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Abstract

The main paradigm of smoothed analysis on graphs suggests that for any large graph G
in a certain class of graphs, perturbing slightly the edge set of G at random (usually adding
few random edges to G) typically results in a graph having much “nicer” properties. In this
work we study smoothed analysis on trees or, equivalently, on connected graphs. Given an
n-vertex connected graph G, form a random supergraph G∗ of G by turning every pair of
vertices of G into an edge with probability ε

n , where ε is a small positive constant. This
perturbation model has been studied previously in several contexts, including smoothed
analysis, small world networks, and combinatorics.

Connected graphs can be bad expanders, can have very large diameter, and possibly
contain no long paths. In contrast, we show that if G is an n-vertex connected graph, then
typically G∗ has edge expansion Ω( 1

logn ), diameter O(log n), vertex expansion Ω( 1
logn ), and

contains a path of length Ω(n), where for the last two properties we additionally assume that
G has bounded maximum degree. Moreover, we show that if G has bounded degeneracy,
then typically the mixing time of the lazy random walk on G∗ is O(log2 n). All these results
are asymptotically tight.

1 Introduction

In this paper, we consider the following model of randomly generated graphs. We are given
a fixed undirected graph G = (V,E) on n vertices. For every pair f ∈

(
V
2

)
, we add f to G,

independently of all other pairs, with probability ε
n , where ε is a small (yet fixed) positive

constant. Let R be the set of edges added and consider the random graph

G∗ := (V,E ∪R).

This model can be viewed as a generalization of the classical Erdős–Rényi random graph,
where one starts from an empty graph and adds edges between all possible pairs of vertices
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independently with a given probability. The focus on “small” ε means that we are interested
in the effect of a rather gentle random perturbation. In particular, the average degree of G∗

is (typically) close to that of G (assuming that G is connected, for example). Studying the
effect of small perturbations on graphs, matrices, and other structures arises in diverse settings
in several fields such as combinatorics, design and analysis of algorithms, linear algebra, and
mathematical programming. We refer the reader to Section 1.3 for more details.

In this work, we study several properties of G∗, when G is connected. We first need a few
definitions. For a graph G = (V,E) and a subset S ⊆ V , we denote by ∂S the set of all edges
of G with exactly one endpoint in S. We define N(S) to be the set of all vertices in V \ S that
have a neighbor in S. When the graph G is not clear from the context, we will use the notation
∂GS and NG(S) to avoid ambiguity. The edge-isoperimetric number of G (also known as the
Cheeger constant), denoted c(G), is defined by

c(G) := min

{
|∂(U)|
|U |

: 0 < |U | 6 |V |
2

}
.

Similarly, the vertex -isoperimetric number of G, denoted ι(G), is defined by

ι(G) := min

{
|N(U)|
|U |

: 0 < |U | 6 |V |
2

}
.

Somewhat informally we shall refer to c(G) and ι(G) as the edge and the vertex expansions of G,
respectively. Observe that c(G)/∆(G) 6 ι(G) 6 c(G), where ∆(G) is the maximum degree of
G. Hence, when ∆(G) is bounded by a constant, then the vertex and edge expansions of G have
the same order of magnitude. On the other hand, there are graphs G with ∆(G) not bounded
by a constant (such as stars) for which ι(G) = O(c(G)/∆(G)). The Cheeger constant has been
studied extensively as it is related to a host of combinatorial properties of the underlying graph.
In particular, there is a strong connection between the Cheeger constant of G and the mixing
time of the lazy random walk on G.

1.1 Our results

We begin by describing our results regarding the expansion properties of perturbed connected
graphs.

For every connected n-vertex graph G, it holds that ι(G) = Ω( 1
n) as every subset S ⊆ V has

at least one neighbor outside S. Moreover, if G is a tree, then ι(G) = O( 1
n). Our first result is

that for every connected graph with bounded maximum degree, the random perturbation G∗

asymptotically almost surely1 (a.a.s.) satisfies ι(G∗) = Ω( 1
logn).

Theorem 1. There exists a constant δ > 0 such that the following holds. Let G be an n-vertex
connected graph with maximum degree ∆. If R ∼ G(n, εn) for some ε = ε(n) 6 1, then a.a.s.

the graph G∗ = G ∪R has vertex expansion at least δε
∆3 logn

.

We note that in general one cannot remove restrictions on the maximum degree entirely.
To see this, consider the case when G = K1,n−1. After adding to G any εn edges, there will be
an independent set S with at least (1− 2ε)n vertices such that |N(S)| = 1.

1That is, with probability tending to 1 as the number of vertices n tends to infinity.
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We obtain a similar bound on the edge-expansion without any assumptions on the maximum
degree.

Theorem 2. For every ε > 0 and α < 1, there exists δ > 0 such that the following holds. Let
G be an n-vertex connected graph, choose R ∼ G(n, εn), and let G∗ = G ∪ R. Then a.a.s. for
every set S ⊆ V (G) with |S| 6 αn,

|∂G∗S| >
δ

log(en/|S|)
|S|.

In particular, c(G∗) > δ
log(en) .

It should be noted that Theorem 2 implies that a.a.s. the vertex expansion of G∗ is at least

δ
∆(G∗) log(en) . This improves the bound obtained in Theorem 1 when ∆(G) �

(
logn

log logn

)1/3
; to

see this, observe that a.a.s. the maximum degree of G(n, ε/n) is Θ
(

logn
log logn

)
.

Furthermore, we prove an even stronger bound on the edge expansion of connected subsets
of a perturbed connected graph.

