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Abstract. Suppose that X is a bounded-degree polynomial with nonnegative coefficients on
the p-biased discrete hypercube. Our main result gives sharp estimates on the logarithmic
upper tail probability of X whenever an associated extremal problem satisfies a certain entropic
stability property. We apply this result to solve two long-standing open problems in probabilistic
combinatorics: the upper tail problem for the number of arithmetic progressions of a fixed
length in the p-random subset of the integers and the upper tail problem for the number of
cliques of a fixed size in the random graph Gn,p. We also make significant progress on the upper
tail problem for the number of copies of a fixed regular graph H in Gn,p. To accommodate
readers who are interested in learning the basic method, we include a short, self-contained
solution to the upper tail problem for the number of triangles in Gn,p for all p = p(n) satisfying
n−1 log n� p� 1.
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1. Introduction

Suppose that Y = (Y1, . . . , YN ) is a sequence of independent Bernoulli random variables
with mean p and that X = X(Y ) is an N -variate polynomial with nonnegative real coefficients.
Perhaps the simplest question that can be asked about the typical behaviour of X is whether it
satisfies a law of large numbers, i.e., whether X → E[X] in probability as N →∞. Once this is
established, it is natural to ask for quantitative estimates of the probability of the event that X
differs from its mean by a significant amount. In the special case where Y 7→ X(Y ) is a linear
function, this problem is addressed by the classical theory of large deviations, see [14, 28]. This
theory shows that, under mild conditions on the coefficients of the linear function X and the
assumptions p→ 0 and Np→∞,

P
(
|X − E[X]| > δ E[X]

)
= e−(I(δ)+o(1))Np
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for an explicitly computable function I : (0,∞) → (0,∞]. However, there are many natural
situations where one would like to consider nonlinear polynomials X(Y ), as in the following two
examples. We use the notation JNK = {1, . . . , N}.

Example 1.1 (Arithmetic progressions in random sets of integers). A k-term arithmetic progres-
sion is a sequence of k integers of the form

(
a, a+b, a+2b, . . . , a+(k−1)b

)
, where b > 0. We write

JNKp for the random subset of JNK obtained by including every element of JNK independently
with probability p. Let Xk-AP

N,p denote the number of k-term arithmetic progressions in JNKp.
Then Xk-AP

N,p can be considered as a polynomial with nonnegative coefficients and degree k in the
independent Ber(p) random variables Y1, . . . , YN , where Yi is the indicator variable of the event
that i ∈ JNKp; explicitly,

Xk-AP
N,p =

∑
b>0

∑
a>1

a+(k−1)b6N

k−1∏
i=0

Ya+ib.

We remark that, unlike [10] and several other works, we count only genuine arithmetic progressions
(i.e., we do not consider degenerate progressions of the form (a, . . . , a)) and we count every
progression only once (as opposed to counting (a1, a2, . . . , ak) and (ak, ak−1, . . . , a1) as two
different progressions).

Example 1.2 (Subgraph counts in random graphs). Fix a nonempty graph H and let XH
n,p

be the number of copies of H in the random graph Gn,p, that is, the number of subgraphs of
Gn,p isomorphic to H. Then XH

n,p can be written as a polynomial with nonnegative coefficients
and degree eH in the N =

(
n
2
)
indicator random variables of the possible edges of Gn,p. More

precisely, fix an arbitrary bijection σn :
(JnK

2
)
→ JNK (the precise choice is irrelevant) and, for

every i ∈ JNK, let Yi be the indicator variable of the event that σ−1
n (i) is an edge in Gn,p. Then

Y1, . . . , YN are independent Ber(p) random variables and

XH
n,p =

∑
H′⊆Kn
H′∼=H

∏
e∈E(H′)

Yσn(e),

where Kn denotes the complete graph on the vertex set JnK and ∼= denotes the isomorphism
relation on graphs.

In this paper, we will always assume that δ is fixed and p→ 0 as N →∞.
The large deviation problem for the variables described above is significantly more involved than

the linear case; in particular, the lower and upper tail probabilities—that is, P
(
X 6 (1− δ)E[X]

)
and P

(
X > (1 + δ)E[X]

)
, respectively—exhibit dramatically different behaviours. On the one

hand, using a combination of Harris’s inequality [41] and Janson’s inequality [43], one can show
that X = Xk-AP

N,p satisfies

e−C1(δ) min {E[X],Np} 6 P
(
X 6 (1− δ)E[X]

)
6 e−C2(δ) min {E[X],Np} (1)

for some positive C1(δ) and C2(δ); similar bounds are available for X = XH
n,p.1 On the other

hand, there are no comparably simple tools that allow one to easily obtain similar estimates
on the logarithm of the upper tail probability. The standard concentration inequalities due to
Azuma–Hoeffding [42], Talagrand [64], or Kim–Vu [52, 68] yield bounds that are far from tight
in Examples 1.1 and 1.2. For a survey discussing these and other classical approaches to the
‘infamous upper tail’ problem, see [45].

Unlike the lower tail, the upper tail is susceptible to the influence of small structures whose
appearance increases the value X atypically, a phenomenon that we refer to as localisation. For
example, in the case of X = Xk-AP

N,p where k > 3, a typical subset of size m = o(N) contains

1For more precise results, we refer the interested reader to [48, 54, 58, 71].
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Θ
(
N2(m/N)k

)
= o(m2) k-term arithmetic progressions, whereas some very rare subsets (notably

an interval of length m) can contain as many as Θ(m2) such progressions. The event that JNKp
contains an interval of length Θ(

√
E[X]) thus provides a lower bound on the upper tail probability.

More precisely, P
(
X > (1 + δ)E[X]

)
> exp

(
−O(

√
E[X] log(1/p))

)
, which is significantly larger

than the lower tail probability (1) for most p. In order to properly analyse the upper tail event,
one must account for these local effects, which frequently requires understanding the peculiar
combinatorial nature of the random variable X.

The last decade has seen the development of an increasingly powerful theory of ‘nonlinear large
deviations’, which began with the work of Chatterjee–Dembo [18] and was further developed by
Eldan [30], Cook–Dembo [24], Augeri [2, 3], and Cook–Dembo–Pham [25]. Whenever a general
function f of i.i.d. random variables satisfies certain complexity and regularity conditions, these
results can be used to express the upper tail probability P

(
f > (1 + δ)E[f ]

)
in terms of an

associated variational problem. In the case where f is a polynomial with nonnegative coefficients
on the hypercube, this variational problem is able to capture the presence of localisation, if
it occurs. In the two examples mentioned above, nonlinear large deviation theory gives tight
control of the upper tail probabilities whenever p > N−α for some constant α > 0. However, the
best-known constant α is not optimal in both examples.

Our main contribution is a general method for proving sharp bounds on the upper tail
probability of the polynomial X = X(Y ) in the presence of localisation. In many cases where
localisation occurs, our approach can also give a coarse description of the tail event. At the heart
of our method lies an adaptation of the classical moment argument of Janson, Oleszkiewicz, and
Ruciński [44], which we use to formalise the intuition that the upper tail event is dominated by
the appearance of near-minimisers of the combinatorial optimisation problem

ΦX(δ) = min
{
|I| log(1/p) : I ⊆ JNK and E[X | Yi = 1 for all i ∈ I] > (1 + δ)E[X]

}
. (2)

Roughly speaking, we say that I ⊆ JNK is a core if it is a feasible set for the above optimisation
problem, its size is O

(
ΦX(δ)

)
, and it satisfies a certain natural rigidity condition that arises

from requiring every element in the set to contribute a sizeable amount to the expectation. The
constraints used to define a core are loosely analogous to the complexity conditions used in
nonlinear large deviation theory; we will give a more precise definition of a core and discuss its
relations to earlier work in more detail in Section 3.

We show that the upper tail probability is approximately equal to the probability of the
appearance of a core. In particular, when the number of cores of size m is (1/p)o(m), a property
we term entropic stability, then a union bound implies that − logP

(
X > (1 + δ)E[X]

)
is well

approximated by ΦX(δ). We will verify that the random variables Xk-AP
N,p and XH

n,p (for a large
class of graphs H) satisfy the entropic stability condition under optimal, or nearly optimal,
assumptions on p.2

One important caveat that we have ignored so far is that the upper tail exhibits localisation
only when the expectation of X tends to infinity sufficiently quickly. In fact, if E[X] is of constant
order, then, under relatively mild conditions, X converges in distribution to a Poisson random
variable and no localisation occurs. We show that, for the two examples discussed above, the
upper tail continues to have Poisson behaviour even when E[X] goes to infinity sufficiently slowly.
In the cases of k-term arithmetic progressions in JNKp and cliques in Gn,p, our results for the
Poisson and localised regimes cover almost the whole range of densities p→ 0 with E[X]→∞,

2We use the phrase entropic stability in a similar sense to the notion of stability in extremal combinatorics.
More precisely, we are considering situations where the probability that

∏
i∈I

Yi = 1 for some minimiser I of (2)
is asymptotically equal to the probability of appearance of one such minimiser—in other words, the energy of such
configurations (given by the number of elements involved) dominates over the entropy (that is, the number of such
configurations). Then entropic stability means that the entropy term remains negligible even as we move away
from true minimisers of (2) to sets that are merely close to being minimisers (the cores).
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leaving the upper tail probability undetermined only at densities for which it is believed that the
two behaviours coexist.

1.1. Arithmetic progressions in random sets of integers. Let X = Xk-AP
N,p denote the

number of k-term arithmetic progressions in JNKp. It is not hard to see that E[X] = Θ(N2pk).
Whenever this expectation vanishes, the upper tail event is commensurate with the probability of
X > 1, which can be controlled using Markov’s inequality. More generally, if E[X] is bounded,
then it follows from standard techniques that X is asymptotically Poisson [7]; in this case, the
large deviations of X are those of a Poisson random variable with mean E[X]. For the remainder
of this section, we shall thus assume that E[X]→∞, i.e., that pk/2 � N−1.

Improving an earlier estimate due to Janson and Ruciński [47], Warnke [69] proved that under
fairly general assumptions (in particular, for constant δ > 0 and all p bounded away from 1),

− logP(X > (1 + δ)E[X]) = Θ
(

min
{(

(1 + δ) log(1 + δ)− δ
)
E[X],

√
δ E[X] log(1/p)

})
, (3)

where the constants implicit in the Θ-notation are independent of δ. Note that the two terms of
the minimum correspond to the dominance of the Poisson and the localised regimes, respectively.

Since then, it has been an open problem to determine the missing constant factor in (3). Using
the above-mentioned framework of Eldan [30], Bhattacharya, Ganguly, Shao, and Zhao [10] were
able to do so in the range N−

1
12(k−1) (logN)O(1) � pk/2 � 1. This was subsequently improved

by Briët–Gopi [15] to the slightly wider range N−
1

12d(k−1)/2e (logN)O(1) � pk/2 � 1, also using
Eldan’s result. The two theorems below improve significantly on these results and determine the
precise rate of the upper tail for all N−1 � pk/2 � 1, excepting the case pk/2 = Θ(N−1 logN).
The first result concerns the range where the minimum in (3) is

√
δ E[X] log(1/p).

Theorem 1.3. Let k > 3 be an integer and let X = Xk-AP
N,p denote the number of k-term

arithmetic progressions in JNKp. Then, for every fixed positive constant δ and all p = p(N)
satisfying N−1 logN � pk/2 � 1,

lim
N→∞

− logP
(
X > (1 + δ)E[X]

)
Npk/2 log(1/p)

=
√
δ.

Observe that Theorem 1.3 shows that the upper tail probability is well approximated by
the probability of appearance of an interval (or, more generally, an arithmetic progression) of
length

√
δN2pk in JNKp. Since each such interval contains approximately δ E[X] arithmetic

progressions of length k, it is not hard to see that conditioning JNKp on the appearance of such a
set will cause the upper tail event to occur with sizable probability. Conversely, our methods
may be used to prove that the upper tail event is dominated by the appearance of some set
of size (1 + o(1))

√
δN2pk that contains nearly δ E[X] arithmetic progressions of length k. It

seems natural to guess that each such set is, in some sense, close to an arithmetic progression.
However, this is not the case, as was shown by Green–Sisask [37]. We currently do not know
a structural characterisation of the sets described above, which prevents us from proving a
qualitative description of the upper tail event. For further discussion, we refer to Section 10.

The second result treats the complementary range N−1 � pk/2 � N−1 logN , where the upper
tail has Poisson behaviour.

Theorem 1.4. Let k > 3 be an integer and let X = Xk-AP
N,p denote the number of k-term

arithmetic progressions in JNKp. Then, for every fixed positive constant δ and all p = p(N)
satisfying N−1 � pk/2 � N−1 logN ,

lim
N→∞

− logP
(
X > (1 + δ)E[X]

)
E[X] = (1 + δ) log(1 + δ)− δ.
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1.2. Subgraph counts in random graphs. Let X = XH
N,p be the number of copies of a fixed

graph H in Gn,p. Note that E[X] = Θ(nvHpeH ). Since controlling the distribution of X for
completely general graphs involves many technical difficulties (see for example [12, 66]), we will
restrict our attention to connected, ∆-regular graphs H. If the expected value of X is bounded,
then X converges to a Poisson random variable, as was shown independently by Bollobás [11]
and by Karoński–Ruciński [49]. In view of this, for the remainder of this section, we shall assume
that E[X] → ∞, i.e., that p∆/2 � n−1. As mentioned before, we will also assume that p → 0;
the case where p ∈ (0, 1) is fixed, which is fundamentally different, was addressed in [21, 56, 59].

The problem of controlling the upper tail of X has a long history. A sequence of papers [46,
53, 68], culminating in the work of Janson, Oleszkiewicz, and Ruciński [44], resulted in upper
and lower bounds on the logarithmic upper tail probability that differed by a multiplicative
factor of log(1/p). In the case where H is a clique, Chatterjee [16] and DeMarco–Kahn [26]
independently added the missing logarithmic factor to the upper bound, thus establishing the order
of magnitude of the logarithmic upper tail probability. The theory of nonlinear large deviations
(discussed above) provides a variational description of the dependence of the upper tail probability
P(X > (1 + δ)E[X]) on δ for a certain range of p→ 0, as established in [3, 18, 24, 25, 30]; the
strongest of these results require p� n−1/(∆+1) for general graphs of maximal degree ∆ [24, 25],
and p∆/2 � n−1/2 for the case where H is a cycle [3, 24] (disregarding polylogarithmic factors).
The associated variational problem was solved by Lubetzky–Zhao [57] when H is a clique and by
Bhattacharya, Ganguly, Lubetzky, and Zhao [9] for general H. For a more detailed overview of
these techniques, we refer the reader to the book of Chatterjee [17].

The solution to the variational problem is expressed in terms of the independence polynomial
of a graph. For any H, define PH(x) =

∑
k ik(H)xk, where ik(H) is the number of independent

sets of H of size k, and let θ = θ(δ) be the unique positive solution to PH(θ) = 1 + δ.3 There
are two constructions that yield lower bounds for the upper tail probability (see Figure 1). In
both cases, one plants a ‘small’ subgraph whose presence ensures that Gn,p contains (1 + δ)E[X]
copies of H with good probability. The first of these subgraphs is a clique on δ1/vHnp∆/2 vertices
(as in the left side of the figure), which contains the extra δ E[X] copies of H required by the
upper tail event (up to lower-order corrections). The second subgraph (which is often called a
‘hub’) is a complete bipartite graph with parts of size θnp∆ and n− θnp∆, respectively (as in the
right side of the figure); since we are implicitly assuming that θnp∆ is an integer, rounding errors
play a significant role here unless np∆ � 1. A short calculation shows that the expected number
of copies of H which intersect this graph is approximately δ E[X] and thus the actual number of
such copies is almost δ E[X] with good probability. In both cases, the complement of the planted
subgraph typically contains approximately E[X] copies of H. Formalising this argument, one
obtains the two lower bounds

P
(
X > (1 + δ)E[X]

)
> p(δ2/vH+o(1))n2p∆

and P
(
X > (1 + δ)E[X]

)
> p(θ+o(1))n2p∆

,

which correspond to planting the clique and the complete bipartite graph, respectively. (Recall
that the latter bound is valid only when np∆ � 1.)

Our main result is that, when H is not bipartite, one of the above bounds is tight in nearly
the whole range of densities. When H is bipartite, we prove tight bounds on the logarithmic
upper tail probability only when p∆/2 > n−1/2−o(1).

Theorem 1.5. Let ∆ > 2 be an integer, let H be a connected, nonbipartite, ∆-regular graph, and
let X = XH

N,p denote the number of copies of H in Gn,p. Then for every fixed positive constant δ

3We note that i0(H) = 1 for every graph H, so that, for example, PKr (x) = 1 + rx.
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δ1/vHnp∆/2n

θnp∆

n− θnp∆

Figure 1. The two constructions giving lower bounds for the upper tail proba-
bility of X = XH

n,p.

and all p = p(n) satisfying n−1(logn)∆v2
H � p∆/2 � 1,

lim
n→∞

− logP
(
X > (1 + δ)E[X]

)
n2p∆ log(1/p) =

{
δ2/vH/2 if np∆ → 0,
min {δ2/vH/2, θ} if np∆ →∞,

where θ is the unique positive solution to PH(θ) = 1 + δ. Additionally, if p∆/2 > n−1/2−o(1), then
the assumption that H is nonbipartite is not necessary.

We note that the theorem leaves open the case where np∆ → c ∈ (0,∞). In this regime, the
explicit dependence of the upper tail probability on δ involves various integrality conditions and
is therefore quite complicated. In the next subsection, we explicitly treat this regime when H is a
clique. The assumption of nonbipartiteness is not phenomenological, but only technical. The
aforementioned entropic stability condition, which plays a crucial role in our proof, ceases to hold
when H is bipartite as soon as p∆/2 6 n−1/2−Θ(1), see Section 10.

Our next result concerns the Poisson regime of the upper tail.

Theorem 1.6. Let ∆ > 2 be an integer, let H be a connected, ∆-regular graph, and let X = XH
n,p

denote the number of copies of H in Gn,p. Then, for every fixed positive constant δ and all
p = p(n) satisfying n−1 � p∆/2 � n−1(logn)

1
vH−2 ,

lim
n→∞

− logP
(
X > (1 + δ)E[X]

)
E[X] = (1 + δ) log(1 + δ)− δ.

In the case where H is a clique, DeMarco and Kahn [26] proved that the logarithmic upper tail
probability is of order E[X] throughout the regime covered by Theorem 1.6. For other ∆-regular
graphs H, the analogous fact was known only in the range n−1 � p∆/2 � n−1(logn)cH , for some
positive constant cH < 1/(vH − 2), see [46, 62, 67, 70].

Finally, we point out that the powers of the logarithms in the assumptions of Theorems 1.5
and 1.6 do not match. After a preprint of this paper appeared, Basak and Basu [8] combined a
generalised notion of entropic stability with a more refined version of the approach used in this
paper to prove tight bounds on the logarithmic upper tail probability for the subgraph count of
any ∆-regular graph H in the entire localised regime (see Section 3 for a more detailed discussion).
Specifically, they remove the assumption that H is nonbipartite, and improve the assumed
lower bound on the density p in Theorem 1.5 to n−1(logn)1/(vH−2) � p∆/2, thus matching the
assumptions of Theorem 1.6.

1.3. Clique counts in random graphs. We now consider the case of X = XH
n,p where H is

a clique on r > 3 vertices. Thanks to the simpler structure of these graphs, we are able to prove
significantly stronger results in this setting. First, we are able to determine the explicit dependence
of the logarithmic upper tail probability on δ even when npr−1 → c ∈ (0,∞). Moreover, we
resolve the upper tail problem for the optimal range of densities n−1(logn)

1
r−2 � p

r−1
2 � 1,
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complementing the range covered by Theorem 1.6. Finally, we give a structural description of
Gn,p conditioned on the upper tail event.

In order to formally state the theorem, it is convenient to define

ψr(δ, c, x) =
(
δ(1− x)

)2/r
2 + bxδc/rc+ {xδc/r}

1
r−1

c
, (4)

where δ and c are nonnegative reals, x ∈ [0, 1], and {a} denotes the fractional part of a, and

ϕr(δ, c) = min
x∈[0,1]

ψr(δ, c, x). (5)

For an intuitive explanation of the combinatorial meaning of these definitions, we refer to the
discussion at the beginning of Section 6. An easy convexity argument shows that the minimum
in the definition of ϕr is attained when x ∈ {0, rbδc/rc/(δc), 1}, see Lemma 6.1. This leads to
the explicit formula

ϕr(δ, c) = min
{
δ2/r

2 ,
bδc/rc+ {δc/r}1/(r−1)

c
,
bδc/rc
c

+ (r{δc/r}/c)2/r

2

}
.

Theorem 1.7. Let r > 3 be an integer and let X = XKr
n,p denote the number of r-vertex cliques

in the random graph Gn,p. Then, for every fixed positive constant δ and all p = p(n) satisfying
n−1(logn)

1
r−2 � p

r−1
2 � 1,

lim
n→∞

− logP
(
X > (1 + δ)E[X]

)
n2pr−1 log(1/p) =


δ2/r/2 if npr−1 → 0,
ϕr(δ, c) if npr−1 → c ∈ (0,∞),
min

{
δ2/r/2, δ/r

}
if npr−1 →∞.

Our next result describes the typical structure of the random graph Gn,p conditioned upon
the upper tail event. We write Gn,p[U ] for the subgraph of Gn,p induced by U and e(A,B) for
the number of edges in Gn,p with one endpoint in A and another in B. Define the following three
events:

(i) Let UT(δ) be the upper tail event {X > (1 + δ)E[X]}.
(ii) Let Cliqueε(x) be the event that Gn,p contains a set U ⊆ JnK of size at least (1 −

ε)x1/rnp(r−1)/2 such that Gn,p[U ] has minimum degree at least (1− ε)|U |.
(iii) Let Hubε(x) be the event that Gn,p contains a set U ⊆ JnK such that at least b(1− ε)|U |c

vertices in U have degree at least (1− ε)n and

e(U, JnK \ U) > (1− ε)n
(
bxnpr−1/rc+ {xnpr−1/r}

1
r−1
)
.

Observe that Cliqueε(0) and Hubε(0) hold vacuously.

Theorem 1.8. Let r > 3 be an integer and let δ, ε, and c be fixed positive constants. The
following holds for all p = p(n) satisfying n−1(logn)

1
r−2 � p

r−1
2 � 1.

(i) If npr−1 → 0, then
P
(

Cliqueε(δ) | UT(δ)
)
→ 1.

(ii) If npr−1 → c, then, letting x∗ = rbδc/rc/(δc),

P

 ⋃
x∈{0,x∗,1}

(
Cliqueε

(
δ(1− x)

)
∩Hubε(δx)

)
| UT(δ)

→ 1,

Moreover, if x 7→ ψr(δ, c, x) has a unique minimiser x ∈ {0, x∗, 1}, then

P
(

Cliqueε
(
δ(1− x)

)
∩Hubε(δx) | UT(δ)

)
→ 1.
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0 1 2 3 4

δ

0

3

6

9

12

c

Clique(δ) Hub(δ) Clique(δx∗) ∩ Hub(δ(1− x∗))

Figure 2. Asymptotic structure of Gn,p conditioned upon the upper tail event
UT(δ) = {XK3

n,p > (1 + δ)E[XK3
n,p]} when np2 → c as n→∞. In this conditional

model, it is highly probable that we observe either Cliqueε(δ), Hubε(δ), or
Cliqueε(δx∗) ∩ Hubε((1− δ)x∗) with x∗ = 3bδc/3c/(δc) ∈ (0, 1), depending on
the values of δ and c (all regions are open).

(iii) If npr−1 →∞, then

P
(

Cliqueε(δ) ∪Hubε(δ) | UT(δ)
)
→ 1.

Moreover,

P
(

Cliqueε(δ) | UT(δ)
)
→

{
1 if δ2/r/2 < δ/r,

0 if δ2/r/2 > δ/r.

Note that Theorem 1.8 remains agnostic about the exact structure of the conditional model
in the case where there are multiple minimisers to x 7→ ψr(δ, npr−1, x). However, it is not too
difficult to show that for every r, the set of (δ, c) ∈ (0,∞)2 for which x 7→ ψr(δ, c, x) has multiple
minimisers has Lebesgue measure zero. Figure 2 gives a graphical representation of the assertion
of Theorem 1.8 in the case where r = 3 and np2 → c. As the figure illustrates, the conditional
model undergoes infinitely many phase transitions if δ2/3/2 > δ/3 (that is, δ < 3.375) and no
phase transition at all if δ2/3/2 < δ/3.

1.4. Organisation of the paper. In Section 2, we present a short and self-contained solution
to the upper tail problem for triangle counts in Gn,p. This section is somewhat redundant, since
its content is just a special case of the more general Proposition 6.4. We include it in order to
demonstrate our method in a simple setting that conveniently avoids many technical complications
that arise in the general case.

Section 3 introduces a concentration inequality that gives a general condition under which the
logarithmic upper tail probability can be approximated by ΦX(δ), the solution to the optimisation
problem (2).
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In Section 4, we use the inequality developed in Section 3 to determine the asymptotics of the
logarithmic upper tail probability of Xk-AP

N,p in the complete range of densities where localisation
occurs. After collecting some graph-theoretic tools in Section 5, we study the localised regime
of the upper tails of XKr

n,p and XH
n,p for connected, ∆-regular graphs H in Sections 6 and 7,

respectively. We note that the three Sections 4, 6, and 7 are logically independent and may be
read in any order; however, both Sections 6 and 7 rely on the tools of Section 5.

In Section 8, we prove various results related to the Poisson regime; in particular, we give
the proofs of Theorems 1.4 and 1.6. The arguments we use there do not rely on the methods
developed in Section 3, but rather on explicit calculations of high factorial moments. Section 9
contains a brief discussion on extending the result from Section 3 to the more general case of
nonnegative random variables on the hypercube. Finally, in Section 10 we make some concluding
remarks and discuss open problems.

1.5. Notation. Before ending the introduction, we collect some notation which will be used
throughout the paper. We write Kr for the complete graph on r vertices and Ks,t for the complete
bipartite graph with parts of size s and t. For any graph G, let V (G) and E(G) denote the vertex
and edge sets of G, respectively, and set vG = |V (G)| and eG = |E(G)|. For two graphs J and G,
we let N(J,G) be the number of copies of J in G, and Emb(J,G) be the set of embeddings of J
into G—i.e., injective maps from V (J) to V (G) that map edges of J to edges of G. For an edge
uv ∈ E(G), we also let N(J,G;uv) and Emb(J,G;uv) be the number of copies of J that contain
the edge uv, and the set of embeddings that map an edge of J to uv, respectively. Finally, for
a subset I of JNK, we let YI =

∏
i∈I Yi, and EI [X] = E[X | YI = 1]. If subsets I ⊆ JNK can be

identified with subgraphs G ⊆ Kn, as in Example 1.2, we will write EG[X] instead of EI [X].

2. Triangles in random graphs

Assume that n−1 logn� p� 1 and let X denote the number of triangles in Gn,p. Using the
shorthand notation EG[X] = E[X | G ⊆ Gn,p], we define, for each positive δ,

ΦX(δ) = min
{
eG log(1/p) : G ⊆ Kn and EG[X] > (1 + δ)E[X]

}
. (6)

Note that this agrees with the definition (2). The goal of this section is to prove that, for every
fixed positive ε and all large enough n,

(1− ε)ΦX(δ − ε) 6 − logP
(
X > (1 + δ)E[X]

)
6 (1 + ε)ΦX(δ + ε). (7)

At this point, we do not address the issue of evaluating ΦX(δ). For the sake of completeness,
let us mention that a special case of a more general result of Lubetzky–Zhao [57] is that, when
n−1 � p� 1,

lim
n→∞

ΦX(δ)
n2p2 log(1/p) =

{
δ2/3/2 if np2 → 0
min

{
δ/3, δ2/3/2

}
if np2 →∞.

