined Hi for some i ∈ {0, . . . , N − 1}. Our goal is not
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only to find some copy of H in H\Hi to be added to Hi in order to form Hi+1, but also to choose this

copy carefully so that at the end of the process, condition (11) is satisfied for every `. To this end,

for every nonempty F ( H, we let BF (Hi) denote the collection of ‘bad’ copies of F in G in the sense

that they are already ‘saturated’ in Hi. That is, the Hi-degree of the set of e(F ) edges of G that form

this copy of F is close to violating the bound (11), with ` = e(F ). More precisely, given F ′ ⊆ V (Hi),
we define

degHi F
′ =

∣∣{E ∈ E(Hi) : F ′ ⊆ E
}∣∣ ,

and let

BF (Hi) =

{
F ′ ⊆ G : F ′ ' F and degHi F

′ > 22eH+2 ·
(
(t+ 1)3 · γt+1

)1−eF · N
m

}
.

Observe that

2eH ·N >
(
eH
eF

)
· e(Hi) > |BF (Hi)| · 22eH+2 ·

(
(t+ 1)3 · γt+1

)1−eF · N
m

and therefore,

|BF (Hi)| 6 2−eH−2
(
(t+ 1)3 · γt+1

)eF−1 ·m. (12)

Suppose that there exists an E ∈ H such that F ′ /∈ BF (Hi) for every nonempty F ( H and every

F ' F ′ ( E. Call each such E good, assuming that i is fixed. If there is a good E that is not already

in Hi, then letting Hi+1 = Hi ∪ {E} guarantees that for every ` ∈ [eH − 1],

∆`(Hi+1) 6 max

{
∆`(Hi), 22eH+2 ·

(
(t+ 1)3 · γt+1

)1−` · N
m

+ 1

}
6 max

{
∆`(Hi), 22eH+3 ·

(
(t+ 1)3 · γt+1

)1−` · N
m

}
6 max

{
∆`(Hi), 22eH+3 ·

(
bt
m

)`−1

· N
m

}
,

where the second inequality holds because(
(t+ 1)3 · γt+1

)1−` · N
m

=
(
(t+ 1)3 · γt+1

)eH−` > 1

and the last inequality uses the definition of bt and the bound m 6 γt+1M . In particular, by the

definition of N , if we succeed in finding such a good E ∈ H\Hi for every i, then the final hypergraph

HG = HN will satisfy (11) for every ` ∈ [eH ].

Fix some p ∈ (0, 1] such that pn is an integer and let R be a uniformly chosen random subset of pn

vertices of G. Denote by G′ the subgraph of G induced by R. Let G′′ be a graph obtained from G′

by removing one edge from each copy of F in G′ that belongs to BF (Hi), for every nonempty F ( H.

Note that any copy of H in G′′ is good by definition. Let X denote the (random) number of good

copies of H in G′′ and let Z be the total number of good copies of H in G. Even though we might

have accidentally eliminated some good copies of H in G′ while forming the subgraph G′′, it is still

true that

E[X] 6 Z ·
(
n− vH
pn− vH

)
/

(
n

pn

)
= Z ·

(
pn

vH

)
/

(
n

vH

)
6 Z · pvH .

Since every copy of H in G′′ is good and G′′ has pn vertices, then

X > e(G′′)− ex(pn,H) > e(G′′)−M · pα.

Since clearly

e(G′′) > e(G′)−
∑
F(H

∑
F ′∈BF (Hi)

1[F ′ ⊆ G′],
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and for every F ′ ⊆ G with F ′ ' F , we have Pr(F ′ ⊆ G′) =
(
n−vF
pn−vF

)
/
(
n
pn

)
6 pvF , it follows that

Z · pvH > E[X] > E[e(G′′)]−M · pα > E[e(G′)]−
∑
F(H

|BF (Hi)| · pvF −M · pα. (13)

Finally, if pn > 2r2, then

E[e(G′)] = m ·
(
n− r
pn− r

)
/

(
n

pn

)
= m ·

(
pn

r

)
/

(
n

r

)
> m ·

(
pn− r
n

)r
= m · pr ·

(
1− r

pn

)r
> m · pr ·

(
1− r2

pn

)
>
m · pr

2
,

which substituted into (13) yields

Z · pvH > m · pr

2
−
∑
F(H

|BF (Hi)| · pvF −M · pα. (14)