Theorem 3. For every ε > 0 and α < 1, there exist δ > 0 and K > 0 such that the following
holds. Let G be an n-vertex connected graph, choose R ∼ G(n, ε/n), and let G∗ = G∪R. Then
a.a.s. for every connected (in G∗) set S ⊆ V (G) with K log n 6 |S| 6 αn,

|∂G∗S| > δ|S|.

We consider sets of size at most αn for an arbitrary α < 1 (instead of restricting our
attention to sets of size at most n/2, as is customary in dealing with edge expansion) since this
allows us later to give upper bounds on the conductance of sets of volume up to a half of the
total volume which is crucial for the proof of Theorem 5 stated below. Here volume is measured
in terms of the degree sum rather than the number of vertices.

Using Theorem 3, we derive the following upper bound on the diameter of a randomly
perturbed connected graph. Observe that the diameter of a (non-perturbed) n-vertex connected
graph may be as high as n− 1 (when the graph is a path on n vertices).

Theorem 4. For every ε > 0, there exists C > 0 such that the following holds. Let G be an
n-vertex connected graph, choose R ∼ G(n, εn), and let G∗ = G ∪ R. Then a.a.s. the diameter
of G∗ is at most C log n.

Flaxman and Frieze [15] proved an upper bound of O(log n) on the diameter of randomly
perturbed strongly connected digraphs. The result of [15] requires that the maximum degree
of the base graph is upper bounded by some function of n (see Section 1.3 for details). Unlike
their work, our upper bound on the diameter of G∗ holds unconditionally, regardless of the
maximum degree of the base graph G.

Using Theorem 3, we also prove upper bounds on the mixing times of lazy random walks
on randomly perturbed connected graphs. Recall the notion of degeneracy. Given a positive
integer D, a graph G is called D-degenerate if every subgraph of G contains a vertex of degree at
most D. Observe that every graph G is ∆(G)-degenerate and trees are 1-degenerate. Also, if G
is D-degenerate, then every subset S ⊆ V (G) spans at most D|S| edges. Using the machinery
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developed by Fountoulakis and Reed [17], we are able to prove the following bound on the
mixing time of the lazy random walk on a random perturbation of a connected graph with
bounded degeneracy.

Theorem 5. For all positive D and ε, there exists a constant M such that the following holds.
Let G be an n-vertex D-degenerate connected graph, choose R ∼ G(n, εn) and let G∗ = G ∪ R.
Then a.a.s.

Tmix(G∗) 6M log2 n.

For a precise definition of Tmix, we refer the reader to Section 2. The bound in Theorem 5
above is tight when G is the path on n vertices, as then a.a.s. G∗ contains an induced subgraph
which is a path of length Ω(log n). Moreover, we cannot expect that Tmix(G∗) = O(log2 n) for
an arbitrary connected graph G, as the following example demonstrates. Let G be the graph
obtained by connecting two disjoint cliques of order n/2 with a single edge and let R ∼ G(n, 1

n).
As the number of edges interconnecting the two cliques in the perturbed graph is a.a.s. O(n),
the conductance of G∗ is O( 1

n), which implies via standard results (e.g., [23]) that the mixing
time of the lazy random walk on G∗ is Ω(n).

The effect of small random perturbations on connected graphs from several families has
been studied before, see, e.g., [1, 25]. In particular, a O(log2 n) bound (holding a.a.s.) on the
mixing time of a simple random walk on a random perturbation of the ring graph was proved
in [1], see Section 1.3 for more details. Our Theorem 5 demonstrates that an upper bound of
O(log2 n) on the mixing time (holding a.a.s.) is a rather general phenomenon for perturbed
connected graphs.

Finally, we establish the existence of long paths in perturbed connected graphs with bounded
maximum degree. Observe that a connected bounded degree graph with n vertices might contain
only paths of length O(log n), as the case of the complete binary tree demonstrates.

Theorem 6. For every ε,∆ > 0, there exists c > 0 such that the following holds. Let G
be an n-vertex connected graph with maximum degree bounded by ∆. Form a random graph
R ∼ G(n, εn) and let G∗ = G ∪R. Then G∗ a.a.s. contains a path of length cn.

The assumption that the maximum degree is bounded is crucial, as it is easy to see that
if G = K1,n−1 and ε < 1, then a.a.s. the length of a longest path in G ∪ R is O(log n). This
follows as it is known that a.a.s. each connected component of G(n, εn) has O(log n) vertices
and the vertex set of any simple path in G∗ intersects at most two connected components in R.

Finally, one may ask what happens if one incorporates edge deletions in our model. Consider
the case when G is an n-vertex tree with Ω(n) leaves, e.g., G is a complete binary tree over
n vertices. If we now add and remove edges randomly with probability ε

n , then with constant
probability, we will isolate one of the leaves of G (as the probability of isolating a fixed vertex
with degree one in G is about ε

n · e
−ε). Hence we cannot expect the resulting after perturbed

graph to have nontrivial expansion properties.

1.2 Our techniques

In proving Theorems 1 and 6, we use a fairly basic result (see e.g., [20]) to decompose graph
of bounded degree to disjoint connected sets of comparable sizes. Treating each of these sets
as a ‘super-vertex’ allows us to view the auxiliary graph induced by the random edges between
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sets as essentially the standard binomial random graph whose edge probability should be now
compared to the number of super-vertices as opposed to the (much larger) number of vertices.
Consequently, standard methods and results regarding the threshold for connectivity and the
existence of long paths in binomial random graphs can be used.