In Section 6, we shall fill in the gap at p = Θ(n−1/2) to obtain an asymptotic formula for ΦX(δ)
in the full range of interest.

We now give a proof of (7), where we may assume without loss of generality that ε 6 δ/10.
All statements that we make in this section should be understood to hold only for sufficiently
large n. We start with some easy observations. First, for every graph G with O(1) edges,
we have EG[X] − E[X] = O(1 + np2) � (δ − 2ε)E[X], and so ΦX(δ − 2ε) � log(1/p) � 1.
Second, the condition in (6) is satisfied when G is a clique on (1 + δ)1/3np vertices, and therefore
ΦX(δ − ε) 6 (1 + δ)2/3n2p2 log(1/p)/2.

The easier of the two inequalities in (7) is the upper bound. To prove it, let G be a graph
attaining the minimum in the definition of ΦX(δ + ε) and let PG(·) = P(· | G ⊆ Gn,p). Since X
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never exceeds
(
n
3
)
,

(1 + δ + ε)E[X] 6 EG[X] 6
(
n

3

)
PG
(
X > (1 + δ)E[X]

)
+ (1 + δ)E[X],

and so
PG
(
X > (1 + δ)E[X]

)
> εE[X]/

(
n

3

)
= εp3.

Hence,

− logP
(
X > (1 + δ)E[X]

)
6 − log

(
P(G ⊆ Gn,p) · PG

(
X > (1 + δ)E[X]

))
6 eG log(1/p) + log(1/εp3).

Since eG log(1/p) = ΦX(δ + ε) > ΦX(δ − 2ε)� log(1/p), this establishes the lower bound in (7).
We now turn to proving the lower bound. Let C = C(ε, δ) denote a sufficiently large positive

constant. We call a graph G ⊆ Kn a seed if
(S1) EG[X] > (1 + δ − ε)E[X] and
(S2) eG 6 Cn2p2 log(1/p).
We make the following claim:

Claim 2.1. P
(
X > (1 + δ)E[X]

)
6 (1 + ε)P

(
Gn,p contains a seed

)
.

Remark 2.2. Given this claim, one may be tempted to simply apply the union bound over all
seeds. Using such a strategy, one would find that

P
(
X > (1 + δ)E[X]

) Claim 2.1
6 (1 + ε)P

(
Gn,p contains a seed

)
6 (1 + ε)

∞∑
m=mmin

pm · |{G ⊆ Kn : G is a seed with m edges}|, (8)

where mmin = ΦX(δ − ε)/ log(1/p) is the minimal number of edges in a seed. Unfortunately,
such a strategy is bound to fail, as there are far too many seeds. To see this, we observe that if
G satisfies (S1), then so does any supergraph of G. In particular, if we take a seed with mmin
edges and add an arbitrary set of Kmmin edges (where K is a large constant), the resulting
graph remains a seed. Therefore, we can (rather loosely) bound the number of seeds with
m̃ = (K + 1)mmin edges from below:

|{G ⊆ Kn : G is a seed with m̃ edges}| >
((n

2
)
−mmin

Kmmin

)
>

(
1

3(1 + δ)2/3Kp2

)Kmmin

,

using the bound
(
x
y

)
> (x/2y)y for any y < x/2 and mmin 6 (1 + δ)2/3n2p2/2. If we choose K to

be large enough, we may conclude that

|{G ⊆ Kn : G is a seed with m̃ edges| > (1/p)3m̃/2,

for all large enough n. This shows that the m̃th term of the final sum in (8) is arbitrarily large,
making the entire approach fruitless.

From Remark 2.2, it is clear that seeds may include ‘extraneous’ edges that have no structural
role in the upper tail event. We wish to consider more constrained structures which exclude
constructions like the one outlined above. To that end, we call a graph G∗ ⊆ Kn a core if
(C1) EG∗ [X] > (1 + δ − 2ε)E[X],
(C2) eG∗ 6 Cn2p2 log(1/p), and
(C3) mine∈E(G∗)

(
EG∗ [X]− EG∗\e[X]

)
> εE[X]/

(
Cn2p2 log(1/p)

)
.

Condition (C3) requires that every edge contributed meaningfully to the expectation, and thus
excludes the pathological seeds described above.

Claim 2.3. Every seed contains a core.
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Finally, we claim that the additional constraint (C3) allows us to get a very strong bound on
the number of cores with a given number of edges, as it ensures that either the product of the
degrees of the endpoints of any edge in G∗ must be nearly as large as eG∗ , or the sum of these
degrees is nearly linear in n (note that the former condition holds when G∗ is a clique, and the
latter when G∗ is a hub). This, in turn, implies that the number of cores with a given set of
vertices and m edges is exp(O(m log log(1/p)). Once we show that the number of choices for the
vertex set of a core with m edges is (1/p)o(m), we prove the following claim.

Claim 2.4. For every m, there are at most (1/p)εm cores with exactly m edges.

As will be discussed in Section 3, we refer to the property described in Claim 2.4 as entropic
stability.

Let us show how these three claims imply the lower bound in (7):

P
(
X > (1 + δ)E[X]

) Claim 2.1
6 (1 + ε)P

(
Gn,p contains a seed

)
Claim 2.3
6 (1 + ε)P

(
Gn,p contains a core

)
6 (1 + ε)

∞∑
m=0

pm · |{G∗ ⊆ Kn : G∗ is a core with m edges}|

Claim 2.4
6 (1 + ε)

∞∑
m=mmin

p(1−ε)m,

where mmin is the minimal number of edges in a core. Since (C1) implies that ΦX(δ − 2ε) 6
mmin · log(1/p), the assumption p� 1 yields

P
(
X > (1 + δ)E[X]

)
6 (1 + 2ε) exp

(
− (1− ε)ΦX(δ − 2ε)

)
.

Finally, as ΦX(δ − 2ε)� 1, we obtain

− logP
(
X > (1 + δ)E[X]

)
> (1− 2ε)ΦX(δ − 2ε),

thus proving (7) with 2ε instead of ε.

Remark 2.5. Conditions (S2) and (C2) require both seeds and cores to have no more than
Cn2p2 log(1/p) edges, forcing us to consider graphs which are larger than the minimiser of ΦX(δ)
by a multiplicative factor of log(1/p). This is optimal in the following sense. On the one hand,
replacing log(1/p) with a larger function would weaken the conclusion of Claim 2.1 and make
Claim 2.4 hold only for a smaller range of densities p. On the other hand, if we could replace
log(1/p) by `(p) = o(log(1/p)) without altering the validity of Claim 2.1, then Claim 2.4 (with
an appropriately adjusted definition of a core) would hold for any p� `(p)/n; this would imply
an upper bound on the upper tail probability that is stronger than the lower bound proven in
Theorem 1.6 for `(p)/n� p� logn/n.

Proof of Claim 2.1. We refine a classical argument due to Janson, Oleszkiewicz, and Ruciński [44].
Let Z be the indicator random variable of the event that Gn,p does not contain a seed and let
` = d(C/3)n2p2 log(1/p)e. Since XZ > 0 and Z` = Z, Markov’s inequality gives

P
(
X > (1 + δ)E[X] and Gn,p contains no seed

)
= P

(
XZ > (1 + δ)E[X]

)
6

E[X`Z]
(1 + δ)` E[X]` . (9)

We write X =
∑
T YT , where the sum ranges over all triangles T in Kn and YT is the indicator

random variable of the event that T is contained in Gn,p. For every subgraph G ⊆ Kn, let ZG be
the indicator random variable of the event that G ∩Gn,p does not contain a seed. Observe that
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ZG′ 6 ZG whenever G ⊆ G′. In particular, since Z = ZKn , we have, for every k ∈ J`K,

E[XkZ] =
∑

T1,...,Tk

E[YT1 · · ·YTk · Z]

6
∑

T1,...,Tk

E[YT1 · · ·YTk · ZT1∪···∪Tk ]

6
∑

T1,...,Tk−1

E[YT1 · · ·YTk−1 · ZT1∪···∪Tk−1 ] ·
∑
Tk

E[YTk | YT1 . . . YTk−1 · ZT1∪···∪Tk−1 = 1],

where we can let the first sum in the last line range only over sequences T1, . . . , Tk−1 for which the
event

{
YT1 · · ·YTk−1 · ZT1∪···∪Tk−1 = 1

}
has positive probability. This is equivalent to saying that

the graph T1∪· · ·∪Tk−1 does not contain a seed and thus YT1 · · ·YTk−1 ·ZT1∪···∪Tk−1 = YT1 · · ·YTk−1 .
Moreover, since eT1∪···∪Tk−1 6 3(k − 1) 6 3(`− 1) 6 Cn2p2 log(1/p),∑

Tk

E[YTk | YT1 . . . YTk−1 = 1] = ET1∪···∪Tk−1 [X] < (1 + δ − ε)E[X],

as otherwise T1 ∪ · · · ∪ Tk−1 would be a seed, see (S1) and (S2). Therefore,∑
T1,...,Tk

E[YT1 · · ·YTk · ZT1∪···∪Tk ] < (1 + δ − ε)E[X] ·
∑

T1,...,Tk−1

E[YT1 · · ·YTk−1 · ZT1∪···∪Tk−1 ]

and it follows by induction that E[X`Z] < (1 + δ− ε)` E[X]`. Substituting this inequality into (9)
gives

P
(
X > (1 + δ)E[X] and Gn,p contains no seed

)
6

(
1 + δ − ε

1 + δ

)`
.

Since the probability that Gn,p contains a seed is at least e−ΦX(δ−ε), the probability that Gn,p
contains a given seed of smallest size, the bounds 1 � ΦX(δ − ε) 6 (1 + δ)2/3n2p2 log(1/p)/2
imply that, for all sufficiently large n,(

1 + δ − ε
1 + δ

)`
6

(
1 + δ − ε

1 + δ

)(C/3)n2p2 log(1/p)
6 εe−ΦX(δ−ε) 6 εP

(
Gn,p contains a seed

)
whenever the constant C is sufficiently large4. This implies the assertion of the claim. �

Proof of Claim 2.3. Let G be a seed. Define a sequence G = G0 ⊇ G1 ⊇ · · · ⊇ Gs = G∗

of subgraphs of G by repeatedly setting Gi+1 = Gi \ e for some edge e ∈ Gi such that
EGi −EGi\e[X] < εE[X]/

(
Cn2p2 log(1/p)

)
, as long as such an edge e exists. By construc-

tion, G∗ clearly satisfies (C3). Since eG∗ 6 eG 6 Cn2p2 log(1/p), we see that (C2) holds as well.
Finally, as s 6 eG 6 Cn2p2 log(1/p), we have

EG[X]− EG∗ [X] =
s−1∑
i=0

(
EGi [X]− EGi+1 [X]

)
< εE[X].

Since G is a seed, EG[X] > (1 + δ − ε)E[X] and we obtain (C1). �

Proof of Claim 2.4. We bound the number of cores with m edges from above. This number is zero
whenever m > Cn2p2 log(1/p), by (C2). We may thus assume that m 6 Cn2p2 log(1/p). Given a
core G∗, we denote by AG∗ the set of vertices of G∗ with degree at least εnp/

(
30C log(1/p)

)
and

by BG∗ ⊆ AG∗ the set of vertices of G∗ with degree at least εn/
(
30C log(1/p)

)
, where the degree

is taken in G∗. Since G∗ has m edges,

|AG∗ | 6 a := 60Cm log(1/p)
εnp

and |BG∗ | 6 b := 60Cm log(1/p)
εn

.

The key observation, which we will now verify, is that every edge of G∗ is either contained in
AG∗ or has an endpoint in BG∗ , see Figure 3 for an illustration. To see this, consider some edge

4We note that the requirement for C to be large is only used here.
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eG∗BG∗AG∗ G∗

Figure 3. Left: The sets AG∗ and BG∗ of high-degree vertices capture the
edges of the core. Right: Three different types of triangles containing an edge e
in the core G∗.

e ∈ E(G∗). For every nonempty graph F ⊆ K3, let N(F,G∗; e) denote the number of copies of F
in G∗ that contain e. By considering how the n− 2 triangles in Kn that contain e intersect G∗
(see Figure 3), one can see that

EG∗ [X]− EG∗\e[X] 6
(
N(K3, G

∗; e) +N(K1,2, G
∗; e) · p+ np2) · (1− p).

Using EG∗ [X]− EG∗\e[X] > εE[X]/(Cn2p2 log(1/p)) and E[X] > (1− o(1))n3p3/6, we thus get
εnp

7C log(1/p) 6 N(K3, G
∗; e) +N(K1,2, G

∗; e) · p+ np2.

Since p� 1 implies that np2 � np/ log(1/p), we find that either

N(K3, G
∗; e) > εnp

15C log(1/p) or N(K1,2, G
∗; e) > εn

15C log(1/p) . (10)

Since N(K3, G
∗;uv) 6 min{degG∗ u,degG∗ v} and N(K1,2, G

∗;uv) 6 degG∗ u+ degG∗ v, the first
inequality in (10) implies that e is contained in AG∗ whereas the second inequality implies that e
has an endpoint in BG∗ , as claimed.

Our key observation implies that for fixed sets B ⊆ A ⊆ JnK with |A| = a and |B| = b, there
are at most

(
a2/2+bn

m

)
cores G∗ with m edges that satisfy AG∗ ⊆ A and BG∗ ⊆ B. We can thus

(generously) upper bound the number of cores with m edges by(
n

a

)(
n

b

)(
a2/2 + bn

m

)
.

Recalling the inequality
(
x
y

)
6 (ex/y)y, valid for all nonnegative integers x and y, we may conclude

that the number of cores with m edges is at most

n
120Cm log(1/p)

εnp ·

(
e(60C)2m

(
log(1/p)

)2
2ε2n2p2 + e60C log(1/p)

ε

)m
.

Since p � n−1 logn, the first factor is at most eo(m log(1/p)). Using m 6 Cn2p2 log(1/p), the
second factor is at most eO(m log log(1/p)) = eo(m log(1/p)). This shows that the number of cores
with m edges is indeed at most (1/p)εm, as claimed. �

3. The main technical result: ‘entropic stability implies localisation’

The goal of this section is to state a general result that allows one, in many cases of interest, to
reduce the problem of determining the precise asymptotics of the logarithmic upper tail probability
of a polynomial (with nonnegative coefficients) of independent Bernoulli random variables to a
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counting problem. Since the main technical lemmas also apply to non-product measures on the
hypercube, we phrase the basic definitions in this broader context.

We denote by Y a random variable taking values in the discrete N -dimensional cube {0, 1}N
and by X = X(Y ) a real-valued, increasing function of Y with positive expectation. Given
a subset I ⊆ JNK, we write YI =

∏
i∈I Yi for the indicator random variable of the event{

Yi = 1 for all i ∈ I
}
. Using the shorthand notation EI [X] = E[X | YI = 1],5 we define a

function ΦX : R→ R>0 ∪ {∞} by6

ΦX(δ) = min
{
− logP(YI = 1) : I ⊆ JNK and EI [X] > (1 + δ)E[X]

}
. (11)

It is easy to see that ΦX is a nondecreasing function satisfying ΦX(δ) > 0 for all δ > 0. We say
that a function X : {0, 1}N → R>0 is a polynomial with nonnegative coefficients and degree at
most d if it admits a representation X =

∑
I⊆JNK αIYI , where each coefficient αI is nonnegative

and αI = 0 whenever |I| > d.
Let I be a collection of subsets I ⊂ JNK. Given ε > 0 and p > 0, we say that I is an

entropically stable family (with respect to ε and p) if, for every integer m,

|{I ∈ I : |I| = m}| 6 (1/p)εm/2.

For the sake of brevity, we will suppress the dependence of this property on ε and p.
The following statement is the main technical result of our work.

Theorem 3.1. For every positive integer d and all positive real numbers ε and δ with ε < 1/2,
there is a positive K = K(d, ε, δ) such that the following holds. Let Y be a sequence of N
independent Ber(p) random variables for some p ∈ (0, 1 − ε] and let X = X(Y ) be a nonzero
polynomial with nonnegative coefficients and degree at most d such that ΦX(δ − ε) > K log(1/p).
Denote by I∗ the collection of all subsets I ⊆ JNK satisfying
(C1) EI [X] > (1 + δ − ε)E[X],
(C2) |I| 6 K · ΦX(δ + ε), and
(C3) mini∈I

(
EI [X]− EI\{i}[X]

)
> E[X]/

(
K · ΦX(δ + ε)

)
,

and assume I∗ is an entropically stable family. Then

(1− ε)ΦX(δ − ε) 6 − logP
(
X > (1 + δ)E[X]

)
6 (1 + ε)ΦX(δ + ε) (12)

and, writing J ∗ for the collection of those I ∈ I∗ with − logP(YI = 1) 6 (1 + ε)ΦX(δ + ε),

P
(
X > (1 + δ)E[X] and YI = 0 for all I ∈ J ∗

)
6 εP

(
X > (1 + δ)E[X]

)
. (13)

Remark 3.2. Observe that (12) gives tight bounds on the logarithmic upper tail probability of
X, provided that ΦX(δ) =

(
I(δ) + o(1)

)
f(N, p) for a continuous, positive function I and some

function f . Equation (13) states that the upper tail event is (almost) contained in the event that
YI = 1 for some I ∈ J ∗; note that each such I is a near-minimiser of ΦX(δ− ε). In some cases, it
is possible to classify these near-minimisers and thereby obtain a rough structural characterisation
of the upper tail event.

Remark 3.3. The assumption ΦX(δ − ε) > K log(1/p) means that conditioning on YI = 1 for any
constant-size subset I ⊆ JNK cannot increase the expected value of X by more than (δ − ε)E[X];
it is very easy to verify this for the applications we have in mind. The more onerous task is
verifying that I∗ is an entropically stable family. In fact, a large part of this paper is dedicated
to counting cores (as we call the elements of I∗). Frequently, there are very few minimisers of
ΦX(δ), for every δ > 0. Entropic stability quantifies the notion that there are few near-minimisers
as well.

5Strictly speaking, EI [X] is well defined only if P(YI = 1) > 0. However, the value of EI [X] for sets I with
P(YI = 1) = 0 does not affect any of our statements.

6We use the standard convention that min∅ =∞.
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Remark 3.4. In the following sections, we will compute the logarithmic upper tail probabilities
in various settings by estimating the function ΦX and verifying that the random variable X in
question satisfies the assumptions of Theorem 3.1. As will be seen in the proof of Theorem 3.1,
entropic stability implies that

− logP (YI∗ = 1 for some I∗ ∈ I∗) > (1− ε/2) · ΦX(δ − ε). (14)

However, there are many natural contexts where the entropic stability assumption fails despite
the fact that (14) remains true. For example, when H = C4, then every copy of the complete
bipartite graph K2,cn2p2 in Kn is a core, provided that c is large enough. There are

(
n

cn2p2

)
such

copies in Kn and
(

n
cn2p2

)
is larger than (1/p)Ω(n2p2) when p� n−1/2−ξ for some small ξ > 0. In

order to study such scenarios, one may search out a weaker condition which still implies (14), and
employ Theorem 3.1 mutatis mutandis. One such modification is to allow the number of cores
with m edges to be as large as (1/p)m−mmin+o(mmin); such a generalisation was introduced in the
work of Basak–Basu [8].

Remark 3.5. LetM({0, 1}N ) be the set of measures on the N -dimensional hypercube. For any
random variable X = X(Y ) defined on the p-biased hypercube, it is possible to give an abstract
description of the probability of the upper tail event via the Gibbs variational principle, which
states that

− logP (X > (1 + δ)E[X]) > inf
ν∈MX

δ

DKL(ν ‖ µp),

where µp is the product of N Bernoulli measures of mean p, DKL(· ‖ ·) is the relative entropy

DKL(ν ‖ µ) =
∑

y∈{0,1}N
ν(y) log

(
ν(y)
µ(y)

)
,

and
MX

δ :=
{
ν ∈M({0, 1}N ) :

∑
y∈{0,1}N

X(y)ν(y) > (1 + δ)E[X]
}
.

The naïve mean field approximation holds for the upper tail of X if one can replace the infimum
over all measures inMX

δ by an infimum over all product measures inMX
δ , while incurring only

lower order errors.
The seminal work of Chatterjee–Dembo [17], further developed by Eldan [30] and Augeri [3],

provides very general sufficient conditions that imply the naïve mean field approximation for a
general function f of Bernoulli random variables, stated in terms of the ‘smoothness’ of f and
the ‘complexity’ of its gradient. Although the various works consider different notions of low
complexity, all of them seem to imply the heuristic statement that the set of all directions of
the gradient of f is an extremely sparse subset of the (N − 1)-dimensional sphere. An alternate
approach to the naïve mean field approximation is used by Cook–Dembo [24], which specializes
to the case of subgraph counts in Erdős–Rényi random graphs. Instead of appealing to gradient
complexity bounds, they construct an efficient covering of (most of) the hypercube by convex sets
on which the subgraph counts are nearly constant, in the spirit of the regularity-based approach
of Chatterjee–Varadhan [21].

Although its formulation is rather different, Theorem 3.1 can also be considered in the context
of the naïve mean field approximation, coverings of the hypercube, and low-complexity gradients.
Given a subset I ⊆ JNK, we define a product measure νI by

νI(Yi = 1) =
{

1 if i ∈ I,
p otherwise.

A straightforward computation shows that DKL(νI ‖ µp) = |I| log(1/p), and so

ΦX(δ) = inf
{
DKL(νI ‖ µp) : νI ∈MX

δ

}
.
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In these terms, Theorem 3.1 shows that, if I∗ an entropically stable family, then a particularly
simple form of the naïve mean field approximation holds: one must only consider product measures
that assign edges probability p or 1. Our adaptation of the high moment argument of Janson,
Oleszkiewicz, and Ruciński, used in Lemma 3.7, constructs a covering of (most of) the upper tail
event by a family I of small subsets I with νI ∈MX

δ . The extraction of cores from these subsets
corresponds to identifying the directions in which the possible partial derivatives are large; in
this perspective, entropic stability is analogous to the sparseness property that is encoded by the
low-complexity gradient condition.

The final stipulation of Theorem 3.1 gives a structural description of the measure conditioned
on the upper tail event. More specifically, a sample from the conditional measure will contain
an element of J ∗ with high probability. Working from the naïve mean-field approximation, one
may consider the more subtle question of the exact relationship between the conditional measure
and the family of product measures inMX

δ that attain the minimal relative entropy from µp.
The work of Eldan–Gross [31] shows that, under certain conditions, the conditional measure is
close to a mixture of such product measures, in the sense of optimal transport; Austin [4] proves
similar results for a broader class of measures (not necessarily on the hypercube).

The upper bound on − logP
(
X > (1 + δ)E[X]

)
stated in (12) will follow easily from the

following simple lemma.

Lemma 3.6. Let Y be a random variable taking values in {0, 1}N and let X = X(Y ) be a
real-valued function of Y . Suppose that E[X] > 0 and that X 6M always. Then for all positive
ε and δ,

− logP
(
X > (1 + δ)E[X]

)
6 ΦX(δ + ε) + log

(
M

εE[X]

)
.

Proof. Let t = (1 + δ)E[X]. If ΦX(δ + ε) = ∞, then the assertion of the lemma is vacuous.
Otherwise, there exists a set I ⊆ JNK with − logP(YI = 1) = ΦX(δ + ε) and EI [X] > t+ εE[X].
As EI [X] 6M · P(X > t | YI = 1) + t, it follows that

P(X > t) > P(YI = 1) · P(X > t | YI = 1) > P(YI = 1) · εE[X]
M

.

Taking the negative logarithm of both sides gives the assertion of the lemma. �

The next lemma lies at the heart of the matter. In very broad terms, it states that the upper
tail event

{
X > (1 + δ)E[X]

}
, viewed as a subset of the cube {0, 1}N , may be covered almost

completely by a union of subcubes of small codimension, where, crucially, the average value of X
on each of these subcubes is at least (1 + δ − ε)E[X]. The proof uses a variant of the moment
argument of Janson, Oleszkiewicz, and Ruciński [44].

Lemma 3.7. Let Y be a random variable taking values in {0, 1}N and let X = X(Y ) be a nonzero
polynomial with nonnegative coefficients and degree at most d. Then for every positive integer `
and all positive real numbers ε and δ,

P
(
X > (1 + δ)E[X] and YI = 0 for all I ∈ I

)
6

(
1 + δ − ε

1 + δ

)`
,

where I =
{
I ⊆ JNK : |I| 6 d` and EI [X] > (1 + δ − ε)E[X]

}
.

Proof. Given S ⊆ JNK, let ZS be the indicator random variable of the event that YI = 0 for all
I ∈ I with I ⊆ S. Note that I ′ ⊆ I implies ZI 6 ZI′ and let Z = ZJNK. Since XZ > 0 and
Z` = Z, Markov’s inequality gives

P
(
X > (1 + δ)E[X] and Z = 1

)
= P

(
XZ > (1 + δ)E[X]

)
6

E[X`Z](
(1 + δ)E[X]

)` . (15)
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Write X =
∑
I αIYI , where the sum ranges over all subsets I ⊆ JNK, each coefficient αI is

nonnegative, and αI = 0 unless |I| 6 d. Then for every k ∈ J`K,

E[XkZ] =
∑

I1,...,Ik

αI1 · · ·αIk E[YI1 · · ·YIk · Z]

6
∑

I1,...,Ik

αI1 · · ·αIk E[YI1 · · ·YIk · ZI1∪···∪Ik ]

6
∑

I1,...,Ik−1

αI1 · · ·αIk−1 E[YI1 · · ·YIk−1 · ZI1∪···∪Ik−1 ] · E[X | YI1 · · ·YIk−1 · ZI1∪···∪Ik−1 = 1],

where we may let the third sum range only over sequences I1, . . . , Ik−1 for which the event{
YI1 · · ·YIk−1 · ZI1∪···∪Ik−1 = 1

}
has a positive probability of occurring. Note that for any such

sequence, YI1 · · ·YIk−1 ·ZI1∪···∪Ik−1 = YI1 · · ·YIk−1 and I1∪· · ·∪Ik−1 /∈ I. Since |I1∪· · ·∪Ik−1| 6
d(k − 1) 6 d`, we have

E[X | YI1 · · ·YIk−1 = 1] = EI1∪···∪Ik [X] < (1 + δ − ε)E[X],

as otherwise I1 ∪ · · · ∪ Ik−1 would belong to I. It follows that∑
I1,...,Ik

αI1 · · ·αIk E[YI1 · · ·YIk · ZI1∪···∪Ik ]

< (1 + δ − ε)E[X] ·
∑

I1,...,Ik−1

αI1 · · ·αIk−1 E[YI1 · · ·YIk−1 · ZI1∪···∪Ik−1 ].

By induction, we see that E[X`Z] <
(
(1 + δ − ε)E[X]

)`. Substituting this inequality into (15)
completes the proof. �

The following easy lemma will be used to relate the family I from the statement of Lemma 3.7
to the family I∗ of cores.

Lemma 3.8. Let Y be a random variable taking values in {0, 1}N and let X = X(Y ) be a
real-valued function of Y . Then for every I ⊆ JNK and every nonnegative real number s, there
exists some I∗ ⊆ I such that

(i) EI∗ [X] > EI [X]− s and
(ii) mini∈I∗

(
EI∗ [X]− EI∗\{i}[X]

)
> s/|I|.

Proof. Define a sequence I = I0 ⊇ I1 ⊇ · · · ⊇ Ir = I∗ by repeatedly setting Ik+1 = Ik \ {i} for
some i ∈ Ik such that EIk [X]− EIk\{i}[X] < s/|I|, as long as such an i exists. By construction,
the set I∗ satisfies (ii). Finally, since r 6 |I|, we have

EI [X]− EI∗ [X] =
r−1∑
k=0

(
EIk [X]− EIk+1 [X]

)
6 s,

which is (i). �

Proof of Theorem 3.1. Let t = (1+δ)E[X]. We first prove the upper bound in (12). Let 1 denote
the N -dimensional all-ones vector. Since X is an increasing function of Y , we have X 6 X(1)
always. In particular, Lemma 3.6 implies that

− logP(X > t) 6 ΦX(δ + ε) + log
(
X(1)
εE[X]

)
.

