
A constructive proof of the general Lovász local lemma
Robin A. Moser and Gábor Tardos, 2010

Leonid Prokupets

May 3, 2015

Outline

1 Introduction
2 General Lovász local lemma
3 Symmetric Lovász local lemma
4 Example application
5 Motivation
6 History
7 General setting
8 The Sequential Solver
9 Main Theorem

10 Execution Logs and Witness Trees
11 Random Generation of Witness Trees
12 The Parallel Solver

Introduction

The typical goal of the probabilistic method is to prove the existence
of combinatorial objects meeting a prescribed collection of criteria.

Usually, we have a collection of bad events A1, . . . ,An that we are
trying to avoid.

If
∑n

i=1 Pr[Ai] < 1 then clearly there is a positive probability that
none of them occurs. However, in many cases this approach is not
powerful enough, because

∑n
i=1 Pr[Ai] may be substantially larger

than Pr[
⋃n

i=1 Ai].

If the events A1, . . . ,An are mutually independent (and non-trivial),
then we have Pr[

∧n
i=1 Ai] =

∏n
i=1 Pr[Ai] > 0 even though the

probabilities Pr[Ai] can be very close to 1 and their sum can be
arbitrarily large.

It is natural to expect that something similar holds even if the events
are not entirely independent.

General Lovász local lemma

Theorem (Erdős and Lovász, 1975)

Let A be a finite set of events in a probability space.
For A ∈ A let Γ(A) be a subset of A satisfying that A is independent from
the collection of events A \ ({A} ∪ Γ(A)).
If there exists an assignment of reals x : A → (0, 1) such that

∀A ∈ A : Pr[A] ≤ x(A)
∏

B∈Γ(A)

(1− x(B)),

then with positive probability no event A ∈ A holds.

Symmetric Lovász local lemma

Special case of the General Lovász local lemma:

Theorem

Let A be a finite set of events in a probability space.
For A ∈ A let Γ(A) be a subset of A satisfying that A is independent from
the collection of events A \ ({A} ∪ Γ(A)).
If the following conditions are met:

∀A ∈ A : |Γ(A)| ≤ d , i.e. each event A depends on at most d other
events

∀A ∈ A : Pr[A] ≤ p , i.e. the probability of each event A is at most p

ep(d + 1) ≤ 1 , where e is the base of the natural logarithm

Then with positive probability no event A ∈ A holds.

Example application

Definition

A hypergraph H = (V ,E) is two-colorable if there is a coloring of V by
two colors so that no edge f ∈ E is monochromatic.

Theorem

Let H be a hypergraph in which every edge has at least k vertices and
intersects at most d other edges. If e(d + 1) ≤ 2k−1, then H is
two-colorable.

Motivation

In the basic probabilistic method, we usually prove that almost all of
the considered objects are good. So if we want to find a good object,
we can select an object at random, and we have a very good chance
of selecting a good one.

In contrast, the Lovász local lemma guarantees that the probability of
avoiding all bad events is positive, but this probability is typically very
small!

For example, if A1, . . . ,An are independent events, with probability
1/3 each, say, in which case the Local Lemma applies, then the
probability of none Ai occurring is only (2/3)n. So good objects
guaranteed by the local Lemma can be extremely rare.

The original proof of the local lemma is non-constructive and does
not yield an efficient procedure for searching the probability space for
a point with the desired property.

The purpose is to give an alternative, algorithmic proof that provides
such a procedure.

History

1991: J. Beck demonstrated that algorithmic versions of the Local
Lemma exist. He formulated his strategy in terms of hypergraph
2-coloring as a specific application of the lemma and proved that if in
a hypergraph, every edge contains at least k vertices and shares
common vertices with no more than roughly 2k/48 other edges, then a
polynomial time algorithm can 2-color the vertices without producing
a monochromatic edge.

1991: N. Alon improved the threshold to essentially 2k/8.

1998: M. Molloy B. Reed provided a general framework capturing the
requirements a particular application has to meet so as to become
tractable by the tools of Beck and Alon.

2008: A. Srinivasan provided another improvement that reduced the
gap to a threshold of essentially 2k/4.