In order to deal with the Cheeger constant of perturbed graphs, we derive an upper bound on
the number of connected subsets of given cardinality and number of vertices in their boundary.
Recall that a subset of vertices of a graph is connected, if it induces a connected subgraph.

Proposition 7. Let G be an arbitrary graph and let v ∈ V (G). For integers a and b, let
C(v, a, b) denote the collection of connected subsets A of V (G) such that v ∈ A, |A| = a, and
|N(A)| = b. Then

|C(v, a, b)| 6
(
a+ b− 1

b

)
.

The bound in Proposition 7 is tight for all values of a and b. To see this, consider the case
when G = K1,a+b−1 and v is the center vertex.

In bounding the mixing time, we rely on an upper bound on the mixing time of a lazy
random walk due to Fountoulakis and Reed [17]. This bound, which they used [18] to upper
bound the mixing time of the lazy random walk on the giant component of G(n, p), is suited
for bounding the mixing time of random walks on graphs whose large vertex sets expand well
but small sets (e.g., of logarithmic size) do not have to. Another attractive feature of the result
of Fountoulakis and Reed is that it allows one to focus on the conductance of connected sets,
which significantly simplifies union bound estimates. We note that the classical work of Jerrum
and Sinclair [19] for upper-bounding the mixing time Tmix in terms of the conductance Φ of G
(see Section 2 for precise definitions), namely

Tmix 6 O

(
log n

Φ2

)
would give in our setting a weaker bound of O(log3 n).

1.3 Related work

The study of random perturbations of graphs arose in several contexts. One of them is the
field of smoothed analysis, which originated from the work of Spielman and Teng [29] on the
smoothed complexity of the simplex algorithm. This field attempts to provide a theoretical
explanation for the good performance of certain heuristics on “real-life” instances based on the
assumption that they are likely to be subjected to random perturbations. It has been applied
to a host of other problems such as numerical analysis and linear algebra [27, 31], machine
learning [5], and satisfiability [10, 13]. It is closely related to the study of random perturbations
of combinatorial structures and devising efficient algorithms for such “semi-random” instances,
which had been considered in the past, see [6, 7, 14, 16, 22, 28, 30].

Another context where the study of random perturbations naturally arose, is the field of
small world networks, see [12, 25, 26]. In an attempt to model social networks arising in
“real-life” settings, one studies properties of networks composed of a (usually sparse) connected
“base” graph along with a set of random edges, where every random edge is added independently
with probability p. One well-known example is the Newmann–Watts small world model [25, 26]
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(NW small world for short), where the base graph is the (n, k)-ring, i.e., the graph with vertex
set {0, . . . , n− 1} and edge set

{
{i, j} : i+ 1 6 j 6 i+ k

}
(where addition is modulo n) and p

is equal to c
n for some constant c > 0.

Durrett [12] showed that with high probability the mixing time of the lazy random walk on
the NW small world is upper-bounded by O(log3 n) and lower-bounded by Ω(log2 n). These
results were improved by Addario-Berry and Lei [1] who proved that this mixing time is a.a.s.
O(log2 n). It is worth noting that our approach is similar to [1] in the sense that we bound the
conductance of connected sets and then use this upper bound with the results of [17] to bound
the mixing time. The crucial difference between our proof and theirs is the technique of counting
connected sets with small boundary. While [1] uses a somewhat involved argument based on
the Lagrange inversion formula, we use a more elementary approach based on Proposition 7.

Similar ideas were used in the study of the mixing time of the simple random walk on
the giant component in a supercritical random graph G(n, 1+ε

n ). Fountolakis and Reed [17] and
Benjamini, Kozma, and Wormald [3] showed that a.a.s. this mixing time is O(log2 n). Moreover,
there has been interest in probability theory in studying the robustness of the mixing time under
random perturbations, see [4, 11].

Flaxman [16] examined the edge expansion of several models of randomly perturbed graphs.
In particular, he considered the model studied in this work. He showed in particular that if
G = (V,E) is an n-vertex connected graph and R ∼ G(n, εn), then a.a.s. all linear sized vertex
subsets S ⊆ V , |S| 6 n/2, send outside at least a linear in n number of edges in G∗ = G ∪ R.
The effect of adding random edges on the diameter of a given graph was considered by Bollobás
and Chung [9], who proved that adding a random matching to an n-vertex cycle result a.a.s.
with a graph with diameter (1 + o(1)) log2 n. The case of directed graphs was considered by
Flaxman and Frieze [15]. They proved that if D is an n-vertex strongly connected digraph with
maximum degree bounded by n

ε
100 and R ∼ D(n, εn), then a.a.s. the diameter of D ∪ R is at

most 100ε−1 log n. Our proof idea is different from theirs.

1.4 Outline of the paper

In Section 2, we fix some notation, give a precise definition of the mixing time of a random walk,
and state two auxiliary probabilistic lemmas that are used later in the paper. In Sections 3 and 4
we prove Theorems 1 and 2, respectively. Section 4 contains also the a proof of Proposition 7.
In Section 5 we prove Theorem 3. Building upon Theorem 3, we prove Theorem 4 (in Section 6)
and Theorem 5 (in Section 7). The proof of Theorem 6 can be found in Section 8. In Section 9,
we state several concluding remarks.

2 Preliminaries

Let G be a graph with vertex set V . Given two disjoint sets A,B ⊆ V , we denote by E(A,B)
the set of all edges with one endpoint in A and one endpoint in B and by E(A) the set of all
edges entirely contained in A. We will denote the cardinality of E(A) by e(A). The degree of
a vertex v in G is denoted by deg(v) and the maximum degree of G is denoted by ∆(G).