We claim that there is a p ∈ [2r2/n, 1] such that pn is an integer and the right-hand side of (14) is

at least N · pvH , and thus Z > N . Since e(Hi) = i < N , this inequality would imply that there is a

good copy of H in G that does not belong to Hi, completing the proof. Hence, it suffices to establish

this claim. To this end, note first that by (12), we have∑
F(H

|BF (Hi)| · pvF 6
m

4
·max

{(
(t+ 1)3 · γt+1

)eF−1 · pvF : F ( H
}
. (15)

Thus it suffices to have the following three inequalities for every F ( H:

pr−vF >
(
(t+ 1)3 · γt+1

)eF−1
, (16)

pα−r 6
γt

8
6

m

8M
, (17)

pr−vH > 8
(
(t+ 1)3 · γt+1

)eH−1
=

8N

m
. (18)

Indeed, combining inequalities (14), (15), (16), and (17) yields

Z · pvH > m · pr

8
,

which combined with (18) gives the desired lower bound on Z. Note also that both (16) and (18)

would follow if the following was true for every F ( H:

pr−vF >
(
8 · (t+ 1)3 · γt+1

)eF−1
. (19)

Observe that (17) holds trivially for all large enough t if α = r. Moreover, (19) holds when vF = r, as

then eF = 1. Hence, we may assume that α < r and verify (19) only for all F ( H with eF > 1.

It is not hard to see that it suffices to show is that for all F ( H with eF > 1,

2 ·
(
8 · (t+ 1)3 · γt+1

) eF−1

vF−r 6 min

{(
γt

8

) 1
r−α

,
n

2r2

}
(20)

Indeed, if (20) holds, then every p in some interval [p0, 2p0] ⊆ [2r2/n, 1] satisfies both (17) and (19).

Clearly, this interval contains a p such that pn is an integer. The first of the two inequalities in (20)

holds for all large t, as γ > 1 and by our hypothesis

eF − 1

vF − r
6 mr(H) <

1

r − α
. (21)

To see that the second inequality in (20) holds as well, note first that

1 = ex(r,H) 6M ·
( r
n

)α
6
e(G)

γt
·
( r
n

)α
6
nr

γt
·
( r
n

)α
,
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and hence t 6 r logn
log γ . It follows that

(
8 · (t+ 1)3 · γt+1

) eF−1

vF−r 6

(
16 · rα+3 · γ

(log γ)3
· nr−α · (log n)3

) eF−1

vF−r
6

n

4r2
,

provided that t is sufficiently large (and thus n is sufficiently large), since (r − α) · eF−1
vF−r < 1 by our

hypothesis, see (21). This completes the proof. �

5. Proofs of Theorems 2 and 7

In this section we prove Theorems 2 and 7. Both will be obtained as (more or less) immediate

corollaries of our technical Theorem 13.

Proof of Theorem 7. Let α > r − 1/mr(H) and let A be such that

ex(n,H) 6 Anα

for all n. Define M = Anα and observe that for all s ∈ [n],

ex(s,H) 6 Asα =
( s
n

)α
·Anα.

Therefore, Theorem 13 implies the existence of some C > 0 such that

|Fn(H)| 6 2C·ex(n,H),

as claimed. �

Using a standard probabilistic argument, one can show that for every r-uniform hypergraph H

with at least two edges, the bound ex(n,H) > cHn
r−1/mr(H) holds for some positive constant cH . In

particular, if ex(n,H) 6 Anα for all n, as in the statement of Theorem 7, then α > r − 1/mr(H). It

turns out that when H is a graph that contains a cycle, the stronger lower bound

ex(n,H) > cHn
2−1/m2(H)(log n)1/(eH−1) (22)

holds for all n. This was first proved by Bohman and Keevash [11] and later generalized to hypergraphs

of higher uniformity by Bennett and Bohman [10].

Proof of Theorem 2. Suppose that H contains a cycle and α and A are such that ex(n,H) 6 Anα for

all n. It follows from (22) that α > 2 − 1/m2(H). The assertion of the theorem now easily follows

from Theorem 7. �

In Appendix A, we revise an old argument of Kohayakawa, Kreuter, and Steger [31] to derive

a stronger form of (22) from a version of the famous result of Ajtai, Komlós, Pintz, Spencer, and

Szemerédi [1] due to Duke, Lefmann, and Rödl [16].