2008: R. Moser, improvement to roughly 2k/2.

2009: R. Moser lowered the threshold to roughly 2k/32.

General setting

Let P be a finite collection of mutually independent random variables
in a fixed probability space Ω.
We consider events A that are determined by the values of some
subset S ⊆ P of these variables.
We say that an evaluation of the variables in S violates A if it makes
A happen.
Denote by vbl(A) the unique minimal subset S ⊆ P that determines
A.
Let A be a finite family of events in Ω determined by P.
We define the dependency graph G = GA for A to be the graph on
vertex set A with an edge between events A,B ∈ A if A 6= B but
vbl(A) ∩ vbl(B) 6= ∅.
For A ∈ A we write Γ(A) = ΓA(A) for the neighborhood of A in G
and Γ+(A) := Γ(A) ∪ {A} the inclusive neighborhood of A.
Given the family A of events as above our goal is not only to show
that there exists an evaluation that does not violate any event in the
family but to efficiently find such an evaluation.

The Sequential Solver

Algorithm 1 The Sequential Solver

1: for all P ∈ P do
2: vP ← a random evaluation of P
3: end for
4: while ∃A ∈ A : A is violated when (P = vP : ∀P ∈ P) do
5: Pick an arbitrary violated event A ∈ A
6: for all P ∈ vbl(A) do
7: vP ← a new random evaluation of P
8: end for
9: end while

10: return (vP)P∈P

Main Theorem

Theorem

Let P be a finite set of mutually independent random variables in a
probability space.
Let A be a finite set of events determined by these variables.
If there exists an assignment of reals x : A → (0, 1) such that

∀A ∈ A : Pr[A] ≤ x(A)
∏

B∈ΓA(A)

(1− x(B)),

then there exists an assignment of values to the variables P not violating
any of the events in A. Moreover the randomized algorithm described
above resamples an event A ∈ A at most an expected x(A)/(1− x(A))
times before it finds such an evaluation. Thus, the expected total number
of resampling steps is at most

∑
A∈A

x(A)
1−x(A) .

Execution Logs and Witness Trees

Definition

Let C : N→ A list the events as they have been selected for resampling in
each step. If the algorithm terminates, C is partial and defined only up to
the given total number of steps carried out. We call C the log of the
execution.

Definition

A witness tree τ = (T , σT) is a finite rooted tree T together with a
labelling σT : V (T)→ A of its vertices with events such that the children
of a vertex u ∈ V (T) receive labels from Γ+(σT (u)). If distinct children of
the same vertex always receive distinct labels we call the witness tree
proper. To shorten notation, we will write V (τ) := V (T) and for any
v ∈ V (τ), we write [v] := σT (v).

Execution Logs and Witness Trees

Given the log C , we will associate with each resampling step t carried
out a witness tree τC (t) that can serve as ’justification’ for the
necessity of that correction step.

Let us define τ
(t)
C (t) to be an isolated root vertex labelled C (t).

Then, going backwards through the log, for each
i = t − 1, t − 2, . . . , 1, we distinguish two cases:

If there is a vertex v ∈ τ (i+1)
C (t) such that C (i) ∈ Γ+([v]), then we

choose among all such vertices the one having the maximum distance
from the root (breaking ties arbitrarily) and attach a new child vertex u

to v that we label C (i), thereby obtaining the tree τ
(i)
C (t).

Otherwise, we skip time step i and define τ
(i)
C (t) := τ

(i+1)
C (t).

We say that the witness tree τ occurs in the log C if there exists
t ∈ N such that τC (t) = τ .

Execution Logs and Witness Trees

Lemma

Let τ be a fixed witness tree and C the (random) log produced by the
algorithm.

1 If τ occurs in C , then τ is proper.

2 The probability that τ appears in C is at most
∏

v∈V (τ) Pr[[v]].

Execution Logs and Witness Trees

Let C be the log of the execution of our algorithm.

For any event A ∈ A, denote by NA the random variable that counts
how many times the event A is resampled during the execution of our
algorithm, that is the number of time steps t with C (t) = A.

Let ti denote the i-th such time step.