As X has degree at most d and nonnegative coefficients, we have E[X] > X(1) · pd and thus

− logP(X > t) 6 ΦX(δ + ε) + log
(
1/(εpd)

)
6 (1 + ε/8) · ΦX(δ + ε), (16)

where the second inequality holds provided that K is sufficiently large, as we have assumed that
ΦX(δ + ε) > K log(1/p) and p 6 1− ε.
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For the rest of the proof let ` = dε(3d)−1K · ΦX(δ + ε)e and define

I =
{
I ⊆ JNK : |I| 6 d` and EI [X] > (1 + δ − ε/2)E[X]

}
.

It follows from Lemma 3.7 (invoked with ε replaced by ε/2) that

P(X > t and YI = 0 for all I ∈ I) 6
(

1− ε/2
1 + δ

)`
.

Since we have already shown that P(X > t) > exp
(
− (1 + ε)ΦX(δ + ε)

)
, see (16), we find that

letting K be sufficiently large ensures

P(X > t and YI = 0 for all I ∈ I) 6
(
1− ε/(2 + 2δ)

)`
6 (ε/2) · P(X > t).

Note next that every I ∈ I satisfies |I| 6 d` 6 (εK/2) · ΦX(δ + ε) and hence, by Lemma 3.8
applied with s = εE[X]/2, there is a subset I∗ ⊆ I satisfying the conditions (C1), (C2), and (C3).
It follows that

P(X > t and YI∗ = 0 for all I∗ ∈ I∗) 6 (ε/2) · P(X > t). (17)

Let I∗m := {I∗ ∈ I∗ : |I∗| = m} and recall that we assume |I∗m| 6 (1/p)εm/2 for all m ∈ N.
We now prove the upper bound in (12). It follows from (17) that

P(X > t) 6 (1− ε/2)−1 · P
(
YI∗ = 1 for some I∗ ∈ I∗

)
.

Moreover, the definitions of I∗ and ΦX(δ−ε) imply that every core I∗ ∈ I∗ satisfies |I∗| log(1/p) =
− logP(YI∗ = 1) > ΦX(δ − ε), see (C1). Hence, taking the union bound over all cores and using
|I∗m| 6 (1/p)εm/2, we find that

P(X > t) 6 (1− ε/2)−1
∑
I∗∈I∗

p|I
∗| 6 (1− ε/2)−1

∑
m

|I∗m| · pm

6 (1− ε/2)−1
∞∑

m= ΦX (δ−ε)
log(1/p)

p(1−ε/2)m = e−(1−ε/2)ΦX(δ−ε)

(1− ε/2)(1− p1−ε/2)
.

Taking logarithms and using p 6 1− ε and ΦX(δ − ε) > K log(1/p), we see that a large enough
choice of K ensures that − logP(X > t) > (1− ε)ΦX(δ − ε), as required.

Finally, let us prove (13). Using (17), we obtain

P(X > t and YI∗ = 0 for all I∗ ∈ J ∗) 6 (ε/2) · P(X > t) + P(YI∗ = 1 for some I∗ ∈ I∗ \ J ∗).

Noting that every I∗ ∈ I∗ \ J ∗ satisfies |I∗| log(1/p) = −P(YI∗ = 1) > (1 + ε)ΦX(δ + ε), we may
employ a union bound again to show that

P(YI∗ = 1 for some I∗ ∈ I∗ \ J ∗) 6
∑

I∗∈I∗\J ∗
p|I
∗| 6

e−(1−ε/2)(1+ε)ΦX(δ+ε)

1− p1−ε/2 .

In order to complete the proof, it now suffices to show that

e−(1+ε)(1−ε/2)ΦX(δ+ε)

1− p1−ε/2 6 (ε/2) · P(X > t). (18)

To see that this inequality holds, note first that (1+ε)(1−ε/2) > 1+ε/4 as ε < 1/2 and therefore,
by (16),

e−(1+ε)(1−ε/2)ΦX(δ+ε) 6 P(X > t) · e−(ε/8)ΦX(δ+ε).

As p 6 1 − ε and ΦX(δ + ε) > K log(1/p), we can choose K so large that e−(ε/8)ΦX(δ+ε)/(1 −
p1−ε/2) 6 ε/2, proving (18). �
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4. Arithmetic progressions in random sets of integers

Fix an integer k > 3 and let X = Xk-AP
N,p be the number of k-term arithmetic progressions

(k-APs) in the random set JNKp. The goal of this section is to study the upper tail of X in the
regime where Theorem 3.1 is applicable. In particular, we will prove Theorem 1.3, which we
restate here for convenience.

Theorem 1.3. Let k > 3 be an integer and let X = Xk-AP
N,p denote the number of k-term

arithmetic progressions in JNKp. Then, for every fixed positive constant δ and all p = p(N)
satisfying N−1 logN � pk/2 � 1,

lim
N→∞

− logP
(
X > (1 + δ)E[X]

)
Npk/2 log(1/p)

=
√
δ.

To prove the theorem, we will use Theorem 3.1 to relate − logP
(
X > (1 + δ)E[X]

)
to the

solution of the optimisation problem

ΦX(δ) = min
{
|I| log(1/p) : I ⊆ JNK and EI [X] > (1 + δ)E[X]

}
.

More precisely, we shall prove the following statement, which is the main result of this section.

Proposition 4.1. For every integer k > 3 and all positive real numbers ε and δ, there exists
a positive constant C such that the following holds. Suppose that N ∈ N and p ∈ (0, 1) satisfy
CN−1 logN 6 pk/2 6 1/C. Then X = Xk-AP

N,p satisfies

(1− ε)ΦX(δ − ε) 6 − logP
(
X > (1 + δ)E[X]

)
6 (1 + ε)ΦX(δ + ε).

The variational problem ΦX(δ) is a discretisation of the variational problem considered by
Bhattacharya, Ganguly, Shao, and Zhao [10]. In their setup, one minimizes over the set of all
product measures on {0, 1}JNK, whereas we only consider ‘planting’ constructions; in other words,
we restrict our attention to products of Ber(p) and Ber(1) measures. The result below can be
easily deduced from [10, Theorem 2.2], but we will reprove it in Section 4.2, for completeness.

Proposition 4.2. For every integer k > 3 and all positive real numbers ε and δ, there exists
a positive constant C such that the following holds. Suppose that N ∈ N and p ∈ (0, 1) satisfy
CN−1 6 pk/2 6 1/C. Then X = Xk-AP

N,p satisfies

1− ε 6 ΦX(δ)√
δ ·Npk/2 log(1/p)

6 1 + ε.

Clearly, Propositions 4.1 and 4.2 imply Theorem 1.3.

4.1. Proof outline. The proof of Proposition 4.2 will be relatively straightforward: On the
one hand, since every interval (or, more generally, every arithmetic progression) of length√
δNpk/2 contains approximately δ E[X] arithmetic progressions of length k, we have EI [X] >

(1 + δ − o(1))E[X] for each such interval I. Consequently, ΦX(δ) 6 (1 + o(1))
√
δNpk/2 log(1/p).

On the other hand, a simple calculation shows that, for every set I ⊆ JNK with O(Npk/2) elements,
EI [X]−E[X] is asymptotically equal to the number of k-APs in I. Therefore, ΦX(δ)/ log(1/p) is
bounded from below (asymptotically) by the minimal size of a set of integers that contains at
least δ E[X] k-APs. We will show that this minimum is achieved by an interval, see Theorem 4.3
below; thus, we conclude that ΦX(δ) > (1− o(1))

√
δNpk/2 log(1/p).

In order to derive Proposition 4.1 from Theorem 3.1, we will need to show that the family I∗
of cores from the statement of the theorem is entropically stable. In order to bound the number
of cores of a given size, we will first observe that, for every I ∈ I∗ and each i ∈ I, the difference
EI [X]−EI\{i}[X] is asymptotically equal to the number of k-APs in I that contain the element i.
In particular, condition (C3) and ΦX(δ) = O

(
Npk/2 log(1/p)

)
can be combined to conclude that
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each element of every cores lies in Ω
(
Npk/2/ log(1/p)

)
arithmetic progressions of length k that

are fully contained in the core; see Claim 4.5 below.
The heart of the proof of the proposition is a counting argument showing that very few

sets have this combinatorial property. Let us first sketch a simplified version of this argument
that would be sufficient to prove the proposition under the slightly stronger assumption that
Npk/2 � (logN)k+1. Suppose that I is a core of cardinality m and let I ′ be a random subset of
I with m/ log(1/p) elements. For every i ∈ I, we expect that there will be Ω

(
Npk/2/ log(1/p)

)
arithmetic progressions of length k in I that contain i, and that a (log(1/p))1−k-proportion of
these will be contained in I ′ ∪ {i}. A standard application of Janson’s inequality yields that
the above description holds with probability very close to one, simultaneously for all i ∈ I.
In particular, I contains some subset I ′ with m/ log(1/p) elements and the property that, for
every i ∈ I \ I ′, there are at least Ω

(
Npk/2/(log(1/p))k

)
arithmetic progressions of length k that

comprise i and some k − 1 elements of I ′.
We may now enumerate all possible cores I in two steps: First, there are at most

(
N

m/ log(1/p)
)
6

exp
(
O(m)

)
choices of I ′. Second, since I ′ intersects at most O(|I ′|2) arithmetic progressions of

length k at k − 1 elements and each i ∈ I is contained in at least Ω
(
Npk/2/(log(1/p))k

)
such

progressions, the elements of I \ I ′ must all come from a set of size

O

(
|I ′|2(log(1/p))k

Npk/2

)
6 O

(
m(log(1/p))k−1)

that depends solely on I ′. Thus, the number of choices for I \ I ′, the remaining elements of the
core, is at most

(
O(m(log(1/p))k−1)

m

)
= exp

(
O(m log log(1/p))

)
.

In the proof of Proposition 4.1 below, we give a more refined version of the above argument
that allows us to recover the optimal power of the logarithm in the lower bound assumption
on p. Instead of constructing cores in two steps, we build them element-by-element. This enables
a finer control of the number of choices for each next element, given all the elements chosen so
far. Roughly speaking, as we add more elements to I, the set I ′ from the previous paragraph is
gradually increasing its size.

4.2. Estimating ΦX . As mentioned above, we use the following extremal result about the largest
number of k-APs in a set of integers of a given size, proved in the case k = 3 by Green–Sisask [37]
and later extended in [10] to arbitrary k > 3; the corresponding statement in the case where
k ∈ {1, 2} is trivial. For a set I ⊆ Z, we denote by Ak(I) the number of k-APs in I. Recall that
we only count k-APs with positive common difference.

Theorem 4.3 ([10, 37]). For every positive integer k and I ⊆ Z, we have Ak(I) 6 Ak
(
J|I|K

)
.

We reproduce the proof here for the sake of completeness.

Proof. We prove the statement by induction on k. The cases k = 1 and k = 2 are trivial as
Ak(I) = Ak

(
J|I|K

)
for every set I, so we may assume that k > 3. Suppose that |I| = n and

let a1, . . . , an be the elements of I listed in increasing order. We partition the set of k-APs
in I into two parts depending on the location of the (k − 1)st element. More precisely, we let
m = d(k − 2)n/(k − 1)e, let

A1 =
{

(i1, . . . , ik) ∈ JnKk : (ai1 , . . . , aik) is a k-AP and ik−1 6 m
}
,

and let A2 comprise the remaining k-APs (that is, ones with ik−1 > m). The removal of the
kth term from a progression in A1 maps it to a (k − 1)-AP contained the set {a1, . . . , am} and
therefore |A1| 6 Ak−1({a1, . . . , am}) 6 Ak−1

(
JmK

)
, by the induction hypothesis. On the other

hand, we observe that for every i > m, there are at most n− i arithmetic progression of length k
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such that ik−1 = i and thus

|A2| 6
n∑

i=m+1
n− i.

In order to complete the proof, it is sufficient to verify that our choice of m ensures that

Ak−1
(
JmK

)
+

n∑
i=m+1

n− i = Ak(JnK).

Indeed, m satisfies the following two inequalities:

m+
⌊
m− 1
k − 2

⌋
6 n and m+ 1− (k − 2)(n−m− 1) > 1.

The first inequality implies that extending any arithmetic progression (i1, . . . , ik−1) contained in
JmK by adjoining to it the element ik = 2ik−1 − ik−2 yields a k-AP contained in JnK, whereas
the second inequality implies that

∑n
i=m+1 n− i is precisely the number of k-APs in JnK whose

(k − 1)st term exceeds m. �

For future reference, let us note that Ak
(
JiK
)
−Ak

(
Ji− 1K

)
= b i−1

k−1c for all positive integers i
and k > 2 and, consequently,

Ak(JmK) =
m∑
i=1

⌊
i− 1
k − 1

⌋
= m2

2(k − 1) −
(k − 1)m

2 ± k2. (19)

Using Theorem 4.3, it is not difficult to compute the asymptotic value of ΦX(δ) and complete
the proof of Theorem 1.3.

Proof of Proposition 4.2. Without loss of generality, we may assume that ε 6 1. Given a subset
I ⊆ JNK, let aj(I) denote the number of k-APs in JNK that intersect I in exactly j elements.
Note that

EI [X] =
k∑
j=0

aj(I)pk−j and that E[X] = Ak
(
JNK

)
pk =

k∑
j=0

aj(I)pk. (20)

It follows that EI [X]− E[X] > (1− pk)ak(I) = (1− pk)Ak(I) for every I ⊆ JNK. In particular,
whenever (1− pk)Ak(JmK) > δpkAk

(
JNK

)
, then EJmK[X] > (1 + δ)E[X]. Therefore,

ΦX(δ) 6 min
{
m log(1/p) : Ak

(
JmK

)
>
δpkAk

(
JNK

)
1− pk

}
6 (1 + ε) ·

√
δ ·Npk/2 log(1/p),

where the last inequality follows from (19) and our assumption N2pk > C2 for a sufficiently large
constant C. It remains to prove the matching lower bound.

Suppose that I is a smallest subset of JNK with EI [X] > (1 + δ)E[X]. Then (20) implies

δAk
(
JNK

)
pk = δ E[X] 6 EI [X]− E[X] 6

k∑
j=1

aj(I)pk−j . (21)

Since every pair of distinct numbers in JNK is contained in at most
(
k
2
)
arithmetic progressions of

length k, it follows that a1(I) 6 |I| ·Nk2 and
∑k−1
j=2 aj(I) 6 |I|2 · k2. Since we already know that

|I| 6 2
√
δ ·Npk/2, inequality (21) gives

δAk(JNK)pk 6 2
√
δk2N2p3k/2−1 + 4δk2N2pk+1 +Ak(I).

We now invoke Theorem 4.3 and (19) to obtain

(1− ε) · δN
2pk

2(k − 1) 6 δAk(JNK)pk − 2
√
δk2N2p3k/2−1 − 4δk2N2pk+1 6 Ak(JIK) 6 |I|2

2(k − 1) ,
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where we use the assumptions p 6 C−2/k and N2pk > C2 for a large enough C. Thus ΦX(δ) =
|I| log(1/p) > (1− ε) ·

√
δ ·Npk/2 log(1/p), as required. �

4.3. Janson’s inequality. It remains to prove Proposition 4.1. The proof uses the following
version of Janson’s inequality for hypergeometric random variables. It follows from the (original
version of) Janson’s inequality for binomial distributions [43, Theorem 1] and the fact that the
median of a binomial random variable whose mean is an integer is equal to its mean. Our
argument is an adaptation of [5, Lemma 3.1].

Lemma 4.4. Suppose that {Bα}α∈A is a family of subsets of a t-element set Ω. Let s ∈ {0, . . . , t}
and let

µ =
∑
α∈A

(s
t

)|Bα|
and ∆ =

∑
α∼β

(s
t

)|Bα∪Bβ |
,

where the second sum is over all ordered pairs (α, β) ∈ A2 such that α 6= β and Bα ∩ Bβ 6= ∅.
Let S be the uniformly chosen random s-element subset of Ω and let Z denote the number of
α ∈ A such that Bα ⊆ S. Then for every ε ∈ (0, 1],

P
(
Z 6 (1− ε)µ

)
6 2 exp

(
−ε

2

2 ·
µ2

µ+ ∆

)
.

Proof. For every k ∈ {0, . . . , t}, let Sk be the uniformly chosen random k-element subset of Ω
and let Zk denote the number of α ∈ A such that Bα ⊆ Sk, so that Z = Zs, and note that there
exists a natural coupling under which Zk 6 Zk+1 for every k. Let S′ be the (s/t)-random subset
of Ω, that is the random subset of Ω formed by keeping each of its elements with probability
s/t, independently of others, and let Z ′ denote the number of α ∈ A such that Bα ⊆ S′. Since
E
[
Z ′ | |S′|

]
= Z|S′|, the stochastic ordering of the Zks implies that, for any number M , the

function k 7→ P(Z ′ 6M | |S′| = k) is decreasing. Hence,

P
(
Z ′ 6 (1− ε)µ

)
=

t∑
k=0

P
(
Z ′ 6 (1− ε)µ | |S′| = k

)
· P(|S′| = k)

> P
(
Z ′ 6 (1− ε)µ | |S′| = s

)
· P(|S′| 6 s)

= P
(
Z 6 (1− ε)µ

)
· P(|S′| 6 s) > P(Z 6 (1− ε)µ)/2,

where the last inequality follows from the well-known fact that if np is an integer, then it is the
median of the binomial distribution with parameters n and p. We can now invoke the classical
version of Janson’s inequality and conclude that

P
(
Z 6 (1− ε)µ

)
6 2P

(
Z ′ 6 (1− ε)µ

)
6 2 exp

(
−ε

2

2 ·
µ2

µ+ ∆

)
. �

4.4. Proof of Proposition 4.1. We may assume without loss of generality that ε is sufficiently
small, say ε < min {1/2, δ/2}. Note also that the case N 6 2 is trivial; indeed, in that case X is
identically zero and thus logP(X > (1 + δ)E[X]) = 0 = ΦX(δ) for every δ ∈ R. We may therefore
assume that N > 3, which, in turn, implies that N2pk > C2.

Denote by Yi the indicator random variable of the event that i ∈ JNKp. Then Y = (Y1, . . . , YN )
is a vector of independent Ber(p) random variables andX is a nonzero polynomial with nonnegative
coefficients and degree at most k in the coordinates of Y . Let K = K(k, ε, δ) be the constant given
by Theorem 3.1. The proposition follows once we verify that X satisfies the various assumptions
of the theorem.

First, our assumption on p implies that p 6 1 − ε whenever C is large enough. Second, it
follows from Proposition 4.2 and the inequality N2pk > C2 that, whenever C is large enough,
ΦX(δ − ε) > ΦX(δ/2) > K log(1/p). Recall that a subset I ⊆ JNK is called a core if

(C1) EI [X] > (1 + δ − ε)E[X],
(C2) |I| 6 K · ΦX(δ + ε), and
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(C3) mini∈I
(
EI [X]− EI\{i}[X]

)
> E[X]/

(
K · ΦX(δ + ε)

)
.

The final assumption of Theorem 3.1 is that, for every integer m, there are at most (1/p)εm/2
cores of size m.

In order to count the cores, we must first unravel the meaning of (C1), (C2), and (C3), and
show that each core enjoys a simple combinatorial property. Proposition 4.2 supplies a constant
K ′ = K ′(K, k, ε, δ) such that, whenever C is sufficiently large,

4kK · ΦX(δ + ε) 6 4kK · (1 + ε)
√
δ + ε ·Npk/2 log(1/p) 6 K ′ ·Npk/2 log(1/p). (22)

Given a set I ⊆ JNK and an i ∈ JNK, we write Ak(I; i) for the number of k-term arithmetic
progressions in I ∪ {i} that contain the element i. The proof of the following claim is similar to
the argument used to prove Proposition 4.2.

Claim 4.5. For every core I of size m and all i ∈ I,

Ak(I; i) > Npk/2

K ′ log(1/p) .

Proof. Given an i ∈ I, let aj(I; i) denote the number of k-APs in JNK that intersect I in
exactly j elements, one of which is i. With this notation, Ak(I; i) = ak(I; i) and we may write
EI [X] − EI\{i}[X] =

∑k
j=1 aj(I; i) · pk−j(1 − p). Since every pair of distinct numbers in JNK

is contained in at most
(
k
2
)
arithmetic progressions of length k, we have a1(I; i) 6 Nk2 and∑k−1

j=2 aj(I; i) 6 mk2. In particular, as m 6 K · ΦX(δ + ε) by (C2), we get

EI [X]− EI\{i}[X] 6 k2Npk−1 + k2K · ΦX(δ + ε) · p+Ak(I; i).

On the other hand, it follows from (C3) that

EI [X]− EI\{i}[X] > E[X]
K · ΦX(δ + ε) .

By (19), we have E[X] = Ak(JNK)pk > N2pk/(2k), since N > C and C is large. Combining the
upper and lower bounds on EI [X]− EI\{i}[X] and using (22), we obtain

Ak(I; i) > 2Npk/2

K ′ log(1/p) − k
2Npk−1 − kK ′Npk/2+1 log(1/p).

Since k > 3 and p 6 C−2/k for a large enough C, we deduce the assertion of the claim. �

For the remainder of the proof, fix some integer m satisfying 1 6 m 6 K · ΦX(δ + ε) and let
K ′′ be a sufficiently large positive constant depending on K ′ and k (but not on C). For a subset
I ′ ⊆ JNK and an integer i ∈ JNK \ I ′, we shall say that i is rich with respect to I ′ if

Ak(I ′; i) > Npk/2

K ′′ log(1/p) ·
(
|I ′|
m

)k−1
. (23)

Moreover, given a sequence (i1, . . . , im) of m distinct elements of JNK, we shall say that an index
m′ ∈ JmK is rich if im′ is rich with respect to the set {i1, . . . , im′−1}.

We first observe that for every I ′ ⊆ JNK, there are relatively few integers i ∈ JNK \ I ′ that are
rich with respect to I ′. Indeed, there are at most k|I ′|2 arithmetic progressions P of length k in
JNK for which |I ′ ∩ P | = k − 1, because any such progression is determined by its minimal and
maximal element in I ′ and the position in the progression of the element in P \ I ′. Then∣∣{i ∈ JNK \ I ′ : i is rich w.r.t. I ′

}∣∣ · Npk/2

K ′′ log(1/p) ·
(
|I ′|
m

)k−1
6

∑
i∈JNK\I′

Ak(I ′; i) 6 k|I ′|2.

Consequently, as m 6 K ′ ·Npk/2 log(1/p) by (22),∣∣{i ∈ JNK \ I ′ : i is rich w.r.t. I ′
}∣∣ 6 kK ′K ′′ ·m( log(1/p)

)2 · ( m

|I ′|

)k−3
. (24)
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The key property that allows us to control the number of cores I of size m is that, in a large
proportion of orderings of the members of I, almost all indices are rich. This property implies
that, if one builds an (ordered) core element by element, then, very often, one must choose the
next element from the small set of integers that are rich with respect to the previously chosen
ones. From this, it will be easy to obtain an upper bound on the number of cores of a given size.

Claim 4.6. Suppose that I is a core of size m. Then there are at least m!/2 orderings (i1, . . . , im)
of the elements of I such that all but at most(

K ′′ log(1/p)
Npk/2

) 1
k−1

·m (25)

indices m′ ∈ JmK are rich.

Proof. Let (i1, . . . , im) be a uniformly chosen random ordering of the elements of I. Fix integers
m′ ∈ JmK and i ∈ I and condition on the event {im′ = i}. Under this conditioning, the set
{i1, . . . , im′−1} is a uniformly random (m′ − 1)-element subset of I \ {i}. Therefore, we may use
Janson’s inequality for the hypergeometric distribution (Lemma 4.4) to get an upper bound for
the probability that the given m′ is not rich. It follows from the definition that m′ = 1 is trivially
rich, so assume m′ > 2. Let Bi be the collection of all (k− 1)-element subsets of I \ {i} that form
a k-AP with i. Define

µm′(i) =
∑
B∈Bi

(
m′ − 1
m− 1

)|B|
= Ak(I; i) ·

(
m′ − 1
m− 1

)k−1

and, writing B ∼ B′ to mean that B 6= B′ and B ∩B′ 6= ∅,

∆m′(i) =
∑

B,B′∈Bi
B∼B′

(
m′ − 1
m− 1

)|B∪B′|
.

Since for a given B ∈ Bi, there are fewer than k3 sets B′ ∈ Bi such that B ∩ B′ 6= ∅, we have
∆m′(i) 6 µm′(i) · k3. It follows from Claim 4.5 that

µm′(i) >
Npk/2

K ′ log(1/p) ·
(
m′ − 1
m

)k−1
,

which, provided that K ′′ is sufficiently large, is at least twice as large as the right-hand side
of (23) with |I ′| = m′ − 1. Hence, by Lemma 4.4 with ε = 1/2,

P (m′ is not rich | im′ = i) 6 2 exp
(
− µm′(i)2

8
(
µm′(i) + ∆m′(i)

))

6 2 exp
(
−µm

′(i)
9k3

)
6 2 exp

(
− Npk/2

9k3K ′ log(1/p) ·
(
m′ − 1
m

)k−1
)
.

Since this upper bound is independent of i, one may replace the conditional probability above
with the unconditional one. Letting X ⊆ JmK denote the (random) set of non-rich indices, we
then find that

E
[
|X |
]
6 2

m∑
m′=2

exp
(
− Npk/2

9k3K ′ log(1/p) ·
(
m′ − 1
m

)k−1
)
.

Since for every α > 0, we have
m∑

m′=2
exp

(
−
(
α · m

′ − 1
m

)k−1
)
6
∫ ∞

0
e−(αx/m)k−1

dx = m

α

∫ ∞
0

e−y
k−1

dy 6
2m
α
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we obtain

E
[
|X |
]
6 4 ·

(
9k3K ′ log(1/p)

Npk/2

) 1
k−1

·m.

The assertion of the claim now follows from Markov’s inequality, provided that K ′′ is sufficiently
large. �

Equipped with the above facts, we can now prove the desired upper bound on the number of
cores of size m. For a set X ⊆ JmK, let Sm(X ) denote the family of all sequences of m distinct
elements of JNK such that every index m′ /∈ X is rich. To control the number of sequences
in Sm(X ), note that we can pick the first element of the sequence arbitrarily and, for every
subsequent index m′, bound the number of possible values for the m′th element of the sequence
either by appealing to (24), if m′ /∈ X , or simply by N , otherwise. Thus,

|Sm(X )|
m! 6

1
m! ·N ·N

|X | ·
m∏

m′=2

(
kK ′K ′′ ·m

(
log(1/p)

)2 · ( m

m′ − 1

)k−3
)

6 N ·N |X | ·
(
kK ′K ′′ ·

(
log(1/p)

)2)m · m∏
m′=1

(m
m′

)k−2
.

Since
∏m
m′=1

(
m
m′

)k−2
6 e(k−2)m, we find that, whenever C is sufficiently large,

|Sm(X )|
m! 6 e(|X |+1) logN · e3m log log(1/p).

Finally, denote by I∗m the set of all cores of size m. Claim 4.6 implies that

|I∗m| 6
2
m!
∑
X

∣∣Sm(X )
∣∣ 6 2m+1 ·max

X

∣∣Sm(X )
∣∣

m! ,

where the sum and the maximum range over all X ⊆ JNK of size at most
(
K′′ log(1/p)
Npk/2

) 1
k−1

m.
Hence,

|I∗m| 6 2m+1 · exp
((

K ′′ log(1/p)
Npk/2

) 1
k−1

·m · logN + logN
)
· e3m log log(1/p).