6. Proofs of Theorems 5 and 9

In this section, we prove Theorems 5 and 9. That is, we show that if ex(n,H) exceeds the standard

probabilistic lower bound of cHn
r−1/mr(H) by a factor polynomial in n, then Theorem 13 implies that

|Fn(H)| 6 2C·ex(n,H) for infinitely many n. Since Theorem 5 is simply the case r = 2 of Theorem 9,

we only prove the latter.

Proof of Theorem 9. Let H be an r-uniform hypergraph and suppose that there is an ε > 0 such that

ex(n,H) > nr−1/mr(H)+ε

for all n. We shall construct an infinite sequence of n satisfying the hypothesis of Theorem 13 with

M = ex(n,H) and α = r − 1/m2(H) + ε/2. Then, for each n in the sequence, we obtain

|Fn(H)| 6 2C·ex(n,H)

for some C that depends only on α, ε, and H. This will complete the proof.
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Assume towards a contradiction that there are only finitely many n satisfying the hypothesis of

Theorem 13. In particular, there exists an N such that for all n0 > N ,

ex(n1, H) > ex(n0, H) ·
(
n1

n0

)α
for some n1 < n0. Choose as small δ > 0, let n0 = dN1/δe, and suppose that we have defined

n0, . . . , nk−1 this way. If nk−1 > nδ0 > N , then there is some nk 6 nk−1 − 1 6 n0 − k such that

ex(nk, H) > ex(nk−1, H) ·
(

nk
nk−1

)α
> ex(n0, H) ·

(
nk
nk−1

)α
·
(
nk−1

n0

)α
.

Note that if nk 6 nδ0, then the lower bound ex(n,H) > εnr−1/mr(H)+ε implies

nrδ0 > n
r
k >

(
nk
r

)
> ex(nk, H) > ex(n0, H) · n(δ−1)α

0 > εnα+ε/2
0 · n(δ−1)α

0 > εnαδ+ε/20 .

This is clearly impossible, as ε > 0 is fixed and we may choose N as large as we want and δ as small

as we want. Therefore, there must be some n > N for which the hypothesis of Theorem 13 holds, a

contradiction. �

7. Concluding remarks

In order to prove that |Fn(H)| 6 2Cex(n,H) for some r-uniform hypergraph H using Theorem 13, one

needs to assume that ex(n,H) > εnr−1/mr(H)+ε for some positive constant ε. Indeed, one clearly needs

M = O(ex(n,H)) and letting s = r in the hypothesis of the theorem yields the bound M = Ω(nα),

where α is a constant satisfying α > r−1/mr(H). Some kind of separation of ex(n,H) from nr−1/mr(H)

is crucial for our approach to work. Even though one could most likely allow ε to tend to 0 with n

at some rate, the lower bound on |Fn(H)| proved by Corollary 17 shows that if |Fn(H)| 6 2Cex(n,H),

then the ratio of ex(n,H) to nr−1/mr(H) has to be at least (log n)1+cH for some cH > 0. The reason

why we have not tried to weaken this separation assumption is that we believe that the following is

true.

Conjecture 14. Let H be an arbitrary graph that is not a forest. There exists an ε > 0 such that

ex(n,H) > εn2−1/m2(H)+ε for all n.

Note that Conjecture 14 is weaker than Conjecture 4, since if ex(n,H) = Θ(nα) for some constant

α, then necessarily α > 2− 1/m2(H) by Proposition 16. Even though we believe that Conjecture 14

is interesting in its own right, additional motivation for it stems from Theorem 5 – any graph H for

which the conjecture holds has the property that |Fn(H)| 6 2Cex(n,H) for infinitely many n.

Acknowledgment. We would like to thank Misha Tyomkyn for a helpful discussion on degenerate

hypergraph problems.
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Ser. A 32 (1982), 321–335.

2. N. Alon, M. Krivelevich, and B. Sudakov, Turán numbers of bipartite graphs and related Ramsey-type questions,

Combin. Probab. Comput. 12 (2003), 477–494, Special issue on Ramsey theory.

3. S. Ball and V. Pepe, Asymptotic improvements to the lower bound of certain bipartite Turán numbers, Combin.

Probab. Comput. 21 (2012), 323–329.

4. J. Balogh, B. Bollobás, and M. Simonovits, The number of graphs without forbidden subgraphs, J. Combin. Theory

Ser. B 91 (2004), 1–24.