We denote by [n] the set {1, . . . , n}. When dealing with an n-vertex graph, we will implicitly
assume that that its vertex set is [n]. We denote by G(n, p) the classical binomial random graph
with vertex set [n] and edge probability p. Given a graph property P and a sequence (µn), where
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µn is a probability distribution over n-vertex graphs, we will say that P holds asymptotically
almost surely (a.a.s.) if limn→∞ PrG∼µn(G ∈ P) = 1.

The lazy random walk on a graph G = (V,E) is the Markov chain defined as follows. The
set of states is V . For any vertex u ∈ V , the walk stays in u with probability 1

2 and with
probability 1

2 , it moves to a uniformly chosen random neighbor v of u (so that the transition
probability Pr(u → v) is 1

2 deg(u)). When G is connected, this Markov chain is well-known to
be irreducible and ergodic and hence it converges to a stationary distribution π which can be
seen to satisfy π(u) = deg(u)

2|E| for every u ∈ V , see [23]. We will be interested in estimating how
quickly this random walk on G converges to its stationary distribution π. To this end, we recall
that the total variation distance dTV between two distributions p1, p2 on V is defined by

dTV(p1, p2) := max
A⊆V

|p1(A)− p2(A)|.

Let P be the transition matrix of the random walk. The mixing time Tmix(G) is defined by

Tmix(G) := sup
x0

min

{
t : dTV (x0P

t, π) 6
1

4

}
,

where the supremum is taken over all probability distributions x0 on V .
The following lemma is standard. We provide a proof for the sake of completeness.

Lemma 8. For every C > 1, if p 6 C/n, then a.a.s. for every non-empty set S of vertices in
G(n, p), we have e(S) < 2C|S|. In particular, if p 6 1

n , then a.a.s. for every non-empty set S
of vertices in G(n, p), we have e(S) < 2|S|.

Proof. For a fixed set S of size k,

Pr
(
e(S) > 2Ck

)
6

( (k
2

)
2Ck

)
p2Ck 6

(
ekp

4C

)2Ck

and hence, letting E denote the event that e(S) > 2C|S| for some S 6= ∅,

Pr(E) 6 Pr
(
e(G(n, p)) > Cn

)
+

n/2∑
k=5

(
n

k

)(
ekp

4C

)2Ck

6
n/2∑
k=5

(
en

k
·
(
ekp

4C

)2C
)k

+ o(1) = o(1).

To see the last equality, note that if k 6
√
n, then np2Ck2C−1 = O(1/

√
n) and if k 6 n/2, then

en

k
·
(
ekp

4C

)2C

6 2e ·
(e

8

)2C
6
e3

32
6

2

3
.

We close this section with a version of Chernoff’s inequality (see, e.g., [24]).

Lemma 9. Suppose that X =
∑m

i=1Xi, where every Xi is a {0, 1}-valued random variable with
Pr(Xi = 1) = p and the Xis are jointly independent. Then for each η ∈ (0, 1),

Pr
(
X < (1− η)pm

)
6 exp(−pmη2/2).
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3 Vertex expansion

In this section, we prove Theorem 1.

Proof of Theorem 1. Let G be a connected graph with n vertices and maximum degree ∆ and
suppose that ε 6 1. We may assume that ∆3/ε � n/ log n as otherwise the assertion of the
theorem follows immediately from the fact that G is connected and hence ι(G∗) > ι(G) = Ω( 1

n).
Let

k =
C∆ log n

ε
,

where C is an absolute constant, which we will define later. Partition the vertex set of G into
disjoint pieces V1, . . . , Vt, such that for each 1 6 i 6 t, we have k 6 |Vi| 6 ∆k and G[Vi] is
connected. This is fairly straightforward, see, e.g., [20, Proposition 4.5]. Call each Vi a blob.
Observe that

n

∆k
6 t 6

n

k
.

Suppose that R ∼ G(n, εn) and let G∗ = G ∪ R. The probabilistic statement about the
random graph R that we need is the following one.

Claim. A.a.s. for every non-empty I ⊆ [t] with |I| 6 t/2, there are at least |I|/2 blobs with
indices outside of I that are connected by an edge of R to the set

⋃
i∈I Vi.

Proof. Let

ρ =
εk2

2n
.

Clearly, the probability that two blobs Vi and Vj are connected in R is 1 − (1 − ε
n)|Vi|·|Vj |,

which is at least ρ, provided that n is sufficiently large, as ρ = o(1) by our assumption that
∆3 6 εn 6 n. The probability P that there exists a non-empty set I ⊆ [t] with |I| 6 t/2 such
that the set

⋃
i∈I Vi has an edge (in R) to fewer than |I|/2 blobs outside of I satisfies

P 6
∑

16j6t/2

(
t

j

)(
t− j
bj/2c

)
(1− ρ)(t−b 3j

2
c)j 6

∑
16j6t/2

t
3j
2

+1 · exp

(
−ρjt

4

)
.

It is easy to verify that P = o(1) if C > 20.

We may assume that R has the property from the statement of the claim. We claim that G∗

has vertex expansion at least δε
∆3 logn

for some absolute positive constant δ. Fix a set A ⊆ [n]

with |A| 6 n/2 and denote

I0 = I0(A) = {i ∈ [t] : Vi ⊆ A},
I1 = I1(A) = {i ∈ [t] : ∅ 6= Vi ∩A 6= Vi},
I2 = I2(A) = {i ∈ [t] \ I0 : Vi has a neighbor in A}.