Since we have assumed that Npk/2 > C logN and p 6 C−2/k, then, whenever C is sufficiently
large, the above inequality implies that

|I∗m| 6 (1/p)εm/4 · exp
((

K ′′ log(1/p)
Npk/2

) 1
k−1

·m · logN
)
6 (1/p)εm/2,

where the last inequality can be seen, for example, by distinguishing between the cases p 6 N−1/k

(in which case logN = Θ(log(1/p))) and p > N−1/k (where Npk/2 > N1/k). This completes the
proof of Proposition 4.1.

5. Counting small subgraphs—a graph-theoretic interlude

As mentioned in the introduction, this section will collect some graph-theoretical results which
will be required to analyze the localized regime of XKr

n,p and XH
n,p for connected, regular graphs

H in Sections 6 and 7, respectively.
The main goal is to bound the maximum number of embeddings of a given graph J into a

larger graph G in terms of the number of vertices and edges in G, where we are interested both
in bounding the number of such embeddings globally (i.e., without additional restrictions on the
image) and locally (where we require that the image contain a particular edge of G). These
estimates will play a crucial role in translating conditions (C1)–(C3) from Theorem 3.1 into
structural restrictions on core graphs.
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In the first two subsections, we collect results related to bounding the number of embeddings
globally; the fractional independence number of a graph (defined below) plays an important role
in this part. The next subsection contains bounds on the number of local embeddings, where
the image of the embedding is required to contain a particular edge. In the final subsection, we
establish several stability results (in the sense of extremal combinatorics) on graphs allowing a
nearly maximal number of embeddings of stars and cliques; these results will be of use when
establishing Theorem 1.8.

Recall that Emb(J,G) denotes the set of embeddings of J into G and, for every edge uv of G,
Emb(J,G;uv) denotes the subset of Emb(J,G) containing all embeddings that map an edge of J
to uv.

5.1. Fractional graph theory. A fractional independent set in a graph J is an assignment
α : V (J)→ [0, 1] that satisfies αu + αv 6 1 for every edge uv of J . The fractional independence
number of J , denoted by α∗J , is the largest value of

∑
v∈V (J) αv among all fractional independent

sets α in J . The following result is folklore; we include a proof for completeness.

Lemma 5.1. Every graph J admits a fractional independent set α with
∑
v∈V (J) αv = α∗J such

that αv ∈ {0, 1
2 , 1} for every v ∈ V (J). Moreover, there is a partition V (J) = V1 ∪ V2 with

|V1|/2 + |V2| = α∗J such that V1 can be covered by a collection of vertex-disjoint edges and cycles
of J .

Proof. Let J ′ be the bipartite double cover of J , that is, the graph with vertex set V (J)× {1, 2}
whose edges are all pairs {(u, 1), (v, 2)} such that uv ∈ E(J). Moreover, let π : V (J)× {1, 2} →
V (J) be the projection onto the first coordinate. The Kőnig–Egerváry theorem (see, e.g., [13,
Theorem 8.32] or [29, Theorem 2.1.1]) implies that J ′ contains a matchingM ′ and an independent
set I ′ such that |I ′| + |M ′| = vJ′ . Define α : V (J) → {0, 1

2 , 1} by letting αv = |π−1(v) ∩ I ′|/2
for every v ∈ V (J). Since I ′ is an independent set in J ′, one can see that α is a fractional
independent set with

∑
v∈V (J) αv = |I ′|/2. In particular, we have

vJ′ − |M ′| = 2
∑

v∈V (J)

αv 6 2α∗J . (26)

Since π induces a projection of J ′ onto J , we can define M = π(M ′) to be the image of the
matching M ′. Since M ⊆ J , we have α∗J 6 α∗M . Moreover, as M ′ is a matching in J ′, we see
that M has maximum degree at most two and thus each nontrivial connected component of M is
either a cycle or a path. Let V2 ⊆ V (J) comprise all isolated vertices of M and one arbitrarily
chosen endpoint of each path of even length; let V1 = V (J) \ V2. By construction, each connected
component of M [V1] is either a cycle or a path of odd length. Since the fractional independence
number of every cycle and every path of odd length is exactly half its number of vertices, it follows
that α∗M 6 α∗M [V1] + |V2| = |V1|/2 + |V2|. It is clear that V1 can be covered with vertex-disjoint
edges and cycles of M and thus also of J . We now claim that |V1| > |M ′|. To see this, fix a
connected component L of M and observe that π−1(L) has at most eL edges unless L is a single
edge, in which case π−1(L) has at most two edges. Therefore,

eπ−1(L) 6

{
vL − 1 if L is a path of length at least two,
vL otherwise.

Let C(M) denote the nontrivial connected components of M . We have

|M ′| =
∑

L∈C(M)

eπ−1(L) 6
∑

L∈C(M)

vL − 1[L is a path of length at least two]

6
∑

L∈C(M)

vL − 1[L is a path of even length] = |V1|.
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Consequently, (26) shows that

|V1|+ 2|V2| = 2vJ − |V1| 6 2vJ − |M ′| = vJ′ − |M ′| = 2
∑

v∈V (J)

αv 6 2α∗J 6 2α∗M 6 |V1|+ 2|V2|,

and so
∑
v∈V (J) αv = α∗J = |V1|/2 + |V2|. �

The following lemma is implicit in [44, Appendix A].

Lemma 5.2. Suppose that J is a nonempty subgraph of a connected, ∆-regular graph H. Then

eJ 6 ∆ · (vJ − α∗J) 6 ∆ · α∗J .

If the first inequality is tight, then
(Q1) J = H or
(Q2) J admits a bipartition V (J) = A ∪B such that degJ a = ∆ for all a ∈ A.

If both inequalities are tight, then J = H.

Remark 5.3. Since every graph J is a subgraph of the complete graph of vJ vertices, Lemma 5.2
implies that

eJ 6 (vJ − 1) · (vJ − α∗J).
Moreover, equality holds if and only if J is complete, J is empty, or J = K1,vJ−1.

Proof of Lemma 5.2. By Lemma 5.1, J has a fractional independent set α such that αv ∈ {0, 1
2 , 1}.

Then

eJ 6
∑

uv∈E(J)

(2− αu − αv) =
∑

v∈V (J)

(1− αv) degJ v 6 ∆ ·
∑

v∈V (J)

(1− αv) = ∆ · (vJ − α∗J), (27)

which is the first inequality. For the second inequality, note that the function α : V (J)→ [0, 1]
defined by αv = 1/2 is a fractional independent set, so α∗J > vJ/2.

Assume now that eJ = ∆ · (vJ −α∗J ). Then both inequalities in (27) are equalities; this implies
αu + αv = 1 for every edge uv ∈ E(J) and degJ(v) = ∆ whenever αv 6= 1. Let A, B, and C
denote the sets of vertices that α maps to 0, 1, and 1/2, respectively. Each vertex in A ∪ C has
degree ∆ and each edge of J has either both endpoints in C or one endpoint in each of A and
B. In particular, if C is not empty, then it induces a ∆-regular graph and hence C = V (J) and
J = H, as H is connected and ∆-regular. Otherwise, if C is empty, then A∪B is a bipartition of
J and all vertices of A have degree ∆.

Lastly, suppose that eJ = ∆ · α∗J , which implies eJ = ∆ · (vJ − α∗J). Let A,B,C be the same
partition as above. If C is nonempty, then J is ∆-regular, and we are done. Otherwise,

|A| = eJ/∆ = α∗J = vJ − eJ/∆ = vJ − |A| = |B|.

Therefore, every vertex of B has degree ∆ and J = H. �

5.2. Global embedding bounds. The main result of this section is the following theorem of
Janson, Oleszkiewicz, and Ruciński [44]. A closely related bound that does not depend on the
number of vertices in G was obtained earlier by Alon [1] (see also [34] for a short proof). The
dependence on the number of vertices will be essential in the case where J is a (double) star, see
Figure 5.

Theorem 5.4 ([44]). For every nonempty graph J without isolated vertices and every graph G
with n vertices,

|Emb(J,G)| 6 (2eG)vJ−α
∗
J ·min{2eG, n}2α

∗
J−vJ

We derive Theorem 5.4 from Lemma 5.1 and the following result due to Alon [1], which
establishes the theorem for the case where J is a cycle.
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Lemma 5.5. Let C` denote the cycle of length `. For every ` > 3 and every graph G,

|Emb(C`, G)| 6 (2eG)`/2.

Remark 5.6. If ` is even, this follows immediately from the fact that C` contains a perfect matching
of `/2 edges. If ` is prime, there is also a very short and pretty proof using the monotonicity of
Lp norms; see [60] for this proof and more precise estimates. The proof presented below works
for all ` > 3.

Proof of Lemma 5.5. For each edge e ∈ E(G), denote by ce the number of copies of C` in G that
contain the edge e. Since

∑
e∈E(G) ce = ` ·N(C`, G), where N(C`, G) is the number of copies of

C` in G, it follows from the Cauchy–Schwarz inequality that

|Emb(C`, G)|2 =
(
2` ·N(C`, G)

)2
6 2eG ·

∑
e∈E(G)

2c2e.

Let C∗` be the graph obtained from gluing two copies of C` along an edge. In other words, C∗`
is obtained from the cycle of length 2` − 2 by adding to it one longest chord. Observe that if
(L1, L2) is an ordered pair of copies of C` in G, both containing e, then there are at exactly two
homomorphisms ϕ : V (C∗` ) → V (G) that map the two vertices of degree three in C∗` onto the
endpoints of e and the two copies of C` in C∗` onto L1 and L2, respectively. Letting Hom(C∗` , G)
be the collection of all homomorphisms from C∗` to G, we may conclude that∑

e∈E(G)

2c2e 6 |Hom(C∗` , G)| 6 |Hom
(
(`− 1) ·K2, G

)
| 6 (2eG)`−1,

where the second inequality holds because C∗` contains a perfect matching of `− 1 edges. �

Proof of Theorem 5.4. By Lemma 5.1, there is a partition of V (J) into V1 and V2 such that
|V1|/2 + |V2| = α∗J and V1 can be covered by a collection C of vertex-disjoint edges and cycles of
J . Let J ′ be the spanning subgraph comprising the edges and cycles of C and one edge incident
to every vertex in V2. We claim that

|Emb(J ′, G)| 6
∏
C∈C
|Emb(C,G)| ·min{2eG, n}|V2|.

Indeed, every embedding of J ′[V1] decomposes into embeddings of the graphs in C, and there
are at most min{2eG, n} possible images for every vertex of V2. By Lemma 5.5, for every cycle
C ∈ C,

|Emb(C,G)| 6 (2eG)vC/2;
the same inequality holds when C is a single edge. Since every embedding of J into G is also an
embedding of J ′, we deduce that

|Emb(J,G)| 6
∏
C∈C

(2eG)vC/2 ·min{2eG, n}|V2| = (2eG)|V1|/2 ·min{2eG, n}|V2|.

Since |V1|/2 = vJ − α∗J and |V2| = 2α∗J − vJ , this completes the proof. �

5.3. Local embedding bounds. We now state three lemmas that bound |Emb(J,G;uv)| from
above.

Lemma 5.7. Suppose that H is a ∆-regular graph. For every graph G and each uv ∈ E(G),

|Emb(H,G;uv)| 6 4eH · (2eG)
vH
2 −

2∆−1
∆ · (4 degG u · degG v)

∆−1
∆ .

Lemma 5.8. Suppose that J is a nonempty, connected graph with maximum degree ∆ that admits
a bipartition V (J) = A∪B such that |A| < |B| and degJ a = ∆ for every a ∈ A. For every graph
G and every uv ∈ E(G),

|Emb(J,G;uv)| 6 eJ · (degG u+ degG v) · (2eG)|A|−1 ·
(

min{eG, vG}
)|B|−|A|−1

.
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Lemma 5.9. Suppose that H is a ∆-regular graph. For every graph G and every G′ ⊆ G,∑
uv∈E(G′)

|Emb(H,G;uv)| 6 eH · (2eG)vH/2 ·
(
eG′

eG

)1/∆
.

Our proofs of Lemmas 5.7 and 5.9 are relatively straightforward adaptations of the elegant
entropy argument of Friedgut and Kahn [34] (see also the excellent survey of Galvin [35]). They
will be derived from the following somewhat abstract form of the main result of [34]. The proof
of Lemma 5.8 is elementary.

Lemma 5.10. Suppose that H is a ∆-regular graph. Let E be a family of embeddings of H into
a graph G and, for every edge ab of H, let

Eab = {ϕ(ab) : ϕ ∈ E} .

Then
|E| 6

∏
ab∈E(H)

(
2|Eab|

)1/∆
.

Proof. Let ϕ̄ : V (H)→ V (G) be a uniformly chosen random element of E . Write H(Z) for the
entropy of a discrete random variable Z and observe that H(ϕ̄) = log |E|. Since H is ∆-regular,
Shearer’s inequality [22] implies that

H(ϕ̄) 6 1
∆ ·

∑
ab∈E(H)

H
(
ϕ̄(a), ϕ̄(b)

)
.

The random variable (ϕ̄(a), ϕ̄(b)) can take on at most 2|Eab| values, as it an ordered pair of
vertices that make up the edge ϕ(ab). Using the fact that the entropy of any distribution on a set
is at most that of the uniform distribution on that set, it follows that H

(
ϕ̄(a), ϕ̄(b)

)
6 log(2|Eab|).

This implies the assertion of the lemma. �

Proof of Lemma 5.7. Given an ordered pair (c, d) of adjacent vertices of H, let E(c,d) be the
family of embeddings ϕ of H into G such that ϕ(c) = u and ϕ(d) = v. For a given edge ab of H,
define E(c,d)

ab = {ϕ(ab) : ϕ ∈ E(c,d)} as in the statement of Lemma 5.10. Observe that

∣∣E(c,d)
ab

∣∣ 6

eG if {a, b} ∩ {c, d} = ∅,
degG u if {a, b} ∩ {c, d} = {c},
degG v if {a, b} ∩ {c, d} = {d},
1 if {a, b} = {c, d}.

Invoking Lemma 5.10 to bound |E(c,d)| from above and summing over all 2eH pairs (c, d) of
adjacent vertices of H, the claimed upper bound on the number of embeddings of H into G that
use the edge uv follows. �

Proof of Lemma 5.8. We fix an edge ab of J , where a ∈ A and b ∈ B, and count the embeddings
ϕ of J into G such that ϕ(ab) = uv. To this end, we first show that J − b contains a matching
M that saturates A. To see this, note that for every nonempty S ⊆ A,

|S| ·∆ =
∑
c∈S

degJ c 6
∑

d∈NJ (S)

degJ d 6 |NJ(S)| ·∆,

yielding |NJ(S)| > |S|. Moreover, this inequality is strict unless the subgraph of J induced by
S ∪ NJ(S) is ∆-regular. However, the latter is impossible since, as J is connected, the only
∆-regular subgraph of J could be J itself, but our assumption |A| < |B| implies that J is not
regular. Hence |NJ−b(S)| > |NJ (S)| − 1 > |S|, verifying Hall’s condition. Now, given a matching
M ⊆ J− b that saturates A, we may bound the number of embeddings ϕ as above in the following
way. Let c be the neighbour of a in M . There are at most degG u + degG v embeddings of
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J [{a, b, c}] into G that map ab to uv. Each of them admits at most (2eG)|M |−1 extensions to an
embedding of J [V (M)∪{b}]. Each of those embeddings can be extended to an embedding of J in
at most min{eG, vG}|B\({b}∪V (M))| ways. Since |M | = |A| and |B \ ({b}∪V (M))| = |B| − |A| − 1,
summing over all ab ∈ E(J) gives the claimed bound on |Emb(J,G;uv)|. �

Proof of Lemma 5.9. Given an edge cd of H, let Ecd be the family of embeddings of H into G that
map cd onto an edge of G′. Define Ecdab = {ϕ(ab) : ϕ ∈ Ecd} as in the statement of Lemma 5.10
and observe that ∣∣Ecdab ∣∣ 6

{
eG′ if {a, b} = {c, d},
eG otherwise.

Invoking Lemma 5.10 to bound |Ecd| from above and summing over all edges cd of H gives the
claimed upper bound. �

5.4. Stability results. Observe that, when J is the complete graph, then Theorem 5.4 yields
the upper bound |Emb(Kr, G)| 6 (2eG)r/2. This is a weak version of a more precise result due
to Erdős–Hanani [32] and also follows from the Kruskal–Katona theorem [50, 55]. One can see
that the upper bound (2eG)r/2 is asymptotically optimal if G contains a clique comprising all of
its edges. Our next theorem states that, when the upper bound given in Theorem 5.4 is nearly
tight, then G resembles such a graph, in the sense that it must contain a subgraph of density
1− o(1) covering nearly all of its edges. This could be proved by appealing to a stability version
of the Kruskal–Katona theorem due to Keevash [51]. The proof we present below is elementary.

Theorem 5.11. Suppose that r > 3. If a graph G satisfies

|Emb(Kr, G)| > (1− ε) · (2eG)r/2,

for some ε > e−1/2
G , then G has a subgraph G′ with minimum degree at least (1− 4ε1/2) · (2eG)1/2.

Proof. The assertion of the theorem follows once we establish the case r = 3 and an analogous
property for the path with four vertices (and three edges), which we denote by P4. Indeed, if r is
odd, then Kr contains a spanning subgraph that is the disjoint union of K3 and a matching of
size (r − 3)/2. Thus,

|Emb(Kr, G)| 6 |Emb(K3, G)| · |Emb(K2, G)|(r−3)/2 = |Emb(K3, G)| · (2eG)(r−3)/2

and hence |Emb(K3, G)| > (1 − ε) · (2eG)3/2. Analogously, if r is even, then Kr contains a
subgraph that is the disjoint union of P4 and a matching of size (r − 4)/2. Thus,

|Emb(Kr, G)| 6 |Emb(P4, G)| · |Emb(K2, G)|(r−4)/2 = |Emb(P4, G)| · (2eG)(r−4)/2,

which implies that |Emb(P4, G)| > (1− ε) · (2eG)2. Therefore, it suffices to prove the following
two claims.

Claim 5.12. If |Emb(P4, G)| > (1− ε) · (2eG)2, for some positive ε, then G has a subgraph G′
with minimum degree at least (1− 2ε1/2)(2eG)1/2.

Claim 5.13. If |Emb(K3, G)| > (1− ε) · (2eG)3/2, for some ε > e−1/2
G , then G has a subgraph

G′ with minimum degree at least (1− 4ε1/2)(2eG)1/2.

Proof of Claim 5.12. We may assume that ε < 1/4, as otherwise the assertion of the claim is
trivially satisfied. Let F be the graph with vertex set E(G) whose edges are all pairs {uv, xy}
such that the set {u, v, x, y} induces a K4 in G. Let 1G be the indicator function of the edge set
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of G and note that

|Emb(P4, G)| =
∑

{uv,xy}⊆E(G)
{u,v}∩{x,y}=∅

2 ·
(
1G(ux) + 1G(uy) + 1G(vx) + 1G(vy)

)

6 8eF + 6
((

eG
2

)
− eF

)
6 3e2

G + 2eF .

In particular, our assumption implies that eF > (1/2− 2ε) · e2
G.

Let F ′ be the subgraph obtained from F by iteratively removing vertices whose degree is
smaller than (1− 2ε1/2) · eG. We claim that fewer than 2ε1/2 · eG vertices are removed this way
and, consequently, the graph F ′ is nonempty and its minimum degree is at least (1− 2ε1/2) · eG.
Suppose that this were not true. We would then have

eF 6

(
(1− 2ε1/2) · eG

2

)
+ 2ε1/2 · eG · (1− 2ε1/2) · eG <

(
1
2 − 2ε

)
· e2
G 6 eF ,

a contradiction.
Finally, let G′ be the subgraph of G induced by the set of endpoints of the edges from V (F ′).

Let u be an arbitrary vertex of G′. There must be another vertex v of G′ such that uv ∈ V (F ′).
Since degF ′ uv > (1−2ε1/2) · eG, the common neighbourhood of u and v in G′ induces a subgraph
with at least (1− 2ε1/2) · eG edges in G. In particular,

degG′ u > degG′(u, v) >
√

2 · (1− 2ε1/2) · eG > (1− 2ε1/2) · (2eG)1/2.

Since u was arbitrary, we obtain the desired lower bound on the minimum degree of G′. �

Proof of Claim 5.13. We may assume that ε < 1/16, as otherwise the assertion of the claim is
trivially satisfied. For every edge e ∈ E(G), let te denote the number of copies of K3 in G that
contain the edge e. Observe that, for each e ∈ E(G), there are at least 2te(te − 1) embeddings of
P4 into G that map the middle edge of P4 onto e. Since

∑
e∈E(G) te = |Emb(K3, G)|/2 and the

function t 7→ 2t(t− 1) is convex, we conclude that

|Emb(P4, G)| >
∑

e∈E(G)

2te(te − 1) > eG ·
|Emb(K3, G)|

eG
·
(
|Emb(K3, G)|

2eG
− 1
)
.

Our assumptions imply that

1 6 ε · e1/2
G 6 ε · (1− ε) · (2eG)3/2

2eG
6 ε · |Emb(K3, G)|

2eG
and consequently,

|Emb(P4, G)| > (1− ε) · |Emb(K3, G)|2

2eG
> (1− ε)3 · (2eG)2 > (1− 3ε) · (2eG)2,

It now follows from Claim 5.12 that G contains a subgraph G′ with minimum degree at least(
1− 2 · (3ε)1/2) · (2eG)1/2 > (1− 4ε1/2) · (2eG)1/2,

as claimed. ��

Our next lemma gives a tight upper bound on the number of stars K1,s in a given bipartite
graph, as well as a structural characterisation of the bipartite graphs that are close to achieving
this bound. This lemma and Theorem 5.11 above constitute the main combinatorial ingredient in
the proof of Theorem 1.8. Given a graph G and a set U of vertices of G, we let EmbU (K1,s, G)
denote the set of embeddings of K1,s into G that map the centre vertex to a vertex of U .

Lemma 5.14. Let s > 2 be an integer and suppose that G is a bipartite graph with parts U and
V and at most q|V | edges, for some q ∈ (0, |U |]. Then the following holds:
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1 m0 m

|V |−→

1 m0 m

|V |

Figure 4. The degree sequence on the left can be turned into the degree sequence
on the right by moving mass from columns i > m0 + 1 to columns j 6 m0 + 1.

(i)
|EmbU (K1,s, G)| 6

(
bqc+ {q}s

)
|V |s.

(ii) For every positive ε, there exists a positive η such that, if

|EmbU (K1,s, G)| > (1− η) ·
(
bqc+ {q}s

)
|V |s,

then there is a subset W ⊆ U of size dqe such that eG(W,V ) > (1− ε)q|V |, and a further
subset W ′ ⊆ W of size at least b(1 − ε)|W |c such that degG u > (1 − ε)|V | for every
u ∈W ′.

Proof. We will use the following inequality, valid for any two numbers x and y with x > y > 1:

(x+ 1)s + (y − 1)s − xs − ys > (x+ 1− y) · (x+ 1)s−2. (28)

It is clear that

|EmbU (K1,s, G)| =
∑
u∈U

(degG u)(degG u− 1) · · · (degG u− s+ 1) 6
∑
u∈U

(degG u)s. (29)

Let m = |U | and, given a sequence d = (d1, . . . , dm), define

S(d) =
m∑
i=1

dsi .

By the degree sequence of a bipartite graph with parts U and V , we will mean the sequence of de-
grees of the vertices in U , listed in a nonincreasing order. Thus (29) implies that |EmbU (K1,s, G)| 6
S(dG), where dG is the degree sequence of G. Let m0 = beG/|V |c and define dmax = (d∗1, . . . , d∗m)
by

d∗i =


|V | if i 6 m0,

{eG/|V |} · |V | if i = m0 + 1,
0 otherwise.

Note that
∑m
i=1 d

∗
i = eG; in particular, {eG/|V |} · |V | is an integer. We claim that dmax

maximises S over all degree sequences whose sum is eG. Indeed, for any other such degree
sequence d′ = (d′1, . . . , d′m), there must be two distinct indices i and j such that 0 < d′i 6 d

′
j < |V |.

Let d′′ be the degree sequence obtained from d′ by decreasing d′i by one and increasing d′j by one
(and reordering the degrees, if necessary). It follows from (28) that

S(d′′)− S(d′) = (d′j + 1)s + (d′i − 1)s − (d′j)s − (d′i)s > (d′j − d′i + 1) · (d′j + 1)s−2 > 1.

Therefore,

|EmbU (K1,s, G)| 6 S(dG) 6 S(dmax) =
(
beG/|V |c+ {eG/|V |}s

)
|V |s.

Since eG 6 q|V |, this completes the proof of the first part of the lemma.
For the second stipulation of the lemma, fix a positive ε. Let Ω be the set of degree sequences

of bipartite graphs G with parts U and V for which there is a subset W ⊆ U of size deG/|V |e
such that eG(W,V ) > (1− ε)eG and, additionally, a further subset W ′ ⊆W of size b(1− ε)|W |c
such that degG u > (1− ε)|V | for each u ∈W ′.
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It suffices to show that any degree sequence d /∈ Ω whose sum is eG satisfies S(d) < (1 −
η)S(dmax), for some positive η that depends only on ε. Let d = (d1, . . . , dm). The crucial
observation is that we may obtain dmax from d by successively increasing some di with i 6 m0 + 1
by one and, simultaneously, decreasing some dj with j > m0 + 1 by one (see Figure 4). Note that,
when doing so, we perform at least

m0∑
i=1

(|V | − di) + max
{
d∗m0+1 − dm0+1, 0

}
such operations. We split further analysis into two cases.

First, assume that
∑m0
i=1(|V | − di) > ε2eG; this implies that m0 > 1. In this case, in at least

ε2eG/2 steps of the above procedure, we will be increasing some di with i 6 m0 which is, at
this time, already at least b(|V | + di)/2c > (|V | + dm0)/2 − 1, while decreasing some dj with
j > m0 + 1 which is at most dm0 . Inequality (28) implies that

S(dmax)− S(d) > ε2eG
2 ·

(
|V |+ dm0

2 − dm0

)
·
(
|V |+ dm0

2

)s−2
.

Since our assumption implies that |V | − dm0 > ε
2eG/m0, it follows that

S(dmax)− S(d) > ε2eG
2 · ε

2eG
2m0

·
(
|V |
2

)s−2
= ε4

2s+1 ·
(

eG
m0|V |

)2
· 2m0|V |s.

Finally, we note that eG > m0|V | and that S(dmax) 6 (m0 + 1)|V |s 6 2m0|V |s, and thus

S(dmax)− S(d) > ε4

2s+1 · S(dmax),

proving S(d) < (1− η)S(dmax) for some positive η.
Assume now that

∑m0
i=1(|V | − di) < ε2eG. Let W be the set comprising the deG/|V |e vertices

with largest degrees in U . Suppose first that eG(W,V ) > (1− ε)eG, but every set of b(1− ε)|W |c
vertices of W contains a vertex of degree smaller than (1− ε)|V |. In this case, (1− ε)|W | > 1, as
otherwise the latter condition is vacuously false, and di < (1− ε)|V | whenever i > b(1− ε)|W |c.
Then

m0∑
i=1

(|V | − di) >
(
m0 + 1− b(1− ε)|W |c

)
· ε|V | >

(
|W | − b(1− ε)|W |c

)
· ε|V | > ε2eG,

contradicting our assumption. Thus, since d /∈ Ω, we may assume that eG(W,V ) < (1 − ε)eG.
Therefore,

(1− ε)eG >

|W |∑
i=1

di >
m0∑
i=1

di = m0|V | −
m0∑
i=1

(|V | − di) > m0|V | − ε2eG.

This means, in particular, that m0 < eG/|V | and hence |W | = m0 + 1. Moreover,

m0|V |+ d∗m0+1 = eG >

|W |∑
i=1

di + εeG > m0|V |+ dm0+1 + (ε− ε2)eG,

which implies that d∗m0+1− dm0+1 > (ε− ε2)eG. Therefore, there exist at least (ε− ε2)eG/2 steps
in which we increase dm0+1 at a time where it is already at least b(ε− ε2)eG/2c. Inequality (28)
implies that

S(dmax)− S(d) >
(

(ε− ε2)eG
2

)s
.