5. J. Balogh, H. Liu, and M. Sharifzadeh, The number of subsets of integers with no k-term arithmetic progression, to

appear in Int. Math. Res. Not. IMRN.

6. J. Balogh, R. Morris, and W. Samotij, Independent sets in hypergraphs, J. Amer. Math. Soc. 28 (2015), 669–709.

7. J. Balogh, B. Narayanan, and J. Skokan, The number of hypergraphs without linear cycles, arXiv:1706.01207

[math.CO].

8. J. Balogh and W. Samotij, The number of Km,m-free graphs, Combinatorica 31 (2011), 131–150.



SUPERSATURATED SPARSE GRAPHS AND HYPERGRAPHS 13

9. , The number of Ks,t-free graphs, J. Lond. Math. Soc. (2) 83 (2011), 368–388.

10. P. Bennett and T. Bohman, A note on the random greedy independent set algorithm, Random Structures Algorithms

49 (2016), 479–502.

11. T. Bohman and P. Keevash, The early evolution of the H-free process, Invent. Math. 181 (2010), 291–336.

12. J. A. Bondy and M. Simonovits, Cycles of even length in graphs, J. Combinatorial Theory Ser. B 16 (1974), 97–105.

13. B. Bukh, Random algebraic construction of extremal graphs, Bull. Lond. Math. Soc. 47 (2015), 939–945.

14. B. Bukh and D. Conlon, Rational exponents in extremal graph theory, arXiv:1506.06406 [math.CO].

15. J. Corsten and T. Tran, Balanced supersaturation for degenerate hypergraphs, arXiv:1707.03788.

16. R. A. Duke, H. Lefmann, and V. Rödl, On uncrowded hypergraphs, Proceedings of the Sixth International Seminar

on Random Graphs and Probabilistic Methods in Combinatorics and Computer Science, “Random Graphs ’93”

(Poznań, 1993), vol. 6, 1995, pp. 209–212.
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Appendix A. Lower bounds for the number of H-free hypergraphs

Recall that a hypergraph H is linear if every pair of distinct edges of H intersects in at most one

vertex. We shall use the following version of the famous result of Ajtai, Komlós, Pintz, Spencer, and

Szemerédi [1] due to Duke, Lefmann, and Rödl [16] to derive a lower bound on the extremal number

of strictly r-balanced r-uniform hypergraphs with at least three edges.

Theorem 15 ([16]). Let k > 3 and let H be a k-uniform hypergraph with ∆(H) 6 D. If H is linear,

then

α(H) > c · v(H) ·
(

logD

D

) 1
k−1

for some constant c that depends only on k.
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Recall that an r-uniform hypergraph H is strictly r-balanced if for every F ( H with at least two

edges,
eF − 1

vF − r
<
eH − 1

vH − r
.

Our result (and its proof) is a fairly straightforward generalization of [31, Theorem 8], which estab-

lished the same result in the special case when H is an even cycle. Before stating the result, we

need the following definitions. Let G
(r)
n,m denote an r-uniform hypergraph on n vertices with exactly

m edges, chosen uniformly at random. Moreover, given two hypergraphs G and H, we denote by

ex(G,H) the maximum number of edges in an H-free subhypergraph of G.

Proposition 16. Let r > 2 and suppose that H is a strictly r-balanced r-uniform hypergraph with at

least three edges. There exists a δ > 0 such that for all m > nr−1/mr(H), with probability at least one

half,

ex(G(r)
n,m, H) > δnr−1/mr(H)

(
log
( m

nr−1/mr(H)

)) 1
eH−1

.

It is very likely that the case r = 2 of Proposition 16 is implicit in the work of Bohman and

Keevash [11]; one can stop the H-free process after only m edges have been considered for addition.

Moreover, it is possible that the general case can be proved using the techniques of Bennett and

Bohman [10], although one cannot invoke [10, Theorem 1.1] directly, as this would require every

edges of G
(r)
n,m to be contained in the same number of copies of H. Finally, note that the assumption

eH > 3 is crucial. Indeed, suppose that eH = 2 and the two edges of H intersect in ` vertices. Then

mr(H) = 1/(r− `) and it follows from the pigeonhole principle that
(
r
`

)
· ex(n,H) 6

(
n
`

)
, proving that

ex(n,H) 6 n` = nr−1/mr(H).