In other words, I0 is the set of (indices of) blobs fully contained in A, I1 is the set of blobs
having at least one vertex in A but not falling completely inside A, and finally I2 is the set
of blobs outside I0 having a neighbor in A. We now develop inequalities relating the sizes of
I0, I1, I2. These inequalities allow us to directly estimate |N(A)|.
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It follows from the assumed property of R that a.a.s.

|I2| > min

{
|I0|
2
,
t− |I0|

3

}
. (1)

This is clear when |I0| 6 t/2; we simply take I = I0. Else, we let I = [t] \ (I0 ∪ I2), note
that |I| 6 t − |I0| 6 t/2, and observe that no blob in I is connected to a blob in I0 (and
hence the neighborhood of I must be completely contained in I2). Observe crucially that
|N(A)| > |I1 ∪ I2|. Indeed, A has at least one neighbor in each set Vi \A with i ∈ I1 ∪ I2. This
follows from connectivity of Vi when i ∈ I1 and from the fact that Vi ∩A = ∅ when i ∈ I2 \ I1.
As |A| 6 n

2 and Ac ⊆
⋃
i 6∈I0 Vi, we have |I0| 6 (1− 1

2∆)t. In particular, it follows from (1) that

|I2| > |I0|
6∆ . Finally, note that A ⊆

⋃
i∈I0∪I1 Vi, implying that

|I0|+ |I1| >
|A|
∆k

.

Now, if |I1| > |I0|, then |N(A)| > |I1| > |A|
2∆k . Otherwise, |N(A)| > |I2| > |I0|

6∆ > |A|
12∆2k

. Hence,

G∗ has vertex expansion at least δε
∆3 logn

, where δ is an absolute positive constant.

Remark. Observe that the exact same proof as above works if instead of assuming that the
graph G is connected and has maximum degree bounded by ∆, we assume that ∆(G) 6 ∆ and
all connected components of G are at least as large as C∆ log n/ε, where C is a large enough
constant.

4 Edge expansion

In this section, we prove Proposition 7 and derive from it Theorem 2.

Proof of Proposition 7. Assume that the vertices of G are labeled with distinct integers. We
will describe an algorithm that, given an A ∈ C(v, a, b), outputs an encoding of A using a
sequence of a − 1 ones and b zeros in such a way that no two sets are encoded with the same
sequence. This will clearly imply the statement of the proposition.

Let S = {v} and B = ∅. The algorithm will grow the sets S and B, adding one vertex to
one of the sets in each of its a + b − 1 iterations, making sure that the invariants S ⊆ A and
B ⊆ N(A) hold in every iteration. It will stop when S = A and B = N(A), after having moved
a − 1 vertices to S and b vertices to B. For the sake of brevity, we will denote by T the set
N(S) \ B, updated after each iteration. Intuitively, in every iteration, S is the set of vertices
that are known to belong to A, B is the set of vertices that are known to belong to N(A), and
T is the remaining set of vertices for which we do not yet know whether they belong to A or to
N(A).

While S 6= A or B 6= N(A), we repeat the following. Let w be the vertex with the smallest
label in T . Note that the assumption that A is connected implies that T is non-empty. Consider
two cases. If w ∈ A, move w to S and append 1 to the sequence encoding A. Otherwise, if
w 6∈ A, then move w to B and append 0 to the sequence encoding A. Note that in this case
w ∈ N(A), since S ⊆ A and w ∈ N(S) \A.
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A moment of thought reveals that decoding can be performed in an analogous way and
given v and the {0, 1}-sequence encoding A, one can recover the set A. This completes the
proof.

After this work was completed, Noga Alon pointed out to us that one may derive Proposi-
tion 7 from the following classical inequality proved by Bollobás [8].

Theorem 10 ([8]). Suppose that A1, . . . , Am and B1, . . . , Bm be sets such that |Ai| = k and
|Bi| = ` for all i ∈ {1, . . . ,m}. If furthermore

• Ai ∩Bi = ∅ for all i ∈ {1, . . . ,m},

• Ai ∩Bj 6= ∅ for all distinct i, j ∈ {1, . . . ,m},

then m 6
(
k+`
`

)
.

Indeed, in order to derive the claimed upper bound on |C(v, a, b)|, one may invoke Theo-
rem 10 with k = a − 1, ` = b, m = |C(v, a, b)|, and {(Ai, Bi)}mi=1 being the set of all pairs
(A \ {v}, N(A)) with A ∈ C(v, a, b). It is straightforward to check that the assumptions of the
theorem are satisfied.

Proof of Theorem 2. For positive integers s, m, and b, denote by S(s,m, b) the collection of all
sets S of s vertices such that in the graph G, the set S induces exactly m connected components
and the sum of their vertex boundaries is exactly b. In other words, S(s,m, b) consists of all
sets S ⊆ V (G) such that there is a partition S = S1 ∪ . . . ∪ Sm, where each Si is connected,
there are no edges of G connecting different Si, and |NG(S1)|+ . . .+ |NG(Sm)| = b. Since G is
connected, each S ∈ S(s,m, b) satisfies |∂GS| > b > m > 1 (but not necessarily |NG(S)| > b).
Therefore, it is enough to show that there exist positive constants K and δ such that a.a.s. for
every s satisfying s > K log n,

|∂RS| >
δs

log(en/s)
for all S ∈ S(s,m, b) with m 6 b 6

δs

log(en/s)
. (2)

(For small sets S with |S| 6 K log n, we have that |∂G∗S| > |∂GS| > 1 > δs
log(en/s) , since we

may assume that Kδ 6 1/2). In order to facilitate a union bound argument, we will estimate
the size of S(s,m, b) with small b and m using Proposition 7. To this end, we first argue that
each set in S(s,m, b) can be exactly described by the following:

(i) a set W = {v1, . . . , vm} of m vertices of G,

(ii) a partition s = s1 + . . .+ sm, where si > 1 for each i,

(iii) a partition b = b1 + . . .+ bm, where bi > 1 for each i, and

(iv) a set Si in C(vi, si, bi) for each i ∈ [m].