Let TA denote the set of all proper witness trees having the root
labelled A

We saw that for each i :
τC (ti) ∈ TA.
τC (ti) contains exactly i vertices labeled A and thus τC (ti) 6= τC (tj) for
i 6= j .

Therefore, NA not only counts the number of distinct proper witness
trees occurring in C that have their root labeled A, that is,

NA =
∑
τ∈TA

1{τ occurs in C}

Random Generation of Witness Trees

Fix an event A ∈ A.

Consider the following branching process for generating a proper
witness tree having its root labeled A.

In the first round, we produce a singleton vertex labeled A.

Then, in each subsequent round, we consider each vertex v produced
in the previous round independently and for each event B ∈ Γ+([v]),
we add to v a child node carrying the label B with probability x(B) or
skip that label with probability 1− x(B). All these choices are
independent.

The process continues until it dies out naturally because no new
vertices are born in some round (depending on the probabilities used,
there is, of course, the possibility that this never happens).

Random Generation of Witness Trees

Lemma

Let τ a fixed proper witness tree with its root vertex labeled A.
The probability pτ that the process described above yields exactly the tree
τ is

pτ =
1− x(A)

x(A)

∏
v∈V (τ)

x ′([v])

where x ′(B) := x(B)
∏

C∈Γ(B)(1− x(C)).

Random Generation of Witness Trees

To conclude the proof the main theorem, we have

E(NA) =
∑
τ∈TA

Pr[τ appears in the log C]

≤
∑
τ∈TA

∏
V∈V (τ)

Pr[[v]] (First lemma)

≤
∑
τ∈TA

∏
V∈V (τ)

x ′([v]) (Theorem assumption)

=
x(A)

1− x(A)

∑
τ∈TA

pτ (Second lemma)

≤ x(A)

1− x(A)

The Parallel Solver

Algorithm 2 The Parallel Solver

1: for all P ∈ P do in parallel
2: vP ← a random evaluation of P
3: end for
4: while ∃A ∈ A : A is violated when (P = vP : ∀P ∈ P) do
5: S ← a maximal independent set in the subgraph of A induced by

all events which where violated when (P = vP : ∀P ∈ P),
constructed in parallel

6: for all P ∈
⋃

A∈S vbl(A) do in parallel
7: vP ← a new random evaluation of P
8: end for
9: end while

10: return (vP)P∈P

The Parallel Solver

Theorem

Let P be a finite set of mutually independent random variables in a
probability space.
Let A be a finite set of events determined by these variables.
If ε > 0 there exists an assignment of reals x : A → (0, 1) such that

∀A ∈ A : Pr[A] ≤ (1− ε)x(A)
∏

B∈ΓA(A)

(1− x(B)),

then the parallel version takes an expected

O

(
1

ε
log
∑
A∈A

x(A)

1− x(A)

)

steps before it finds an evaluation violating no event in A.

The Parallel Solver

Consider an arbitrary execution of the parallel version of the algorithm

Choose an arbitrary ordering of the violated events selected for
resampling at each step and consider that these resamplings are done
in that order sequentially.

This way we obtain an execution of the sequential algorithm.

Let Sj be the segment of the log C of this execution that corresponds
to resamplings done in step j of the parallel algorithm.

We call the maximal depth of a vertex in a witness tree the depth of
the tree.

Lemma

If t ∈ Sj , then the depth of τC (t) is j − 1.

The Parallel Solver

Let Q(k) denote the probability that the parallel algorithm makes at
least k steps.

By the last lemma, some witness tree of depth k − 1 (and thus, at
least k vertices) must occur in the log in this case.

Let TA(k) be the set of wtness trees in TA having at least k vertices.

We have

Q(k) ≤ (1− ε)k
∑
A∈A

x(A)

1− x(A)

which implies the last theorem.

Thank you!

	Introduction
	General Lovász local lemma
	Symmetric Lovász local lemma
	Example application
	Motivation
	History
	General setting
	The Sequential Solver
	Main Theorem
	Execution Logs and Witness Trees
	Random Generation of Witness Trees
	The Parallel Solver