However, we trivially have S(dmax) 6 esG and thus

S(dmax)− S(d) > (ε− ε2)s

2s · S(dmax),

completing the proof. �
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We remark that the extremal structures given by Theorem 5.11 and Lemma 5.14(ii) are quite
different and, in a sense, incompatible. This has the following technically important consequence:
if a graph G simultaneously contains many copies of Kr and many copies of K1,r−1, then it can
be split into two edge-disjoint graphs, one containing nearly all the copies of Kr and the other
containing nearly all the copies of K1,r−1. The following lemma formalises this statement; its
proof is similar to an argument of Lubetzky and Zhao [57]. We write G[U, V ] for the bipartite
induced subgraph of G with parts U and V .

Lemma 5.15. For every integer r > 3 and positive real number ε, there is a positive η such that
the following holds. Let G be a graph on n vertices with eG 6 ηn2. Then there exists a partition
V (G) = U ∪ V satisfying |U | 6 εn,

|Emb(Kr, G[V ])| > |Emb(Kr, G)| − εer/2G ,

and
|EmbU (K1,r−1, G[U, V ])| > |Emb(K1,r−1, G)| − εeGnr−2.

Proof. Assume that η is sufficiently small, let U be the set of vertices in G with degree at least
η1/3n, and let V = V (G) \ U . Note that |U | 6 2eG/(η1/3n) 6 2η2/3n 6 εn.

Every embedding of Kr into G that maps a vertex of Kr to a vertex of U can be specified
by first choosing a vertex v of Kr, then a vertex of U that v will be mapped to, and finally an
embedding of Kr−1 into G. Using Theorem 5.4, we thus obtain

|Emb(Kr, G)| − |Emb(Kr, G[V ])| 6 r · |U | · |Emb(Kr−1, G)| 6 r · 2eG
η1/3n

· (2eG)(r−1)/2.

Since e1/2
G 6 η1/2n, this implies the first assertion of the lemma.

Next, note that

|Emb(K1,r−1, G)| = |EmbU (K1,r−1, G[U, V ])|+ t1 + t2, (30)

where t1 is the number of embeddings of K1,r−1 into G that map the centre vertex and at least
one leaf of K1,r−1 to U and t2 is the number of embeddings that map the centre vertex of K1,r−1
to V . We have

t1 6 (r − 1) · |U |2 · nr−2 6 (r − 1)
(

2eG
η1/3n

)2
nr−2 6 εeGn

r−2/2,

as eG 6 ηn2. Finally, in order to bound t2, observe that every embedding counted by t2 can be
specified by first choosing a leaf a of K1,r−1, then choosing the image e of the edge of K1,r−1
incident with a, then choosing the endpoint v ∈ V of e that is the image of the centre vertex
of K1,r−1, and finally choosing the images of the remaining r − 2 leaves of K1,r−1 among the
neighbours of v in G. Since every vertex v ∈ V has degree at most η1/3n, it follows that

t2 6 (r − 1) · eG · 2 · (η1/3n)r−2 6 εeGn
r−2/2.

Together with (30), these bounds on t1 and t2 imply the second assertion of the lemma. �

6. Cliques in random graphs

Fix an integer r > 3 and let X = XKr
n,p be the number of r-vertex cliques in the random graph

Gn,p. In this section, we shall use Theorem 3.1 not only to determine the logarithmic upper
tail probability of X but also to provide a detailed description of the upper tail event. Before
we restate the two theorems that will be proved in this section, we discuss the combinatorial
constructions that are responsible for the localisation phenomenon in more detail.

As was shown in [57], when n−1 � p(r−1)/2 � 1, there are essentially two optimal strategies
for planting a subgraph inside Gn,p that increases the expected number of copies of Kr by the
required δ E[X]. The first, and most straightforward, involves planting a clique with δ1/rnp(r−1)/2
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vertices; note that our assumption on p implies that this expression is unbounded and thus we
may implicitly assume that it is an integer. Note that such a clique has close to

δ2/rn2pr−1

2

edges and contains approximately δ
(
n
r

)
p(
r
2) = δ E[X] copies of Kr. If npr−1 is bounded from

below, then there is an alternative strategy that competes with planting a clique. By a hub of
order bδnpr−1/rc + 1, we mean a subgraph of Gn,p constructed as follows. Let U be a set of
bδnpr−1/rc vertices of Gn,p and let u be another vertex that lies outside of U . Connect every
vertex in U to every vertex outside of U ∪ {u} and connect u to some {δnpr−1/r}1/(r−1) · n such
vertices. Note that every hub has close to(

bδnpr−1/rc+ {δnpr−1/r}1/(r−1)
)
· n

edges, which is Θ(n2pr−1), as npr−1 is bounded from below. Unlike in the previous construction,
the hub itself contains no copies of Kr. However, as p� 1, planting a hub creates approximately
bδnpr−1/rc ·

(
n
r−1
)
copies of the star graph K1,r−1 whose centre vertex lies in U and approximately

{δnpr−1/r} ·
(
n
r−1
)
copies of K1,r−1 whose centre vertex is u. The total number of planted copies

of K1,r−1 is thus approximately δpr−1 ·
(
n
r

)
= δ E[X] · p−(r−1

2 ). Since each of the planted copies
of K1,r−1 lies in a copy of Kr that now appears in Gn,p with probability p(

r−1
2 ), one expects to

see approximately δ E[X] such extra copies of Kr. We remark that if npr−1 is large, then the
contribution of the single vertex u becomes negligible and the hub construction can be described
more concisely as connecting some δnpr−1/r vertices to all the others, using δn2pr−1/r edges.

We prove that, for a vast majority of values of p in the range of interest, the logarithmic upper
tail probability of X corresponds to one of the two strategies described above. In particular, we
show that

(i) If npr−1 → 0, then the logarithmic upper tail probability is asymptotically equal to the
‘cost’ of planting the smallest clique that has δ E[X] copies of Kr.

(ii) If npr−1 →∞, then the logarithmic upper tail probability is asymptotically equal to the
‘cost’ of planting either a clique as above (when δ2/r 6 δ/r) or the smallest hub that has
δ E[X] · p−(r−1

2 ) copies of K1,r−1 (when δ2/r > δ/r).

Note that in the regime npr−1 →∞, we may approximate the number of edges planted in the
hub construction by δn2pr−1/r. However, when npr−1 → c for some constant c ∈ (0,∞), this
approximation is no longer valid and we are forced to account for the lack of smoothness that
stems from the integral and fractional parts of δc/r. As a result, we find that, for certain values
of the parameters δ and c, the logarithmic upper tail probability corresponds to a mixture of the
first and second strategies: it is equal to the cost of planting a graph comprising both a hub and a
clique, each contributing a nonnegligible proportion of the (expected) extra δ E[X] copies of Kr.

Finally, suppose that one conditions Gn,p on the upper tail event {X > (1 + δ)E[X]}. We
prove that, with probability close to one, the conditioned random graph contains a subgraph that
very closely resembles the graph described by the optimal strategy (for the particular values of
n, p, and δ). For example, in cases where the logarithmic upper tail probability corresponds to
planting a clique, we show that Gn,p conditioned on the event {X > (1 + δ)E[X]} contains a set
of δ1/rnp(r−1)/2 vertices that induces an ‘almost-clique’, that is, a subgraph of density 1− o(1).

We now turn to the details. As in the introduction, we define continuous functions ψr : (0,∞)2×
[0, 1]→ (0,∞) and ϕr : (0,∞)2 → (0,∞) by

ψr(δ, c, x) =
(
δ(1− x)

)2/r
2 + bxδc/rc+ {xδc/r}

1
r−1

c
and ϕr(δ, c) = min

x∈[0,1]
ψr(δ, c, x).
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Note that ψr(δ, npr−1, x) · n2pr−1 is approximately the number of edges in the disjoint union
of a clique with δ(1 − x)np(r−1)/2 vertices and a hub of order bδxnpr−1/rc + 1. Recalling the
discussion above, ϕr(δ, npr−1) · n2pr−1 then represents the smallest number of edges among all
combinations of clique and hub that yield an expected δ E[X] copies of Kr−1.

In order to handle the three cases npr−1 → 0, npr−1 → c ∈ (0,∞), and npr−1 →∞ in a unified
manner, it will be convenient to extend ϕr to a continuous function ϕr : (0,∞)× [0,∞]→ (0,∞).
This extension may be defined by noting that

lim
c→0

ϕr(δ, c) = δ2/r/2 and lim
c→∞

ϕr(δ, c) = min{δ2/r/2, δ/r}

uniformly as functions of δ. For every δ > 0 and c ∈ [0,∞], we then define the set

X̄r(δ, c) = {x ∈ [0, 1] : ϕr(δ, c) = lim
c′→c

ψr(δ, c′, x)}

of (asymptotic) minimisers to x 7→ ψr(δ, c, x). One can check that this set is nonempty for any δ
and c, though it might contain more than one element. The following lemma describes the set of
possible minimisers in more detail.

Lemma 6.1. Let r > 3 be an integer and let δ and c be positive real numbers. Let x∗ =
rbδc/rc/(δc). Then

X̄r(δ, 0) =
{

0
}
, X̄r(δ, c) ⊆

{
0, x∗, 1

}
, and X̄r(δ,∞) ⊆

{
0, 1
}
.

Proof. The statement for X̄r(δ, 0) holds because limc→0 ψr(δ, c, x) = ∞ whenever x > 0. The
statement for X̄r(δ,∞) follows because

lim
c→∞

ψr(δ, c, x) = (δ(1− x))2/r/2 + xδ/r

and the right-hand side is strictly concave in x ∈ [0, 1]. In particular, since

ϕr(δ,∞) = min {δ2/r, δ/r} = min
x∈[0,1]

(δ(1− x))2/r/2 + xδ/r,

the equality ϕr(δ,∞) = limc→∞ ψr(δ, c, x) implies that x is one of the endpoints of the inter-
val [0, 1]. Assume now that c ∈ (0,∞). Treating r, δ, and c as fixed, consider the function
f : [0, 1]→ (0,∞) defined by f(x) = ψr(δ, c, x). Since ψr is continuous, we have x ∈ X̄r(δ, c) if
and only if x is a minimiser of f(x) in [0, 1]. We cover the domain of f with essentially disjoint
intervals as follows:

[0, 1] = r

δc
[0, 1] ∪ r

δc
[1, 2] ∪ · · · ∪ r

δc
[bδc/rc − 1, bδc/rc] ∪ r

δc
[bδc/rc, δc/r].

Observe that f is strictly concave on each of these intervals and thus f can achieve its minimum
value only at an endpoint of one of the intervals, that is, either at some x for which δxc/r ∈ Z or
at x = 1. Define the function h : [0, 1]→ (0,∞) by

h(x) =
(
δ(1− x)

)2/r
2 + xδ

r

and observe that h is strictly concave and that h(x) = f(x) whenever δxc/r ∈ Z. It follows
that the minimum of f(x) is achieved either at x = 1 or at the smallest or largest x satisfying
δxc/r ∈ Z. Since the latter two points are x = 0 and x = rbδc/rc/(δc) = x∗, respectively, we may
conclude that the minimiser is in the set {0, x∗, 1}, as desired. �

Let us now state the two main results of this section. The following is a straightforward
reformulation of Theorem 1.7.
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Theorem 6.2. Let r > 3 be an integer and let X = XKr
n,p denote the number of r-vertex cliques

in the random graph Gn,p. Then, for every fixed positive constant δ and all p = p(n) such that
n−1(logn)

1
r−2 � p

r−1
2 � 1 and limn→∞ npr−1 = c ∈ [0,∞],

lim
n→∞

− logP
(
X > (1 + δ)E[X]

)
n2pr−1 log(1/p) = ϕr(δ, c).

Recall the following three events:
(i) Let UT(δ) be the upper tail event {X > (1 + δ)E[X]}.
(ii) Let Cliqueε(x) be the event that Gn,p contains a set U ⊆ JnK of size at least (1 −

ε)x1/rnp(r−1)/2 such that Gn,p[U ] has minimum degree at least (1− ε)|U |.
(iii) Let Hubε(x) be the event that Gn,p contains a set U ⊆ JnK such that at least b(1− ε)|U |c

vertices in U have degree at least (1− ε)n and

e(U, JnK \ U) > (1− ε)n
(
bxnpr−1/rc+ {xnpr−1/r}

1
r−1
)
.

Together with Lemma 6.1, the following theorem directly implies Theorem 1.8.

Theorem 6.3. Let r > 3 be an integer and let X = XKr
n,p denote the number of r-vertex cliques

in the random graph Gn,p. Then, for every fixed positive constant δ and all p = p(n) such that
n−1(logn)

1
r−2 � p

r−1
2 � 1 and limn→∞ npr−1 = c ∈ [0,∞],

lim
n→∞

P
( ⋃
x∈X̄(δ,c)

Cliqueε(δ(1− x)) ∩Hubε(δx) | UT(δ)
)

= 1.

In order to prove Theorems 6.2 and 6.3, we will first relate − logP
(
X > (1 + δ)E[X]

)
to the

solutions of the optimisation problem

ΦX(δ) = min
{
eG log(1/p) : G ⊆ Kn and EG[X] > (1 + δ)E[X]

}
,

where EG[X] = E[X | G ⊆ Gn,p]. For every ε > 0, we define the event
Near-min(ε) = {Gn,p contains a subgraph G such that eG log(1/p) 6 (1 + ε)ΦX(δ + ε) and

EG[X] > (1 + δ − ε)E[X]}.

Using Theorem 3.1, we shall prove the following result.

Proposition 6.4. For every integer r > 3 and all positive reals ε and δ, there exists a positive
constant C such that the following holds. Suppose that an integer n and p ∈ (0, 1) satisfy
Cn−1(logn)1/(r−2) 6 p(r−1)/2 6 1/C. Then X = XKr

n,p satisfies

(1− ε)ΦX(δ − ε) 6 − logP
(
X > (1 + δ)E[X]

)
6 (1 + ε)ΦX(δ + ε).

Furthermore,
P
(

Near-min(ε) | X > (1 + δ)E[X]
)
> 1− ε.

In order to complete the proof of Theorem 6.2, we must also evaluate the asymptotic value of
the function ΦX . This is the content of our second proposition.

Proposition 6.5. Let r > 3 be an integer and let X = XKr
n,p. Then, for every fixed positive real δ

and all p = p(n) such that n−1 � p(r−1)/2 � 1 and limn→∞ npr−1 = c ∈ [0,∞],

lim
n→∞

ΦX(δ)
n2pr−1 log(1/p) = ϕr(δ, c).

We recall that, when c ∈ {0,∞}, this result was already established in [57]. The proof we
provide is not unsimilar to that work, although it is slightly easier, as ΦX is a discrete restriction
of the variational problem in their work (see the discussion following Proposition 4.2, which
discusses the same issue in the case of arithmetic progressions). However, the extension to the
case c ∈ (0,∞) is delicate, and requires the use of the more precise result of Lemma 5.14.
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We would like to emphasise that, while the proofs of Propositions 6.4 and 6.5 have certain
similarities, they are conceptually very different. The analysis of the variational problem in the
proof of Proposition 6.5 relies on bounding the maximal number of embeddings of Kr and K1,r−1
in a graph with given numbers of vertices and edges, using the results of Section 5.2. In contrast,
the proof of Proposition 6.4 exploits the bounds on the number of embeddings of Kr and K1,r−1
(as well as several other key graphs) containing a given edge of the core, proved in Section 5.3.
The defining properties of a core allow us to translate these upper bounds on the number of local
embeddings into lower bounds on the degrees of the endpoints of edges of a core. These degree
restrictions are sufficient to prove that the family of cores is entropically stable.

Finally, to prove Theorem 6.3, we characterise the near-minimisers of the optimisation problem
for ΦX(δ). This is what we do in the final proposition of this section.

Proposition 6.6. Let r > 3 be an integer and let X = XKr
n,p. For all fixed ε, δ > 0 and c ∈ [0,∞],

there exists some positive constant η such that the following holds. Assume p = p(n) is such that
n−1 � p(r−1)/2 � 1 and limn→∞ npr−1 = c. Then

Near-min(η) ⊆
⋃

x∈X̄(δ,c)

Cliqueε(δ(1− x)) ∩Hubε(δx)

whenever n is sufficiently large.

The propositions above readily imply Theorems 6.2 and 6.3.

6.1. Proof of Proposition 6.4. We may assume without loss of generality that ε is sufficiently
small, say ε < min {1/2, δ/2}. Note also that the case n < r is trivial; indeed, in that case
X is identically zero and thus − logP

(
X > (1 + δ)E[X]

)
= 0 = ΦX(δ) for every δ ∈ R, and

Near-min(ε) holds vacuously. We may therefore assume that n > r > 3, which, in turn, implies
that n > C.

Set N =
(
n
2
)
and let Y = (Y1, . . . , YN ) be the sequence of indicator random variables of the

events that e ∈ E(Gn,p), where e ranges over
(JnK

2
)
in some arbitrary order. Observe that Y

is a vector of independent Ber(p) random variables and that X is a nonzero polynomial with
nonnegative coefficients and degree at most

(
r
2
)
in the coordinates of Y . Let K = K(r, ε, δ) be

the constant given by Theorem 3.1. We shall show that X satisfies the various assumptions of
the theorem; the theorem then implies both assertions of the proposition.

First, our assumption on p implies that p 6 1− ε, provided that C is sufficiently large.
Recall that N(J,G) denotes the number of copies of J in G. Note that for all J ⊆ Kr without

isolated vertices and all G ⊆ Kn, we can trivially bound N(J,G) from above by eeJG . It follows
that

EG[X]− E[X] 6
∑

∅ 6=J⊆Kr

N(J,G) · nr−vJp(
r
2)−eJ 6 2(r2) · max

∅ 6=J⊆Kr
eeJG · n

r−vJp(
r
2)−(vJ2 )

6 (2eG)(
r
2) · nrp(

r
2)

min26k6r nkp
(k2)

,

where the sum ranges over all nonempty subgraphs J ⊆ Kr without isolated vertices. Since
E[X] = Θ

(
nrp(

r
2)) and our assumption on p implies that nkp(

k
2) > C2/(r−1) for each k ∈

{2, . . . , r}, the right-hand side above is at most (δ/2)E[X] unless eG > K, provided that C is
sufficiently large. Therefore, ΦX(δ−ε) > ΦX(δ/2) > K log(1/p). Furthermore, since a clique with
d(1 + 2δ)1/rnp(r−1)/2e vertices contains at least (1 + δ + ε)E[X] copies of Kr and has fewer than
K ′n2pr−1 edges, for some constant K ′ = K ′(δ), we deduce that ΦX(δ + ε) 6 K ′n2pr−1 log(1/p).

Recall that a graph G∗ ⊆ Kn is a core if it satisfies the following three conditions:
(C1) EG∗ [X] > (1 + δ − ε)E[X],
(C2) eG∗ 6 K · ΦX(δ + ε), and
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(C3) mine∈E(G∗)
(
EG∗ [X]− EG∗\e[X]

)
> E[X]/

(
K · ΦX(δ + ε)

)
.

Our goal is to show that, for every integer m, there are at most (1/p)εm/2 cores with m edges. The
key observation is that, for any core G∗ and any edge uv of G∗, either u and v have many common
neighbours or the sum of the degrees of u and v is large. More precisely, letting degG∗(u, v)
denote the number of common neighbours of u and v in G∗, we shall establish the following
statement.

Claim 6.7. There exists a positive constant η = η(δ, r,K) such that, for every core G∗ and each
edge uv ∈ E(G∗), either

degG∗(u, v) > ηnp(r−1)/2(
log(1/p)

)1/(r−2) or degG∗ u+ degG∗ v >
ηn

log(1/p) .

The above claim readily implies the desired bound on the number of cores with m edges. Note
first that this number is zero whenever m > KK ′n2pr−1 log(1/p), see (C2), so we may assume
that m 6 KK ′n2pr−1 log(1/p). Given a core G∗, we denote by AG∗ the set of vertices of G∗ with
degree at least ηnp(r−1)/2/

(
log(1/p)

)1/(r−2) and by BG∗ ⊆ AG∗ the set of vertices of G∗ with
degree at least ηn/
big(2 log(1/p)

)
. Since G∗ has m edges,

|AG∗ | 6 a :=
2m
(

log(1/p)
)1/(r−2)

ηnp(r−1)/2 and |BG∗ | 6 b := 4m log(1/p)
ηn

Claim 6.7 states that every edge of G∗ is either fully contained in AG∗ or has at least one endpoint
in BG∗ . In particular, for fixed sets B ⊆ A ⊆ JnK with |A| = a and |B| = b, there are at most(
a2/2+bn

m

)
cores G∗ with m edges that satisfy AG∗ ⊆ A and BG∗ ⊆ B. We can thus (generously)

upper bound the number of cores with m edges by(
n

a

)(
n

b

)(
a2/2 + bn

m

)
.

Recalling the inequality
(
x
y

)
6 (ex/y)y, valid for all nonnegative integers x and y, we may conclude

that the number of cores with m edges is at most

n
6m(log(1/p))1/(r−2)

ηnp(r−1)/2 ·

(
2em

(
log(1/p)

)2/(r−2)

η2n2pr−1 + 4e log(1/p)
η

)m
.

Since p(r−1)/2 > Cn−1(logn)1/(r−2), the first factor is at most eεm log(1/p)/4. Since we have
assumed that m 6 KK ′n2pr−1 log(1/p) and 1/p > C2/(r−1), the second factor is at most
eO(m log log(1/p)) 6 eεm log(1/p)/4. This shows that the number of cores with m edges is indeed at
most (1/p)εm/2, as claimed.

Proof of Claim 6.7. For any nonempty J ⊆ Kr, we shall let N(J,G∗;uv) denote the number
of copies of J in G∗ that contain the edge uv. For the sake of brevity, we set mmax = KK ′ ·
n2pr−1 log(1/p). Observe that

EG∗ [X]− EG∗\uv[X] 6
∑

∅ 6=J⊆Kr

N(J,G∗;uv) · nr−vJp(
r
2)−eJ ,

where J ranges over all nonempty subgraphs of Kr that have no isolated vertices. Since E[X] =(
n
r

)
p(
r
2) and ΦX(δ + ε) 6 K ′n2pr−1 log(1/p) = mmax/K, it follows from (C3) in the definition of

the core that ∑
∅ 6=J⊆Kr

N(J,G∗;uv)
nvJpeJ

>
E[X]

K · ΦX(δ + ε) >
γ

mmax
,

where γ = γ(r) is a constant that depends only on r.
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S0,4 S1,3 S2,2

Figure 5. The double stars with six vertices.

For every edge ab ∈ E(J), let Emb(J,G∗; ab, uv) denote the set of embeddings of J into G∗
that map ab to uv. Then the above inequality implies that there is a nonempty J ⊆ Kr with no
isolated vertices, an edge ab ∈ E(J), and a constant γ′ = γ′(r) such that

|Emb(J,G∗; ab, uv)|
nvJpeJ

>
γ′

mmax
. (31)

For nonnegative integers i and j, let Si,j denote the graph obtained from a copy of K1,i and a
copy of K1,j by joining their centres (vertices of degrees i and j, respectively) by an edge; see
Figure 5 for an illustration. As the graphs K1,i are often called stars, we shall refer to the Si,j as
double stars. Moreover, we shall call an edge of Si,j whose endpoints have degrees i+ 1 and j + 1
a centre edge. Note that if i, j > 0, then Si,j has only one centre edge; otherwise, Si,j is just a
star graph and each of its edges is a centre edge.

We shall now show that, unless degG∗(u, v) > np(r−1)/2, any graph J that satisfies (31) for
some ab ∈ E(J) must be either Kr or a double star with r vertices. We first show how this fact
implies the assertion of the claim. Assume first that

|Emb(Kr, G
∗; ab, uv)| > γ′nrp(

r
2)

mmax
= γ′

KK ′
· n

r−2p(
r−1

2 )
log(1/p) .

Since |Emb(Kr, G
∗; ab, uv)| 6 2 degG∗(u, v)r−2, we conclude that

degG∗(u, v) >
(

γ′

2KK ′

)1/(r−2)
· np(r−1)/2(

log(1/p)
)1/(r−2) ,

as claimed. Next, assume that, for some i and j with i+ j = r − 2,

|Emb(Si,j , G∗; ab, uv)| > γ′nrpi+j+1

mmax
= γ′

KK ′
· nr−2

log(1/p) .

If ab is a centre edge of Si,j , then |Emb(Si,j , G∗; ab, uv)| 6 (degG∗ u+ degG∗ v)i+j 6 (degG∗ u+
degG∗ v) · (2n)r−3. Otherwise, we have i, j > 0 and so |Emb(Si,j , G∗; ab, uv)| 6 (degG∗ u +
degG∗ v)min{i,j} · nmax{i,j} 6 (degG∗ u+ degG∗ v) · (2n)r−3 as well. Thus, in both cases,

degG∗ u+ degG∗ v >
γ′

2r−3KK ′
· n

log(1/p) ,

which completes the proof of the claim.
It remains to prove our assertion. We first consider the special case r = 3. The only nonempty

subgraph of K3 with no isolated vertices that is not isomorphic to a double star with three
vertices is K2. However, as p 6 C−2/(r−1) = C−1, we have

|Emb(K2, G
∗; ab, uv)|

n2p
= 2
n2p
6

2 logC
Cn2p2 log(1/p) <

γ′

mmax

whenever C is sufficiently large, which contradicts (31). We henceforth assume that r > 4.
By way of contradiction, suppose that J is neither Kr nor a double star with r vertices and that

degG∗(u, v) < np(r−1)/2. Let ab be an arbitrary edge of J , let Jab be the subgraph of J induced
by V (J) \ {a, b}, and let α∗ab be the fractional independence number of Jab. By Lemma 5.1, there
is a partition of V (Jab) into V1 and V2 such that

(P1) |V1|/2 + |V2| = α∗ab,
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(P2) V1 can be covered by a collection of vertex-disjoint edges and cycles of Jab.
Among all partitions satisfying (P1) and (P2), choose one that maximises the number of common
neighbours of a and b in V2, that is, the cardinality of the set

X = {c ∈ V2 : ac, bc ∈ E(J)}.

Finally, let v1 = |V1|, v2 = |V2|, and x = |X|.
We now observe that for every partition satisfying (P1) and (P2), we have

|Emb(J,G∗; ab, uv)| 6 2 · degG∗(u, v)x · (2eG∗)v1/2 ·min{2eG∗ , n}v2−x. (32)

To see this, note first that there are two embeddings of ab onto uv. Since X lies in the common
neighbourhood of a and b, each such embedding can be extended to an embedding of J [{a, b}∪X]
in at most degG∗(u, v)x ways. Next, since V1 can be covered by cycles and edges of J (by
property (P2)), Lemma 5.5 implies that every embedding of J [{a, b} ∪X] can be extended in at
most (2eG∗)v1/2 ways to an embedding of J [{a, b} ∪X ∪ V1]. Finally, since J contains no isolated
vertices, any embedding of J [{a, b} ∪X ∪ V1] can be extended in at most min{2eG∗ , n}v2−x ways
to an embedding of J .

Combining (31), (32), the inequality eG∗ 6 mmax, which follows from (C2), and the assumption
degG∗(u, v) < np(r−1)/2, we deduce that

γ′nvJpeJ 6
(
np(r−1)/2

)x
· (2mmax)v1/2+1 ·min{2mmax, n}v2−x

= 1(
KK ′ log(1/p)

)x/2 · (2mmax)v1/2+x/2+1 ·min{2mmax, n}v2−x.

On the other hand,

nvJpeJ =
(
n2pr−1)eJ/(r−1) · nvJ−2eJ/(r−1) =

(
mmax

KK ′ log(1/p)

)eJ/(r−1)
· nvJ−2eJ/(r−1).