To see this, note that we may assume that there is a canonical linear ordering on the vertices
of G. The representation of S in S(s,m, b) as (i)–(iv) is natural. Indeed, given such an S, we
find the unique partition {S1, . . . , Sm} into connected components of G[S] and arbitrarily choose
one vertex from each Si to form W . We order the sets S1, . . . , Sm according to the canonical
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linear ordering on their representatives v1, . . . , vm. Finally, we let si = |Si| and bi = |∂GSi|.
Observe that this mapping is not only injective, but actually each set S can be represented in
s1 · . . . · sm different ways.

It follows from Proposition 7, as well as from the inequality
(
x
y

)(
w
z

)
6
(
x+w
y+z

)
, that

|S(s,m, b)| 6
(
n

m

) ∑
(si),(bi)

m∏
i=1

(
si + bi − 1

bi

)
6

(
n

m

) ∑
(si),(bi)

(∑
i(si + bi − 1)∑

i bi

)

6

(
n

m

)(
s− 1

m− 1

)(
b− 1

m− 1

)(
s+ b−m

b

)
6

(
n

m

)(
s

m

)(
b

m

)(
s+ b

b

)
.

Consequently, if m 6 b 6 δs/ log(en/s) 6 s, then it follows from the well-known estimate(
x
y

)
6
(
ex
y

)y
and the fact that the function y 7→ (ex/y)y is increasing on the interval (0, x] that

|S(s,m, b)| 6
(en
m

)m (es
m

)m(eb
m

)m(e(s+ b)

b

)b
6

(
e4ns(s+ b)

b3

)b
6

(
2e4n(log(en/s))3

δ3s

) δs
log(en/s)

6 exp (Cδ log(1/δ)s) ,

where C is some absolute constant.
On the other hand, by Chernoff’s inequality, for a fixed set S with |S| = s 6 αn,

Pr(|∂RS| < δs) 6 Pr
(
Bin(s(n− s), ε/n) < δs

)
6 Pr

(
Bin((1− α)sn, ε/n) < δs

)
6 exp

(
− (1− α)εs/8

)
.

provided that δ < (1− α)ε/2.
Finally, choose positive constants K and δ such that

K >
64

ε(1− α)
, Cδ log(1/δ) 6

ε(1− α)

16
, and Kδ 6 1/2.

Taking a union bound over all triples b, m, and s satisfying K log n 6 s 6 αn and m 6 b 6
δs/ log(en/s), we get that

Pr(property (2) fails) 6 n3 exp

[(
Cδ log(1/δ)− ε(1− α)

8

)
s

]
= o(1).

5 Edge expansion of connected sets

Here we prove Theorem 3.

Proof. Due to the obvious monotonicity we can assume that ε < 1. Recall the definition of
S(s,m, b) from the proof of Theorem 2. It clearly suffices to show that a.a.s. for every s with
K log n 6 s 6 αn,

|∂RS| > δs for all connected S ∈ S(s,m, b) with m 6 b < δs, (3)

where connected means connected in the graph G∗.
Let us denote by S ′(s,m, b) the collection of all ordered pairs

11



• S = S1 ∪ . . . ∪ Sm ∈ S(s,m, b), where S1, . . . , Sm are connected components of G[S],

• m − 1 pairs {s1, t1}, . . . , {sm−1, tm−1} of vertices of S whose addition to G makes G[S]
connected.

A moment of thought reveals that for fixed s, the probability that (3) does not hold is bounded
by

δs∑
m=1

δs∑
b=m

|S ′(s,m, b)| · (ε/n)m−1 · Pr
(
Bin(s(n− s), ε/n) 6 δs

)
. (4)

Therefore, it suffices to prove the following.

Claim. There exists an absolute constant C such that for all s, m, and b with m 6 b 6 δs,

|S ′(s,m, b)| 6 nm exp
(
Cδ log(1/δ)s

)
.

Indeed, if K log n 6 s 6 αn, then by Chernoff’s inequality,

Pr
(
Bin(s(n− s), ε/n) < δs

)
6 Pr

(
Bin((1− α)sn, ε/n) < δs

)
6 exp

(
− (1− α)εs/8

)
,

provided that δ < (1− α)ε/2. Hence, (4) is bounded from above by

s2n exp

[(
Cδ log(1/δ)− (1− α)ε

8

)
s

]
.

If we choose K and δ as in the proof of Theorem 2, a union bound over K log n < s 6 αn yields
that (4) is indeed o(1).

Hence, it suffices to prove the claim. To this end, we will argue that each element of
S ′(s,m, b) can be uniquely described by the following:

(i) a set W = {v1, . . . , vm} of vertices of G,

(ii) a partition s = s1 + . . .+ sm, where si > 1 for each i,

(iii) a partition b = b1 + . . .+ bm, where bi > 1 for each i,

(iv) a set Si in C(vi, si, bi) for each i ∈ [m],

(v) a partition m− 1 = d1 + . . .+ dm, where di > 0 for each i,

(vi) a multiset Di of di elements from Si for each i ∈ [m],

(vii) a permutation f : [m− 1]→ [m− 1].