Proof. By choosing δ small, we may assume that n is sufficiently large. Moreover, given the dependence

on m of the claimed lower bound, we may assume that m 6 nr−1/mr(H)+ε for some small positive ε

which we will specify later (for larger values of m, all we need to do is to multiply the obtained bound

by a constant factor, depending only on ε). Let H be the (random) eH -uniform hypergraph whose

vertex set is the edge set of G
(r)
n,m and whose edges are the edge sets of all copies of H in G

(r)
n,m. Clearly,

ex(Gn,m, H) is just the independence number of H. Let p = m/
(
n
r

)
. Even though H is not necessarily

linear, we shall show that it contains an induced subhypergraph H′ with at least m/2 vertices that is

linear and satisfies ∆(H′) 6 CnvH−rpeH−1. This will allow us to conclude that

α(H) > α(H′) > cm
2
·

(
log
(
CnvH−rpeH−1

)
CnvH−rpeH−1

) 1
eH−1

> c′nr−1/mr(H) ·
(

log
( m

nr−1/mr(H)

)) 1
eH−1

,

where we have used

nvH−rpeH−1 = Θ

(( m

nr−1/mr(H)

)eH−1
)
.

We find such an H′ using a simple deletion argument. We first compute the expected number of pairs

of edges of H that intersect in more than one vertex. We claim that

E[#pairs] 6
∑
F(H
e(F )>2

p2eH−eF n2vH−vF � pnr.

The last inequality would follow if we showed that for every proper subgraph F ( H with at least two

edges,

(peHnvH )2 � pnr · peF nvF . (23)

Inequality (23) holds provided that ε > 0 is sufficiently small. Indeed, letting p = n−β, one can check

that (23) is equivalent to

2 ·
(
vH − r − β · (eH − 1)

)
< vF − r − β · (eF − 1).
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Moreover, when β = 1/mr(H) = (vH−r)/(eH−1), then the left-hand side is zero and our assumption

that mr(F ) < mr(H) implies the right-hand side is positive. Thus, with probability at least 3/4, we

can delete one vertex of H from every such pair, obtaining a linear induced subhypergraph H′′ of H
with at least 3m/4 vertices, say.

Finally, fix any A ∈
(
n
r

)
. By symmetry,

E[degHA] = Pr[A ∈ V (H)] · E[average degree of H] 6 p · eHn
vHpeH

m
6 p · Cn

vH−rpeH−1

16
,

provided that C is a sufficiently large constant. By Markov’s inequality,

Pr[degHA > CnvH−rpeH−1] < p/16

By Markov’s inequality, with probability at least 3/4, the hypergraph H contains at most m/4 vertices

of degree exceeding CnvH−rpeH−1. In particular, with probability at least one half, we may delete

them from H′′ to obtain a linear induced subhypergraph H′ of H with at least m/2 vertices and

maximum degree at most CnvH−rpeH−1. �

Corollary 17. Let r > 2 and suppose that H is a strictly r-balanced r-uniform hypergraph with at

least three edges. There exists a positive constant c such that

|Fn(H)| > exp
(
cnr−1/mr(H)(log n)

eH
eH−1

)
.

Proof. Let γ = (2mr(H))−1, let m = nr−1/mr(H)+γ , and let δ be the constant from the statement of

Proposition 16. The proposition implies that with probability at least one half,

ex(G(r)
n,m, H) > δnr−1/mr(H)

(
log
( m

nr−1/mr(H)

)) 1
eH−1

= δ′nr−1/mr(H) (log n)
1

eH−1 , (24)

where δ′ = δ ·γ1/(eH−1) > 0. Denote the right-hand side of (24) by m′. We have just shown that at least

a half of all r-uniform hypergraphs with vertex set [n] and m edges contain an H-free subhypergraph

with m′ edges. Now, a straightforward double-counting argument gives

|Fn(H)| > 1

2
·
((n

r

)
m

)
·
((n

r

)
−m′

m−m′

)−1

=
1

2
·
((n

r

)
m′

)
·
(
m

m′

)−1

>
1

2
·
(

nr

2 · r! ·m′

)m′
·
(
m′

em

)m′
=

1

2
·
(

nγ

2e · r!

)m′
> exp

(
c′m′ log n

)
= exp

(
cnr−1/mr(H)(log n)

eH
eH−1

)
,

as claimed. �
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