Therefore, for some constant K ′′ = K ′′(K,K ′, r), we must have

(mmax)v1/2+x/2−eJ/(r−1)+1 · n2eJ/(r−1)−vJ ·min{mmax, n}v2−x >
(
K ′′ log(1/p)

)−K′′
. (33)

In order to reach the desired contradiction, it suffices to prove that there is some positive σ = σ(r)
such that the left-hand side of (33) is bounded from above by max {n−1,KK ′ · pr−1 log(1/p)}σ.
We first observe that such an upper bound is implied by the following inequality:

max
{
v1/2 + v2 − x/2− eJ/(r − 1) + 1, 0

}
< vJ − 2eJ/(r − 1). (34)

Indeed, if mmax 6 n, then the left-hand side of (33) is upper bounded by

(mmax)v1/2+v2−x/2−eJ/(r−1)+1 · n2eJ/(r−1)−vJ

6 max {n2eJ/(r−1)−vJ , nv1/2+v2−x/2+1−(vJ−eJ/(r−1))}.

On the other hand, if n < mmax = KK ′ ·n2pr−1 log(1/p), then the left-hand side of (33) becomes(
KK ′ · n2pr−1 log(1/p)

)v1/2+x/2−eJ/(r−1)+1 · n2eJ/(r−1)−vJ+v2−x

=
(
KK ′ · pr−1 log(1/p)

)vJ−eJ/(r−1)−(v1/2+v2−x/2+1)
,

using v1 + v2 = vJab = vJ − 2. Note that (34) guarantees that, in both cases, the left-hand side
of (33) is at most max {n−1,KK ′ · pr−1 log(1/p)}σ, for a suitable positive σ = σ(r).

In order to complete the proof of Claim 6.7, we now prove inequality (34). Recall that
V (Jab) = V1 ∪ V2 is a partition that satisfies (P1) and (P2) that maximises the cardinality of
the set X = {c ∈ V2 : ac, bc ∈ E(J)}. Since, by the definition of X, each vertex in V2 \X has at
most one neighbour in {a, b},

eJ 6 eJab + 2v1 + v2 + x+ 1 = eJab + 3vJ − 2α∗ab + x− 5 (35)
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b

c d

Figure 6. Illustration for the case Jab = K1,r−3 and r > 4. Any partition
V (Jab) = V ′1 ∪ V ′2 obtained by exchanging d with a vertex from V2 satisfies (P1)
and (P2) but violates (D3).

and equality holds only if every vertex in V1 is adjacent to both a and b and every vertex in
V2 \X is adjacent to exactly one of a and b. Moreover, Lemma 5.2 and Remark 5.3 give

eJab 6 (vJab − 1)(vJab − α∗ab) = (vJ − 3)(vJ − α∗ab − 2), (36)

where equality holds only if Jab is complete, empty, or isomorphic to K1,vJ−3. Putting (35)
and (36) together yields the inequality

eJ 6 (vJ − 1)(vJ − α∗ab − 1) + x. (37)

Moreover, inequality (37) is strict unless both (35) and (36) hold with equality. Rearranging (37)
gives the inequality

eJ
r − 1 6

vJ − 1
r − 1 · (vJ − α

∗
ab − 1) + x

r − 1 6 vJ − α
∗
ab − 1 + x

2 . (38)

Since α∗ab 6 vJab = vJ − 2 and r > 4, the second inequality in (38) is strict unless vJ = r

and x = 0. Consequently, the left-hand and the right-hand sides of (38) can be equal only if
the following conditions are satisfied for every partition V (Jab) = V1 ∪ V2 with properties (P1)
and (P2):
(D1) Jab is either Kr−2, Er−2 (the empty graph with r − 2 vertices), or K1,r−3;
(D2) every vertex in V1 is adjacent to both a and b;
(D3) every vertex of V2 is adjacent to exactly one of a and b.

We now show that our assumptions preclude (D1)–(D3) holding simultaneously. Indeed, note first
that, if Jab = Kr−2 (which also includes the case Jab = K1,r−3 and r = 4), then α∗ab = vJab/2.
Since v1/2 + v2 = α∗ab and v1 + v2 = vJab , this implies V1 = V (Jab). Then (D2) shows that
J = Kr, a contradiction. Second, if Jab = Er−2, then α∗ab = r − 2. Since v1/2 + v2 = α∗ab and
v1 + v2 = r − 2, this implies V2 = V (Jab) and it follows from (D3) that J is a double star whose
centre edge is ab, another contradiction. Finally, suppose that Jab = K1,r−3 and r > 4. Since
α∗ab = v1/2 + v2 = r − 3 and v1 + v2 = r − 2, we see that v1 = 2 and v2 = r − 4. Property (P2)
implies that V1 = {c, d}, where c is the vertex of degree r− 3 in Jab and d is one of its neighbours.
Since d ∈ V1, it must be adjacent to both a and b (see Figure 6 for an illustration). Let e be
an arbitrary vertex of V2; there is at least one such vertex as v2 = r − 4 > 1. The partition of
V (Jab) into V ′1 = {c, e} and V ′2 = (V2 \ {e})∪ {d} satisfies both conditions (P1) and (P2) but the
set X ′ = {c′ ∈ V ′2 : ac′, vc′ ∈ E(Jab)} is nonempty (as it contains the vertex d); this contradicts
property (D3) for the partition V (J) = V ′1 ∪ V ′2 .

To summarise, at least one of the inequalities in (38) is strict. Since J 6= Kr, not every vertex
of J has degree r − 1 and thus 2eJ < (r − 1) · vJ . We conclude that

max
{
α∗ab − eJ/(r − 1)− x/2 + 1, 0

}
< vJ − 2eJ/(r − 1).

Since α∗ab = v1/2 + v2, this is exactly (34). �
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6.2. Proof of Proposition 6.5. We begin by showing that

lim sup
n→∞

ΦX(δ)
n2pr−1 log(1/p) 6 ϕr(δ, c). (39)

For every small ε > 0 and sufficiently large n, we shall construct a graph G with vertex set JnK
and at most (ϕr(δ + ε, c) + ε) · n2pr−1 edges that satisfies EG[X] > (1 + δ)E[X]. The existence
of such a graph and the continuity of ϕr will imply that

lim sup
n→∞

ΦX(δ)
n2pr−1 log(1/p) 6 lim

ε→0
ϕr(δ + ε, c) + ε = ϕr(δ, c),

as required.
Let x ∈ X̄(δ + ε, c) and note that it follows from Lemma 6.1 that x = 0 if c = 0. Set

`1 =
(
(δ + ε)(1− x)

)1/r
np(r−1)/2 and `2 = x(δ + ε)npr−1/r.

and fix an arbitrary partition JnK = {u} ∪ U1 ∪ U2 ∪ U3, where |U1| = b`1c and |U2| = b`2c. Let
G be the union of the clique on U1, the complete bipartite graph between U2 and U3, and an
arbitrary star, centred at u, with b{`2}1/(r−1)|U3|c edges whose non-u endpoints are in U3. We
have

eG 6

(
`1
2

)
+ b`2c · |U3|+ {`2}1/(r−1) · |U3|

6

(
(δ + ε)(1− x)

)2/r
n2pr−1

2 +
(
b`2c+ {`2}1/(r−1)) · n

6

((
(δ + ε)(1− x)

)2/r
2 + b`2c+ {`2}1/(r−1)

npr−1

)
· n2pr−1

= ψr(δ + ε, npr−1, x) · n2pr−1,

and our choice of x ensures that ψr(δ + ε, npr−1, x) 6 ϕr(δ + ε, c) + ε for all large enough n.
It remains to show that EG[X] > (1 + δ)E[X]. To this end, observe first that:

(i) The complete graph G[U1] contains
(b`1c
r

)
copies of Kr.

(ii) The complete bipartite graph G[U2, U3] contains b`2c ·
(|U3|
r−1
)
copies of K1,r−1 whose centre

vertex lies in U2.
(iii) The star G[u, U3] contains

(b{`2}1/(r−1)|U3|c
r−1

)
copies of K1,r−1.

In particular,

EG[X]− E[X] =
∑

∅ 6=J⊆Kr

N(J,G) ·
(
n− vJ
r − vJ

)
· p(

r
2)(p−eJ − 1)

> (1− p) ·
[(
b`1c
r

)
+
[
b`2c ·

(
|U3|
r − 1

)
+
(
b{`2}1/(r−1)|U3|c

r − 1

)]
· p(

r
2)−(r−1)

]
.

We now estimate the right-hand side of the above inequality. Since np(r−1)/2 →∞, we have(
b`1c
r

)
>

(`1 − r)r

r! >
(
(δ + ε)(1− x)− ε/2

)
· n

rp(
r
2)

r! ,

provided that n is sufficiently large. In the case c = 0, this is already sufficient, as x = 0 and

EG[X]− E[X] > (1− p) ·
(
b`1c
r

)
> (1− p) · (δ + ε/2) · n

rp(
r
2)

r! > δ E[X].
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We may therefore assume that c ∈ (0,∞]. Since p→ 0, and thus |U3|/n→ 1, we have

b`2c ·
(
|U3|
r − 1

)
+
(
b{`2}1/(r−1)|U3|c

r − 1

)
> b`2c ·

(1− ε2) · nr−1

(r − 1)! +
(
{`2}1/(r−1)|U3| − r

)r−1

(r − 1)!

>
(1− ε2) · `2 · nr−1

(r − 1)! − ε2nr−1

(r − 1)!

=
(

(1− ε2)x(δ + ε)− ε2r

npr−1

)
· n

rpr−1

r! .

Consequently,

EG[X]− E[X] > (1− p) ·
(

(δ + ε)(1− x)− ε/2 + (1− ε2)x(δ + ε)− ε2r

npr−1

)
· n

rp(
r
2)

r!

> (1− p) ·
(
δ + ε/2− ε2(δ + ε)− ε2r

npr−1

)
· E[X] > δ E[X],

where the last inequality holds for all sufficiently small ε since npr−1 → c > 0. This completes
the proof of (39).

It remains to prove the matching lower bound

lim inf
n→∞

ΦX(δ)
n2pr−1 log(1/p) > ϕr(δ, c). (40)

Fix ε > 0 small enough and suppose that n is sufficiently large. By the continuity of ϕr, it is
enough to show that any graph G on n vertices satisfying

EG[X] > (1 + δ)E[X]

has at least (1 − ε) · ϕr(δ − ε, c) · n2pr−1 edges. By way of contradiction, assume that eG <

(1− ε) · ϕr(δ − ε, c) · n2pr−1. Note that, for all large enough n,

(δ − ε/4) · n
rp(

r
2)

r! 6 δ E[X] 6 EG[X]− E[X] 6
∑

∅6=J⊆Kr

N(J,G) · nr−vJ · p(
r
2)−eJ ,

where the sum ranges over the nonempty subgraphs J of Kr without isolated vertices, so∑
∅ 6=J⊆Kr

N(J,G)
nvJpeJ

>
δ − ε/3
r! . (41)

Using our assumed upper bound on eG, Theorem 5.4 implies that

N(J,G)
δnvJpeJ

6
(2eG)vJ−α∗J ·min {2eG, n}2α

∗
J−vJ

nvJpeJ

6 C · min {(n2pr−1)α∗J , nvJp(r−1)(vJ−α∗J )}
nvJpeJ

for a suitable constant C. If the minimum is achieved by the first term, then npr−1 6 1, and thus

(n2pr−1)α∗J
nvJpeJ

= nα
∗
J−vJ+eJ/(r−1) ·

(
npr−1)α∗J−eJ/(r−1)

6 nα
∗
J−vJ+eJ/(r−1),

as α∗J > vJ/2 > eJ/(r−1) for every graph J with maximum degree at most r−1. A straightforward
algebraic manipulation in the case where the minimum is achieved by the second term then shows
that, in both cases,

N(J,G)
nvJpeJ

6 C ·min {n−1, pr−1}vJ−α
∗
J−eJ/(r−1)

.
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If J ⊆ Kr is not equal to either Kr or K1,r−1, then Lemma 5.2 and the remark that follows it
imply that vJ − α∗J − eJ/(r − 1) > 0, and then the right-hand side goes to zero as n → ∞. It
thus follows from (41) that

N(Kr, G)
nrp(

r
2)

+ N(K1,r−1, G)
nrpr−1 >

δ − ε/2
r! ,

or, equivalently, since |Aut(Kr)| = r! and |Aut(K1,r−1)| = (r − 1)!,

|Emb(Kr, G)|+ r · |Emb(K1,r−1, G)| · p(
r
2)−r+1 > (δ − ε/2) · nrp(

r
2). (42)

Recalling our assumption eG < (1− ε) ·ϕr(δ− ε, c) · n2pr−1 � n2, it follows from Lemma 5.15
that there is a partition V (G) = U ∪ V such that |U | 6 ε2n,

|Emb(Kr, G[V ])| > |Emb(Kr, G)| − ε2e
r/2
G > |Emb(Kr, G)| − εnrp(

r
2)/4,

and, recalling that EmbU (K1,r−1, G) denotes the set of embeddings of K1,r−1 into G that map
the centre vertex of K1,r−1 to a vertex of U ,

r · |EmbU (K1,r−1, G[U, V ])| · p(
r
2)−r+1 > r · |Emb(K1,r−1, G)| · p(

r
2)−r+1 − ε2eGn

r−2 · p(
r
2)−r+1

> r · |Emb(K1,r−1, G)| · p(
r
2)−r+1 − εnrp(

r
2)/4

,

where the stated inequalities are valid if ε is sufficiently small. From this and (42), we obtain

|Emb(Kr, G[V ])|+ r · |EmbU (K1,r−1, G[U, V ])| · p(
r
2)−r+1 > (δ − ε) · nrp(

r
2);

consequently, there exists an x ∈ [0, 1] such that

|Emb(Kr, G[V ])| > (1− x) · (δ − ε) · nrp(
r
2)

and
r · |EmbU (K1,r−1, G[U, V ])| · p(

r
2)−r+1 > x · (δ − ε) · nrp(

r
2).

By Theorem 5.4 and Lemma 5.14, we thus obtain the bounds{
(2eG[V ])r/2 > (1− x) · (δ − ε) · nrp(

r
2)

(beG[U,V ]/|V |c+ {eG[U,V ]/|V |}r−1) · nr−1 > x · (δ − ε) · nrpr−1/r,

and solving for eG[V ] and eG[U,V ], we get{
eG[V ] >

(
(1− x) · (δ − ε)

)2/r · n2pr−1

2

eG[U,V ] > |V | ·
(
bx · (δ − ε)npr−1/rc+ {x · (δ − ε)npr−1/r}1/(r−1)).

Finally, since |V | = n− |U | > (1− ε2)n, the definition of ψr shows that

eG > eG[V ] + eG[U,V ] > (1− ε2) · ψr(δ − ε, npr−1, x) · n2pr−1.

As ψr(δ − ε, npr−1, x) > ϕr(δ − ε, npr−1) → ϕr(δ − ε, c), this contradicts our assumption that
eG < (1− ε) · ϕr(δ − ε, c) · n2pr−1, provided that ε is sufficiently small and n is large enough.

6.3. Proof of Proposition 6.6. Fix ε, δ > 0 and c ∈ [0,∞] and assume that npr−1 → c. We fix
three additional positive constants η, η′, and γ, where γ is sufficiently small given the parameters
of the proposition, η′ is sufficiently small given γ, and finally η is sufficiently small given both η′
and γ.

If Near-min(η) occurs, thenGn,p contains a subgraphG such that eG log(1/p) 6 (1+η)ΦX(δ+η)
and EG[X] > (1 + δ − η)E[X]. We claim that, if n is sufficiently large, then every such graph
admits a partition V (G) = U ∪ V such that, for some x ∈ X̄(δ, c),

(i) V contains a subset V ′ of size at least (1− ε)
(
δ(1− x)

)1/r
np(r−1)/2 such that G[V ′] has

minimum degree at least (1− ε)|V ′|.
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(ii) U contains a set W ⊆ U such that at least b(1 − ε)|W |c vertices in W have degree at
least (1− ε)n and

e(W,V ) > (1− ε)n
(
bδxnpr−1/rc+ {δxnpr−1/r}1/(r−1)).

Note that these properties imply Cliqueε(δ(1− x)) ∩Hubε(δx).
By repeating the argument found in the proof of the lower bound in Proposition 6.5, we can

find a partition V (G) = U ∪ V and some x′ ∈ [0, 1] such that{
|Emb(Kr, G[V ])| > (1− x′) · (δ − 2η) · nrp(

r
2)

r · |EmbU (K1,r−1, G[U, V ])| · p(
r
2)−r+1 > x′ · (δ − 2η) · nrp(

r
2) (43)

and {
eG[V ] >

(
(1− x′) · (δ − 2η)

)2/r · n2pr−1

2

eG[U,V ] >
(
bx′(δ − 2η)npr−1/rc+ {x′(δ − 2η)npr−1/r}1/(r−1)) · n. (44)

It follows that eG > eG[V ] + eG[U,V ] > ψr(δ − 2η, npr−1, x′) · n2pr−1. Thus, by Proposition 6.5,

ψr(δ − 2η, npr−1, x′) 6 eG
n2pr−1 6

(1 + η)ΦX(δ + η)
n2pr−1 log(1/p) 6 (1 + 2η)ϕr(δ + η, c)· (45)

Our next claim tells us how to choose the constant η. Given a set S ⊆ R, we write Bη′(S) = {x ∈
R : infs∈S |x− s| < ε} for the η′-neighbourhood of S.

Claim 6.8. We may choose η = η(η′) > 0 such that x′ ∈ Bη′(X̄r(δ, c)) whenever n is sufficiently
large.

Proof. Suppose there is no such choice. Then, by invoking (45) with successively smaller values of
η, we find that there is a subsequence (ηm, cm, xm) of points in (0,∞)2 × [0, 1] such that ηm → 0
and cm → c as m→∞, and, for all m, we have xm /∈ Bη′(X̄r(δ, c)) and

ϕr(δ − 2ηm, cm) 6 ψr(δ − 2ηm, cm, xm) 6 (1 + 2ηm)ϕr(δ + ηm, c).

Since both the left-hand and the right-hand sides above converge to ϕr(δ, c) as m → ∞, so
must ψr(δ − 2ηm, cm, xm). Denote by (η`, c`, x`) a subsequence on which x` converges to some
x∞ ∈ [0, 1]. We claim that x∞ ∈ X̄r(δ, c), which contradicts the fact that x` /∈ Bη′(X̄r(δ, c)) for
all `.

If c = 0, then we have x∞ = 0 ∈ X̄r(δ, c), since otherwise the definition of ψr would imply
that ψr(δ − 2η`, c`, x`) → ∞. If c ∈ (0,∞), then continuity of ψr implies that ϕr(δ, c) =
lim`→∞ ψr(δ − 2η`, c`, x`) = ψr(δ, c, x∞) and thus x∞ ∈ X̄r(δ, c). Finally, if c = ∞, then
(δ, x) 7→ ψr(δ, cm, x) converges uniformly to the continuous function (δ, x) 7→ (δx)2/r/2 + δx/r,
which implies that

lim
`→∞

ψr(δ − 2η`, c`, x`) = (δx∞)2/r

2 + δx∞
r

= lim
c′→∞

ψ(δ, c′, x∞),

so x∞ ∈ X̄r(δ, c) in this case as well. �

Suppose now that x′ ∈ Bη′(X̄(δ, c)). Since the right-hand sides of (43) and (44) are continuous
in x′, we may choose η and η′ sufficiently small, as a function of γ, so that there is some
x ∈ X̄r(δ, c) such that{

|Emb(Kr, G[V ])| > (1− x) · (δ − γ) · nrp(
r
2)

r · |EmbU (K1,r−1, G[U, V ])| · p(
r
2)−r+1 > x · (δ − γ) · nrp(

r
2),{

eG[V ] >
(
(1− x) · (δ − γ)

)2/r · n2pr−1

2

eG[U,V ] >
(
bx(δ − γ)npr−1/rc+ {x(δ − γ)npr−1/r}1/(r−1)) · n.
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Since eG[V ] + eG[U,V ] 6 eG 6 (1 + 2η)ψr(δ+ η, c, x′) · n2pr−1 and since the lower bounds on eG[V ]
and eG[U,V ] in (44) sum to ψr(δ − 2η, npr−1, x′) · n2pr−1, the two lower bounds on eG[V ] and
eG[U,V ] stated above must be nearly tight. More precisely, the continuity of ψr implies that we
may choose η and η′ sufficiently small so that{

eG[V ] 6
(
(1− x) · (δ + γ)

)2/r · n2pr−1

2

eG[U,V ] 6
(
bx(δ + γ)npr−1/rc+ {x(δ + γ)npr−1/r}1/(r−1)) · n.

Finally, if we choose γ sufficiently small, then the above statements for G[V ] and Theorem 5.11
yield a set V ′ ⊆ V satisfying the conditions in (i). Similarly, the statements for G[U, V ] and
Lemma 5.14(ii) yield a subset W ⊆ U satisfying (ii).

7. Extensions to regular graphs

Fix a connected and ∆-regular graph H. In this section, we apply Theorem 3.1 to study the
upper tail of the random variable X = XH

n,p. In this setting, (11) may be rewritten as

ΦX(δ) = min
{
eG log(1/p) : G ⊆ Kn and EG[X] > (1 + δ)E [X]

}
,

where we use the notation EG[X] = E[X | G ⊆ Gn,p]. Our main result in this section is the
following:

Proposition 7.1. For every ∆ > 2, every connected, nonbipartite, ∆-regular graph H, and all
positive real numbers ε and δ, there exists a positive constant C such that the following holds.
Suppose that an integer n and p ∈ (0, 1) satisfy Cn−1(logn)∆v2

H 6 p∆/2 6 1/C. Then X = XH
n,p

satisfies
(1− ε)ΦX(δ − ε) 6 − logP

(
X > (1 + δ)E[X]

)
6 (1 + ε)ΦX(δ + ε).

Additionally, there is a positive constant ξ = ξ(∆, ε) such that the assumption that H is nonbi-
partite is not necessary when p∆/2 > n−1/2−ξ.

Remark 7.2. As was mentioned in the introduction, the lower bound on the density p is suboptimal
by a polylogarthmic factor. We require this slightly stronger bound on the density to prove an
analogue of Claim 6.7 for ∆-regular graphs H. In this more general setup, the lower bound on the
number of common neighbours of the endpoints of core edges may not hold, and will be replaced
by a lower bound on the product of degrees of the endpoints of core edges. We will prove this
bound via an application of Lemma 5.7; unfortunately, this will incur a polylogarthmic loss, and
thus necessitates the suboptimal bound on the density p.

The optimisation problem ΦX(δ) is a discretisation of the variational problem considered by
Bhattacharya, Ganguly, Lubetzky, and Zhao [9]. As was the case in the context of arithmetic
progressions and cliques, their variational problem was more general (being optimised over a
larger set), but is asymptotically equivalent to the one considered in this paper. Their results
imply

lim
n→∞

ΦX(δ)
n2p∆ log(1/p) =

{
δ2/vH/2 if np∆ → 0,
min {δ2/vH/2, θ} if np∆ →∞,

where θ is the unique positive solution to PH(θ) = 1 + δ and PH is the independence polynomial
of H. Thus, Proposition 7.1 implies Theorem 1.5. The proof of Proposition 7.1 does not require
these precise estimates, but only that ΦX(δ) is of order n2p∆ log(1/p), see Lemma 7.3 below. We
include a short proof of this weaker statement for the sake of completeness, and to emphasize
it may be proved combinatorially; the original proof given in [9] is conceptually equivalent but
more analytically-flavoured.
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Lemma 7.3. For every ∆ > 2, every connected, ∆-regular graph H, and every positive real
number δ, there exists a positive constant C such that the following holds. Assume n ∈ N and
p ∈ (0, 1) are such that Cn−1 6 p∆/2 6 1/C. Then X = XH

n,p satisfies

1/C 6 ΦX(δ)
n2p∆ log(1/p) 6 C.

Proof. The upper bound follows by noting that, if C is large enough, then a clique with d(1 +
2δ)1/vHnp∆/2e vertices contains at least (1 + δ)E[X] copies of H and has fewer than Cn2p∆

edges. For the lower bound, suppose that G is a graph with EG[X] > (1 + δ)E[X] with fewer
than C−1n2p∆ edges. Then

δ

2 ·
nvHpeH

|Aut(H)| 6 δ E[X] 6 EG[X]− E[X] 6
∑

∅6=J⊆H
N(J,G) · nvH−vJpeH−eJ ,

where the sum ranges over all nonempty subgraphs J of H without isolated vertices. This implies
that there is a nonempty subgraph J ⊆ H without isolated vertices and a positive constant
γ = γ(H, δ) such that

|Emb(J,G)| > γ · nvJpeJ . (46)
Theorem 5.4 implies that

|Emb(J,G)| 6 (2eG)vJ−α
∗
J ·min {2eG, n}2α

∗
J−vJ

and Lemma 5.2 yields α∗J 6 vJ − eJ/∆. Therefore, if 2eG 6 n, then |Emb(J,G)| is bounded from
above by

(2eG)α
∗
J 6 (2eG)α

∗
J−vJ+2eJ/∆ · nvJ−2eJ/∆ 6

(
2n2p∆

C

)eJ/∆
nvJ−2eJ/∆ = nvJpeJ

(C/2)eJ/∆
,

where the first inequality holds since 2eJ/∆ 6 vJ , as the maximum degree of J is at most ∆. If
n < 2eG, then |Emb(J,G)| is bounded from above by(

2n2p∆

C

)vJ−α∗J
· n2α∗J−vJ = nvJpeJ

(C/2)vJ−α∗J
· p∆(vJ−α∗J )−eJ 6

nvJpeJ

(C/2)vJ−α∗J
.

In both cases, the obtained upper bound on |Emb(J,G)| contradicts (46) whenever C is large;
indeed eJ/∆ and vJ − α∗J are both positive, as J is nonempty. �

7.1. Proof of Proposition 7.1. Fix ∆ > 2, a nonempty, connected, ∆-regular graph H, and
positive reals ε and δ. Without loss of generality, we may assume that ε 6 min {1/3, δ/2}. Let
X = XH

n,p and assume Cn−1(logn)∆v2
H 6 p∆/2 6 1/C. Note that the case n < vH is trivial as

then X is identically zero. We may therefore assume that n > vH > ∆ + 1 > 3, which, in turn,
implies that n > C.

Set N =
(
n
2
)
and let Y = (Y1, . . . , YN ) be the sequence of indicator random variables of

the events that e ∈ E(Gn,p), where e ranges over
(JnK

2
)
in some arbitrary order. Then Y is a

vector of independent Ber(p) random variables and X is a nonzero polynomial with nonnegative
coefficients and degree at most eH in the coordinates of Y . Let K = K(eH , ε, δ) be the constant
whose existence is asserted by Theorem 3.1. To prove the proposition, it suffices to verify the
assumptions of the theorem.

It follows from Lemma 7.3 and our assumptions on p that p 6 1−ε and ΦX(δ−ε) > K log(1/p)
for a large enough choice of C. It thus only remains to bound the number of cores of a given size.
To this end, let I∗m be the set of cores with m edges, that is, subgraphs G∗ ⊆ Kn such that

(C1) EG∗ [X] > (1 + δ − ε)E[X],
(C2) eG∗ = m 6 K · ΦX(δ + ε), and
(C3) mine∈E(G∗)

(
EG∗ [X]− EG∗\e[X]

)
> E[X]/(K · ΦX(δ + ε)).
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Proposition 7.1 will follow once we prove

|I∗m| 6 (1/p)εm/2 for all m. (47)

Observe that due to (C1), (C2), and the definition of ΦX , it suffices to verify (47) for integers m
such that mmin 6 m 6 mmax with

mmin := ΦX(δ − ε)/ log(1/p) > n2p∆/K ′ and

mmax := K · ΦX(δ + ε) 6 K ′ · n2p∆ log(1/p),

where the stated inequalities follow, for a suitable constant K ′ = K ′(H, ε, δ), from Lemma 7.3,
our bounds on p, and the assumption that C is sufficiently large.