Assuming that this is indeed the case, by Proposition 7 we have

|S ′(s,m, b)| 6
(
n

m

)
(m− 1)!

∑
(si),(bi),(di)

m∏
i=1

[(
si + bi − 1

bi

)(
si + di − 1

di

)]

6
nm

m

(
s− 1

m− 1

)2( b− 1

m− 1

)(
2m− 2

m− 1

)(
s+ b−m

b

)
6 (2n)m

(
s

m

)2( b
m

)(
s+ b

b

)
.
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Consequently, if m 6 b 6 δs, then

|S ′(s,m, b)| 6 nm
(

2e4s2(s+ b)

b3

)b
6 nm

(
3e4

δ3

)δs
6 nm exp (Cδ log(1/δ)s) ,

where C is some absolute constant.
Finally, we show that each S ∈ S ′(s,m, b) may be uniquely described by (i)–(vii). First,

observe that (i)–(iv) uniquely describe the set S = S1 ∪ . . . ∪ Sm, together with a root vertex
vi in each connected component Si, whose use will be explained later. As in the proof of
Theorem 2, one may assume some canonical linear ordering � on the set of vertices of G.
Given this ordering, one may canonically order the sets S1, . . . , Sm according to the canonical
ordering � on the set {min� S1, . . . ,min� Sm} of representatives of each Si. Now, note that
the m − 1 pairs of vertices of S whose addition to G makes G[S] connected naturally define a
tree T on the vertex set {S1, . . . , Sm}. Root this tree at Sm and orient all of its edges away
from the root. Now, start with vm ∈ Sm and for each i ∈ [m − 1] let vi ∈ Si be the unique
vertex of Si that lies in the pair of vertices of S that corresponds to the unique edge of T going
into Si. Next, for each i ∈ [m], let di be the outdegree of Si in T and let Di be the multiset
of di vertices of Si that lie in the pairs of vertices of S that correspond to the di edges of T
going out of Si. Finally, let D = D1 ∪ . . . ∪Dm and observe that the m− 1 pairs of vertices of
S that correspond to the edges of T define a bijection between D and {v1, . . . , vm−1}. Namely,
if D = {w1, . . . , wm−1}, where w1 � . . . � wm−1, then this bijection can be described by a
permutation f : [m− 1]→ [m− 1] defined by letting f(i) be the unique j such that {vi, wj} is
one of the m − 1 pairs of vertices whose addition to G makes G[S] connected. This concludes
the proof of the theorem.

6 Diameter

In this section, we prove Theorem 4. Since adding edges to a graph can only decrease its
diameter, it suffices to consider the case when G is a tree and ε 6 1/3. Since e(G) = n− 1, it
follows from Chernoff’s inequality (Lemma 9) that a.a.s. G∗ has at most (1 + ε)n edges. Hence,
it is enough to prove that there is a constant C = C(ε) such that a.a.s.

e
(
B(v, C log n)

)
>

(1 + ε)n

2
for every v ∈ V (G), (5)

where B(v, r) denotes the G∗-ball of radius r around v. Indeed, (5) implies that for every u, v ∈
V (G), we have that B(u,C log n) ∩B(v, C log n) 6= ∅, and consequently diam(G∗) 6 2C log n.

Fix some v ∈ V (G), let K and δ be as in Theorem 3 with α = 3/4, and condition on the
event that G∗ satisfies the assertion of this theorem. Moreover, condition on the event that R
satisfies the assertion of Lemma 8 with C = 1. This implies that e(S)/3 6 |S| 6 e(S) + 1 for
every connected set S in G∗. Since G∗ is connected, we clearly have that |B(v, r)| > r + 1.
Hence, if r > K log n, we have that

e(B(v, r + 1)) > min

{
3n

4
− 1,

(
1 +

δ

3

)
e
(
B(v, r)

)}
.
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Letting C = K + 1
log(1+δ/3) , we have that

e(B(v, C log n)) >
3n

4
− 1 >

2n

3
>

(1 + ε)n

2
,

as claimed.

7 Mixing time

In this section, we prove Theorem 5. Let ε be a positive real, let D be a positive integer, and
assume that G is a connected D-degenerate graph. Let G∗ = G ∪R, where R ∼ G(n, ε/n).

Our argument for bounding the mixing time is based on the approach of Fountoulakis and
Reed [17, 18]. The main idea there is that one can bound the mixing time of an abstract
irreducible, reversible, and aperiodic Markov chain in terms of the conductances of connected
sets of states of various sizes. For simplicity, we only state their results in the setting of the lazy
random walk on the graph G∗. Let π be the stationary distribution of this walk. For S ⊆ V ,
let π(S) equal

∑
v∈S π(v). It can be verified that π(S) = 2eG∗ (S)+|∂G∗S|

2e(G∗) . We define

Q(S) =
∑

u∈S,v 6∈S
π(u) Pr(u→ v) =

|∂G∗S|
4e(G∗)

and note that Q(S) = Q(Sc). The conductance Φ(S) of S is

Φ(S) =
Q(S)

π(S)π(Sc)
=

|∂G∗S|
2 · (2eG∗(S) + |∂G∗S|) · π(Sc)

.

Let πmin = minv∈V (G) π(v). For p > πmin, we denote by Φ(p) the minimum conductance of
a connected (in G∗) set S with p/2 6 π(S) 6 p (if there is no such S, we define Φ(p) = 1).
Fountoulakis and Reed [17] proved the following result.

Theorem 11. There exists an absolute constant C such that

Tmix(G∗) 6 C

dlog2 π
−1
mine∑

j=1

Φ−2(2−j).

In the remainder of the proof, we will estimate the sum in Theorem 11. We claim that it is
enough to prove the following.

Lemma 12. There exist positive constants δ∗ and K∗ such that a.a.s. for every connected (in
G∗) set S with K∗ logn

n 6 π(S) 6 1/2,

Φ(S) > δ∗.

Indeed, suppose that the assertion of Lemma 12 holds for some δ∗ and K∗. Let J be the
set of indices j satisfying 2−j 6 2K∗ logn

n and note the |Jc| < log2 n, as 2−j > 2K∗ logn
n implies

that j < log2 n. Since G∗ is connected, we have that for every set S,

Φ(S) >
|∂G∗S|

4e(G∗) · π(S)
>

1

4e(G∗) · π(S)
.
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Condition on the event that R satisfies the assertion of Lemma 8 with C = max{ε, 1}. Let
D∗ = D + 2C and observe that the degeneracy assumption implies that

eG∗(S) 6 D∗|S| for every S ⊆ V (G). (6)

In particular, e(G∗) 6 D∗n and hence, letting M = 129(K∗)2(D∗)2,

dlog2 π
−1
mine∑

j=1

Φ−2(2−j) 6 |Jc| · (δ∗)−2 +
∑
j∈J

2−2j(4e(G∗))2

6 O(log n) + 2 ·max
j∈J
{2−2j} · 16(D∗)2n2 6M log2 n,

provided that n is sufficiently large, where we used the definition of J and the inequality∑
j>i 2−2j 6 2−2i+1.
Therefore, it suffices to prove Lemma 12. We first show that any connected set S with

π(S) 6 1/2 has at most n− Ω(n) elements.

Claim. Every connected (in G∗) set S ⊆ V (G) with π(S) 6 1/2 satisfies

|S| 6 D∗n+ 1

D∗ + 1
.

Proof. Since π(S) 6 1/2 implies that π(S) 6 π(Sc), we have

2eG∗(S) = 2e(G∗)π(S)− |∂G∗S| 6 2e(G∗)π(Sc)− |∂G∗S|
= 2eG∗(S

c) 6 2D∗|Sc| = 2D∗(n− |S|).

Since S is connected in G∗, we obtain eG∗(S) > |S| − 1 and the claim follows.

Let δ and K be as in Theorem 3 with α = D∗+1
D∗+2 and condition on the event that G∗ satisfies

the assertion of this theorem. Let

K∗ = (2D∗ + 1)K and let δ∗ = min

{
1

2D∗ + 1
,

δ

2D∗ + δ

}
.

It follows from (6) that for every connected set S with π(S) 6 1/2, we have

Φ(S) >
|∂G∗S|

2eG∗(S) + |∂G∗S|
>

|∂G∗S|
2D∗|S|+ |∂G∗S|

.

Note that if |∂G∗S| > |S|, then Φ(S) > δ∗, so we may assume otherwise. In particular, if
π(S) > K∗ log n/n, then, as e(G∗) > n− 1, we have

K∗ log n 6 2π(S)e(G∗) = 2eG∗(S) + |∂G∗S| 6 (2D∗ + 1)|S|

and hence |∂G∗S| > δ|S|. It follows that Φ(S) > δ∗. This concludes the proof of Lemma 12 and
therefore the proof of Theorem 5.
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8 Long Paths

Here we show that after adding random edges, each with probability ε
n , to a connected n-vertex

graph with bounded maximum degree, we a.a.s. get a path whose length is linear in n.

Proof of Theorem 6. Let k be a sufficiently large constant. Similarly as in the proof of Theo-
rem 1, let us partition the vertex set of the graph G into connected pieces (blobs) V1, . . . , Vt
such that for each 1 6 i 6 t, we have k 6 |Vi| 6 ∆k. As in Theorem 1, the probability that two

blobs are connected (in G∗) is at least εk2

2n . Hence, if k is sufficiently large, then the auxiliary
graph naturally induced by the blobs (obtained by treating each blob as a super-vertex and
connecting two super-vertices if there is an edge of G∗ connecting the two blobs) contains the
random graph G(t, C/t), where C → ∞ as k → ∞. It is well known ([2], see also [21]) that if
C > 1, then G(t, C/t) a.a.s. contains a path P0 of length Ω(t). Since the blobs are connected
and t > n/(∆k), one can turn P0 into a path P in G∗, whose length is at least as large as the
length of P0. Indeed, we may use the edges of P0 to move between the blobs and the edges of
G to connect the entry and the exit points of P0 within each blob traversed by P0.

9 Concluding remarks

In this paper, we studied the model of randomly perturbed connected graphs. Using a new
general upper bound on the number of connected subsets with small vertex boundary, we proved
lower bounds on edge expansion under mild assumptions on the base graph. We established
several other interesting properties of randomly perturbed connected graphs such as bounds on
the diameter and the mixing time of the lazy random walk. It would be interesting to study
other parameters of this model.

It seems that randomly perturbed connected n-vertex graph with bounded degeneracy shares
some similarities with the giant component in the supercritical Erdős–Rényi random graph
G(n, 1+ε

n ). In particular, a.a.s. they both have diameter O(log n), mixing time O(log2 n), and
contain paths of length Ω(n). It could be interesting to explore this analogy further and to
check whether the methods used in this work to study the model of randomly perturbed graphs
can be applied to the other model.
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