The first step towards establishing (47) is to understand the combinatorial meaning of (C3).
Suppose that mmin 6 m 6 mmax and G∗ ∈ I∗m. Recall that N(J,G∗; e) denotes the number of
copies of J in G∗ that contain the edge e. Note that (C3) implies that, for every e ∈ E(G∗),

E[X]
mmax

6 EG∗ [X]− EG∗\e[X] 6
∑

∅ 6=J⊆H
N(J,G∗; e) · nvH−vJpeH−eJ , (48)

where the sum ranges over the nonempty subgraphs J of H without isolated vertices. Since n > C
for a large enough constant C, we can bound E[X] >

(
n
vH

)
peH > nvH peH

2vH ! and, consequently, (48)
implies that there is a positive constant γ = γ(H) such that∑

∅ 6=J⊆H

N(J,G∗; e)
nvJpeJ

>
2γ

mmax
for every e ∈ E(G∗). (49)

Definition 7.4. Let QH denote the family of all nonempty subgraphs J ⊆ H without isolated
vertices satisfying
(Q1) J = H or
(Q2) J admits a bipartition V (J) = A ∪B such that degJ a = ∆ for all a ∈ A.

Our first claim is that, for the vast majority of e ∈ E(G∗), the sum on the left-hand side of (49)
is dominated by subgraphs J ∈ QH . Let G∗exc comprise all edges e of G∗ such that∑

J∈QH

N(J,G∗; e)
nvJpeJ

<
γ

mmax
.

Claim 7.5. There is a positive constant σ = σ(H) such that eG∗exc
6 pσ ·mmin.

Proof. Let mexc denote the number of edges of G∗exc. The definition of G∗exc and (49) imply that∑
e∈E(G∗exc)

∑
∅ 6=J⊆H
J /∈QH

N(J,G∗; e)
nvJpeJ

>
γ ·mexc

mmax
>

γ ·mexc

mmin · (K ′)2 · log(1/p) .

On the other hand, since
∑
e∈E(G∗)N(J,G∗; e) 6 eJ · |Emb(J,G∗)| for every graph J , there must

exist a nonempty subgraph J ⊆ H without isolated vertices such that J /∈ QH and

mexc

mmin
6
eJ · (K ′)2 · log(1/p) · 2eH+vH

γ
· |Emb(J,G∗)|

nvJpeJ
. (50)

We now show that the right-hand side of (50) is at most pσ, for some positive constant
σ = σ(H). To this end, recall that Theorem 5.4 states that

|Emb(J,G∗)| 6 (2m)vJ−α
∗
J ·min {2m,n}2α

∗
J−vJ . (51)

Since J is a proper subgraph of a connected, ∆-regular graph, it must contain a vertex of degree
smaller than ∆ and hence vJ > 2eJ/∆. Moreover, since J /∈ QH , Lemma 5.2 implies that
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α∗J < vJ−eJ/∆. Therefore, if 2m 6 n, then there is a positive σ = σ(H) such that the right-hand
side of (51) can be bounded from above as follows:

(2m)α
∗
J 6 (2m)α

∗
J−vJ+2eJ/∆+2σ · nvJ−2eJ/∆−2σ

6 (2m)eJ/∆ · nvJ−2eJ/∆−2σ

6
(
2K ′ · n2p∆ log(1/p)

)eJ/∆
nvJ−2eJ/∆−2σ

= n−2σ ·
(
2K ′ · log(1/p)

)eJ/∆ · nvJpeJ .
Similarly, if n < 2m, there is a positive σ = σ(H) such that the right-hand side of (51) is bounded
from above by

(2m)vJ−α
∗
J · n2α∗J−vJ 6

(
2K ′ · n2p∆ log(1/p)

)vJ−α∗J · n2α∗J−vJ

= p∆(vJ−α∗J )−eJ ·
(
2K ′ · log(1/p)

)vJ−α∗J · nvJpeJ
6 p2σ ·

(
2K ′ · log(1/p)

)vJ−α∗J · nvJpeJ .
Since p 6 C−2/∆ and Cn−1 6 p, it follows that, in both cases,

|Emb(J,G∗)| 6 pσ · nvJpeJ · γ

eJ · (K ′)2 · log(1/p) · 2eH+vH
,

provided that C is sufficiently large. Substituting this inequality into (50) proves the claim. �

The next claim shows that the endpoints of every edge of G∗ \G∗exc satisfy a certain degree
restriction.

Claim 7.6. There is a positive γ′ = γ′(H,K ′) such that, for every edge uv of G∗ \G∗exc, either

degG∗ u · degG∗ v >
γ′(

log(1/p)
)vH ·m or degG∗ u+ degG∗ v >

γ′(
log(1/p)

)vH/2 · n.
Moreover, if the second inequality fails, then uv is contained in at least γ′nvHpeH/mmax copies of
H in G∗.

Proof. Suppose that uv is an edge of G∗ \G∗exc. It follows from (49) and the definition of G∗exc
that there is some J ∈ QH such that

|Emb(J,G;uv)| > N(J,G;uv) > γ

|QH |
· n

vJpeJ

mmax
. (52)

Let µ = n2p∆/m and observe that µ >
(
K ′ · log(1/p)

)−1 ·mmax/m. We split the remainder of
the proof into two cases, depending on whether or not J = H.

Assume first J = H. Then, since nvHpeH =
(
n2p∆)vH/2 = (µm)vH/2, Lemma 5.7 and (52)

imply that (
4 degG∗ u · degG∗ v

)∆−1
∆ > |Emb(J,G;uv)| · (2m) 2∆−1

∆ − vH2

4eH

>
γ

|QH |
· (µm)vH/2

mmax
· (2m) 2∆−1

∆ − vH2

4eH

= 2 2∆−1
∆ − vH2 γ

4eH |QH |
· µvH/2 · m

mmax
·m

∆−1
∆

> (4γ′)
∆−1

∆ ·
(

log(1/p)
)−vH/2 ·m∆−1

∆ ,

for a suitable positive constant γ′ = γ′(H,K ′). Since ∆ > 2, this implies the claimed lower bound
on degG∗ u · degG∗ v.

Assume now that J 6= H. In this case, J admits a bipartition V (J) = A ∪B such that every
vertex in A has degree ∆. In particular, eJ = |A| ·∆; moreover, as J 6= H and H is connected
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and ∆-regular, we also have |B| > |A|. Since nvJpeJ =
(
n2p∆)|A| · n|B|−|A| = (µm)|A| · n|B|−|A|,

it follows from Lemma 5.8 and (52) that

degG∗ u+ degG∗ v >
|Emb(J,G;uv)|

eJ · (2m)|A|−1 ·
(

min{m,n}
)|B|−|A|−1

>
γ

|QH |
· (µm)|A| · n|B|−|A|

mmax
· 1
eJ · (2m)|A|−1 ·

(
min{m,n}

)|B|−|A|−1

>
γ

|QH |
· µ
|A|m

mmax
· n

eJ · 2|A|−1

> γ′ ·
(

log(1/p)
)−|A| · n

for a suitable positive constant γ′. Since |A| < vH/2, this implies the claimed lower bound on
degG∗ u+ degG∗ v. In particular, if the second inequality in the statement of the claim fails, then
the above shows that J = H, and thus the second assertion of the claim follows from (52). �

To prove (47), we will further distinguish between the cases p∆/2 > n−1/2−ξ and p∆/2 6
n−1/2−ξ, for a small constant ξ. The first case is easier and is handled by our next claim.

Claim 7.7. There is a positive constant ξ = ξ(∆, ε) such that (47) holds if p∆/2 > n−1/2−ξ.

Proof. To simplify the presentation, we shall prove (47) with 7ε instead of ε/2. Suppose that G∗
is a core with m edges, where mmin 6 m 6 mmax. For each k ∈ Z, we define the set

Bk =
{
v ∈ V (G∗) : degG∗ v > ek

√
mpε

}
and let kmax be the largest integer such that ekmax

√
m 6 np2ε. Note that the bounds n2p∆/K ′ 6

m 6 K ′ · n2p∆ log(1/p) and our assumption p 6 C−2/∆ imply that 0 6 kmax 6 (∆/2) · log(1/p)
whenever C is large enough.

We will first prove that Claim 7.6 implies that, for each edge uv of G∗ \G∗exc, either
(i) uv has an endpoint in Bkmax or
(ii) u ∈ Bk and v ∈ B−k for some k ∈ {−kmax, . . . , kmax}.

Indeed, if we suppose that

degG∗ u+ degG∗ v >
γ′ · n

(log(1/p))vH/2
,

then (i) follows immediately (with room to spare) because γ′·n
(log(1/p))vH/2 > np3ε > 2ekmax

√
mpε.

On the other hand, if (i) does not hold (i.e., neither u nor v is in Bkmax), then the above lower
bound on degG∗ u+ degG∗ v does not hold, and Claim 7.6 guarantees

degG∗ u · degG∗ v >
γ′ ·m

(log(1/p))vH > emp
2ε.

Observe that the lower bound above and the assumption on u and v imply that

min{degG∗ u,degG∗ v} = degG∗ u · degG∗ v
max{degG∗ u,degG∗ v}

>
emp2ε

ekmax
√
mpε

= e−kmax+1√mpε.

Let k ∈ {−kmax + 1, . . . , kmax − 1} be the largest index such that {u, v} ⊆ Bk. Without loss of
generality, u 6∈ Bk+1, so

emp2ε 6 degG∗ u · degG∗ v < ek+1√mpε · degG∗ v,

which implies (ii).
To make use of this property of the edges of G∗ \G∗exc, we also require upper bounds on the

cardinalities of the sets Bk. To that end, observe that, for all k ∈ Z,

2m >
∑
v∈Bk

degG∗ v > |Bk| · ek
√
mpε
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and hence
|Bk| 6 2e−k

√
mp−ε. (53)

We claim that there is a positive constant ξ = ξ(∆, ε) such that n2p∆ > 2K ′npε logn whenever
p∆/2 > n−1/2−ξ and C is sufficiently large. Indeed, if p∆/2 > n−1/3, then n2p∆ > n4/3 >
2K ′npε logn, provided that C is sufficiently large; otherwise, pε 6 n−2ε/(3∆) and our assumption
implies that n2p∆ > n1−2ξ > K ′npε logn, provided that ξ is sufficiently small and C is sufficiently
large. Now inequality (53) and the choice of kmax imply

|B−kmax | 6 2ekmax
√
mp−ε 6 2npε 6 m

logn (54)

and (since ekmax+1 > np2ε)

|Bkmax | · n 6 2e−kmax
√
mp−ε · n < 2emp−3ε. (55)

Recall from Claim 7.5 that eG∗exc
6 pσ ·mmin for a positive constant σ depending only on H.

It follows that we may construct each G∗ ∈ I∗m as follows:
(1) Choose some mexc 6 pσ ·mmin and then choose mexc edges of Kn to form G∗exc.
(2) Choose the sets B−kmax , . . . , Bkmax and then choose m−mexc edges from

B =
{
uv ∈ E(Kn) : u ∈ Bkmax

}
∪
kmax⋃
k=0

{
uv ∈ E(Kn) : u ∈ Bk, v ∈ B−k

}
to form G∗ \G∗exc.

Since Bkmax ⊆ · · · ⊆ B−kmax and |B−kmax | 6 m/ logn by (54), the number of ways to choose
the sets B−kmax , . . . , Bkmax is at most(

(2kmax + 2) · n
)m/ logn

6 e2m,

using the (very crude) bound kmax 6 n/4. Moreover, inequalities (53) and (55) imply that

|B| 6 |Bkmax | · n+
kmax∑
k=0
|Bk| · |B−k| 6 2emp−3ε + (kmax + 1) · 4mp−2ε 6 mp−4ε,

where we use kmax 6 (∆/2) · log(1/p) and p∆/2 6 1/C for a large enough C. We conclude that

|I∗m| 6 e2m ·
pσ·mmin∑
mexc=0

(
n2

mexc

)
·
(

mp−4ε

m−mexc

)
.

In order to bound the right-hand side above, we note that(
mp−4ε

m−mexc

)
6

(
mp−4ε

m

)
6

(
emp−4ε

m

)m
6 p−5εm.

Moreover, using the inequalities
∑k
i=0
(
n
i

)
6 (en/k)k and m > mmin > n2p∆/K ′,

pσ·mmin∑
mexc=0

(
n2

mexc

)
6

(
en2

pσ ·mmin

)pσ·mmin

6

(
eK ′

p∆+σ

)mpσ
6 p−εm.

We may conclude that
|I∗m| 6 e2m · p−6εm 6 p−7εm,

which completes the proof of (47) (with 7ε instead of ε/2). �

The argument above shows that we do not need the assumption that H is nonbipartite when
p∆/2 > n−1/2−ξ. In the following, we will assume that p∆/2 6 n−1/2−ξ and that H is not
bipartite.
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Let γ′ be the constant from Claim 7.6. Our assumption on p implies that

mmax 6 K
′ · n2p∆ log(1/p) 6 K ′ · n1−2ξ log(1/p) < γ′ · n(

log(1/p)
)vH/2 − 1,

where the last inequality holds because n > C and C is large. In particular, if G∗ ∈ I∗m for some
mmin 6 m 6 mmax, then for any two vertices u, v ∈ V (G∗), we have degG∗(u) + degG∗(v) 6
mmax + 1 < γ′n/(log(1/p))vH/2, so it follows from Claim 7.6 that

degG∗ u · degG∗ v >
γ′(

log(1/p)
)vH ·m for every uv ∈ E(G∗ \G∗exc) (56)

and that every edge uv of G∗ \G∗exc belongs to at least γ′nvHpeH/mmax copies of H in G∗. Set

β = ∆(1 + vH/2) + 1/2,

let G∗high comprise all edges uv of G∗ such that

degG∗ u · degG∗ v >
(

log(1/p)
)β ·m, (57)

and denote by mhigh the number of edges in G∗high. We claim that

mhigh 6
8m(

log(1/p)
)β . (58)

In order to show it, we estimate the number of copies of P4, the path with four vertices (and
three edges), in G∗ in two different ways. On the one hand,

2N(P4, G
∗) = |Emb(P4, G

∗)| 6 (2m)2,

since every embedding of P4 into G∗ is determined by the images of its two nonincident edges.
On the other hand,

N(P4, G
∗) >

∑
uv∈E(G∗)

(degG∗ u− 1) · (degG∗ v − 2)

=
∑

uv∈E(G∗)

degG∗ u · degG∗ v − 3
∑

v∈V (G∗)

(degG∗ v)2 + 2m

> mhigh ·
(

log(1/p)
)β ·m− 3m

∑
v∈V (G∗)

degG∗ v

= mhigh ·
(

log(1/p)
)β ·m− 6m2.

These two lower and upper bounds on N(P4, G
∗) imply (58).

Claim 7.8. Suppose that ϕ is an embedding of H into G∗ \ (G∗exc ∪ G∗high). Then for every
a ∈ V (H),

degG∗ ϕ(a) > m1/2(
log(1/p)

)β·vH .
Proof. Define f : V (H)→ R by

f(a) = log
(

degG∗ ϕ(a)
m1/2

)
and let

f∗ = β log log(1/p).
It suffices to show that f(a) > −vHf∗ for every a ∈ V (H). To this end, note that (56) and our
definition of G∗high (see (57)) imply that

− f∗ 6 f(a) + f(b) 6 f∗ for every ab ∈ E(H), (59)
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since β > vH + 1 and p 6 C−2/∆ for a large constant C. Since H is not bipartite, it contains
an odd cycle. Let Z be one such cycle and suppose that a0, . . . , a2` are its vertices (listed in an
arbitrarily chosen cyclic ordering). It follows from (59), applied to all 2`+ 1 edges of Z, that

2f(a0) = f(a0) + f(a2`) +
2`−1∑
i=0

(−1)i
(
f(ai) + f(ai+1)

)
∈
[
− (2`+ 1)f∗, (2`+ 1)f∗

]
.

Since the particular choice of a0 among all vertices of Z was arbitrary, we may conclude that

−(2`+ 1)f∗ 6 f(a) 6 (2`+ 1)f∗ for every a ∈ V (Z),

with room to spare. Since 2`+ 1 = vZ 6 vH , this proves the desired inequality for all a ∈ V (Z).
Suppose now that b ∈ V (H) \ V (Z). Since H is connected, it contains a path from b to Z. Let
b0, b1, . . . , b`′ , where b0 = b and b`′ ∈ V (Z), be the vertices of a shortest such path (listed in their
natural order) and note that `′ + 2`+ 1 6 vH . It follows from (59), applied to all `′ edges of the
path, that

f(b) + (−1)`
′−1f(b`′) =

`′−1∑
i=0

(−1)i
(
f(bi) + f(bi+1)

)
∈
[
− `′f∗, `′f∗

]
and consequently, as b`′ ∈ V (Z), that

f(b) > −`′f∗ − |f(b′`)| > −(`′ + 2`+ 1)f∗ > −vHf∗,

as claimed. �

Let G∗bad comprise all edges of G∗ that do not belong to a copy of H in the graph G∗ \ (G∗exc ∪
G∗high) and let mbad be the number of such edges; note that G∗bad ⊇ G∗exc ∪ G∗high. Since each
edge of G∗bad \G∗exc belongs to at least γ′nvHpeH/mmax copies of H in G∗, none of which are in
G∗ \G∗exc ∪G∗high, we have

(mbad −mexc) · γ
′nvHpeH

mmax
6

∑
e∈E(G∗exc∪G∗high)

|Emb(H,G∗; e)|.

It follows from Lemma 5.9, Claim 7.5, and inequality (58) that∑
e∈E(G∗exc∪G∗high)

|Emb(H,G∗; e)| 6 eH · (2m)vH/2 ·
(
mexc +mhigh

m

)1/∆
6 8eH ·

(2m)vH/2(
log(1/p)

)β/∆ .
Consequently,

mbad 6 mexc + mmax

γ′nvHpeH
· 8eH ·

(2m)vH/2(
log(1/p)

)β/∆
6 pσ ·mmin + 8 · 2vH/2 · eH

γ′
· m

vH/2
max

nvHpeH
(

log(1/p)
)β/∆ ·m

6

(
pσ + 8 · 2vH/2 · eH

γ′
·
(
K ′ · n2p∆ log(1/p)

)vH/2
nvHpeH

(
log(1/p)

)β/∆
)
·m

=
(
pσ +

8 · eH ·
(
2K ′

)vH/2
γ′ ·
(

log(1/p)
)β/∆−vH/2

)
·m 6 m

log(1/p) ,

since β/∆ = 1 + vH/2 + 1/(2∆) and p 6 C−2/∆ for a large constant C.
Let U be the set of nonisolated vertices of G∗ \G∗bad. It follows from Claim 7.8 that

|U | · m1/2(
log(1/p)

)β·vH 6∑
v∈U

degG∗ v 6 2m
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and thus
|U | 6 2m1/2 ·

(
log(1/p)

)β·vH 6 m/ logn,
as p∆/2 > Cn−1(logn)∆v2

H and C is large enough.
To summarise, we may construct each G∗ ∈ I∗m as follows:
(1) Choose mbad 6 m/ log(1/p) and the mbad edges of Kn to form G∗bad.
(2) Choose the vertices of U and the edges of G∗ \G∗bad from the set

(
U
2
)
.

Using the above bounds on the size of U , we conclude that

|I∗m| 6
m/ log(1/p)∑
mbad=0

(
n2

mbad

)
· nm/ logn ·

(
4m ·

(
log(1/p)

)2β·vH
m−mbad

)
.

In order to bound the right-hand side from above, we note that, for sufficiently large C,(
4m ·

(
log(1/p)

)2β·vH
m−mbad

)
6

(
4m ·

(
log(1/p)

)2β·vH
m

)
6

(
4em ·

(
log(1/p)

)2β·vH
m

)m
6 p−εm/6

and, since m > n2p∆/K ′,
m/ log(1/p)∑
mbad=0

(
n2

mbad

)
6

(
en2 log(1/p)

m

)m/ log(1/p)

6

(
eK ′ · log(1/p)

p∆

)m/ log(1/p)
6 p−εm/6.

Since nm/ logn = em 6 p−εm/6, we may conclude that |I∗m| 6 p−εm/2, which completes the proof
of Proposition 7.1.

8. The Poisson regime

Given a nonnegative real µ, we shall denote by Po(µ) the Poisson distribution with mean µ.
Suppose that X ∼ Po(µ). A classical result in large deviation theory is that, for every fixed δ > 0,

− logP
(
X > (1 + δ)µ

)
=
(
(1 + δ) log(1 + δ)− δ

)
µ+ o(µ),

as µ→∞. Motivated by this estimate, for any random variable X with positive expectation and
any δ > 0, we define

ΨX(δ) =
(
(1 + δ) log(1 + δ)− δ

)
E[X].

Theorems 1.4 and 1.6 follow immediately from the following two propositions.

Proposition 8.1. For every integer k > 3 and all positive real numbers ε and δ, there exists
a positive constant C such that the following holds. Suppose that N ∈ N and p ∈ (0, 1) satisfy
CN−1 6 pk/2 6 C−1N−1 logN . Then X = Xk-AP

N,p satisfies

(1− ε)ΨX(δ) 6 − logP
(
X > (1 + δ)E[X]

)
6 (1 + ε)ΨX(δ).

Proposition 8.2. For every ∆ > 2, every connected, ∆-regular graph H, and all positive real
numbers ε and δ, there exists a positive constant C such that the following holds. Suppose that
n ∈ N and p ∈ (0, 1) satisfy Cn−1 6 p∆/2 6 C−1n−1(logn)

1
vH−2 . Then X = XH

n,p satisfies

(1− ε)ΨX(δ) 6 − logP
(
X > (1 + δ)E[X]

)
6 (1 + ε)ΨX(δ).

It is not difficult to show that the requirements on p in these results are optimal up to the
choice of the constant C. Indeed, if X = Xk-AP

N,p , then planting an interval of length CδNpk/2
creates (1 + δ)E[X] k-term arithmetic progressions (for a sufficiently large Cδ), which shows that

− logP
(
X > (1 + δ)E[X]

)
= O

(
Npk/2 log(1/p)

)
.

Similarly, if X = XH
n,p, then planting a clique of size Cδnp∆/2 results in (1 + δ)E[X] copies of H,

which proves
− logP

(
X > (1 + δ)E[X]

)
= O

(
n2p∆ log(1/p)

)
.
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The upper bounds are o(ΨX(δ)), and therefore dominate the Poisson bounds, whenever pk/2 �
N−1 logN or p∆/2 � n−1(logn)

1
vH−2 , respectively.

8.1. Poisson approximation via factorial moments. For a real number m and a nonnegative
integer t, write mt = m(m− 1) · · · (m− t+ 1) for the t-th falling factorial of m. For a random
variable X, let Mt(X) = E[Xt] be the t-th factorial moment of X. It is straightforward to verify
that, if X ∼ Po(µ), then Mt(X) = µt for all t > 0.

A classical application of the method of moments is that, if (Xn) is a sequence of random
variables whose t-th factorial moments converge to µt for some fixed µ, then Xn converges in
distribution to Po(µ). The lemma below can be viewed as an extension of this result to the
case when µ → ∞. It states that, if the t-th factorial moment of some random variable X is
approximately µt, for each t around δµ, then the logarithmic upper tail probability − logP

(
X >

(1 + δ)E[X]
)
is well approximated by ΨX(δ).

Proposition 8.3. For all positive real numbers ε and δ, there exists a positive constant η such
that the following holds. Let X be a nonnegative integer-valued random variable with mean
µ > 1/η such that |Mt(X)−µt| 6 ηµt for every integer t satisfying (δ− ε)µ 6 t 6 (δ+ ε)µ. Then

(1− ε)ΨX(δ) 6 − logP
(
X > (1 + δ)E[X]

)
6 (1 + ε)ΨX(δ).

Define the continuous function I : [0,∞)→ [0,∞) by

I(δ) = (1 + δ) log(1 + δ)− δ,

so that ΨX(δ) = I(δ) · µ. Note that I(δ) > 0 whenever δ > 0.

Lemma 8.4. For every nonnegative integer t and every positive real x,

log (x+ t)t = I(t/x) · x+ t log x+ λ(x, t),

where 0 6 λ(x, t) 6 (t+ 1)/x.

Proof. Observe that log (x+ t)t =
∑t
s=1 log(x+ s). Since log is an increasing function,∫ x+t

x

log y dy 6
t∑

s=1
log(x+ s) 6

∫ x+t+1

x+1
log y dy.

Recalling that
∫

log y dy = y(log y − 1) + C, we have∫ x+t

x

log y dy =
(
(1 + t/x) log(1 + t/x)− t/x

)
· x+ t log x = I(t/x) · x+ t log x.

On the other hand,∫ x+t+1

x+1
log y dy −

∫ x+t

x

log y dy 6 log(x+ t+ 1)− log x = log
(
1 + (t+ 1)/x

)
6 (t+ 1)/x.

This proves the claimed estimate. �

Proof of Proposition 8.3. Since, for every positive integer t, the function x 7→ xt is increasing on
[t− 1,∞) and nonnegative on Z>0, Markov’s inequality implies that

P
(
X > (1 + δ)E[X]

)
6 P

(
Xt >

(
(1 + δ)E[X]

)t)
6

Mt(X)(
(1 + δ)E[X]

)t
for every positive integer t 6 (1 + δ)E[X]. This implies that, for every such t,

− logP
(
X > (1 + δ)E[X]

)
> log

(
(1 + δ)µ

)t − logMt(X). (60)

Let t = bδµc. Since (1 + δ)µ− t > µ, it follows from Lemma 8.4 that

log
(
(1 + δ)µ

)t
> log (µ+ t)t > I(t/µ) · µ+ t logµ.
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On the other hand, our assumption implies that

logMt(X) 6 log
(
(1 + η)µt

)
= t logµ+ log(1 + η) 6 t logµ+ η.

Finally, since I is continuous, I(δ) > 0, and |t/µ − δ| 6 1/µ 6 η, substituting the above two
inequalities into (60) yields

− logP
(
X > (1 + δ)E[X]

)
> I(δ) · µ− εΨX(δ) = (1− ε)ΨX(δ),

provided that η is sufficiently small (as a function of ε and δ).
For the upper bound, we will use the tilting argument, which is a standard trick of large

deviation theory. For the sake of brevity, let mt = Mt(X) for every nonnegative integer t. Let
t = (δ + γ)µ, where γ is a small positive constant that depends on ε and δ (but not on η). Since
η is allowed to depend on γ and µ > 1/η, we may assume that t is an integer. The idea is to
consider a ‘tilted’ random variable X̃ defined by the relation

P(X̃ = x) = P(X = x) · xt

mt
for every x ∈ Z.

The definition of mt ensures that X̃ is a well-normalised random variable. In particular,

E[g(X̃)] = E[g(X) ·Xt]
mt

for every g : Z→ Z. (61)

Using the identities

x · xt = xt+1 + t · xt and x2 · xt = xt+2 + (2t+ 1) · xt+1 + t2 · xt,

we have
E[X̃] = E[X ·Xt]

mt
= mt+1

mt
+ t

and
E[X̃2] = E[X2 ·Xt]

mt
= mt+2 + (2t+ 1)mt+1

mt
+ t2,

and so
Var[X̃] = E[X̃2]− E[X̃]2 =

mt+2mt −m2
t+1 +mt+1mt

m2
t

.

Since t = (δ + γ)µ, we have (δ − ε)µ 6 t 6 t + 2 6 (δ + ε)µ, provided that γ is sufficiently
small as a function of δ and ε. Since the assumptions of the proposition imply that ms is well
approximated by µs for each s ∈ {t, t+ 1, t+ 2}, a straightforward computation yields

(1 + δ + γ/2)µ 6 E[X̃] 6 (1 + δ + 3γ/2)µ and Var[X̃] 6 10ηµ2 + 2µ,

provided that η is sufficiently small. Therefore, Chebyshev’s inequality yields

P
(
|X̃ − (1 + δ + γ)µ| > γµ

)
6 P

(
|X̃ − E[X̃]| > γµ/2

)
6

4 · (10ηµ2 + 2µ)
γ2µ2 6 ε. (62)

Next, using (61) with the function g(x) = 1
[
|x− (1 + δ + γ)µ| < γµ

]
· (mt/x

t), we see that

P
(
X > (1 + δ)µ

)
> P

(
|X − (1 + δ + γ)µ| 6 γµ

)
= E

[
g(X̃)

]
.

When g(X̃) is nonzero, then X̃ is bounded from above by (1 + δ + 2γ)µ, and thus

E
[
g(X̃)

]
> P

(
g(X̃) 6= 0

)
· mt

(1 + δ + 2γ)t

=
(
1− P(|X̃ − (1 + δ + γ)µ| > γµ)

)
· mt

(1 + δ + 2γ)t
(62)
>

(1− ε) ·mt

(1 + δ + 2γ)t
.

Using Lemma 8.4 with x = (1 + γ)µ, we obtain

log (1 + δ + 2γ)t 6 I
(
t/(1 + γ)µ

)
· (1 + γ)µ+ t log

(
(1 + γ)µ

)
+ t+ 1

(1 + γ)µ.
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On the other hand, our assumptions imply that, when η is small,

logmt > t logµ+ log(1− η) > t logµ− 2η.

Combining the above bounds, we obtain

− logP
(
X > (1 + δ)µ

)
6 I
(
t/(1 + γ)µ

)
· (1 + γ)µ+ t log(1 + γ) + t+ 1

(1 + γ)µ + 2η − log(1− ε).

Recalling that t = (δ + γ)µ, the continuity of I and the fact that I(δ) > 0 imply that

− logP
(
X > (1 + δ)µ

)
6 I(δ) · µ+ εΨX(δ) = (1 + ε)ΨX(δ),

provided that γ is sufficiently small and η is sufficiently small. �

8.2. Cluster analysis. We will deduce both Propositions 8.1 and 8.2 from Proposition 8.3 and
Lemma 8.5, stated below, by analysing the component structure of certain random hypergraphs.
Since the proofs turn out to be quite similar, we adopt a general point of view from the start.
Suppose that H is a hypergraph and, given some p ∈ (0, 1), denote by Hp the random induced
subhypergraph of H obtained by keeping every vertex with probability p, independently. The
dependency graph GH is the graph on the vertex set E(H) whose edges are all pairs {σ1, σ2} such
that σ1 ∩ σ2 6= ∅. A cluster is a set E′ ⊆ E(H) that induces a connected subgraph in GH. We
write Ds(Hp) for the number of clusters of size s whose elements are edges in Hp.

Lemma 8.5. For all positive real numbers c and η, there exists a positive constant K such that
the following holds. Let H be a uniform hypergraph, let p ∈ (0, 1), and define X = eHp and
µ = E[X]. Assume that K 6 µ 6

√
eH/K and that E[Ds(Hp)] 6 exp(−Ks) for every integer s

such that 2 6 s 6 cµ. Then |Mt(X)− µt| 6 ηµt for every integer t such that 1 6 t 6 cµ.

Proof. Let t 6 cµ be a positive integer and let H(t) denote the set of all sequences of t distinct
edges of H. For each sequence σ̄ = (σ1, . . . , σt) ∈ H(t), let Xσ̄ be the indicator random variable
for the event σ1 ∪ · · · ∪ σt ⊆ V (Hp). Denote the uniformity of H by k. Our definitions readily
imply that Xt =

∑
σ̄∈H(t)Xσ̄, that |H(t)| = eH

t, and that E[Xσ̄] > pkt for all σ̄ ∈ H(t). Thus

Mt(X) = E[Xt] =
∑

σ̄∈H(t)

E[Xσ̄] > eHt · pkt.

Since, for every x > t,

xt = xt
t−1∏
s=0

(
1− s

x

)
> xt

(
1−

t−1∑
s=0

s

x

)
> xt

(
1− t2

x

)
,

and t 6 cµ 6 c√eH/K 6 eH for sufficiently large K, we have

Mt(X) >
(

1− t2

eH

)
· eHtpkt =

(
1− t2

eH

)
· µt >

(
1− c2

K2

)
· µt > (1− η) · µt,

provided that K is sufficiently large.
It remains to prove the upper bound. It will be convenient to partition the set H(t) of

sequences according to the component structure of the subgraph of GH induced by the elements
of the sequence. More precisely, given a nonnegative integer ` and integers s1, . . . , s` such that
2 6 s1 6 · · · 6 s`, let H(t; s1, . . . , s`) be the family of all σ̄ = (σ1, . . . , σt) ∈ H(t) such that the
set {σ1, . . . , σt} induces a subgraph in GH whose ` nontrivial connected components (maximal
clusters) have sizes s1, . . . , s`, so that this graph has t− (s1 + · · ·+ s`) isolated vertices.7 Observe
that, for every collection W1, . . . ,W` of connected subsets of vertices GH with sizes s1, . . . , s`,
respectively, there are at most ts1+···+s` · eHt−(s1+···+s`) sequences σ̄ = (σ1, . . . , σt) ∈ H(t) such
that the nontrivial connected components of {σ1, . . . , σt} are exactly W1, . . . ,W`; indeed, there

7This includes the case ` = 0 in which H(t;∅) corresponds to induced subgraphs of GH all of whose connected
components are isolated vertices.
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are at most ts1+···+s` ways to choose the locations of the vertices in W1 ∪ · · · ∪W` in a sequence
of length t and, for each such choice, at most eHt−(s1+···+s`) choices for the remaining elements
of the sequence. We conclude that∑

σ̄∈H(t;s1,...,s`)

E[Xσ̄] 6 µt−(s1+···+s`) ·
∏̀
i=1

E
[
Dsi(Hp)

]
· tsi

and, consequently, summing over all ` and all sequences s1, . . . , s` and using the assumed upper
bound on the expectation of Ds(Hp), valid for each s 6 t,

Mt(X) 6
t∑

s=0
µt−s ·

∑
`>0

∑
s1+···+s`=s
26s16···6s`

∏̀
i=1

E
[
Dsi(Hp)

]
· tsi

6
t∑

s=0
µt−s ·

∑
`>0

∑
s1+···+s`=s
26s16···6s`

∏̀
i=1

exp(−Ksi + si log t)

=
t∑

s=0
µt ·

∑
`>0

∑
s1+···+s`=s
26s16···6s`

exp
(
−Ks+ s log(t/µ)

)
.

Since, for every s > 0, there are at most 2s sequences s1, . . . , s` of positive integers whose sum is s
(this includes the case when s = 0, when the only such sequence is the empty sequence), we have

Mt(X) 6 µt ·
t∑

s=0
exp

(
−Ks+ s log(t/µ) + s

)
.

Finally, since t/µ 6 c, we may choose K = K(c, η) so that

Mt(X) 6 µt ·
t∑

s=0

(
η

1 + η

)s
6 (1 + η)µt,

completing the proof. �

8.3. Proof of Proposition 8.1. Let H be the hypergraph on the vertex set JNK whose edges are
k-term arithmetic progressions in JNK, so that X = Xk-AP

N,p = eHp . Let µ = E[X], let η = η(ε, δ)
be the constant from the statement of Proposition 8.3, and let K = K(ε, δ, η) be the constant
from the statement of Lemma 8.5.

For any two integers a, b ∈ JNK with a < b, there is at most one k-term arithmetic progression
that starts with a and ends with b (and exactly one such progression if b− a is divisible by k− 1).
Therefore, N2/(2k) 6 eH 6 N2 for all large enough N . In particular, since we assume that
CN−1 6 pk/2 6 C−1N−1 logN , we find that

C2

2k 6 µ 6
(

logN
C

)2
(63)

and thus max{1/η,K} 6 µ 6 √eH/K whenever C is large. The claimed estimate on − logP
(
X >

(1 + δ)E[X]
)
will follow from Proposition 8.3 and Lemma 8.5 once we verify that Ds(Hp), the

number of clusters of s arithmetic progressions of length k in the set JNKp, satisfies

E[Ds(Hp)] 6 exp(−Ks)

for every s satisfying 2 6 s 6 (δ + ε)µ.
In order to do so, let D(s,m) be the the set of all clusters {σ1, . . . , σs} of s arithmetic

progressions of length k in JNK such that |σ1 ∪ · · · ∪ σs| = m; we also let Ds,m be the number of
such clusters whose union is contained in the random set JNKp. When s > 2, the union of any s
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distinct k-term arithmetic progressions contains between k + 1 and ks numbers, and therefore
Ds,m = 0 unless k + 1 6 m 6 ks. Thus, we can write

Ds(Hp) =
ks∑

m=k+1
Ds,m.

For each integer m, let am denote the number of m-element subsets of JNK that are the union
of a single, nonempty (but possibly trivial) cluster of k-term arithmetic progressions. Since a
progression is uniquely determined by its first and second element, it follows that, for each s,

E[Ds,m] 6 ampm
(
m2

s

)
. (64)

Claim 8.6. For every integer m > 1,

am 6 N
2 · (2kmN)

m−k
k−1 .

Proof. We prove the claimed upper bound on am by induction on m. It is vacuously true when
m < k, since then am = 0, or when m = k, as ak = eH 6 N2. Assume now that m > k + 1
and let A be an arbitrary set counted by am. Since m > k, the set A must be a union of at
least two different progressions. Moreover, there are a proper subset A′ ( A that is a union
of a (nonempty) cluster of k-term arithmetic progressions and a k-term progression σ that
intersects A′ such that A = A′ ∪ σ; note that the number of σi’s whose union is A′ may be
significantly smaller than the number that was used to generate A. By construction, we have that
|A′| = |A| − k + |A′ ∩ σ| = m− k + |A′ ∩ σ|. Since there are at most k|A′|N 6 kmN arithmetic
progressions of length k that intersect A′ in exactly one element and at most k2|A′|2 6 k2m2

progressions that intersect A′ in two or more elements,

am 6 kmN · am−k+1 + k2m2 · (am−k+2 + · · ·+ am−1).

It follows from our inductive assumption that

am 6 kmN ·N2 · (2kmN)
m−2k+1
k−1 + k2m2 · k ·N2 · (2kmN)

m−k−1
k−1

= N2 ·
(

(2kmN)
m−k
k−1 /2 + k3m2 · (2kmN)

m−k
k−1 −

1
k−1

)
.

Finally, as (63) implies that m 6 ks 6 k(δ + ε)µ 6 k(δ + ε)(C−1 logN)2 and N > C, then

k3m2 · (2kmN)−1/(k−1) 6 1/2,

provided that C is sufficiently large. This implies the claimed upper bound on am. �

Assume now that k + 1 6 m 6 ks. Since s 6 (δ + ε)µ, inequality (63) implies that m is only
polylogarithmic in N ; on the other hand, p 6 (C−1N−1 logN)2/k. Since k > 3 and N > C, there
is a positive constant γ that depends only on k such that

(2kmN)1/(k−1)p 6 (2kmN)1/(k−1) · (C−1N−1 logN)2/k 6 N−2(k+1)γ 6 N−2mγ/(m−k).

In particular, Claim 8.6 implies that

amp
m 6 N2pk ·

(
(2kmN)1/(k−1)p

)m−k
6 N2pk ·N−2mγ 6 N−mγ ,

where for the last inequality we use that N2pk is at most polylogarithmic in N and N > C.
Combining this bound with (64) we conclude that

E[Ds,m] 6 N−mγ ·
(
m2

s

)
6 exp

(
−mγ logN + s log

(
em2

s

))
.

Let f : (0,∞)→ (0,∞) be the function defined by

f(x) = exp
(
−xγ logN + s log

(
ex2

s

))
= exp

(
− xγ logN + 2s log x+ s log(e/s)

)
,
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so that E[Ds,m] 6 f(m). Elementary calculus shows that f is maximised at x = 2s/(γ logN).
Therefore,

E[Ds,m] 6 f
(

2s
γ logN

)
= exp

(
−2s+ s log

(
4es

γ2(logN)2

))
.

Since our assumptions imply that, see (63),
s

(logN)2 6
(δ + ε)µ
(logN)2 6

δ + ε

C2 ,

we may conclude that E[Ds,m] 6 exp(−(K + k)s), provided that C is sufficiently large. Therefore,
if C is sufficiently large,

E[Ds(Hp)] =
ks∑

m=k+1
E[Ds,m] 6 ks · exp(−Ks− ks) 6 exp(−Ks).

This completes the proof.

8.4. Proof of Proposition 8.2. Let H be a connected, ∆-regular graph and let H be the
hypergraph on the vertex set

(JnK
2
)
whose edges are copies of H in Kn, so that X = XH

n,p = eHp .
Let µ = E[X], let η = η(ε, δ) be the constant from the statement of Proposition 8.3, and let
K = K(ε, δ, η) be the constant from the statement of Lemma 8.5.

Since (n/vH)vH 6
(
n
vH

)
6 eH 6 nvH for all large enough n, our assumption Cn−1 6 p∆/2 6

C−1n−1(logn)
1

vH−2 and the fact that 2eH = ∆vH imply that(
C

vH

)vH
6 µ 6

(logn)1+ 2
vH−2

CvH
, (65)

and thus max{1/η,K} 6 µ 6 √eH/K whenever C is sufficiently large. The claimed estimate on
− logP

(
X > (1 + δ)E[X]

)
will follow from Proposition 8.3 and Lemma 8.5 once we verify that

Ds(Hp), the number of clusters of s copies of H in the random graph Gn,p, satisfies

E[Ds(Hp)] 6 exp(−Ks)

for every s satisfying 2 6 s 6 (δ + ε)µ.
To this end, for every s > 1, every k > 1, and every m > 1, let D(s, k,m) denote the set of

all clusters {σ1, . . . , σs} of s distinct copies of H in Kn such that the graph σ1 ∪ · · · ∪ σs has
k vertices (of nonzero degree) and m edges. We further let Ds,k,m denote the number of such
clusters whose union is contained in Gn,p. When s > 2, the union of any s distinct copies of H
contains between vH and vHs vertices and between eH + 1 and eHs edges, and thus Ds,k,m = 0
unless vH 6 k 6 vHs and eH + 1 6 m 6 eHs. We can therefore write

Ds(Hp) =
vHs∑
k=vH

eHs∑
m=eH+1

Ds,k,m.

Claim 8.7. There exists a positive constant γ such that, for every s > 2, every k > vH , and
every m > eH + 1,

E[Ds,k,m] 6 n−2γm
(
k2

m

)(
(2m)vH/2

s

)
.

Proof. We first show that, for every s > 1, the set D(s, k,m) is empty unless

m− eH >
(

∆
2 + 1

2vH

)
· (k − vH). (66)

We prove this fact by induction on s. The case s = 1 holds vacuously, as the set D(1, k,m) is
nonempty only when k = vH and m = eH . Assume now that s > 2 and let G be the union of
copies of H that form some cluster in D(s, k,m). By definition, G has k vertices and m edges.
Furthermore, for some s′ < s, k′ 6 k and m′ < m, there exist a subgraph G′ ⊆ G and a copy σ
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of H in Kn that intersects (the edge set of ) G′ such that G′ is the union of copies of H that
form some cluster in D(s′, k′,m′), and G = G′ ∪ σ. We note that s′ may be strictly smaller than
s− 1. Let J ⊆ H be the subgraph of H that is isomorphic to σ ∩G′, so that m = m′ + eH − eJ
and k = k′ + vH − vJ . It follows from the inductive assumption that

m− eH = m′ − eJ >
(

∆
2 + 1

2vH

)
· (k′ − vH) + eH − eJ

=
(

∆
2 + 1

2vH

)
· (k − vH)−

(
∆
2 + 1

2vH

)
· (vH − vJ) + eH − eJ .

We claim that the above inequality implies (66). This is obviously true when J = H. If J is a
proper subgraph of H, then 2eJ 6 ∆vJ − 1, since H is connected and ∆-regular, and therefore

eH − eJ >
∆vH

2 − ∆vJ − 1
2 =

(
∆
2 + 1

2(vH − vJ)

)
· (vH − vJ) >

(
∆
2 + 1

2vH

)
· (vH − vJ),

which gives (66).
To complete the proof of the claim, note that

E[Ds,k,m] 6 nkpm ·
(
k2

m

)
·
(
N(H, k,m)

s

)
,

where N(H, k,m) denotes the largest number of copies of H in a graph with k vertices and m
edges. Inequality (66) implies that

nkpm = nvHpeH · nk−vHpm−eH 6 nvHpeH ·
(
np∆/2+1/(2vH)

)2vH(m−eH)/(∆vH+1)
.

Since p∆/2 6 C−1n−1 logn, the quantity nvHpeH is only polylogarithmic in n and np∆/2+1/(2vH) 6
n−γ

′ for some positive constant γ′. As m > eH +1 and n is large, then there is a positive constant
γ such that nkpm 6 n−2γm. The claimed upper bound on E[Ds,k,m] now follows from Theorem 5.4,
which implies that N(H, k,m) 6 (2m)vH/2. �

Claim 8.7 and the inequality
(
a
b

)
6 (ea/b)b impy that

E[Ds,k,m] 6 exp
(
−2γm logn+m log(ek2/m) + s log

(
e(2m)vH/2/s

))
6 exp

(
−γm logn+ s log

(
e(2m)vH/2/s

))
,

where the second inequality as k 6 vHs 6 vH(δ + ε)µ and µ is at most polylogarithmic in n,
see (65). Let f : (0,∞)→ (0,∞) be the function defined by

f(x) = exp
(
−γx logn+ s log

(
e(2x)vH/2/s

))
,

so that E[Ds,k,m] 6 f(m). Elementary calculus shows that f is maximised at x = svH/(2γ logn).
Therefore,

E[Ds,k,m] 6 f
(

svH
2γ logn

)
= exp

(
−svH2 + svH

2 log
(
e2/vHvHs

1−2/vH

γ logn

))
.

Since our assumptions imply that, see (65),

s1−2/vH

logn 6

(
(δ + η)µ

)1−2/vH

logn 6
(δ + η)1−2/vH

CvH−2 ,

we may conclude that E[Ds,k,m] 6 exp(−(K + vHeH)s), provided that C is sufficiently large.
Therefore, if C is sufficiently large,

E[Ds(Hp)] =
vHs∑
k=vH

eHs∑
m=eH+1

E[Ds,k,m] 6 s2vHeH · exp(−Ks− vHeHs) 6 exp(−Ks).

This completes the proof.
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9. Beyond polynomials with nonnegative coefficients

Although Theorem 3.1 applies only to the case where X = X(Y ) is a polynomial with
nonnegative coefficients, the proof can be adapted to yield a similar result for all nonnegative
functions X : {0, 1}N → R>0. In this case, the degree assumption in Theorem 3.1 has to be
replaced by a more general assumption on the ‘complexity’ of X.

Given an I ⊆ JNK and a z ∈ {0, 1}N , we let

F (I, z) = {y ∈ {0, 1}N : yi = zi for all i ∈ I};

we call sets of this from subcubes. If F is a subcube, then there is a unique set I such that
F = F (I, z), for some z. We can thus define the codimension of F by codimF = |I|. Given a
nonnegative function X on the hypercube, we define the complexity of X to be the smallest integer
d for which it is possible to represent X as a linear combination with nonnegative coefficients of
indicator functions of subcubes with codimension at most d. The complexity of X is well defined,
and at most N , since X =

∑
z∈{0,1}N X(z)1F (JNK,z) is such a linear combination. Note also that

the complexity of every polynomial with nonnegative coefficients and degree d is at most d.
Assume now that Y is a random variable taking values in {0, 1}N and that X = X(Y ). Given

a subcube F ⊆ {0, 1}N , we write EF [X] = E[X | Y ∈ F ] for the expectation of X conditioned on
Y ∈ F . We further define ΦX : R>0 → R>0 ∪ {∞} by

ΦX(δ) = min
{
− logP(Y ∈ F ) : F ⊆ {0, 1}N is a subcube with EF [X] > (1 + δ)E[X]

}
. (67)

If X is an increasing function of Y , this definition coincides with our earlier definition of ΦX(δ),
because then the minimum is achieved at a subcube of the form F (I,1), where 1 is the N -
dimensional all-ones vector. One may adapt the proof of Theorem 3.1 to show the following.
(A precise proof of this theorem can be found in [23], which was written after this work was
completed).

Theorem 9.1. For every positive integer d and all positive real numbers ε and δ with ε < 1/2,
there is a positive K = K(d, ε, δ) such that the following holds. Let Y be a sequence of N
independent Ber(p) random variables for some p ∈ (0, 1 − ε] and assume that X = X(Y ) is
non-negative and has complexity at most d and satisfies ΦX(δ − ε) > K log(1/p). Denote by F∗
the collection of all subcubes F ⊆ {0, 1}N satisfying

(F1) EF [X] > (1 + δ − ε)E[X],
(F2) codimF 6 K · ΦX(δ + ε).

Then,
P
(
X > (1 + δ)E[X]

)
6 (1 + ε) · P (Y ∈ F for some F ∈ F∗) .

We note that this theorem does not exactly match Theorem 3.1; indeed, we only assert that
the upper tail event is dominated by the appearance of a subcube in F∗. It is possible to further
restrict the family F∗, analogous to the extraction of cores from seeds. We do not pursue this
direction here.

Theorem 9.1 can be used to study the upper tail problem for induced subgraph counts. Suppose
that H is a fixed graph and X = XH-ind

n,p is the number of induced copies of H in the random
graph Gn,p. Let N =

(
n
2
)
and, for an arbitrary bijection σn :

(JnK
2
)
→ JNK, let Yi be the indicator

random variable of the event that σ−1
n (i) is an edge in Gn,p. Then we can write

X =
∑

H′⊆Kn
H′∼=H

∏
e∈E(H)

Yσn(e)
∏

e∈(V (H)
2 )\E(H)

(1− Yσn(e)).

In particular, the complexity of X is bounded by eH and Theorem 9.1 applies. On the other
hand, it is clear that X is generally not monotone, so one cannot use Theorem 3.1. This direction
was successfully pursued by Cohen [23].
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10. Concluding remarks

Nonregular graphs. It is an open problem to extend Theorems 1.5 and 1.6 to nonregular graphs.
It is straightforward to extend Theorem 1.6 to the more general case of strictly balanced graphs;
however, note that Šileikis and Warnke [66] constructed balanced graphs for which the conclusion
of Theorem 1.6 does not hold. In the localised regime, the results in [18, 24, 25, 30] apply to
arbitrary (as opposed to only ∆-regular) graphs H; however, these works require polynomially-
suboptimal assumptions on the density p. Recently, Šileikis and Warnke [63] determined the order
of the logarithmic upper tail probability for the number of copies of the star graph K1,s in Gn,p.

The phase transition between the Poisson and the localised regimes. We believe that the logarithmic
upper tail probabilities of the random variables considered in this paper are always determined
by either the Poisson behaviour, the localised behaviour, or the coexistence of the two (in the
regime where they are commensurate). More precisely, we believe that for both X = XH

n,p (for a
connected, ∆-regular H) and X = Xk-AP

N,p ,

− logP
(
X > (1 + δ)E[X]

)
=
(
1± o(1)

)
· min

06δ′6δ

(
ΦX(δ′) + ΨX(δ − δ′)

)
, (68)

as long as E[X]→∞ and p→ 0. Let p∗ = p∗(δ, n) be such that ΦX(δ) = ΨX(δ). Note that if
p� p∗, then ΨX(δ)� ΦX(δ) and we recover Theorems 1.4 and 1.6, whereas if p� p∗, we have
ΨX(δ)� ΦX(δ) and (68) implies (in some cases a stronger version of) Theorems 1.3, 1.5, and 1.7.
If p = Θ(p∗), then both terms are of the same order and the conjecture allows for the upper tail
to be dominated by configurations exhibiting features of both the Poisson and localised regimes.

Structural theorems for non-complete graphs. In the case where X = XH
n,p for a connected,

∆-regular graph H, we have neither determined the asymptotics of ΦX(δ) in the range np∆ →
c ∈ (0,∞) nor given a structural description of the upper tail event {X > (1 + δ)E[X]} for
any density p. Doing the former would yield the logarithmic upper tail probability of X, via
Proposition 7.1; it is likely that the value of ΦX(δ) is given by a mixture of the clique construction
and a ‘hub-like’ construction in which a constant number of vertices have degrees linear in n. As
for the latter, the method used to prove Theorem 5.11 can be generalised to yield an analogous
statement in which Kr is replaced with an arbitrary ∆-regular graph H. Armed with such a
‘stability’ statement, it is relatively straightforward to show that, when np∆ → 0, the random
graph Gn,p conditioned on the upper tail event {X > (1 + δ)E[X]} contains an ‘almost-clique’
of the ‘right’ size, as was the case when H = Kr. We were not able to prove such a structural
statement in the complementary range np∆ = Ω(1).

Stability results for arithmetic progressions. An interesting problem is to characterise the near-
minimisers of the optimisation problem for ΦX(δ) when X = Xk-AP

N,p . More precisely, we ask for a
description of all subsets I ⊆ JNK that satisfy EI [X] > (1 + δ)E[X] and |I| 6 (1 + ε)ΦX(δ + ε).
As a consequence of Theorem 3.1 and the entropic stability of Xk-AP

N,p , which we established in
the proof of Proposition 4.2, such a result would imply a structural characterisation of the upper
tail event. Since the dominant contribution to the difference EI [X]− E[X] comes from k-term
arithmetic progressions contained in I, this problem is equivalent to understanding the structure
of sets I ⊆ Z that are near-maximisers of the number of k-term arithmetic progressions (among
subsets of a given size). The structure of true maximisers was described by Green and Sisask [37]
in the case for k = 3.

Decomposing the upper tail measure. Let Ȳ be the random variable obtained by conditioning Y
on the upper tail event {X(Y ) > (1 + δ)E[X]} and let Ỹ be the random variable obtained by
first choosing a uniformly random solution I of the optimisation problem for ΦX(δ) and then
conditioning Y on

∏
i∈I Yi = 1. It would be very interesting to determine necessary and sufficient

conditions so that Ȳ and Ỹ are close in some metric. In particular, are the assumptions of
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Theorem 3.1 sufficiently strong to imply this? This question is closely related to the more general
problem of decomposing a Gibbs measure into a mixture of product measures. The work of Eldan
and Gross [31], and, more recently, of Austin [4], gives general conditions for the existence of such
a decomposition.

Moderate deviations. Throughout this paper, we have assumed that δ is a fixed, positive constant.
It is interesting and natural to study the probability of {X > (1 + δ)E[X]} when δ is allowed
to depend on N and p. In the case where δ E[X] is of the same order as

√
Var(X), one can

often prove a Central Limit Theorem, see [6, 7, 61]. The regime in which δ E[X] �
√

Var(X)
but δ → 0 is often referred to as the moderate deviation regime. One expects that, under
reasonable assumptions, the logarithmic upper tail probability − logP(X > (1+δ)E[X]) is of order
min{(δ E[X])2/Var(X), ΦX(δ)}; this has been verified in certain cases, see [10, 33, 36, 38, 63, 69].
Our methods can be adapted to the moderate deviation regime. In an upcoming work [40], we
calculate the logarithmic upper tail probability for X = Xk-AP

N,p for nearly all pairs (p, δ) for which
localisation is believed to occur—that is, when ΦX(δ)� (δ E[X])2/Var(X).

Other random graph models. Upper tails for subgraph counts have been considered in random
graph models other than Gn,p, such as exponential random graphs [19], random geometric
graphs [20], random regular graphs [39, 65], and (dense) uniform random graphs [27]. The
framework developed here can be generalised to other (non-product) measures on the hypercube,
providing a possible approach to such questions. It is likely that this requires adapting the notions
of cores and entropic stability to the model.
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